diff options
Diffstat (limited to 'drivers/net/igb')
-rw-r--r-- | drivers/net/igb/Makefile | 37 | ||||
-rw-r--r-- | drivers/net/igb/e1000_82575.c | 2084 | ||||
-rw-r--r-- | drivers/net/igb/e1000_82575.h | 258 | ||||
-rw-r--r-- | drivers/net/igb/e1000_defines.h | 834 | ||||
-rw-r--r-- | drivers/net/igb/e1000_hw.h | 529 | ||||
-rw-r--r-- | drivers/net/igb/e1000_mac.c | 1421 | ||||
-rw-r--r-- | drivers/net/igb/e1000_mac.h | 90 | ||||
-rw-r--r-- | drivers/net/igb/e1000_mbx.c | 446 | ||||
-rw-r--r-- | drivers/net/igb/e1000_mbx.h | 77 | ||||
-rw-r--r-- | drivers/net/igb/e1000_nvm.c | 713 | ||||
-rw-r--r-- | drivers/net/igb/e1000_nvm.h | 43 | ||||
-rw-r--r-- | drivers/net/igb/e1000_phy.c | 2341 | ||||
-rw-r--r-- | drivers/net/igb/e1000_phy.h | 136 | ||||
-rw-r--r-- | drivers/net/igb/e1000_regs.h | 354 | ||||
-rw-r--r-- | drivers/net/igb/igb.h | 415 | ||||
-rw-r--r-- | drivers/net/igb/igb_ethtool.c | 2201 | ||||
-rw-r--r-- | drivers/net/igb/igb_main.c | 6890 |
17 files changed, 18869 insertions, 0 deletions
diff --git a/drivers/net/igb/Makefile b/drivers/net/igb/Makefile new file mode 100644 index 00000000000..c6e4621b626 --- /dev/null +++ b/drivers/net/igb/Makefile | |||
@@ -0,0 +1,37 @@ | |||
1 | ################################################################################ | ||
2 | # | ||
3 | # Intel 82575 PCI-Express Ethernet Linux driver | ||
4 | # Copyright(c) 1999 - 2011 Intel Corporation. | ||
5 | # | ||
6 | # This program is free software; you can redistribute it and/or modify it | ||
7 | # under the terms and conditions of the GNU General Public License, | ||
8 | # version 2, as published by the Free Software Foundation. | ||
9 | # | ||
10 | # This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | # more details. | ||
14 | # | ||
15 | # You should have received a copy of the GNU General Public License along with | ||
16 | # this program; if not, write to the Free Software Foundation, Inc., | ||
17 | # 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | # | ||
19 | # The full GNU General Public License is included in this distribution in | ||
20 | # the file called "COPYING". | ||
21 | # | ||
22 | # Contact Information: | ||
23 | # Linux NICS <linux.nics@intel.com> | ||
24 | # e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | # Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | # | ||
27 | ################################################################################ | ||
28 | |||
29 | # | ||
30 | # Makefile for the Intel(R) 82575 PCI-Express ethernet driver | ||
31 | # | ||
32 | |||
33 | obj-$(CONFIG_IGB) += igb.o | ||
34 | |||
35 | igb-objs := igb_main.o igb_ethtool.o e1000_82575.o \ | ||
36 | e1000_mac.o e1000_nvm.o e1000_phy.o e1000_mbx.o | ||
37 | |||
diff --git a/drivers/net/igb/e1000_82575.c b/drivers/net/igb/e1000_82575.c new file mode 100644 index 00000000000..c0857bdfb03 --- /dev/null +++ b/drivers/net/igb/e1000_82575.c | |||
@@ -0,0 +1,2084 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | /* e1000_82575 | ||
29 | * e1000_82576 | ||
30 | */ | ||
31 | |||
32 | #include <linux/types.h> | ||
33 | #include <linux/if_ether.h> | ||
34 | |||
35 | #include "e1000_mac.h" | ||
36 | #include "e1000_82575.h" | ||
37 | |||
38 | static s32 igb_get_invariants_82575(struct e1000_hw *); | ||
39 | static s32 igb_acquire_phy_82575(struct e1000_hw *); | ||
40 | static void igb_release_phy_82575(struct e1000_hw *); | ||
41 | static s32 igb_acquire_nvm_82575(struct e1000_hw *); | ||
42 | static void igb_release_nvm_82575(struct e1000_hw *); | ||
43 | static s32 igb_check_for_link_82575(struct e1000_hw *); | ||
44 | static s32 igb_get_cfg_done_82575(struct e1000_hw *); | ||
45 | static s32 igb_init_hw_82575(struct e1000_hw *); | ||
46 | static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *); | ||
47 | static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *); | ||
48 | static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *); | ||
49 | static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16); | ||
50 | static s32 igb_reset_hw_82575(struct e1000_hw *); | ||
51 | static s32 igb_reset_hw_82580(struct e1000_hw *); | ||
52 | static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool); | ||
53 | static s32 igb_setup_copper_link_82575(struct e1000_hw *); | ||
54 | static s32 igb_setup_serdes_link_82575(struct e1000_hw *); | ||
55 | static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16); | ||
56 | static void igb_clear_hw_cntrs_82575(struct e1000_hw *); | ||
57 | static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16); | ||
58 | static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *, | ||
59 | u16 *); | ||
60 | static s32 igb_get_phy_id_82575(struct e1000_hw *); | ||
61 | static void igb_release_swfw_sync_82575(struct e1000_hw *, u16); | ||
62 | static bool igb_sgmii_active_82575(struct e1000_hw *); | ||
63 | static s32 igb_reset_init_script_82575(struct e1000_hw *); | ||
64 | static s32 igb_read_mac_addr_82575(struct e1000_hw *); | ||
65 | static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw); | ||
66 | static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw); | ||
67 | static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw); | ||
68 | static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw); | ||
69 | static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, | ||
70 | u16 offset); | ||
71 | static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, | ||
72 | u16 offset); | ||
73 | static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw); | ||
74 | static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw); | ||
75 | static const u16 e1000_82580_rxpbs_table[] = | ||
76 | { 36, 72, 144, 1, 2, 4, 8, 16, | ||
77 | 35, 70, 140 }; | ||
78 | #define E1000_82580_RXPBS_TABLE_SIZE \ | ||
79 | (sizeof(e1000_82580_rxpbs_table)/sizeof(u16)) | ||
80 | |||
81 | /** | ||
82 | * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO | ||
83 | * @hw: pointer to the HW structure | ||
84 | * | ||
85 | * Called to determine if the I2C pins are being used for I2C or as an | ||
86 | * external MDIO interface since the two options are mutually exclusive. | ||
87 | **/ | ||
88 | static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw) | ||
89 | { | ||
90 | u32 reg = 0; | ||
91 | bool ext_mdio = false; | ||
92 | |||
93 | switch (hw->mac.type) { | ||
94 | case e1000_82575: | ||
95 | case e1000_82576: | ||
96 | reg = rd32(E1000_MDIC); | ||
97 | ext_mdio = !!(reg & E1000_MDIC_DEST); | ||
98 | break; | ||
99 | case e1000_82580: | ||
100 | case e1000_i350: | ||
101 | reg = rd32(E1000_MDICNFG); | ||
102 | ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); | ||
103 | break; | ||
104 | default: | ||
105 | break; | ||
106 | } | ||
107 | return ext_mdio; | ||
108 | } | ||
109 | |||
110 | static s32 igb_get_invariants_82575(struct e1000_hw *hw) | ||
111 | { | ||
112 | struct e1000_phy_info *phy = &hw->phy; | ||
113 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
114 | struct e1000_mac_info *mac = &hw->mac; | ||
115 | struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575; | ||
116 | u32 eecd; | ||
117 | s32 ret_val; | ||
118 | u16 size; | ||
119 | u32 ctrl_ext = 0; | ||
120 | |||
121 | switch (hw->device_id) { | ||
122 | case E1000_DEV_ID_82575EB_COPPER: | ||
123 | case E1000_DEV_ID_82575EB_FIBER_SERDES: | ||
124 | case E1000_DEV_ID_82575GB_QUAD_COPPER: | ||
125 | mac->type = e1000_82575; | ||
126 | break; | ||
127 | case E1000_DEV_ID_82576: | ||
128 | case E1000_DEV_ID_82576_NS: | ||
129 | case E1000_DEV_ID_82576_NS_SERDES: | ||
130 | case E1000_DEV_ID_82576_FIBER: | ||
131 | case E1000_DEV_ID_82576_SERDES: | ||
132 | case E1000_DEV_ID_82576_QUAD_COPPER: | ||
133 | case E1000_DEV_ID_82576_QUAD_COPPER_ET2: | ||
134 | case E1000_DEV_ID_82576_SERDES_QUAD: | ||
135 | mac->type = e1000_82576; | ||
136 | break; | ||
137 | case E1000_DEV_ID_82580_COPPER: | ||
138 | case E1000_DEV_ID_82580_FIBER: | ||
139 | case E1000_DEV_ID_82580_QUAD_FIBER: | ||
140 | case E1000_DEV_ID_82580_SERDES: | ||
141 | case E1000_DEV_ID_82580_SGMII: | ||
142 | case E1000_DEV_ID_82580_COPPER_DUAL: | ||
143 | case E1000_DEV_ID_DH89XXCC_SGMII: | ||
144 | case E1000_DEV_ID_DH89XXCC_SERDES: | ||
145 | case E1000_DEV_ID_DH89XXCC_BACKPLANE: | ||
146 | case E1000_DEV_ID_DH89XXCC_SFP: | ||
147 | mac->type = e1000_82580; | ||
148 | break; | ||
149 | case E1000_DEV_ID_I350_COPPER: | ||
150 | case E1000_DEV_ID_I350_FIBER: | ||
151 | case E1000_DEV_ID_I350_SERDES: | ||
152 | case E1000_DEV_ID_I350_SGMII: | ||
153 | mac->type = e1000_i350; | ||
154 | break; | ||
155 | default: | ||
156 | return -E1000_ERR_MAC_INIT; | ||
157 | break; | ||
158 | } | ||
159 | |||
160 | /* Set media type */ | ||
161 | /* | ||
162 | * The 82575 uses bits 22:23 for link mode. The mode can be changed | ||
163 | * based on the EEPROM. We cannot rely upon device ID. There | ||
164 | * is no distinguishable difference between fiber and internal | ||
165 | * SerDes mode on the 82575. There can be an external PHY attached | ||
166 | * on the SGMII interface. For this, we'll set sgmii_active to true. | ||
167 | */ | ||
168 | phy->media_type = e1000_media_type_copper; | ||
169 | dev_spec->sgmii_active = false; | ||
170 | |||
171 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
172 | switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { | ||
173 | case E1000_CTRL_EXT_LINK_MODE_SGMII: | ||
174 | dev_spec->sgmii_active = true; | ||
175 | break; | ||
176 | case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: | ||
177 | case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: | ||
178 | hw->phy.media_type = e1000_media_type_internal_serdes; | ||
179 | break; | ||
180 | default: | ||
181 | break; | ||
182 | } | ||
183 | |||
184 | /* Set mta register count */ | ||
185 | mac->mta_reg_count = 128; | ||
186 | /* Set rar entry count */ | ||
187 | mac->rar_entry_count = E1000_RAR_ENTRIES_82575; | ||
188 | if (mac->type == e1000_82576) | ||
189 | mac->rar_entry_count = E1000_RAR_ENTRIES_82576; | ||
190 | if (mac->type == e1000_82580) | ||
191 | mac->rar_entry_count = E1000_RAR_ENTRIES_82580; | ||
192 | if (mac->type == e1000_i350) | ||
193 | mac->rar_entry_count = E1000_RAR_ENTRIES_I350; | ||
194 | /* reset */ | ||
195 | if (mac->type >= e1000_82580) | ||
196 | mac->ops.reset_hw = igb_reset_hw_82580; | ||
197 | else | ||
198 | mac->ops.reset_hw = igb_reset_hw_82575; | ||
199 | /* Set if part includes ASF firmware */ | ||
200 | mac->asf_firmware_present = true; | ||
201 | /* Set if manageability features are enabled. */ | ||
202 | mac->arc_subsystem_valid = | ||
203 | (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK) | ||
204 | ? true : false; | ||
205 | /* enable EEE on i350 parts */ | ||
206 | if (mac->type == e1000_i350) | ||
207 | dev_spec->eee_disable = false; | ||
208 | else | ||
209 | dev_spec->eee_disable = true; | ||
210 | /* physical interface link setup */ | ||
211 | mac->ops.setup_physical_interface = | ||
212 | (hw->phy.media_type == e1000_media_type_copper) | ||
213 | ? igb_setup_copper_link_82575 | ||
214 | : igb_setup_serdes_link_82575; | ||
215 | |||
216 | /* NVM initialization */ | ||
217 | eecd = rd32(E1000_EECD); | ||
218 | |||
219 | nvm->opcode_bits = 8; | ||
220 | nvm->delay_usec = 1; | ||
221 | switch (nvm->override) { | ||
222 | case e1000_nvm_override_spi_large: | ||
223 | nvm->page_size = 32; | ||
224 | nvm->address_bits = 16; | ||
225 | break; | ||
226 | case e1000_nvm_override_spi_small: | ||
227 | nvm->page_size = 8; | ||
228 | nvm->address_bits = 8; | ||
229 | break; | ||
230 | default: | ||
231 | nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; | ||
232 | nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; | ||
233 | break; | ||
234 | } | ||
235 | |||
236 | nvm->type = e1000_nvm_eeprom_spi; | ||
237 | |||
238 | size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | ||
239 | E1000_EECD_SIZE_EX_SHIFT); | ||
240 | |||
241 | /* | ||
242 | * Added to a constant, "size" becomes the left-shift value | ||
243 | * for setting word_size. | ||
244 | */ | ||
245 | size += NVM_WORD_SIZE_BASE_SHIFT; | ||
246 | |||
247 | /* | ||
248 | * Check for invalid size | ||
249 | */ | ||
250 | if ((hw->mac.type == e1000_82576) && (size > 15)) { | ||
251 | printk("igb: The NVM size is not valid, " | ||
252 | "defaulting to 32K.\n"); | ||
253 | size = 15; | ||
254 | } | ||
255 | nvm->word_size = 1 << size; | ||
256 | if (nvm->word_size == (1 << 15)) | ||
257 | nvm->page_size = 128; | ||
258 | |||
259 | /* NVM Function Pointers */ | ||
260 | nvm->ops.acquire = igb_acquire_nvm_82575; | ||
261 | if (nvm->word_size < (1 << 15)) | ||
262 | nvm->ops.read = igb_read_nvm_eerd; | ||
263 | else | ||
264 | nvm->ops.read = igb_read_nvm_spi; | ||
265 | |||
266 | nvm->ops.release = igb_release_nvm_82575; | ||
267 | switch (hw->mac.type) { | ||
268 | case e1000_82580: | ||
269 | nvm->ops.validate = igb_validate_nvm_checksum_82580; | ||
270 | nvm->ops.update = igb_update_nvm_checksum_82580; | ||
271 | break; | ||
272 | case e1000_i350: | ||
273 | nvm->ops.validate = igb_validate_nvm_checksum_i350; | ||
274 | nvm->ops.update = igb_update_nvm_checksum_i350; | ||
275 | break; | ||
276 | default: | ||
277 | nvm->ops.validate = igb_validate_nvm_checksum; | ||
278 | nvm->ops.update = igb_update_nvm_checksum; | ||
279 | } | ||
280 | nvm->ops.write = igb_write_nvm_spi; | ||
281 | |||
282 | /* if part supports SR-IOV then initialize mailbox parameters */ | ||
283 | switch (mac->type) { | ||
284 | case e1000_82576: | ||
285 | case e1000_i350: | ||
286 | igb_init_mbx_params_pf(hw); | ||
287 | break; | ||
288 | default: | ||
289 | break; | ||
290 | } | ||
291 | |||
292 | /* setup PHY parameters */ | ||
293 | if (phy->media_type != e1000_media_type_copper) { | ||
294 | phy->type = e1000_phy_none; | ||
295 | return 0; | ||
296 | } | ||
297 | |||
298 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
299 | phy->reset_delay_us = 100; | ||
300 | |||
301 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
302 | |||
303 | /* PHY function pointers */ | ||
304 | if (igb_sgmii_active_82575(hw)) { | ||
305 | phy->ops.reset = igb_phy_hw_reset_sgmii_82575; | ||
306 | ctrl_ext |= E1000_CTRL_I2C_ENA; | ||
307 | } else { | ||
308 | phy->ops.reset = igb_phy_hw_reset; | ||
309 | ctrl_ext &= ~E1000_CTRL_I2C_ENA; | ||
310 | } | ||
311 | |||
312 | wr32(E1000_CTRL_EXT, ctrl_ext); | ||
313 | igb_reset_mdicnfg_82580(hw); | ||
314 | |||
315 | if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) { | ||
316 | phy->ops.read_reg = igb_read_phy_reg_sgmii_82575; | ||
317 | phy->ops.write_reg = igb_write_phy_reg_sgmii_82575; | ||
318 | } else if (hw->mac.type >= e1000_82580) { | ||
319 | phy->ops.read_reg = igb_read_phy_reg_82580; | ||
320 | phy->ops.write_reg = igb_write_phy_reg_82580; | ||
321 | } else { | ||
322 | phy->ops.read_reg = igb_read_phy_reg_igp; | ||
323 | phy->ops.write_reg = igb_write_phy_reg_igp; | ||
324 | } | ||
325 | |||
326 | /* set lan id */ | ||
327 | hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >> | ||
328 | E1000_STATUS_FUNC_SHIFT; | ||
329 | |||
330 | /* Set phy->phy_addr and phy->id. */ | ||
331 | ret_val = igb_get_phy_id_82575(hw); | ||
332 | if (ret_val) | ||
333 | return ret_val; | ||
334 | |||
335 | /* Verify phy id and set remaining function pointers */ | ||
336 | switch (phy->id) { | ||
337 | case I347AT4_E_PHY_ID: | ||
338 | case M88E1112_E_PHY_ID: | ||
339 | case M88E1111_I_PHY_ID: | ||
340 | phy->type = e1000_phy_m88; | ||
341 | phy->ops.get_phy_info = igb_get_phy_info_m88; | ||
342 | |||
343 | if (phy->id == I347AT4_E_PHY_ID || | ||
344 | phy->id == M88E1112_E_PHY_ID) | ||
345 | phy->ops.get_cable_length = igb_get_cable_length_m88_gen2; | ||
346 | else | ||
347 | phy->ops.get_cable_length = igb_get_cable_length_m88; | ||
348 | |||
349 | phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; | ||
350 | break; | ||
351 | case IGP03E1000_E_PHY_ID: | ||
352 | phy->type = e1000_phy_igp_3; | ||
353 | phy->ops.get_phy_info = igb_get_phy_info_igp; | ||
354 | phy->ops.get_cable_length = igb_get_cable_length_igp_2; | ||
355 | phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp; | ||
356 | phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575; | ||
357 | phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state; | ||
358 | break; | ||
359 | case I82580_I_PHY_ID: | ||
360 | case I350_I_PHY_ID: | ||
361 | phy->type = e1000_phy_82580; | ||
362 | phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580; | ||
363 | phy->ops.get_cable_length = igb_get_cable_length_82580; | ||
364 | phy->ops.get_phy_info = igb_get_phy_info_82580; | ||
365 | break; | ||
366 | default: | ||
367 | return -E1000_ERR_PHY; | ||
368 | } | ||
369 | |||
370 | return 0; | ||
371 | } | ||
372 | |||
373 | /** | ||
374 | * igb_acquire_phy_82575 - Acquire rights to access PHY | ||
375 | * @hw: pointer to the HW structure | ||
376 | * | ||
377 | * Acquire access rights to the correct PHY. This is a | ||
378 | * function pointer entry point called by the api module. | ||
379 | **/ | ||
380 | static s32 igb_acquire_phy_82575(struct e1000_hw *hw) | ||
381 | { | ||
382 | u16 mask = E1000_SWFW_PHY0_SM; | ||
383 | |||
384 | if (hw->bus.func == E1000_FUNC_1) | ||
385 | mask = E1000_SWFW_PHY1_SM; | ||
386 | else if (hw->bus.func == E1000_FUNC_2) | ||
387 | mask = E1000_SWFW_PHY2_SM; | ||
388 | else if (hw->bus.func == E1000_FUNC_3) | ||
389 | mask = E1000_SWFW_PHY3_SM; | ||
390 | |||
391 | return igb_acquire_swfw_sync_82575(hw, mask); | ||
392 | } | ||
393 | |||
394 | /** | ||
395 | * igb_release_phy_82575 - Release rights to access PHY | ||
396 | * @hw: pointer to the HW structure | ||
397 | * | ||
398 | * A wrapper to release access rights to the correct PHY. This is a | ||
399 | * function pointer entry point called by the api module. | ||
400 | **/ | ||
401 | static void igb_release_phy_82575(struct e1000_hw *hw) | ||
402 | { | ||
403 | u16 mask = E1000_SWFW_PHY0_SM; | ||
404 | |||
405 | if (hw->bus.func == E1000_FUNC_1) | ||
406 | mask = E1000_SWFW_PHY1_SM; | ||
407 | else if (hw->bus.func == E1000_FUNC_2) | ||
408 | mask = E1000_SWFW_PHY2_SM; | ||
409 | else if (hw->bus.func == E1000_FUNC_3) | ||
410 | mask = E1000_SWFW_PHY3_SM; | ||
411 | |||
412 | igb_release_swfw_sync_82575(hw, mask); | ||
413 | } | ||
414 | |||
415 | /** | ||
416 | * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii | ||
417 | * @hw: pointer to the HW structure | ||
418 | * @offset: register offset to be read | ||
419 | * @data: pointer to the read data | ||
420 | * | ||
421 | * Reads the PHY register at offset using the serial gigabit media independent | ||
422 | * interface and stores the retrieved information in data. | ||
423 | **/ | ||
424 | static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, | ||
425 | u16 *data) | ||
426 | { | ||
427 | s32 ret_val = -E1000_ERR_PARAM; | ||
428 | |||
429 | if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { | ||
430 | hw_dbg("PHY Address %u is out of range\n", offset); | ||
431 | goto out; | ||
432 | } | ||
433 | |||
434 | ret_val = hw->phy.ops.acquire(hw); | ||
435 | if (ret_val) | ||
436 | goto out; | ||
437 | |||
438 | ret_val = igb_read_phy_reg_i2c(hw, offset, data); | ||
439 | |||
440 | hw->phy.ops.release(hw); | ||
441 | |||
442 | out: | ||
443 | return ret_val; | ||
444 | } | ||
445 | |||
446 | /** | ||
447 | * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii | ||
448 | * @hw: pointer to the HW structure | ||
449 | * @offset: register offset to write to | ||
450 | * @data: data to write at register offset | ||
451 | * | ||
452 | * Writes the data to PHY register at the offset using the serial gigabit | ||
453 | * media independent interface. | ||
454 | **/ | ||
455 | static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, | ||
456 | u16 data) | ||
457 | { | ||
458 | s32 ret_val = -E1000_ERR_PARAM; | ||
459 | |||
460 | |||
461 | if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { | ||
462 | hw_dbg("PHY Address %d is out of range\n", offset); | ||
463 | goto out; | ||
464 | } | ||
465 | |||
466 | ret_val = hw->phy.ops.acquire(hw); | ||
467 | if (ret_val) | ||
468 | goto out; | ||
469 | |||
470 | ret_val = igb_write_phy_reg_i2c(hw, offset, data); | ||
471 | |||
472 | hw->phy.ops.release(hw); | ||
473 | |||
474 | out: | ||
475 | return ret_val; | ||
476 | } | ||
477 | |||
478 | /** | ||
479 | * igb_get_phy_id_82575 - Retrieve PHY addr and id | ||
480 | * @hw: pointer to the HW structure | ||
481 | * | ||
482 | * Retrieves the PHY address and ID for both PHY's which do and do not use | ||
483 | * sgmi interface. | ||
484 | **/ | ||
485 | static s32 igb_get_phy_id_82575(struct e1000_hw *hw) | ||
486 | { | ||
487 | struct e1000_phy_info *phy = &hw->phy; | ||
488 | s32 ret_val = 0; | ||
489 | u16 phy_id; | ||
490 | u32 ctrl_ext; | ||
491 | u32 mdic; | ||
492 | |||
493 | /* | ||
494 | * For SGMII PHYs, we try the list of possible addresses until | ||
495 | * we find one that works. For non-SGMII PHYs | ||
496 | * (e.g. integrated copper PHYs), an address of 1 should | ||
497 | * work. The result of this function should mean phy->phy_addr | ||
498 | * and phy->id are set correctly. | ||
499 | */ | ||
500 | if (!(igb_sgmii_active_82575(hw))) { | ||
501 | phy->addr = 1; | ||
502 | ret_val = igb_get_phy_id(hw); | ||
503 | goto out; | ||
504 | } | ||
505 | |||
506 | if (igb_sgmii_uses_mdio_82575(hw)) { | ||
507 | switch (hw->mac.type) { | ||
508 | case e1000_82575: | ||
509 | case e1000_82576: | ||
510 | mdic = rd32(E1000_MDIC); | ||
511 | mdic &= E1000_MDIC_PHY_MASK; | ||
512 | phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; | ||
513 | break; | ||
514 | case e1000_82580: | ||
515 | case e1000_i350: | ||
516 | mdic = rd32(E1000_MDICNFG); | ||
517 | mdic &= E1000_MDICNFG_PHY_MASK; | ||
518 | phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; | ||
519 | break; | ||
520 | default: | ||
521 | ret_val = -E1000_ERR_PHY; | ||
522 | goto out; | ||
523 | break; | ||
524 | } | ||
525 | ret_val = igb_get_phy_id(hw); | ||
526 | goto out; | ||
527 | } | ||
528 | |||
529 | /* Power on sgmii phy if it is disabled */ | ||
530 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
531 | wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); | ||
532 | wrfl(); | ||
533 | msleep(300); | ||
534 | |||
535 | /* | ||
536 | * The address field in the I2CCMD register is 3 bits and 0 is invalid. | ||
537 | * Therefore, we need to test 1-7 | ||
538 | */ | ||
539 | for (phy->addr = 1; phy->addr < 8; phy->addr++) { | ||
540 | ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); | ||
541 | if (ret_val == 0) { | ||
542 | hw_dbg("Vendor ID 0x%08X read at address %u\n", | ||
543 | phy_id, phy->addr); | ||
544 | /* | ||
545 | * At the time of this writing, The M88 part is | ||
546 | * the only supported SGMII PHY product. | ||
547 | */ | ||
548 | if (phy_id == M88_VENDOR) | ||
549 | break; | ||
550 | } else { | ||
551 | hw_dbg("PHY address %u was unreadable\n", phy->addr); | ||
552 | } | ||
553 | } | ||
554 | |||
555 | /* A valid PHY type couldn't be found. */ | ||
556 | if (phy->addr == 8) { | ||
557 | phy->addr = 0; | ||
558 | ret_val = -E1000_ERR_PHY; | ||
559 | goto out; | ||
560 | } else { | ||
561 | ret_val = igb_get_phy_id(hw); | ||
562 | } | ||
563 | |||
564 | /* restore previous sfp cage power state */ | ||
565 | wr32(E1000_CTRL_EXT, ctrl_ext); | ||
566 | |||
567 | out: | ||
568 | return ret_val; | ||
569 | } | ||
570 | |||
571 | /** | ||
572 | * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset | ||
573 | * @hw: pointer to the HW structure | ||
574 | * | ||
575 | * Resets the PHY using the serial gigabit media independent interface. | ||
576 | **/ | ||
577 | static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) | ||
578 | { | ||
579 | s32 ret_val; | ||
580 | |||
581 | /* | ||
582 | * This isn't a true "hard" reset, but is the only reset | ||
583 | * available to us at this time. | ||
584 | */ | ||
585 | |||
586 | hw_dbg("Soft resetting SGMII attached PHY...\n"); | ||
587 | |||
588 | /* | ||
589 | * SFP documentation requires the following to configure the SPF module | ||
590 | * to work on SGMII. No further documentation is given. | ||
591 | */ | ||
592 | ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); | ||
593 | if (ret_val) | ||
594 | goto out; | ||
595 | |||
596 | ret_val = igb_phy_sw_reset(hw); | ||
597 | |||
598 | out: | ||
599 | return ret_val; | ||
600 | } | ||
601 | |||
602 | /** | ||
603 | * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state | ||
604 | * @hw: pointer to the HW structure | ||
605 | * @active: true to enable LPLU, false to disable | ||
606 | * | ||
607 | * Sets the LPLU D0 state according to the active flag. When | ||
608 | * activating LPLU this function also disables smart speed | ||
609 | * and vice versa. LPLU will not be activated unless the | ||
610 | * device autonegotiation advertisement meets standards of | ||
611 | * either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
612 | * This is a function pointer entry point only called by | ||
613 | * PHY setup routines. | ||
614 | **/ | ||
615 | static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) | ||
616 | { | ||
617 | struct e1000_phy_info *phy = &hw->phy; | ||
618 | s32 ret_val; | ||
619 | u16 data; | ||
620 | |||
621 | ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); | ||
622 | if (ret_val) | ||
623 | goto out; | ||
624 | |||
625 | if (active) { | ||
626 | data |= IGP02E1000_PM_D0_LPLU; | ||
627 | ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
628 | data); | ||
629 | if (ret_val) | ||
630 | goto out; | ||
631 | |||
632 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
633 | ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
634 | &data); | ||
635 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
636 | ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
637 | data); | ||
638 | if (ret_val) | ||
639 | goto out; | ||
640 | } else { | ||
641 | data &= ~IGP02E1000_PM_D0_LPLU; | ||
642 | ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
643 | data); | ||
644 | /* | ||
645 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
646 | * during Dx states where the power conservation is most | ||
647 | * important. During driver activity we should enable | ||
648 | * SmartSpeed, so performance is maintained. | ||
649 | */ | ||
650 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
651 | ret_val = phy->ops.read_reg(hw, | ||
652 | IGP01E1000_PHY_PORT_CONFIG, &data); | ||
653 | if (ret_val) | ||
654 | goto out; | ||
655 | |||
656 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
657 | ret_val = phy->ops.write_reg(hw, | ||
658 | IGP01E1000_PHY_PORT_CONFIG, data); | ||
659 | if (ret_val) | ||
660 | goto out; | ||
661 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
662 | ret_val = phy->ops.read_reg(hw, | ||
663 | IGP01E1000_PHY_PORT_CONFIG, &data); | ||
664 | if (ret_val) | ||
665 | goto out; | ||
666 | |||
667 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
668 | ret_val = phy->ops.write_reg(hw, | ||
669 | IGP01E1000_PHY_PORT_CONFIG, data); | ||
670 | if (ret_val) | ||
671 | goto out; | ||
672 | } | ||
673 | } | ||
674 | |||
675 | out: | ||
676 | return ret_val; | ||
677 | } | ||
678 | |||
679 | /** | ||
680 | * igb_acquire_nvm_82575 - Request for access to EEPROM | ||
681 | * @hw: pointer to the HW structure | ||
682 | * | ||
683 | * Acquire the necessary semaphores for exclusive access to the EEPROM. | ||
684 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. | ||
685 | * Return successful if access grant bit set, else clear the request for | ||
686 | * EEPROM access and return -E1000_ERR_NVM (-1). | ||
687 | **/ | ||
688 | static s32 igb_acquire_nvm_82575(struct e1000_hw *hw) | ||
689 | { | ||
690 | s32 ret_val; | ||
691 | |||
692 | ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); | ||
693 | if (ret_val) | ||
694 | goto out; | ||
695 | |||
696 | ret_val = igb_acquire_nvm(hw); | ||
697 | |||
698 | if (ret_val) | ||
699 | igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); | ||
700 | |||
701 | out: | ||
702 | return ret_val; | ||
703 | } | ||
704 | |||
705 | /** | ||
706 | * igb_release_nvm_82575 - Release exclusive access to EEPROM | ||
707 | * @hw: pointer to the HW structure | ||
708 | * | ||
709 | * Stop any current commands to the EEPROM and clear the EEPROM request bit, | ||
710 | * then release the semaphores acquired. | ||
711 | **/ | ||
712 | static void igb_release_nvm_82575(struct e1000_hw *hw) | ||
713 | { | ||
714 | igb_release_nvm(hw); | ||
715 | igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); | ||
716 | } | ||
717 | |||
718 | /** | ||
719 | * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore | ||
720 | * @hw: pointer to the HW structure | ||
721 | * @mask: specifies which semaphore to acquire | ||
722 | * | ||
723 | * Acquire the SW/FW semaphore to access the PHY or NVM. The mask | ||
724 | * will also specify which port we're acquiring the lock for. | ||
725 | **/ | ||
726 | static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) | ||
727 | { | ||
728 | u32 swfw_sync; | ||
729 | u32 swmask = mask; | ||
730 | u32 fwmask = mask << 16; | ||
731 | s32 ret_val = 0; | ||
732 | s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ | ||
733 | |||
734 | while (i < timeout) { | ||
735 | if (igb_get_hw_semaphore(hw)) { | ||
736 | ret_val = -E1000_ERR_SWFW_SYNC; | ||
737 | goto out; | ||
738 | } | ||
739 | |||
740 | swfw_sync = rd32(E1000_SW_FW_SYNC); | ||
741 | if (!(swfw_sync & (fwmask | swmask))) | ||
742 | break; | ||
743 | |||
744 | /* | ||
745 | * Firmware currently using resource (fwmask) | ||
746 | * or other software thread using resource (swmask) | ||
747 | */ | ||
748 | igb_put_hw_semaphore(hw); | ||
749 | mdelay(5); | ||
750 | i++; | ||
751 | } | ||
752 | |||
753 | if (i == timeout) { | ||
754 | hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); | ||
755 | ret_val = -E1000_ERR_SWFW_SYNC; | ||
756 | goto out; | ||
757 | } | ||
758 | |||
759 | swfw_sync |= swmask; | ||
760 | wr32(E1000_SW_FW_SYNC, swfw_sync); | ||
761 | |||
762 | igb_put_hw_semaphore(hw); | ||
763 | |||
764 | out: | ||
765 | return ret_val; | ||
766 | } | ||
767 | |||
768 | /** | ||
769 | * igb_release_swfw_sync_82575 - Release SW/FW semaphore | ||
770 | * @hw: pointer to the HW structure | ||
771 | * @mask: specifies which semaphore to acquire | ||
772 | * | ||
773 | * Release the SW/FW semaphore used to access the PHY or NVM. The mask | ||
774 | * will also specify which port we're releasing the lock for. | ||
775 | **/ | ||
776 | static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) | ||
777 | { | ||
778 | u32 swfw_sync; | ||
779 | |||
780 | while (igb_get_hw_semaphore(hw) != 0); | ||
781 | /* Empty */ | ||
782 | |||
783 | swfw_sync = rd32(E1000_SW_FW_SYNC); | ||
784 | swfw_sync &= ~mask; | ||
785 | wr32(E1000_SW_FW_SYNC, swfw_sync); | ||
786 | |||
787 | igb_put_hw_semaphore(hw); | ||
788 | } | ||
789 | |||
790 | /** | ||
791 | * igb_get_cfg_done_82575 - Read config done bit | ||
792 | * @hw: pointer to the HW structure | ||
793 | * | ||
794 | * Read the management control register for the config done bit for | ||
795 | * completion status. NOTE: silicon which is EEPROM-less will fail trying | ||
796 | * to read the config done bit, so an error is *ONLY* logged and returns | ||
797 | * 0. If we were to return with error, EEPROM-less silicon | ||
798 | * would not be able to be reset or change link. | ||
799 | **/ | ||
800 | static s32 igb_get_cfg_done_82575(struct e1000_hw *hw) | ||
801 | { | ||
802 | s32 timeout = PHY_CFG_TIMEOUT; | ||
803 | s32 ret_val = 0; | ||
804 | u32 mask = E1000_NVM_CFG_DONE_PORT_0; | ||
805 | |||
806 | if (hw->bus.func == 1) | ||
807 | mask = E1000_NVM_CFG_DONE_PORT_1; | ||
808 | else if (hw->bus.func == E1000_FUNC_2) | ||
809 | mask = E1000_NVM_CFG_DONE_PORT_2; | ||
810 | else if (hw->bus.func == E1000_FUNC_3) | ||
811 | mask = E1000_NVM_CFG_DONE_PORT_3; | ||
812 | |||
813 | while (timeout) { | ||
814 | if (rd32(E1000_EEMNGCTL) & mask) | ||
815 | break; | ||
816 | msleep(1); | ||
817 | timeout--; | ||
818 | } | ||
819 | if (!timeout) | ||
820 | hw_dbg("MNG configuration cycle has not completed.\n"); | ||
821 | |||
822 | /* If EEPROM is not marked present, init the PHY manually */ | ||
823 | if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) && | ||
824 | (hw->phy.type == e1000_phy_igp_3)) | ||
825 | igb_phy_init_script_igp3(hw); | ||
826 | |||
827 | return ret_val; | ||
828 | } | ||
829 | |||
830 | /** | ||
831 | * igb_check_for_link_82575 - Check for link | ||
832 | * @hw: pointer to the HW structure | ||
833 | * | ||
834 | * If sgmii is enabled, then use the pcs register to determine link, otherwise | ||
835 | * use the generic interface for determining link. | ||
836 | **/ | ||
837 | static s32 igb_check_for_link_82575(struct e1000_hw *hw) | ||
838 | { | ||
839 | s32 ret_val; | ||
840 | u16 speed, duplex; | ||
841 | |||
842 | if (hw->phy.media_type != e1000_media_type_copper) { | ||
843 | ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed, | ||
844 | &duplex); | ||
845 | /* | ||
846 | * Use this flag to determine if link needs to be checked or | ||
847 | * not. If we have link clear the flag so that we do not | ||
848 | * continue to check for link. | ||
849 | */ | ||
850 | hw->mac.get_link_status = !hw->mac.serdes_has_link; | ||
851 | } else { | ||
852 | ret_val = igb_check_for_copper_link(hw); | ||
853 | } | ||
854 | |||
855 | return ret_val; | ||
856 | } | ||
857 | |||
858 | /** | ||
859 | * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown | ||
860 | * @hw: pointer to the HW structure | ||
861 | **/ | ||
862 | void igb_power_up_serdes_link_82575(struct e1000_hw *hw) | ||
863 | { | ||
864 | u32 reg; | ||
865 | |||
866 | |||
867 | if ((hw->phy.media_type != e1000_media_type_internal_serdes) && | ||
868 | !igb_sgmii_active_82575(hw)) | ||
869 | return; | ||
870 | |||
871 | /* Enable PCS to turn on link */ | ||
872 | reg = rd32(E1000_PCS_CFG0); | ||
873 | reg |= E1000_PCS_CFG_PCS_EN; | ||
874 | wr32(E1000_PCS_CFG0, reg); | ||
875 | |||
876 | /* Power up the laser */ | ||
877 | reg = rd32(E1000_CTRL_EXT); | ||
878 | reg &= ~E1000_CTRL_EXT_SDP3_DATA; | ||
879 | wr32(E1000_CTRL_EXT, reg); | ||
880 | |||
881 | /* flush the write to verify completion */ | ||
882 | wrfl(); | ||
883 | msleep(1); | ||
884 | } | ||
885 | |||
886 | /** | ||
887 | * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex | ||
888 | * @hw: pointer to the HW structure | ||
889 | * @speed: stores the current speed | ||
890 | * @duplex: stores the current duplex | ||
891 | * | ||
892 | * Using the physical coding sub-layer (PCS), retrieve the current speed and | ||
893 | * duplex, then store the values in the pointers provided. | ||
894 | **/ | ||
895 | static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, | ||
896 | u16 *duplex) | ||
897 | { | ||
898 | struct e1000_mac_info *mac = &hw->mac; | ||
899 | u32 pcs; | ||
900 | |||
901 | /* Set up defaults for the return values of this function */ | ||
902 | mac->serdes_has_link = false; | ||
903 | *speed = 0; | ||
904 | *duplex = 0; | ||
905 | |||
906 | /* | ||
907 | * Read the PCS Status register for link state. For non-copper mode, | ||
908 | * the status register is not accurate. The PCS status register is | ||
909 | * used instead. | ||
910 | */ | ||
911 | pcs = rd32(E1000_PCS_LSTAT); | ||
912 | |||
913 | /* | ||
914 | * The link up bit determines when link is up on autoneg. The sync ok | ||
915 | * gets set once both sides sync up and agree upon link. Stable link | ||
916 | * can be determined by checking for both link up and link sync ok | ||
917 | */ | ||
918 | if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { | ||
919 | mac->serdes_has_link = true; | ||
920 | |||
921 | /* Detect and store PCS speed */ | ||
922 | if (pcs & E1000_PCS_LSTS_SPEED_1000) { | ||
923 | *speed = SPEED_1000; | ||
924 | } else if (pcs & E1000_PCS_LSTS_SPEED_100) { | ||
925 | *speed = SPEED_100; | ||
926 | } else { | ||
927 | *speed = SPEED_10; | ||
928 | } | ||
929 | |||
930 | /* Detect and store PCS duplex */ | ||
931 | if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) { | ||
932 | *duplex = FULL_DUPLEX; | ||
933 | } else { | ||
934 | *duplex = HALF_DUPLEX; | ||
935 | } | ||
936 | } | ||
937 | |||
938 | return 0; | ||
939 | } | ||
940 | |||
941 | /** | ||
942 | * igb_shutdown_serdes_link_82575 - Remove link during power down | ||
943 | * @hw: pointer to the HW structure | ||
944 | * | ||
945 | * In the case of fiber serdes, shut down optics and PCS on driver unload | ||
946 | * when management pass thru is not enabled. | ||
947 | **/ | ||
948 | void igb_shutdown_serdes_link_82575(struct e1000_hw *hw) | ||
949 | { | ||
950 | u32 reg; | ||
951 | |||
952 | if (hw->phy.media_type != e1000_media_type_internal_serdes && | ||
953 | igb_sgmii_active_82575(hw)) | ||
954 | return; | ||
955 | |||
956 | if (!igb_enable_mng_pass_thru(hw)) { | ||
957 | /* Disable PCS to turn off link */ | ||
958 | reg = rd32(E1000_PCS_CFG0); | ||
959 | reg &= ~E1000_PCS_CFG_PCS_EN; | ||
960 | wr32(E1000_PCS_CFG0, reg); | ||
961 | |||
962 | /* shutdown the laser */ | ||
963 | reg = rd32(E1000_CTRL_EXT); | ||
964 | reg |= E1000_CTRL_EXT_SDP3_DATA; | ||
965 | wr32(E1000_CTRL_EXT, reg); | ||
966 | |||
967 | /* flush the write to verify completion */ | ||
968 | wrfl(); | ||
969 | msleep(1); | ||
970 | } | ||
971 | } | ||
972 | |||
973 | /** | ||
974 | * igb_reset_hw_82575 - Reset hardware | ||
975 | * @hw: pointer to the HW structure | ||
976 | * | ||
977 | * This resets the hardware into a known state. This is a | ||
978 | * function pointer entry point called by the api module. | ||
979 | **/ | ||
980 | static s32 igb_reset_hw_82575(struct e1000_hw *hw) | ||
981 | { | ||
982 | u32 ctrl, icr; | ||
983 | s32 ret_val; | ||
984 | |||
985 | /* | ||
986 | * Prevent the PCI-E bus from sticking if there is no TLP connection | ||
987 | * on the last TLP read/write transaction when MAC is reset. | ||
988 | */ | ||
989 | ret_val = igb_disable_pcie_master(hw); | ||
990 | if (ret_val) | ||
991 | hw_dbg("PCI-E Master disable polling has failed.\n"); | ||
992 | |||
993 | /* set the completion timeout for interface */ | ||
994 | ret_val = igb_set_pcie_completion_timeout(hw); | ||
995 | if (ret_val) { | ||
996 | hw_dbg("PCI-E Set completion timeout has failed.\n"); | ||
997 | } | ||
998 | |||
999 | hw_dbg("Masking off all interrupts\n"); | ||
1000 | wr32(E1000_IMC, 0xffffffff); | ||
1001 | |||
1002 | wr32(E1000_RCTL, 0); | ||
1003 | wr32(E1000_TCTL, E1000_TCTL_PSP); | ||
1004 | wrfl(); | ||
1005 | |||
1006 | msleep(10); | ||
1007 | |||
1008 | ctrl = rd32(E1000_CTRL); | ||
1009 | |||
1010 | hw_dbg("Issuing a global reset to MAC\n"); | ||
1011 | wr32(E1000_CTRL, ctrl | E1000_CTRL_RST); | ||
1012 | |||
1013 | ret_val = igb_get_auto_rd_done(hw); | ||
1014 | if (ret_val) { | ||
1015 | /* | ||
1016 | * When auto config read does not complete, do not | ||
1017 | * return with an error. This can happen in situations | ||
1018 | * where there is no eeprom and prevents getting link. | ||
1019 | */ | ||
1020 | hw_dbg("Auto Read Done did not complete\n"); | ||
1021 | } | ||
1022 | |||
1023 | /* If EEPROM is not present, run manual init scripts */ | ||
1024 | if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) | ||
1025 | igb_reset_init_script_82575(hw); | ||
1026 | |||
1027 | /* Clear any pending interrupt events. */ | ||
1028 | wr32(E1000_IMC, 0xffffffff); | ||
1029 | icr = rd32(E1000_ICR); | ||
1030 | |||
1031 | /* Install any alternate MAC address into RAR0 */ | ||
1032 | ret_val = igb_check_alt_mac_addr(hw); | ||
1033 | |||
1034 | return ret_val; | ||
1035 | } | ||
1036 | |||
1037 | /** | ||
1038 | * igb_init_hw_82575 - Initialize hardware | ||
1039 | * @hw: pointer to the HW structure | ||
1040 | * | ||
1041 | * This inits the hardware readying it for operation. | ||
1042 | **/ | ||
1043 | static s32 igb_init_hw_82575(struct e1000_hw *hw) | ||
1044 | { | ||
1045 | struct e1000_mac_info *mac = &hw->mac; | ||
1046 | s32 ret_val; | ||
1047 | u16 i, rar_count = mac->rar_entry_count; | ||
1048 | |||
1049 | /* Initialize identification LED */ | ||
1050 | ret_val = igb_id_led_init(hw); | ||
1051 | if (ret_val) { | ||
1052 | hw_dbg("Error initializing identification LED\n"); | ||
1053 | /* This is not fatal and we should not stop init due to this */ | ||
1054 | } | ||
1055 | |||
1056 | /* Disabling VLAN filtering */ | ||
1057 | hw_dbg("Initializing the IEEE VLAN\n"); | ||
1058 | igb_clear_vfta(hw); | ||
1059 | |||
1060 | /* Setup the receive address */ | ||
1061 | igb_init_rx_addrs(hw, rar_count); | ||
1062 | |||
1063 | /* Zero out the Multicast HASH table */ | ||
1064 | hw_dbg("Zeroing the MTA\n"); | ||
1065 | for (i = 0; i < mac->mta_reg_count; i++) | ||
1066 | array_wr32(E1000_MTA, i, 0); | ||
1067 | |||
1068 | /* Zero out the Unicast HASH table */ | ||
1069 | hw_dbg("Zeroing the UTA\n"); | ||
1070 | for (i = 0; i < mac->uta_reg_count; i++) | ||
1071 | array_wr32(E1000_UTA, i, 0); | ||
1072 | |||
1073 | /* Setup link and flow control */ | ||
1074 | ret_val = igb_setup_link(hw); | ||
1075 | |||
1076 | /* | ||
1077 | * Clear all of the statistics registers (clear on read). It is | ||
1078 | * important that we do this after we have tried to establish link | ||
1079 | * because the symbol error count will increment wildly if there | ||
1080 | * is no link. | ||
1081 | */ | ||
1082 | igb_clear_hw_cntrs_82575(hw); | ||
1083 | |||
1084 | return ret_val; | ||
1085 | } | ||
1086 | |||
1087 | /** | ||
1088 | * igb_setup_copper_link_82575 - Configure copper link settings | ||
1089 | * @hw: pointer to the HW structure | ||
1090 | * | ||
1091 | * Configures the link for auto-neg or forced speed and duplex. Then we check | ||
1092 | * for link, once link is established calls to configure collision distance | ||
1093 | * and flow control are called. | ||
1094 | **/ | ||
1095 | static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) | ||
1096 | { | ||
1097 | u32 ctrl; | ||
1098 | s32 ret_val; | ||
1099 | |||
1100 | ctrl = rd32(E1000_CTRL); | ||
1101 | ctrl |= E1000_CTRL_SLU; | ||
1102 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1103 | wr32(E1000_CTRL, ctrl); | ||
1104 | |||
1105 | ret_val = igb_setup_serdes_link_82575(hw); | ||
1106 | if (ret_val) | ||
1107 | goto out; | ||
1108 | |||
1109 | if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) { | ||
1110 | /* allow time for SFP cage time to power up phy */ | ||
1111 | msleep(300); | ||
1112 | |||
1113 | ret_val = hw->phy.ops.reset(hw); | ||
1114 | if (ret_val) { | ||
1115 | hw_dbg("Error resetting the PHY.\n"); | ||
1116 | goto out; | ||
1117 | } | ||
1118 | } | ||
1119 | switch (hw->phy.type) { | ||
1120 | case e1000_phy_m88: | ||
1121 | if (hw->phy.id == I347AT4_E_PHY_ID || | ||
1122 | hw->phy.id == M88E1112_E_PHY_ID) | ||
1123 | ret_val = igb_copper_link_setup_m88_gen2(hw); | ||
1124 | else | ||
1125 | ret_val = igb_copper_link_setup_m88(hw); | ||
1126 | break; | ||
1127 | case e1000_phy_igp_3: | ||
1128 | ret_val = igb_copper_link_setup_igp(hw); | ||
1129 | break; | ||
1130 | case e1000_phy_82580: | ||
1131 | ret_val = igb_copper_link_setup_82580(hw); | ||
1132 | break; | ||
1133 | default: | ||
1134 | ret_val = -E1000_ERR_PHY; | ||
1135 | break; | ||
1136 | } | ||
1137 | |||
1138 | if (ret_val) | ||
1139 | goto out; | ||
1140 | |||
1141 | ret_val = igb_setup_copper_link(hw); | ||
1142 | out: | ||
1143 | return ret_val; | ||
1144 | } | ||
1145 | |||
1146 | /** | ||
1147 | * igb_setup_serdes_link_82575 - Setup link for serdes | ||
1148 | * @hw: pointer to the HW structure | ||
1149 | * | ||
1150 | * Configure the physical coding sub-layer (PCS) link. The PCS link is | ||
1151 | * used on copper connections where the serialized gigabit media independent | ||
1152 | * interface (sgmii), or serdes fiber is being used. Configures the link | ||
1153 | * for auto-negotiation or forces speed/duplex. | ||
1154 | **/ | ||
1155 | static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw) | ||
1156 | { | ||
1157 | u32 ctrl_ext, ctrl_reg, reg; | ||
1158 | bool pcs_autoneg; | ||
1159 | s32 ret_val = E1000_SUCCESS; | ||
1160 | u16 data; | ||
1161 | |||
1162 | if ((hw->phy.media_type != e1000_media_type_internal_serdes) && | ||
1163 | !igb_sgmii_active_82575(hw)) | ||
1164 | return ret_val; | ||
1165 | |||
1166 | |||
1167 | /* | ||
1168 | * On the 82575, SerDes loopback mode persists until it is | ||
1169 | * explicitly turned off or a power cycle is performed. A read to | ||
1170 | * the register does not indicate its status. Therefore, we ensure | ||
1171 | * loopback mode is disabled during initialization. | ||
1172 | */ | ||
1173 | wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); | ||
1174 | |||
1175 | /* power on the sfp cage if present */ | ||
1176 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
1177 | ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; | ||
1178 | wr32(E1000_CTRL_EXT, ctrl_ext); | ||
1179 | |||
1180 | ctrl_reg = rd32(E1000_CTRL); | ||
1181 | ctrl_reg |= E1000_CTRL_SLU; | ||
1182 | |||
1183 | if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) { | ||
1184 | /* set both sw defined pins */ | ||
1185 | ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; | ||
1186 | |||
1187 | /* Set switch control to serdes energy detect */ | ||
1188 | reg = rd32(E1000_CONNSW); | ||
1189 | reg |= E1000_CONNSW_ENRGSRC; | ||
1190 | wr32(E1000_CONNSW, reg); | ||
1191 | } | ||
1192 | |||
1193 | reg = rd32(E1000_PCS_LCTL); | ||
1194 | |||
1195 | /* default pcs_autoneg to the same setting as mac autoneg */ | ||
1196 | pcs_autoneg = hw->mac.autoneg; | ||
1197 | |||
1198 | switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { | ||
1199 | case E1000_CTRL_EXT_LINK_MODE_SGMII: | ||
1200 | /* sgmii mode lets the phy handle forcing speed/duplex */ | ||
1201 | pcs_autoneg = true; | ||
1202 | /* autoneg time out should be disabled for SGMII mode */ | ||
1203 | reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); | ||
1204 | break; | ||
1205 | case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: | ||
1206 | /* disable PCS autoneg and support parallel detect only */ | ||
1207 | pcs_autoneg = false; | ||
1208 | default: | ||
1209 | if (hw->mac.type == e1000_82575 || | ||
1210 | hw->mac.type == e1000_82576) { | ||
1211 | ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); | ||
1212 | if (ret_val) { | ||
1213 | printk(KERN_DEBUG "NVM Read Error\n\n"); | ||
1214 | return ret_val; | ||
1215 | } | ||
1216 | |||
1217 | if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) | ||
1218 | pcs_autoneg = false; | ||
1219 | } | ||
1220 | |||
1221 | /* | ||
1222 | * non-SGMII modes only supports a speed of 1000/Full for the | ||
1223 | * link so it is best to just force the MAC and let the pcs | ||
1224 | * link either autoneg or be forced to 1000/Full | ||
1225 | */ | ||
1226 | ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | | ||
1227 | E1000_CTRL_FD | E1000_CTRL_FRCDPX; | ||
1228 | |||
1229 | /* set speed of 1000/Full if speed/duplex is forced */ | ||
1230 | reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; | ||
1231 | break; | ||
1232 | } | ||
1233 | |||
1234 | wr32(E1000_CTRL, ctrl_reg); | ||
1235 | |||
1236 | /* | ||
1237 | * New SerDes mode allows for forcing speed or autonegotiating speed | ||
1238 | * at 1gb. Autoneg should be default set by most drivers. This is the | ||
1239 | * mode that will be compatible with older link partners and switches. | ||
1240 | * However, both are supported by the hardware and some drivers/tools. | ||
1241 | */ | ||
1242 | reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | | ||
1243 | E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); | ||
1244 | |||
1245 | /* | ||
1246 | * We force flow control to prevent the CTRL register values from being | ||
1247 | * overwritten by the autonegotiated flow control values | ||
1248 | */ | ||
1249 | reg |= E1000_PCS_LCTL_FORCE_FCTRL; | ||
1250 | |||
1251 | if (pcs_autoneg) { | ||
1252 | /* Set PCS register for autoneg */ | ||
1253 | reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ | ||
1254 | E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ | ||
1255 | hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); | ||
1256 | } else { | ||
1257 | /* Set PCS register for forced link */ | ||
1258 | reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ | ||
1259 | |||
1260 | hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); | ||
1261 | } | ||
1262 | |||
1263 | wr32(E1000_PCS_LCTL, reg); | ||
1264 | |||
1265 | if (!igb_sgmii_active_82575(hw)) | ||
1266 | igb_force_mac_fc(hw); | ||
1267 | |||
1268 | return ret_val; | ||
1269 | } | ||
1270 | |||
1271 | /** | ||
1272 | * igb_sgmii_active_82575 - Return sgmii state | ||
1273 | * @hw: pointer to the HW structure | ||
1274 | * | ||
1275 | * 82575 silicon has a serialized gigabit media independent interface (sgmii) | ||
1276 | * which can be enabled for use in the embedded applications. Simply | ||
1277 | * return the current state of the sgmii interface. | ||
1278 | **/ | ||
1279 | static bool igb_sgmii_active_82575(struct e1000_hw *hw) | ||
1280 | { | ||
1281 | struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; | ||
1282 | return dev_spec->sgmii_active; | ||
1283 | } | ||
1284 | |||
1285 | /** | ||
1286 | * igb_reset_init_script_82575 - Inits HW defaults after reset | ||
1287 | * @hw: pointer to the HW structure | ||
1288 | * | ||
1289 | * Inits recommended HW defaults after a reset when there is no EEPROM | ||
1290 | * detected. This is only for the 82575. | ||
1291 | **/ | ||
1292 | static s32 igb_reset_init_script_82575(struct e1000_hw *hw) | ||
1293 | { | ||
1294 | if (hw->mac.type == e1000_82575) { | ||
1295 | hw_dbg("Running reset init script for 82575\n"); | ||
1296 | /* SerDes configuration via SERDESCTRL */ | ||
1297 | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C); | ||
1298 | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78); | ||
1299 | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23); | ||
1300 | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15); | ||
1301 | |||
1302 | /* CCM configuration via CCMCTL register */ | ||
1303 | igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00); | ||
1304 | igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00); | ||
1305 | |||
1306 | /* PCIe lanes configuration */ | ||
1307 | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC); | ||
1308 | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF); | ||
1309 | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05); | ||
1310 | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81); | ||
1311 | |||
1312 | /* PCIe PLL Configuration */ | ||
1313 | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47); | ||
1314 | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00); | ||
1315 | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00); | ||
1316 | } | ||
1317 | |||
1318 | return 0; | ||
1319 | } | ||
1320 | |||
1321 | /** | ||
1322 | * igb_read_mac_addr_82575 - Read device MAC address | ||
1323 | * @hw: pointer to the HW structure | ||
1324 | **/ | ||
1325 | static s32 igb_read_mac_addr_82575(struct e1000_hw *hw) | ||
1326 | { | ||
1327 | s32 ret_val = 0; | ||
1328 | |||
1329 | /* | ||
1330 | * If there's an alternate MAC address place it in RAR0 | ||
1331 | * so that it will override the Si installed default perm | ||
1332 | * address. | ||
1333 | */ | ||
1334 | ret_val = igb_check_alt_mac_addr(hw); | ||
1335 | if (ret_val) | ||
1336 | goto out; | ||
1337 | |||
1338 | ret_val = igb_read_mac_addr(hw); | ||
1339 | |||
1340 | out: | ||
1341 | return ret_val; | ||
1342 | } | ||
1343 | |||
1344 | /** | ||
1345 | * igb_power_down_phy_copper_82575 - Remove link during PHY power down | ||
1346 | * @hw: pointer to the HW structure | ||
1347 | * | ||
1348 | * In the case of a PHY power down to save power, or to turn off link during a | ||
1349 | * driver unload, or wake on lan is not enabled, remove the link. | ||
1350 | **/ | ||
1351 | void igb_power_down_phy_copper_82575(struct e1000_hw *hw) | ||
1352 | { | ||
1353 | /* If the management interface is not enabled, then power down */ | ||
1354 | if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw))) | ||
1355 | igb_power_down_phy_copper(hw); | ||
1356 | } | ||
1357 | |||
1358 | /** | ||
1359 | * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters | ||
1360 | * @hw: pointer to the HW structure | ||
1361 | * | ||
1362 | * Clears the hardware counters by reading the counter registers. | ||
1363 | **/ | ||
1364 | static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) | ||
1365 | { | ||
1366 | igb_clear_hw_cntrs_base(hw); | ||
1367 | |||
1368 | rd32(E1000_PRC64); | ||
1369 | rd32(E1000_PRC127); | ||
1370 | rd32(E1000_PRC255); | ||
1371 | rd32(E1000_PRC511); | ||
1372 | rd32(E1000_PRC1023); | ||
1373 | rd32(E1000_PRC1522); | ||
1374 | rd32(E1000_PTC64); | ||
1375 | rd32(E1000_PTC127); | ||
1376 | rd32(E1000_PTC255); | ||
1377 | rd32(E1000_PTC511); | ||
1378 | rd32(E1000_PTC1023); | ||
1379 | rd32(E1000_PTC1522); | ||
1380 | |||
1381 | rd32(E1000_ALGNERRC); | ||
1382 | rd32(E1000_RXERRC); | ||
1383 | rd32(E1000_TNCRS); | ||
1384 | rd32(E1000_CEXTERR); | ||
1385 | rd32(E1000_TSCTC); | ||
1386 | rd32(E1000_TSCTFC); | ||
1387 | |||
1388 | rd32(E1000_MGTPRC); | ||
1389 | rd32(E1000_MGTPDC); | ||
1390 | rd32(E1000_MGTPTC); | ||
1391 | |||
1392 | rd32(E1000_IAC); | ||
1393 | rd32(E1000_ICRXOC); | ||
1394 | |||
1395 | rd32(E1000_ICRXPTC); | ||
1396 | rd32(E1000_ICRXATC); | ||
1397 | rd32(E1000_ICTXPTC); | ||
1398 | rd32(E1000_ICTXATC); | ||
1399 | rd32(E1000_ICTXQEC); | ||
1400 | rd32(E1000_ICTXQMTC); | ||
1401 | rd32(E1000_ICRXDMTC); | ||
1402 | |||
1403 | rd32(E1000_CBTMPC); | ||
1404 | rd32(E1000_HTDPMC); | ||
1405 | rd32(E1000_CBRMPC); | ||
1406 | rd32(E1000_RPTHC); | ||
1407 | rd32(E1000_HGPTC); | ||
1408 | rd32(E1000_HTCBDPC); | ||
1409 | rd32(E1000_HGORCL); | ||
1410 | rd32(E1000_HGORCH); | ||
1411 | rd32(E1000_HGOTCL); | ||
1412 | rd32(E1000_HGOTCH); | ||
1413 | rd32(E1000_LENERRS); | ||
1414 | |||
1415 | /* This register should not be read in copper configurations */ | ||
1416 | if (hw->phy.media_type == e1000_media_type_internal_serdes || | ||
1417 | igb_sgmii_active_82575(hw)) | ||
1418 | rd32(E1000_SCVPC); | ||
1419 | } | ||
1420 | |||
1421 | /** | ||
1422 | * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable | ||
1423 | * @hw: pointer to the HW structure | ||
1424 | * | ||
1425 | * After rx enable if managability is enabled then there is likely some | ||
1426 | * bad data at the start of the fifo and possibly in the DMA fifo. This | ||
1427 | * function clears the fifos and flushes any packets that came in as rx was | ||
1428 | * being enabled. | ||
1429 | **/ | ||
1430 | void igb_rx_fifo_flush_82575(struct e1000_hw *hw) | ||
1431 | { | ||
1432 | u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; | ||
1433 | int i, ms_wait; | ||
1434 | |||
1435 | if (hw->mac.type != e1000_82575 || | ||
1436 | !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN)) | ||
1437 | return; | ||
1438 | |||
1439 | /* Disable all RX queues */ | ||
1440 | for (i = 0; i < 4; i++) { | ||
1441 | rxdctl[i] = rd32(E1000_RXDCTL(i)); | ||
1442 | wr32(E1000_RXDCTL(i), | ||
1443 | rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); | ||
1444 | } | ||
1445 | /* Poll all queues to verify they have shut down */ | ||
1446 | for (ms_wait = 0; ms_wait < 10; ms_wait++) { | ||
1447 | msleep(1); | ||
1448 | rx_enabled = 0; | ||
1449 | for (i = 0; i < 4; i++) | ||
1450 | rx_enabled |= rd32(E1000_RXDCTL(i)); | ||
1451 | if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) | ||
1452 | break; | ||
1453 | } | ||
1454 | |||
1455 | if (ms_wait == 10) | ||
1456 | hw_dbg("Queue disable timed out after 10ms\n"); | ||
1457 | |||
1458 | /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all | ||
1459 | * incoming packets are rejected. Set enable and wait 2ms so that | ||
1460 | * any packet that was coming in as RCTL.EN was set is flushed | ||
1461 | */ | ||
1462 | rfctl = rd32(E1000_RFCTL); | ||
1463 | wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); | ||
1464 | |||
1465 | rlpml = rd32(E1000_RLPML); | ||
1466 | wr32(E1000_RLPML, 0); | ||
1467 | |||
1468 | rctl = rd32(E1000_RCTL); | ||
1469 | temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); | ||
1470 | temp_rctl |= E1000_RCTL_LPE; | ||
1471 | |||
1472 | wr32(E1000_RCTL, temp_rctl); | ||
1473 | wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN); | ||
1474 | wrfl(); | ||
1475 | msleep(2); | ||
1476 | |||
1477 | /* Enable RX queues that were previously enabled and restore our | ||
1478 | * previous state | ||
1479 | */ | ||
1480 | for (i = 0; i < 4; i++) | ||
1481 | wr32(E1000_RXDCTL(i), rxdctl[i]); | ||
1482 | wr32(E1000_RCTL, rctl); | ||
1483 | wrfl(); | ||
1484 | |||
1485 | wr32(E1000_RLPML, rlpml); | ||
1486 | wr32(E1000_RFCTL, rfctl); | ||
1487 | |||
1488 | /* Flush receive errors generated by workaround */ | ||
1489 | rd32(E1000_ROC); | ||
1490 | rd32(E1000_RNBC); | ||
1491 | rd32(E1000_MPC); | ||
1492 | } | ||
1493 | |||
1494 | /** | ||
1495 | * igb_set_pcie_completion_timeout - set pci-e completion timeout | ||
1496 | * @hw: pointer to the HW structure | ||
1497 | * | ||
1498 | * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, | ||
1499 | * however the hardware default for these parts is 500us to 1ms which is less | ||
1500 | * than the 10ms recommended by the pci-e spec. To address this we need to | ||
1501 | * increase the value to either 10ms to 200ms for capability version 1 config, | ||
1502 | * or 16ms to 55ms for version 2. | ||
1503 | **/ | ||
1504 | static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw) | ||
1505 | { | ||
1506 | u32 gcr = rd32(E1000_GCR); | ||
1507 | s32 ret_val = 0; | ||
1508 | u16 pcie_devctl2; | ||
1509 | |||
1510 | /* only take action if timeout value is defaulted to 0 */ | ||
1511 | if (gcr & E1000_GCR_CMPL_TMOUT_MASK) | ||
1512 | goto out; | ||
1513 | |||
1514 | /* | ||
1515 | * if capababilities version is type 1 we can write the | ||
1516 | * timeout of 10ms to 200ms through the GCR register | ||
1517 | */ | ||
1518 | if (!(gcr & E1000_GCR_CAP_VER2)) { | ||
1519 | gcr |= E1000_GCR_CMPL_TMOUT_10ms; | ||
1520 | goto out; | ||
1521 | } | ||
1522 | |||
1523 | /* | ||
1524 | * for version 2 capabilities we need to write the config space | ||
1525 | * directly in order to set the completion timeout value for | ||
1526 | * 16ms to 55ms | ||
1527 | */ | ||
1528 | ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, | ||
1529 | &pcie_devctl2); | ||
1530 | if (ret_val) | ||
1531 | goto out; | ||
1532 | |||
1533 | pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; | ||
1534 | |||
1535 | ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, | ||
1536 | &pcie_devctl2); | ||
1537 | out: | ||
1538 | /* disable completion timeout resend */ | ||
1539 | gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; | ||
1540 | |||
1541 | wr32(E1000_GCR, gcr); | ||
1542 | return ret_val; | ||
1543 | } | ||
1544 | |||
1545 | /** | ||
1546 | * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing | ||
1547 | * @hw: pointer to the hardware struct | ||
1548 | * @enable: state to enter, either enabled or disabled | ||
1549 | * @pf: Physical Function pool - do not set anti-spoofing for the PF | ||
1550 | * | ||
1551 | * enables/disables L2 switch anti-spoofing functionality. | ||
1552 | **/ | ||
1553 | void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) | ||
1554 | { | ||
1555 | u32 dtxswc; | ||
1556 | |||
1557 | switch (hw->mac.type) { | ||
1558 | case e1000_82576: | ||
1559 | case e1000_i350: | ||
1560 | dtxswc = rd32(E1000_DTXSWC); | ||
1561 | if (enable) { | ||
1562 | dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK | | ||
1563 | E1000_DTXSWC_VLAN_SPOOF_MASK); | ||
1564 | /* The PF can spoof - it has to in order to | ||
1565 | * support emulation mode NICs */ | ||
1566 | dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); | ||
1567 | } else { | ||
1568 | dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | | ||
1569 | E1000_DTXSWC_VLAN_SPOOF_MASK); | ||
1570 | } | ||
1571 | wr32(E1000_DTXSWC, dtxswc); | ||
1572 | break; | ||
1573 | default: | ||
1574 | break; | ||
1575 | } | ||
1576 | } | ||
1577 | |||
1578 | /** | ||
1579 | * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback | ||
1580 | * @hw: pointer to the hardware struct | ||
1581 | * @enable: state to enter, either enabled or disabled | ||
1582 | * | ||
1583 | * enables/disables L2 switch loopback functionality. | ||
1584 | **/ | ||
1585 | void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) | ||
1586 | { | ||
1587 | u32 dtxswc = rd32(E1000_DTXSWC); | ||
1588 | |||
1589 | if (enable) | ||
1590 | dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; | ||
1591 | else | ||
1592 | dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; | ||
1593 | |||
1594 | wr32(E1000_DTXSWC, dtxswc); | ||
1595 | } | ||
1596 | |||
1597 | /** | ||
1598 | * igb_vmdq_set_replication_pf - enable or disable vmdq replication | ||
1599 | * @hw: pointer to the hardware struct | ||
1600 | * @enable: state to enter, either enabled or disabled | ||
1601 | * | ||
1602 | * enables/disables replication of packets across multiple pools. | ||
1603 | **/ | ||
1604 | void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) | ||
1605 | { | ||
1606 | u32 vt_ctl = rd32(E1000_VT_CTL); | ||
1607 | |||
1608 | if (enable) | ||
1609 | vt_ctl |= E1000_VT_CTL_VM_REPL_EN; | ||
1610 | else | ||
1611 | vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; | ||
1612 | |||
1613 | wr32(E1000_VT_CTL, vt_ctl); | ||
1614 | } | ||
1615 | |||
1616 | /** | ||
1617 | * igb_read_phy_reg_82580 - Read 82580 MDI control register | ||
1618 | * @hw: pointer to the HW structure | ||
1619 | * @offset: register offset to be read | ||
1620 | * @data: pointer to the read data | ||
1621 | * | ||
1622 | * Reads the MDI control register in the PHY at offset and stores the | ||
1623 | * information read to data. | ||
1624 | **/ | ||
1625 | static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) | ||
1626 | { | ||
1627 | s32 ret_val; | ||
1628 | |||
1629 | |||
1630 | ret_val = hw->phy.ops.acquire(hw); | ||
1631 | if (ret_val) | ||
1632 | goto out; | ||
1633 | |||
1634 | ret_val = igb_read_phy_reg_mdic(hw, offset, data); | ||
1635 | |||
1636 | hw->phy.ops.release(hw); | ||
1637 | |||
1638 | out: | ||
1639 | return ret_val; | ||
1640 | } | ||
1641 | |||
1642 | /** | ||
1643 | * igb_write_phy_reg_82580 - Write 82580 MDI control register | ||
1644 | * @hw: pointer to the HW structure | ||
1645 | * @offset: register offset to write to | ||
1646 | * @data: data to write to register at offset | ||
1647 | * | ||
1648 | * Writes data to MDI control register in the PHY at offset. | ||
1649 | **/ | ||
1650 | static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) | ||
1651 | { | ||
1652 | s32 ret_val; | ||
1653 | |||
1654 | |||
1655 | ret_val = hw->phy.ops.acquire(hw); | ||
1656 | if (ret_val) | ||
1657 | goto out; | ||
1658 | |||
1659 | ret_val = igb_write_phy_reg_mdic(hw, offset, data); | ||
1660 | |||
1661 | hw->phy.ops.release(hw); | ||
1662 | |||
1663 | out: | ||
1664 | return ret_val; | ||
1665 | } | ||
1666 | |||
1667 | /** | ||
1668 | * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits | ||
1669 | * @hw: pointer to the HW structure | ||
1670 | * | ||
1671 | * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on | ||
1672 | * the values found in the EEPROM. This addresses an issue in which these | ||
1673 | * bits are not restored from EEPROM after reset. | ||
1674 | **/ | ||
1675 | static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw) | ||
1676 | { | ||
1677 | s32 ret_val = 0; | ||
1678 | u32 mdicnfg; | ||
1679 | u16 nvm_data = 0; | ||
1680 | |||
1681 | if (hw->mac.type != e1000_82580) | ||
1682 | goto out; | ||
1683 | if (!igb_sgmii_active_82575(hw)) | ||
1684 | goto out; | ||
1685 | |||
1686 | ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + | ||
1687 | NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, | ||
1688 | &nvm_data); | ||
1689 | if (ret_val) { | ||
1690 | hw_dbg("NVM Read Error\n"); | ||
1691 | goto out; | ||
1692 | } | ||
1693 | |||
1694 | mdicnfg = rd32(E1000_MDICNFG); | ||
1695 | if (nvm_data & NVM_WORD24_EXT_MDIO) | ||
1696 | mdicnfg |= E1000_MDICNFG_EXT_MDIO; | ||
1697 | if (nvm_data & NVM_WORD24_COM_MDIO) | ||
1698 | mdicnfg |= E1000_MDICNFG_COM_MDIO; | ||
1699 | wr32(E1000_MDICNFG, mdicnfg); | ||
1700 | out: | ||
1701 | return ret_val; | ||
1702 | } | ||
1703 | |||
1704 | /** | ||
1705 | * igb_reset_hw_82580 - Reset hardware | ||
1706 | * @hw: pointer to the HW structure | ||
1707 | * | ||
1708 | * This resets function or entire device (all ports, etc.) | ||
1709 | * to a known state. | ||
1710 | **/ | ||
1711 | static s32 igb_reset_hw_82580(struct e1000_hw *hw) | ||
1712 | { | ||
1713 | s32 ret_val = 0; | ||
1714 | /* BH SW mailbox bit in SW_FW_SYNC */ | ||
1715 | u16 swmbsw_mask = E1000_SW_SYNCH_MB; | ||
1716 | u32 ctrl, icr; | ||
1717 | bool global_device_reset = hw->dev_spec._82575.global_device_reset; | ||
1718 | |||
1719 | |||
1720 | hw->dev_spec._82575.global_device_reset = false; | ||
1721 | |||
1722 | /* Get current control state. */ | ||
1723 | ctrl = rd32(E1000_CTRL); | ||
1724 | |||
1725 | /* | ||
1726 | * Prevent the PCI-E bus from sticking if there is no TLP connection | ||
1727 | * on the last TLP read/write transaction when MAC is reset. | ||
1728 | */ | ||
1729 | ret_val = igb_disable_pcie_master(hw); | ||
1730 | if (ret_val) | ||
1731 | hw_dbg("PCI-E Master disable polling has failed.\n"); | ||
1732 | |||
1733 | hw_dbg("Masking off all interrupts\n"); | ||
1734 | wr32(E1000_IMC, 0xffffffff); | ||
1735 | wr32(E1000_RCTL, 0); | ||
1736 | wr32(E1000_TCTL, E1000_TCTL_PSP); | ||
1737 | wrfl(); | ||
1738 | |||
1739 | msleep(10); | ||
1740 | |||
1741 | /* Determine whether or not a global dev reset is requested */ | ||
1742 | if (global_device_reset && | ||
1743 | igb_acquire_swfw_sync_82575(hw, swmbsw_mask)) | ||
1744 | global_device_reset = false; | ||
1745 | |||
1746 | if (global_device_reset && | ||
1747 | !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET)) | ||
1748 | ctrl |= E1000_CTRL_DEV_RST; | ||
1749 | else | ||
1750 | ctrl |= E1000_CTRL_RST; | ||
1751 | |||
1752 | wr32(E1000_CTRL, ctrl); | ||
1753 | wrfl(); | ||
1754 | |||
1755 | /* Add delay to insure DEV_RST has time to complete */ | ||
1756 | if (global_device_reset) | ||
1757 | msleep(5); | ||
1758 | |||
1759 | ret_val = igb_get_auto_rd_done(hw); | ||
1760 | if (ret_val) { | ||
1761 | /* | ||
1762 | * When auto config read does not complete, do not | ||
1763 | * return with an error. This can happen in situations | ||
1764 | * where there is no eeprom and prevents getting link. | ||
1765 | */ | ||
1766 | hw_dbg("Auto Read Done did not complete\n"); | ||
1767 | } | ||
1768 | |||
1769 | /* If EEPROM is not present, run manual init scripts */ | ||
1770 | if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) | ||
1771 | igb_reset_init_script_82575(hw); | ||
1772 | |||
1773 | /* clear global device reset status bit */ | ||
1774 | wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET); | ||
1775 | |||
1776 | /* Clear any pending interrupt events. */ | ||
1777 | wr32(E1000_IMC, 0xffffffff); | ||
1778 | icr = rd32(E1000_ICR); | ||
1779 | |||
1780 | ret_val = igb_reset_mdicnfg_82580(hw); | ||
1781 | if (ret_val) | ||
1782 | hw_dbg("Could not reset MDICNFG based on EEPROM\n"); | ||
1783 | |||
1784 | /* Install any alternate MAC address into RAR0 */ | ||
1785 | ret_val = igb_check_alt_mac_addr(hw); | ||
1786 | |||
1787 | /* Release semaphore */ | ||
1788 | if (global_device_reset) | ||
1789 | igb_release_swfw_sync_82575(hw, swmbsw_mask); | ||
1790 | |||
1791 | return ret_val; | ||
1792 | } | ||
1793 | |||
1794 | /** | ||
1795 | * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size | ||
1796 | * @data: data received by reading RXPBS register | ||
1797 | * | ||
1798 | * The 82580 uses a table based approach for packet buffer allocation sizes. | ||
1799 | * This function converts the retrieved value into the correct table value | ||
1800 | * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 | ||
1801 | * 0x0 36 72 144 1 2 4 8 16 | ||
1802 | * 0x8 35 70 140 rsv rsv rsv rsv rsv | ||
1803 | */ | ||
1804 | u16 igb_rxpbs_adjust_82580(u32 data) | ||
1805 | { | ||
1806 | u16 ret_val = 0; | ||
1807 | |||
1808 | if (data < E1000_82580_RXPBS_TABLE_SIZE) | ||
1809 | ret_val = e1000_82580_rxpbs_table[data]; | ||
1810 | |||
1811 | return ret_val; | ||
1812 | } | ||
1813 | |||
1814 | /** | ||
1815 | * igb_validate_nvm_checksum_with_offset - Validate EEPROM | ||
1816 | * checksum | ||
1817 | * @hw: pointer to the HW structure | ||
1818 | * @offset: offset in words of the checksum protected region | ||
1819 | * | ||
1820 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM | ||
1821 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. | ||
1822 | **/ | ||
1823 | s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) | ||
1824 | { | ||
1825 | s32 ret_val = 0; | ||
1826 | u16 checksum = 0; | ||
1827 | u16 i, nvm_data; | ||
1828 | |||
1829 | for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { | ||
1830 | ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); | ||
1831 | if (ret_val) { | ||
1832 | hw_dbg("NVM Read Error\n"); | ||
1833 | goto out; | ||
1834 | } | ||
1835 | checksum += nvm_data; | ||
1836 | } | ||
1837 | |||
1838 | if (checksum != (u16) NVM_SUM) { | ||
1839 | hw_dbg("NVM Checksum Invalid\n"); | ||
1840 | ret_val = -E1000_ERR_NVM; | ||
1841 | goto out; | ||
1842 | } | ||
1843 | |||
1844 | out: | ||
1845 | return ret_val; | ||
1846 | } | ||
1847 | |||
1848 | /** | ||
1849 | * igb_update_nvm_checksum_with_offset - Update EEPROM | ||
1850 | * checksum | ||
1851 | * @hw: pointer to the HW structure | ||
1852 | * @offset: offset in words of the checksum protected region | ||
1853 | * | ||
1854 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM | ||
1855 | * up to the checksum. Then calculates the EEPROM checksum and writes the | ||
1856 | * value to the EEPROM. | ||
1857 | **/ | ||
1858 | s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) | ||
1859 | { | ||
1860 | s32 ret_val; | ||
1861 | u16 checksum = 0; | ||
1862 | u16 i, nvm_data; | ||
1863 | |||
1864 | for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { | ||
1865 | ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); | ||
1866 | if (ret_val) { | ||
1867 | hw_dbg("NVM Read Error while updating checksum.\n"); | ||
1868 | goto out; | ||
1869 | } | ||
1870 | checksum += nvm_data; | ||
1871 | } | ||
1872 | checksum = (u16) NVM_SUM - checksum; | ||
1873 | ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, | ||
1874 | &checksum); | ||
1875 | if (ret_val) | ||
1876 | hw_dbg("NVM Write Error while updating checksum.\n"); | ||
1877 | |||
1878 | out: | ||
1879 | return ret_val; | ||
1880 | } | ||
1881 | |||
1882 | /** | ||
1883 | * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum | ||
1884 | * @hw: pointer to the HW structure | ||
1885 | * | ||
1886 | * Calculates the EEPROM section checksum by reading/adding each word of | ||
1887 | * the EEPROM and then verifies that the sum of the EEPROM is | ||
1888 | * equal to 0xBABA. | ||
1889 | **/ | ||
1890 | static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw) | ||
1891 | { | ||
1892 | s32 ret_val = 0; | ||
1893 | u16 eeprom_regions_count = 1; | ||
1894 | u16 j, nvm_data; | ||
1895 | u16 nvm_offset; | ||
1896 | |||
1897 | ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); | ||
1898 | if (ret_val) { | ||
1899 | hw_dbg("NVM Read Error\n"); | ||
1900 | goto out; | ||
1901 | } | ||
1902 | |||
1903 | if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { | ||
1904 | /* if checksums compatibility bit is set validate checksums | ||
1905 | * for all 4 ports. */ | ||
1906 | eeprom_regions_count = 4; | ||
1907 | } | ||
1908 | |||
1909 | for (j = 0; j < eeprom_regions_count; j++) { | ||
1910 | nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); | ||
1911 | ret_val = igb_validate_nvm_checksum_with_offset(hw, | ||
1912 | nvm_offset); | ||
1913 | if (ret_val != 0) | ||
1914 | goto out; | ||
1915 | } | ||
1916 | |||
1917 | out: | ||
1918 | return ret_val; | ||
1919 | } | ||
1920 | |||
1921 | /** | ||
1922 | * igb_update_nvm_checksum_82580 - Update EEPROM checksum | ||
1923 | * @hw: pointer to the HW structure | ||
1924 | * | ||
1925 | * Updates the EEPROM section checksums for all 4 ports by reading/adding | ||
1926 | * each word of the EEPROM up to the checksum. Then calculates the EEPROM | ||
1927 | * checksum and writes the value to the EEPROM. | ||
1928 | **/ | ||
1929 | static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw) | ||
1930 | { | ||
1931 | s32 ret_val; | ||
1932 | u16 j, nvm_data; | ||
1933 | u16 nvm_offset; | ||
1934 | |||
1935 | ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); | ||
1936 | if (ret_val) { | ||
1937 | hw_dbg("NVM Read Error while updating checksum" | ||
1938 | " compatibility bit.\n"); | ||
1939 | goto out; | ||
1940 | } | ||
1941 | |||
1942 | if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) { | ||
1943 | /* set compatibility bit to validate checksums appropriately */ | ||
1944 | nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; | ||
1945 | ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, | ||
1946 | &nvm_data); | ||
1947 | if (ret_val) { | ||
1948 | hw_dbg("NVM Write Error while updating checksum" | ||
1949 | " compatibility bit.\n"); | ||
1950 | goto out; | ||
1951 | } | ||
1952 | } | ||
1953 | |||
1954 | for (j = 0; j < 4; j++) { | ||
1955 | nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); | ||
1956 | ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); | ||
1957 | if (ret_val) | ||
1958 | goto out; | ||
1959 | } | ||
1960 | |||
1961 | out: | ||
1962 | return ret_val; | ||
1963 | } | ||
1964 | |||
1965 | /** | ||
1966 | * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum | ||
1967 | * @hw: pointer to the HW structure | ||
1968 | * | ||
1969 | * Calculates the EEPROM section checksum by reading/adding each word of | ||
1970 | * the EEPROM and then verifies that the sum of the EEPROM is | ||
1971 | * equal to 0xBABA. | ||
1972 | **/ | ||
1973 | static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw) | ||
1974 | { | ||
1975 | s32 ret_val = 0; | ||
1976 | u16 j; | ||
1977 | u16 nvm_offset; | ||
1978 | |||
1979 | for (j = 0; j < 4; j++) { | ||
1980 | nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); | ||
1981 | ret_val = igb_validate_nvm_checksum_with_offset(hw, | ||
1982 | nvm_offset); | ||
1983 | if (ret_val != 0) | ||
1984 | goto out; | ||
1985 | } | ||
1986 | |||
1987 | out: | ||
1988 | return ret_val; | ||
1989 | } | ||
1990 | |||
1991 | /** | ||
1992 | * igb_update_nvm_checksum_i350 - Update EEPROM checksum | ||
1993 | * @hw: pointer to the HW structure | ||
1994 | * | ||
1995 | * Updates the EEPROM section checksums for all 4 ports by reading/adding | ||
1996 | * each word of the EEPROM up to the checksum. Then calculates the EEPROM | ||
1997 | * checksum and writes the value to the EEPROM. | ||
1998 | **/ | ||
1999 | static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw) | ||
2000 | { | ||
2001 | s32 ret_val = 0; | ||
2002 | u16 j; | ||
2003 | u16 nvm_offset; | ||
2004 | |||
2005 | for (j = 0; j < 4; j++) { | ||
2006 | nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); | ||
2007 | ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); | ||
2008 | if (ret_val != 0) | ||
2009 | goto out; | ||
2010 | } | ||
2011 | |||
2012 | out: | ||
2013 | return ret_val; | ||
2014 | } | ||
2015 | |||
2016 | /** | ||
2017 | * igb_set_eee_i350 - Enable/disable EEE support | ||
2018 | * @hw: pointer to the HW structure | ||
2019 | * | ||
2020 | * Enable/disable EEE based on setting in dev_spec structure. | ||
2021 | * | ||
2022 | **/ | ||
2023 | s32 igb_set_eee_i350(struct e1000_hw *hw) | ||
2024 | { | ||
2025 | s32 ret_val = 0; | ||
2026 | u32 ipcnfg, eeer, ctrl_ext; | ||
2027 | |||
2028 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
2029 | if ((hw->mac.type != e1000_i350) || | ||
2030 | (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK)) | ||
2031 | goto out; | ||
2032 | ipcnfg = rd32(E1000_IPCNFG); | ||
2033 | eeer = rd32(E1000_EEER); | ||
2034 | |||
2035 | /* enable or disable per user setting */ | ||
2036 | if (!(hw->dev_spec._82575.eee_disable)) { | ||
2037 | ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | | ||
2038 | E1000_IPCNFG_EEE_100M_AN); | ||
2039 | eeer |= (E1000_EEER_TX_LPI_EN | | ||
2040 | E1000_EEER_RX_LPI_EN | | ||
2041 | E1000_EEER_LPI_FC); | ||
2042 | |||
2043 | } else { | ||
2044 | ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | | ||
2045 | E1000_IPCNFG_EEE_100M_AN); | ||
2046 | eeer &= ~(E1000_EEER_TX_LPI_EN | | ||
2047 | E1000_EEER_RX_LPI_EN | | ||
2048 | E1000_EEER_LPI_FC); | ||
2049 | } | ||
2050 | wr32(E1000_IPCNFG, ipcnfg); | ||
2051 | wr32(E1000_EEER, eeer); | ||
2052 | out: | ||
2053 | |||
2054 | return ret_val; | ||
2055 | } | ||
2056 | |||
2057 | static struct e1000_mac_operations e1000_mac_ops_82575 = { | ||
2058 | .init_hw = igb_init_hw_82575, | ||
2059 | .check_for_link = igb_check_for_link_82575, | ||
2060 | .rar_set = igb_rar_set, | ||
2061 | .read_mac_addr = igb_read_mac_addr_82575, | ||
2062 | .get_speed_and_duplex = igb_get_speed_and_duplex_copper, | ||
2063 | }; | ||
2064 | |||
2065 | static struct e1000_phy_operations e1000_phy_ops_82575 = { | ||
2066 | .acquire = igb_acquire_phy_82575, | ||
2067 | .get_cfg_done = igb_get_cfg_done_82575, | ||
2068 | .release = igb_release_phy_82575, | ||
2069 | }; | ||
2070 | |||
2071 | static struct e1000_nvm_operations e1000_nvm_ops_82575 = { | ||
2072 | .acquire = igb_acquire_nvm_82575, | ||
2073 | .read = igb_read_nvm_eerd, | ||
2074 | .release = igb_release_nvm_82575, | ||
2075 | .write = igb_write_nvm_spi, | ||
2076 | }; | ||
2077 | |||
2078 | const struct e1000_info e1000_82575_info = { | ||
2079 | .get_invariants = igb_get_invariants_82575, | ||
2080 | .mac_ops = &e1000_mac_ops_82575, | ||
2081 | .phy_ops = &e1000_phy_ops_82575, | ||
2082 | .nvm_ops = &e1000_nvm_ops_82575, | ||
2083 | }; | ||
2084 | |||
diff --git a/drivers/net/igb/e1000_82575.h b/drivers/net/igb/e1000_82575.h new file mode 100644 index 00000000000..786e110011a --- /dev/null +++ b/drivers/net/igb/e1000_82575.h | |||
@@ -0,0 +1,258 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_82575_H_ | ||
29 | #define _E1000_82575_H_ | ||
30 | |||
31 | extern void igb_shutdown_serdes_link_82575(struct e1000_hw *hw); | ||
32 | extern void igb_power_up_serdes_link_82575(struct e1000_hw *hw); | ||
33 | extern void igb_power_down_phy_copper_82575(struct e1000_hw *hw); | ||
34 | extern void igb_rx_fifo_flush_82575(struct e1000_hw *hw); | ||
35 | |||
36 | #define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \ | ||
37 | (ID_LED_DEF1_DEF2 << 8) | \ | ||
38 | (ID_LED_DEF1_DEF2 << 4) | \ | ||
39 | (ID_LED_OFF1_ON2)) | ||
40 | |||
41 | #define E1000_RAR_ENTRIES_82575 16 | ||
42 | #define E1000_RAR_ENTRIES_82576 24 | ||
43 | #define E1000_RAR_ENTRIES_82580 24 | ||
44 | #define E1000_RAR_ENTRIES_I350 32 | ||
45 | |||
46 | #define E1000_SW_SYNCH_MB 0x00000100 | ||
47 | #define E1000_STAT_DEV_RST_SET 0x00100000 | ||
48 | #define E1000_CTRL_DEV_RST 0x20000000 | ||
49 | |||
50 | /* SRRCTL bit definitions */ | ||
51 | #define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ | ||
52 | #define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ | ||
53 | #define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 | ||
54 | #define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 | ||
55 | #define E1000_SRRCTL_DROP_EN 0x80000000 | ||
56 | #define E1000_SRRCTL_TIMESTAMP 0x40000000 | ||
57 | |||
58 | #define E1000_MRQC_ENABLE_RSS_4Q 0x00000002 | ||
59 | #define E1000_MRQC_ENABLE_VMDQ 0x00000003 | ||
60 | #define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005 | ||
61 | #define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000 | ||
62 | #define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000 | ||
63 | #define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000 | ||
64 | |||
65 | #define E1000_EICR_TX_QUEUE ( \ | ||
66 | E1000_EICR_TX_QUEUE0 | \ | ||
67 | E1000_EICR_TX_QUEUE1 | \ | ||
68 | E1000_EICR_TX_QUEUE2 | \ | ||
69 | E1000_EICR_TX_QUEUE3) | ||
70 | |||
71 | #define E1000_EICR_RX_QUEUE ( \ | ||
72 | E1000_EICR_RX_QUEUE0 | \ | ||
73 | E1000_EICR_RX_QUEUE1 | \ | ||
74 | E1000_EICR_RX_QUEUE2 | \ | ||
75 | E1000_EICR_RX_QUEUE3) | ||
76 | |||
77 | /* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */ | ||
78 | #define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */ | ||
79 | #define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */ | ||
80 | |||
81 | /* Receive Descriptor - Advanced */ | ||
82 | union e1000_adv_rx_desc { | ||
83 | struct { | ||
84 | __le64 pkt_addr; /* Packet buffer address */ | ||
85 | __le64 hdr_addr; /* Header buffer address */ | ||
86 | } read; | ||
87 | struct { | ||
88 | struct { | ||
89 | struct { | ||
90 | __le16 pkt_info; /* RSS type, Packet type */ | ||
91 | __le16 hdr_info; /* Split Header, | ||
92 | * header buffer length */ | ||
93 | } lo_dword; | ||
94 | union { | ||
95 | __le32 rss; /* RSS Hash */ | ||
96 | struct { | ||
97 | __le16 ip_id; /* IP id */ | ||
98 | __le16 csum; /* Packet Checksum */ | ||
99 | } csum_ip; | ||
100 | } hi_dword; | ||
101 | } lower; | ||
102 | struct { | ||
103 | __le32 status_error; /* ext status/error */ | ||
104 | __le16 length; /* Packet length */ | ||
105 | __le16 vlan; /* VLAN tag */ | ||
106 | } upper; | ||
107 | } wb; /* writeback */ | ||
108 | }; | ||
109 | |||
110 | #define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 | ||
111 | #define E1000_RXDADV_HDRBUFLEN_SHIFT 5 | ||
112 | #define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */ | ||
113 | #define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */ | ||
114 | |||
115 | /* Transmit Descriptor - Advanced */ | ||
116 | union e1000_adv_tx_desc { | ||
117 | struct { | ||
118 | __le64 buffer_addr; /* Address of descriptor's data buf */ | ||
119 | __le32 cmd_type_len; | ||
120 | __le32 olinfo_status; | ||
121 | } read; | ||
122 | struct { | ||
123 | __le64 rsvd; /* Reserved */ | ||
124 | __le32 nxtseq_seed; | ||
125 | __le32 status; | ||
126 | } wb; | ||
127 | }; | ||
128 | |||
129 | /* Adv Transmit Descriptor Config Masks */ | ||
130 | #define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp packet */ | ||
131 | #define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ | ||
132 | #define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ | ||
133 | #define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ | ||
134 | #define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ | ||
135 | #define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ | ||
136 | #define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ | ||
137 | #define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ | ||
138 | |||
139 | /* Context descriptors */ | ||
140 | struct e1000_adv_tx_context_desc { | ||
141 | __le32 vlan_macip_lens; | ||
142 | __le32 seqnum_seed; | ||
143 | __le32 type_tucmd_mlhl; | ||
144 | __le32 mss_l4len_idx; | ||
145 | }; | ||
146 | |||
147 | #define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ | ||
148 | #define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ | ||
149 | #define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ | ||
150 | #define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 packet TYPE of SCTP */ | ||
151 | /* IPSec Encrypt Enable for ESP */ | ||
152 | #define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ | ||
153 | #define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ | ||
154 | /* Adv ctxt IPSec SA IDX mask */ | ||
155 | /* Adv ctxt IPSec ESP len mask */ | ||
156 | |||
157 | /* Additional Transmit Descriptor Control definitions */ | ||
158 | #define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */ | ||
159 | /* Tx Queue Arbitration Priority 0=low, 1=high */ | ||
160 | |||
161 | /* Additional Receive Descriptor Control definitions */ | ||
162 | #define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */ | ||
163 | |||
164 | /* Direct Cache Access (DCA) definitions */ | ||
165 | #define E1000_DCA_CTRL_DCA_MODE_DISABLE 0x01 /* DCA Disable */ | ||
166 | #define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */ | ||
167 | |||
168 | #define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */ | ||
169 | #define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */ | ||
170 | #define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header enable */ | ||
171 | #define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload enable */ | ||
172 | |||
173 | #define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */ | ||
174 | #define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */ | ||
175 | #define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */ | ||
176 | |||
177 | /* Additional DCA related definitions, note change in position of CPUID */ | ||
178 | #define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */ | ||
179 | #define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */ | ||
180 | #define E1000_DCA_TXCTRL_CPUID_SHIFT 24 /* Tx CPUID now in the last byte */ | ||
181 | #define E1000_DCA_RXCTRL_CPUID_SHIFT 24 /* Rx CPUID now in the last byte */ | ||
182 | |||
183 | /* ETQF register bit definitions */ | ||
184 | #define E1000_ETQF_FILTER_ENABLE (1 << 26) | ||
185 | #define E1000_ETQF_1588 (1 << 30) | ||
186 | |||
187 | /* FTQF register bit definitions */ | ||
188 | #define E1000_FTQF_VF_BP 0x00008000 | ||
189 | #define E1000_FTQF_1588_TIME_STAMP 0x08000000 | ||
190 | #define E1000_FTQF_MASK 0xF0000000 | ||
191 | #define E1000_FTQF_MASK_PROTO_BP 0x10000000 | ||
192 | #define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000 | ||
193 | |||
194 | #define E1000_NVM_APME_82575 0x0400 | ||
195 | #define MAX_NUM_VFS 8 | ||
196 | |||
197 | #define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof control */ | ||
198 | #define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof control */ | ||
199 | #define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */ | ||
200 | #define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8 | ||
201 | #define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */ | ||
202 | |||
203 | /* Easy defines for setting default pool, would normally be left a zero */ | ||
204 | #define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7 | ||
205 | #define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT) | ||
206 | |||
207 | /* Other useful VMD_CTL register defines */ | ||
208 | #define E1000_VT_CTL_IGNORE_MAC (1 << 28) | ||
209 | #define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29) | ||
210 | #define E1000_VT_CTL_VM_REPL_EN (1 << 30) | ||
211 | |||
212 | /* Per VM Offload register setup */ | ||
213 | #define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */ | ||
214 | #define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */ | ||
215 | #define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */ | ||
216 | #define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */ | ||
217 | #define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */ | ||
218 | #define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */ | ||
219 | #define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */ | ||
220 | #define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */ | ||
221 | #define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ | ||
222 | #define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */ | ||
223 | |||
224 | #define E1000_VLVF_ARRAY_SIZE 32 | ||
225 | #define E1000_VLVF_VLANID_MASK 0x00000FFF | ||
226 | #define E1000_VLVF_POOLSEL_SHIFT 12 | ||
227 | #define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT) | ||
228 | #define E1000_VLVF_LVLAN 0x00100000 | ||
229 | #define E1000_VLVF_VLANID_ENABLE 0x80000000 | ||
230 | |||
231 | #define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */ | ||
232 | #define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */ | ||
233 | |||
234 | #define E1000_IOVCTL 0x05BBC | ||
235 | #define E1000_IOVCTL_REUSE_VFQ 0x00000001 | ||
236 | |||
237 | #define E1000_RPLOLR_STRVLAN 0x40000000 | ||
238 | #define E1000_RPLOLR_STRCRC 0x80000000 | ||
239 | |||
240 | #define E1000_DTXCTL_8023LL 0x0004 | ||
241 | #define E1000_DTXCTL_VLAN_ADDED 0x0008 | ||
242 | #define E1000_DTXCTL_OOS_ENABLE 0x0010 | ||
243 | #define E1000_DTXCTL_MDP_EN 0x0020 | ||
244 | #define E1000_DTXCTL_SPOOF_INT 0x0040 | ||
245 | |||
246 | #define E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT (1 << 14) | ||
247 | |||
248 | #define ALL_QUEUES 0xFFFF | ||
249 | |||
250 | /* RX packet buffer size defines */ | ||
251 | #define E1000_RXPBS_SIZE_MASK_82576 0x0000007F | ||
252 | void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *, bool, int); | ||
253 | void igb_vmdq_set_loopback_pf(struct e1000_hw *, bool); | ||
254 | void igb_vmdq_set_replication_pf(struct e1000_hw *, bool); | ||
255 | u16 igb_rxpbs_adjust_82580(u32 data); | ||
256 | s32 igb_set_eee_i350(struct e1000_hw *); | ||
257 | |||
258 | #endif | ||
diff --git a/drivers/net/igb/e1000_defines.h b/drivers/net/igb/e1000_defines.h new file mode 100644 index 00000000000..7b8ddd830f1 --- /dev/null +++ b/drivers/net/igb/e1000_defines.h | |||
@@ -0,0 +1,834 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_DEFINES_H_ | ||
29 | #define _E1000_DEFINES_H_ | ||
30 | |||
31 | /* Number of Transmit and Receive Descriptors must be a multiple of 8 */ | ||
32 | #define REQ_TX_DESCRIPTOR_MULTIPLE 8 | ||
33 | #define REQ_RX_DESCRIPTOR_MULTIPLE 8 | ||
34 | |||
35 | /* Definitions for power management and wakeup registers */ | ||
36 | /* Wake Up Control */ | ||
37 | #define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ | ||
38 | |||
39 | /* Wake Up Filter Control */ | ||
40 | #define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ | ||
41 | #define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ | ||
42 | #define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ | ||
43 | #define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ | ||
44 | #define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ | ||
45 | |||
46 | /* Extended Device Control */ | ||
47 | #define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Defineable Pin 3 */ | ||
48 | /* Physical Func Reset Done Indication */ | ||
49 | #define E1000_CTRL_EXT_PFRSTD 0x00004000 | ||
50 | #define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 | ||
51 | #define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 | ||
52 | #define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000 | ||
53 | #define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 | ||
54 | #define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 | ||
55 | #define E1000_CTRL_EXT_EIAME 0x01000000 | ||
56 | #define E1000_CTRL_EXT_IRCA 0x00000001 | ||
57 | /* Interrupt delay cancellation */ | ||
58 | /* Driver loaded bit for FW */ | ||
59 | #define E1000_CTRL_EXT_DRV_LOAD 0x10000000 | ||
60 | /* Interrupt acknowledge Auto-mask */ | ||
61 | /* Clear Interrupt timers after IMS clear */ | ||
62 | /* packet buffer parity error detection enabled */ | ||
63 | /* descriptor FIFO parity error detection enable */ | ||
64 | #define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ | ||
65 | #define E1000_I2CCMD_REG_ADDR_SHIFT 16 | ||
66 | #define E1000_I2CCMD_PHY_ADDR_SHIFT 24 | ||
67 | #define E1000_I2CCMD_OPCODE_READ 0x08000000 | ||
68 | #define E1000_I2CCMD_OPCODE_WRITE 0x00000000 | ||
69 | #define E1000_I2CCMD_READY 0x20000000 | ||
70 | #define E1000_I2CCMD_ERROR 0x80000000 | ||
71 | #define E1000_MAX_SGMII_PHY_REG_ADDR 255 | ||
72 | #define E1000_I2CCMD_PHY_TIMEOUT 200 | ||
73 | #define E1000_IVAR_VALID 0x80 | ||
74 | #define E1000_GPIE_NSICR 0x00000001 | ||
75 | #define E1000_GPIE_MSIX_MODE 0x00000010 | ||
76 | #define E1000_GPIE_EIAME 0x40000000 | ||
77 | #define E1000_GPIE_PBA 0x80000000 | ||
78 | |||
79 | /* Receive Descriptor bit definitions */ | ||
80 | #define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ | ||
81 | #define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ | ||
82 | #define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ | ||
83 | #define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ | ||
84 | #define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ | ||
85 | #define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ | ||
86 | #define E1000_RXD_STAT_TS 0x10000 /* Pkt was time stamped */ | ||
87 | |||
88 | #define E1000_RXDEXT_STATERR_CE 0x01000000 | ||
89 | #define E1000_RXDEXT_STATERR_SE 0x02000000 | ||
90 | #define E1000_RXDEXT_STATERR_SEQ 0x04000000 | ||
91 | #define E1000_RXDEXT_STATERR_CXE 0x10000000 | ||
92 | #define E1000_RXDEXT_STATERR_TCPE 0x20000000 | ||
93 | #define E1000_RXDEXT_STATERR_IPE 0x40000000 | ||
94 | #define E1000_RXDEXT_STATERR_RXE 0x80000000 | ||
95 | |||
96 | /* Same mask, but for extended and packet split descriptors */ | ||
97 | #define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ | ||
98 | E1000_RXDEXT_STATERR_CE | \ | ||
99 | E1000_RXDEXT_STATERR_SE | \ | ||
100 | E1000_RXDEXT_STATERR_SEQ | \ | ||
101 | E1000_RXDEXT_STATERR_CXE | \ | ||
102 | E1000_RXDEXT_STATERR_RXE) | ||
103 | |||
104 | #define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 | ||
105 | #define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 | ||
106 | #define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 | ||
107 | #define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 | ||
108 | #define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 | ||
109 | |||
110 | |||
111 | /* Management Control */ | ||
112 | #define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ | ||
113 | #define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ | ||
114 | #define E1000_MANC_EN_BMC2OS 0x10000000 /* OSBMC is Enabled or not */ | ||
115 | /* Enable Neighbor Discovery Filtering */ | ||
116 | #define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ | ||
117 | #define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ | ||
118 | /* Enable MAC address filtering */ | ||
119 | #define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 | ||
120 | |||
121 | /* Receive Control */ | ||
122 | #define E1000_RCTL_EN 0x00000002 /* enable */ | ||
123 | #define E1000_RCTL_SBP 0x00000004 /* store bad packet */ | ||
124 | #define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ | ||
125 | #define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ | ||
126 | #define E1000_RCTL_LPE 0x00000020 /* long packet enable */ | ||
127 | #define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ | ||
128 | #define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ | ||
129 | #define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ | ||
130 | #define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ | ||
131 | #define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ | ||
132 | #define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ | ||
133 | #define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ | ||
134 | #define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ | ||
135 | #define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ | ||
136 | #define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ | ||
137 | |||
138 | /* | ||
139 | * Use byte values for the following shift parameters | ||
140 | * Usage: | ||
141 | * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & | ||
142 | * E1000_PSRCTL_BSIZE0_MASK) | | ||
143 | * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & | ||
144 | * E1000_PSRCTL_BSIZE1_MASK) | | ||
145 | * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & | ||
146 | * E1000_PSRCTL_BSIZE2_MASK) | | ||
147 | * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; | ||
148 | * E1000_PSRCTL_BSIZE3_MASK)) | ||
149 | * where value0 = [128..16256], default=256 | ||
150 | * value1 = [1024..64512], default=4096 | ||
151 | * value2 = [0..64512], default=4096 | ||
152 | * value3 = [0..64512], default=0 | ||
153 | */ | ||
154 | |||
155 | #define E1000_PSRCTL_BSIZE0_MASK 0x0000007F | ||
156 | #define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 | ||
157 | #define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 | ||
158 | #define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 | ||
159 | |||
160 | #define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ | ||
161 | #define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ | ||
162 | #define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ | ||
163 | #define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ | ||
164 | |||
165 | /* SWFW_SYNC Definitions */ | ||
166 | #define E1000_SWFW_EEP_SM 0x1 | ||
167 | #define E1000_SWFW_PHY0_SM 0x2 | ||
168 | #define E1000_SWFW_PHY1_SM 0x4 | ||
169 | #define E1000_SWFW_PHY2_SM 0x20 | ||
170 | #define E1000_SWFW_PHY3_SM 0x40 | ||
171 | |||
172 | /* FACTPS Definitions */ | ||
173 | /* Device Control */ | ||
174 | #define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ | ||
175 | #define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ | ||
176 | #define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ | ||
177 | #define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ | ||
178 | #define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ | ||
179 | #define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ | ||
180 | #define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ | ||
181 | #define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ | ||
182 | #define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ | ||
183 | #define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ | ||
184 | #define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ | ||
185 | /* Defined polarity of Dock/Undock indication in SDP[0] */ | ||
186 | /* Reset both PHY ports, through PHYRST_N pin */ | ||
187 | /* enable link status from external LINK_0 and LINK_1 pins */ | ||
188 | #define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ | ||
189 | #define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ | ||
190 | #define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ | ||
191 | #define E1000_CTRL_RST 0x04000000 /* Global reset */ | ||
192 | #define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ | ||
193 | #define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ | ||
194 | #define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ | ||
195 | #define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ | ||
196 | /* Initiate an interrupt to manageability engine */ | ||
197 | #define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */ | ||
198 | |||
199 | /* Bit definitions for the Management Data IO (MDIO) and Management Data | ||
200 | * Clock (MDC) pins in the Device Control Register. | ||
201 | */ | ||
202 | |||
203 | #define E1000_CONNSW_ENRGSRC 0x4 | ||
204 | #define E1000_PCS_CFG_PCS_EN 8 | ||
205 | #define E1000_PCS_LCTL_FLV_LINK_UP 1 | ||
206 | #define E1000_PCS_LCTL_FSV_100 2 | ||
207 | #define E1000_PCS_LCTL_FSV_1000 4 | ||
208 | #define E1000_PCS_LCTL_FDV_FULL 8 | ||
209 | #define E1000_PCS_LCTL_FSD 0x10 | ||
210 | #define E1000_PCS_LCTL_FORCE_LINK 0x20 | ||
211 | #define E1000_PCS_LCTL_FORCE_FCTRL 0x80 | ||
212 | #define E1000_PCS_LCTL_AN_ENABLE 0x10000 | ||
213 | #define E1000_PCS_LCTL_AN_RESTART 0x20000 | ||
214 | #define E1000_PCS_LCTL_AN_TIMEOUT 0x40000 | ||
215 | #define E1000_ENABLE_SERDES_LOOPBACK 0x0410 | ||
216 | |||
217 | #define E1000_PCS_LSTS_LINK_OK 1 | ||
218 | #define E1000_PCS_LSTS_SPEED_100 2 | ||
219 | #define E1000_PCS_LSTS_SPEED_1000 4 | ||
220 | #define E1000_PCS_LSTS_DUPLEX_FULL 8 | ||
221 | #define E1000_PCS_LSTS_SYNK_OK 0x10 | ||
222 | |||
223 | /* Device Status */ | ||
224 | #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ | ||
225 | #define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ | ||
226 | #define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ | ||
227 | #define E1000_STATUS_FUNC_SHIFT 2 | ||
228 | #define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ | ||
229 | #define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ | ||
230 | #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ | ||
231 | #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ | ||
232 | /* Change in Dock/Undock state. Clear on write '0'. */ | ||
233 | /* Status of Master requests. */ | ||
234 | #define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 | ||
235 | /* BMC external code execution disabled */ | ||
236 | |||
237 | /* Constants used to intrepret the masked PCI-X bus speed. */ | ||
238 | |||
239 | #define SPEED_10 10 | ||
240 | #define SPEED_100 100 | ||
241 | #define SPEED_1000 1000 | ||
242 | #define HALF_DUPLEX 1 | ||
243 | #define FULL_DUPLEX 2 | ||
244 | |||
245 | |||
246 | #define ADVERTISE_10_HALF 0x0001 | ||
247 | #define ADVERTISE_10_FULL 0x0002 | ||
248 | #define ADVERTISE_100_HALF 0x0004 | ||
249 | #define ADVERTISE_100_FULL 0x0008 | ||
250 | #define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ | ||
251 | #define ADVERTISE_1000_FULL 0x0020 | ||
252 | |||
253 | /* 1000/H is not supported, nor spec-compliant. */ | ||
254 | #define E1000_ALL_SPEED_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ | ||
255 | ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ | ||
256 | ADVERTISE_1000_FULL) | ||
257 | #define E1000_ALL_NOT_GIG (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ | ||
258 | ADVERTISE_100_HALF | ADVERTISE_100_FULL) | ||
259 | #define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) | ||
260 | #define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) | ||
261 | #define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \ | ||
262 | ADVERTISE_1000_FULL) | ||
263 | #define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) | ||
264 | |||
265 | #define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX | ||
266 | |||
267 | /* LED Control */ | ||
268 | #define E1000_LEDCTL_LED0_MODE_SHIFT 0 | ||
269 | #define E1000_LEDCTL_LED0_BLINK 0x00000080 | ||
270 | |||
271 | #define E1000_LEDCTL_MODE_LED_ON 0xE | ||
272 | #define E1000_LEDCTL_MODE_LED_OFF 0xF | ||
273 | |||
274 | /* Transmit Descriptor bit definitions */ | ||
275 | #define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ | ||
276 | #define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ | ||
277 | #define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ | ||
278 | #define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ | ||
279 | #define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ | ||
280 | #define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ | ||
281 | #define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ | ||
282 | /* Extended desc bits for Linksec and timesync */ | ||
283 | |||
284 | /* Transmit Control */ | ||
285 | #define E1000_TCTL_EN 0x00000002 /* enable tx */ | ||
286 | #define E1000_TCTL_PSP 0x00000008 /* pad short packets */ | ||
287 | #define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ | ||
288 | #define E1000_TCTL_COLD 0x003ff000 /* collision distance */ | ||
289 | #define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ | ||
290 | |||
291 | /* DMA Coalescing register fields */ | ||
292 | #define E1000_DMACR_DMACWT_MASK 0x00003FFF /* DMA Coalescing | ||
293 | * Watchdog Timer */ | ||
294 | #define E1000_DMACR_DMACTHR_MASK 0x00FF0000 /* DMA Coalescing Receive | ||
295 | * Threshold */ | ||
296 | #define E1000_DMACR_DMACTHR_SHIFT 16 | ||
297 | #define E1000_DMACR_DMAC_LX_MASK 0x30000000 /* Lx when no PCIe | ||
298 | * transactions */ | ||
299 | #define E1000_DMACR_DMAC_LX_SHIFT 28 | ||
300 | #define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */ | ||
301 | |||
302 | #define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF /* DMA Coalescing Transmit | ||
303 | * Threshold */ | ||
304 | |||
305 | #define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */ | ||
306 | |||
307 | #define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF /* Receive Traffic Rate | ||
308 | * Threshold */ | ||
309 | #define E1000_DMCRTRH_LRPRCW 0x80000000 /* Rcv packet rate in | ||
310 | * current window */ | ||
311 | |||
312 | #define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF /* DMA Coal Rcv Traffic | ||
313 | * Current Cnt */ | ||
314 | |||
315 | #define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0 /* Flow ctrl Rcv Threshold | ||
316 | * High val */ | ||
317 | #define E1000_FCRTC_RTH_COAL_SHIFT 4 | ||
318 | #define E1000_PCIEMISC_LX_DECISION 0x00000080 /* Lx power decision */ | ||
319 | |||
320 | /* SerDes Control */ | ||
321 | #define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 | ||
322 | |||
323 | /* Receive Checksum Control */ | ||
324 | #define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ | ||
325 | #define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ | ||
326 | #define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */ | ||
327 | #define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ | ||
328 | |||
329 | /* Header split receive */ | ||
330 | #define E1000_RFCTL_LEF 0x00040000 | ||
331 | |||
332 | /* Collision related configuration parameters */ | ||
333 | #define E1000_COLLISION_THRESHOLD 15 | ||
334 | #define E1000_CT_SHIFT 4 | ||
335 | #define E1000_COLLISION_DISTANCE 63 | ||
336 | #define E1000_COLD_SHIFT 12 | ||
337 | |||
338 | /* Ethertype field values */ | ||
339 | #define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ | ||
340 | |||
341 | #define MAX_JUMBO_FRAME_SIZE 0x3F00 | ||
342 | |||
343 | /* PBA constants */ | ||
344 | #define E1000_PBA_34K 0x0022 | ||
345 | #define E1000_PBA_64K 0x0040 /* 64KB */ | ||
346 | |||
347 | /* SW Semaphore Register */ | ||
348 | #define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ | ||
349 | #define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ | ||
350 | |||
351 | /* Interrupt Cause Read */ | ||
352 | #define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ | ||
353 | #define E1000_ICR_LSC 0x00000004 /* Link Status Change */ | ||
354 | #define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ | ||
355 | #define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ | ||
356 | #define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ | ||
357 | #define E1000_ICR_VMMB 0x00000100 /* VM MB event */ | ||
358 | #define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */ | ||
359 | /* If this bit asserted, the driver should claim the interrupt */ | ||
360 | #define E1000_ICR_INT_ASSERTED 0x80000000 | ||
361 | /* LAN connected device generates an interrupt */ | ||
362 | #define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */ | ||
363 | |||
364 | /* Extended Interrupt Cause Read */ | ||
365 | #define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */ | ||
366 | #define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */ | ||
367 | #define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */ | ||
368 | #define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */ | ||
369 | #define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */ | ||
370 | #define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */ | ||
371 | #define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */ | ||
372 | #define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */ | ||
373 | #define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */ | ||
374 | /* TCP Timer */ | ||
375 | |||
376 | /* | ||
377 | * This defines the bits that are set in the Interrupt Mask | ||
378 | * Set/Read Register. Each bit is documented below: | ||
379 | * o RXT0 = Receiver Timer Interrupt (ring 0) | ||
380 | * o TXDW = Transmit Descriptor Written Back | ||
381 | * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) | ||
382 | * o RXSEQ = Receive Sequence Error | ||
383 | * o LSC = Link Status Change | ||
384 | */ | ||
385 | #define IMS_ENABLE_MASK ( \ | ||
386 | E1000_IMS_RXT0 | \ | ||
387 | E1000_IMS_TXDW | \ | ||
388 | E1000_IMS_RXDMT0 | \ | ||
389 | E1000_IMS_RXSEQ | \ | ||
390 | E1000_IMS_LSC | \ | ||
391 | E1000_IMS_DOUTSYNC) | ||
392 | |||
393 | /* Interrupt Mask Set */ | ||
394 | #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | ||
395 | #define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ | ||
396 | #define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */ | ||
397 | #define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ | ||
398 | #define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ | ||
399 | #define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ | ||
400 | #define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */ | ||
401 | #define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ | ||
402 | |||
403 | /* Extended Interrupt Mask Set */ | ||
404 | #define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ | ||
405 | |||
406 | /* Interrupt Cause Set */ | ||
407 | #define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ | ||
408 | #define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ | ||
409 | #define E1000_ICS_DRSTA E1000_ICR_DRSTA /* Device Reset Aserted */ | ||
410 | |||
411 | /* Extended Interrupt Cause Set */ | ||
412 | |||
413 | /* Transmit Descriptor Control */ | ||
414 | /* Enable the counting of descriptors still to be processed. */ | ||
415 | |||
416 | /* Flow Control Constants */ | ||
417 | #define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 | ||
418 | #define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 | ||
419 | #define FLOW_CONTROL_TYPE 0x8808 | ||
420 | |||
421 | /* 802.1q VLAN Packet Size */ | ||
422 | #define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */ | ||
423 | #define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ | ||
424 | |||
425 | /* Receive Address */ | ||
426 | /* | ||
427 | * Number of high/low register pairs in the RAR. The RAR (Receive Address | ||
428 | * Registers) holds the directed and multicast addresses that we monitor. | ||
429 | * Technically, we have 16 spots. However, we reserve one of these spots | ||
430 | * (RAR[15]) for our directed address used by controllers with | ||
431 | * manageability enabled, allowing us room for 15 multicast addresses. | ||
432 | */ | ||
433 | #define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ | ||
434 | #define E1000_RAL_MAC_ADDR_LEN 4 | ||
435 | #define E1000_RAH_MAC_ADDR_LEN 2 | ||
436 | #define E1000_RAH_POOL_MASK 0x03FC0000 | ||
437 | #define E1000_RAH_POOL_1 0x00040000 | ||
438 | |||
439 | /* Error Codes */ | ||
440 | #define E1000_SUCCESS 0 | ||
441 | #define E1000_ERR_NVM 1 | ||
442 | #define E1000_ERR_PHY 2 | ||
443 | #define E1000_ERR_CONFIG 3 | ||
444 | #define E1000_ERR_PARAM 4 | ||
445 | #define E1000_ERR_MAC_INIT 5 | ||
446 | #define E1000_ERR_RESET 9 | ||
447 | #define E1000_ERR_MASTER_REQUESTS_PENDING 10 | ||
448 | #define E1000_BLK_PHY_RESET 12 | ||
449 | #define E1000_ERR_SWFW_SYNC 13 | ||
450 | #define E1000_NOT_IMPLEMENTED 14 | ||
451 | #define E1000_ERR_MBX 15 | ||
452 | #define E1000_ERR_INVALID_ARGUMENT 16 | ||
453 | #define E1000_ERR_NO_SPACE 17 | ||
454 | #define E1000_ERR_NVM_PBA_SECTION 18 | ||
455 | |||
456 | /* Loop limit on how long we wait for auto-negotiation to complete */ | ||
457 | #define COPPER_LINK_UP_LIMIT 10 | ||
458 | #define PHY_AUTO_NEG_LIMIT 45 | ||
459 | #define PHY_FORCE_LIMIT 20 | ||
460 | /* Number of 100 microseconds we wait for PCI Express master disable */ | ||
461 | #define MASTER_DISABLE_TIMEOUT 800 | ||
462 | /* Number of milliseconds we wait for PHY configuration done after MAC reset */ | ||
463 | #define PHY_CFG_TIMEOUT 100 | ||
464 | /* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ | ||
465 | /* Number of milliseconds for NVM auto read done after MAC reset. */ | ||
466 | #define AUTO_READ_DONE_TIMEOUT 10 | ||
467 | |||
468 | /* Flow Control */ | ||
469 | #define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ | ||
470 | |||
471 | #define E1000_TSYNCTXCTL_VALID 0x00000001 /* tx timestamp valid */ | ||
472 | #define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable tx timestampping */ | ||
473 | |||
474 | #define E1000_TSYNCRXCTL_VALID 0x00000001 /* rx timestamp valid */ | ||
475 | #define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* rx type mask */ | ||
476 | #define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00 | ||
477 | #define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02 | ||
478 | #define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04 | ||
479 | #define E1000_TSYNCRXCTL_TYPE_ALL 0x08 | ||
480 | #define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A | ||
481 | #define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable rx timestampping */ | ||
482 | |||
483 | #define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF | ||
484 | #define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00 | ||
485 | #define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01 | ||
486 | #define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02 | ||
487 | #define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03 | ||
488 | #define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04 | ||
489 | |||
490 | #define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00 | ||
491 | #define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000 | ||
492 | #define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100 | ||
493 | #define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200 | ||
494 | #define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300 | ||
495 | #define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800 | ||
496 | #define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900 | ||
497 | #define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00 | ||
498 | #define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00 | ||
499 | #define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00 | ||
500 | #define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00 | ||
501 | |||
502 | #define E1000_TIMINCA_16NS_SHIFT 24 | ||
503 | |||
504 | #define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */ | ||
505 | #define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */ | ||
506 | #define E1000_MDICNFG_PHY_MASK 0x03E00000 | ||
507 | #define E1000_MDICNFG_PHY_SHIFT 21 | ||
508 | |||
509 | /* PCI Express Control */ | ||
510 | #define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000 | ||
511 | #define E1000_GCR_CMPL_TMOUT_10ms 0x00001000 | ||
512 | #define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000 | ||
513 | #define E1000_GCR_CAP_VER2 0x00040000 | ||
514 | |||
515 | /* mPHY Address Control and Data Registers */ | ||
516 | #define E1000_MPHY_ADDR_CTL 0x0024 /* mPHY Address Control Register */ | ||
517 | #define E1000_MPHY_ADDR_CTL_OFFSET_MASK 0xFFFF0000 | ||
518 | #define E1000_MPHY_DATA 0x0E10 /* mPHY Data Register */ | ||
519 | |||
520 | /* mPHY PCS CLK Register */ | ||
521 | #define E1000_MPHY_PCS_CLK_REG_OFFSET 0x0004 /* mPHY PCS CLK AFE CSR Offset */ | ||
522 | /* mPHY Near End Digital Loopback Override Bit */ | ||
523 | #define E1000_MPHY_PCS_CLK_REG_DIGINELBEN 0x10 | ||
524 | |||
525 | /* PHY Control Register */ | ||
526 | #define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ | ||
527 | #define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ | ||
528 | #define MII_CR_POWER_DOWN 0x0800 /* Power down */ | ||
529 | #define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ | ||
530 | #define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ | ||
531 | #define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ | ||
532 | #define MII_CR_SPEED_1000 0x0040 | ||
533 | #define MII_CR_SPEED_100 0x2000 | ||
534 | #define MII_CR_SPEED_10 0x0000 | ||
535 | |||
536 | /* PHY Status Register */ | ||
537 | #define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ | ||
538 | #define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ | ||
539 | |||
540 | /* Autoneg Advertisement Register */ | ||
541 | #define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ | ||
542 | #define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ | ||
543 | #define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ | ||
544 | #define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ | ||
545 | #define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ | ||
546 | #define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ | ||
547 | |||
548 | /* Link Partner Ability Register (Base Page) */ | ||
549 | #define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ | ||
550 | #define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ | ||
551 | |||
552 | /* Autoneg Expansion Register */ | ||
553 | |||
554 | /* 1000BASE-T Control Register */ | ||
555 | #define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ | ||
556 | #define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ | ||
557 | #define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ | ||
558 | /* 0=Configure PHY as Slave */ | ||
559 | #define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ | ||
560 | /* 0=Automatic Master/Slave config */ | ||
561 | |||
562 | /* 1000BASE-T Status Register */ | ||
563 | #define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ | ||
564 | #define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ | ||
565 | |||
566 | |||
567 | /* PHY 1000 MII Register/Bit Definitions */ | ||
568 | /* PHY Registers defined by IEEE */ | ||
569 | #define PHY_CONTROL 0x00 /* Control Register */ | ||
570 | #define PHY_STATUS 0x01 /* Status Register */ | ||
571 | #define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ | ||
572 | #define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ | ||
573 | #define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ | ||
574 | #define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ | ||
575 | #define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ | ||
576 | #define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ | ||
577 | |||
578 | /* NVM Control */ | ||
579 | #define E1000_EECD_SK 0x00000001 /* NVM Clock */ | ||
580 | #define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ | ||
581 | #define E1000_EECD_DI 0x00000004 /* NVM Data In */ | ||
582 | #define E1000_EECD_DO 0x00000008 /* NVM Data Out */ | ||
583 | #define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ | ||
584 | #define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ | ||
585 | #define E1000_EECD_PRES 0x00000100 /* NVM Present */ | ||
586 | /* NVM Addressing bits based on type 0=small, 1=large */ | ||
587 | #define E1000_EECD_ADDR_BITS 0x00000400 | ||
588 | #define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ | ||
589 | #define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ | ||
590 | #define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ | ||
591 | #define E1000_EECD_SIZE_EX_SHIFT 11 | ||
592 | |||
593 | /* Offset to data in NVM read/write registers */ | ||
594 | #define E1000_NVM_RW_REG_DATA 16 | ||
595 | #define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ | ||
596 | #define E1000_NVM_RW_REG_START 1 /* Start operation */ | ||
597 | #define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ | ||
598 | #define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ | ||
599 | |||
600 | /* NVM Word Offsets */ | ||
601 | #define NVM_COMPAT 0x0003 | ||
602 | #define NVM_ID_LED_SETTINGS 0x0004 /* SERDES output amplitude */ | ||
603 | #define NVM_INIT_CONTROL2_REG 0x000F | ||
604 | #define NVM_INIT_CONTROL3_PORT_B 0x0014 | ||
605 | #define NVM_INIT_CONTROL3_PORT_A 0x0024 | ||
606 | #define NVM_ALT_MAC_ADDR_PTR 0x0037 | ||
607 | #define NVM_CHECKSUM_REG 0x003F | ||
608 | #define NVM_COMPATIBILITY_REG_3 0x0003 | ||
609 | #define NVM_COMPATIBILITY_BIT_MASK 0x8000 | ||
610 | |||
611 | #define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */ | ||
612 | #define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */ | ||
613 | #define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */ | ||
614 | #define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */ | ||
615 | |||
616 | #define NVM_82580_LAN_FUNC_OFFSET(a) (a ? (0x40 + (0x40 * a)) : 0) | ||
617 | |||
618 | /* Mask bits for fields in Word 0x24 of the NVM */ | ||
619 | #define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */ | ||
620 | #define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed external */ | ||
621 | |||
622 | /* Mask bits for fields in Word 0x0f of the NVM */ | ||
623 | #define NVM_WORD0F_PAUSE_MASK 0x3000 | ||
624 | #define NVM_WORD0F_ASM_DIR 0x2000 | ||
625 | |||
626 | /* Mask bits for fields in Word 0x1a of the NVM */ | ||
627 | |||
628 | /* length of string needed to store part num */ | ||
629 | #define E1000_PBANUM_LENGTH 11 | ||
630 | |||
631 | /* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ | ||
632 | #define NVM_SUM 0xBABA | ||
633 | |||
634 | #define NVM_PBA_OFFSET_0 8 | ||
635 | #define NVM_PBA_OFFSET_1 9 | ||
636 | #define NVM_PBA_PTR_GUARD 0xFAFA | ||
637 | #define NVM_WORD_SIZE_BASE_SHIFT 6 | ||
638 | |||
639 | /* NVM Commands - Microwire */ | ||
640 | |||
641 | /* NVM Commands - SPI */ | ||
642 | #define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ | ||
643 | #define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ | ||
644 | #define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ | ||
645 | #define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ | ||
646 | #define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ | ||
647 | #define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ | ||
648 | |||
649 | /* SPI NVM Status Register */ | ||
650 | #define NVM_STATUS_RDY_SPI 0x01 | ||
651 | |||
652 | /* Word definitions for ID LED Settings */ | ||
653 | #define ID_LED_RESERVED_0000 0x0000 | ||
654 | #define ID_LED_RESERVED_FFFF 0xFFFF | ||
655 | #define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ | ||
656 | (ID_LED_OFF1_OFF2 << 8) | \ | ||
657 | (ID_LED_DEF1_DEF2 << 4) | \ | ||
658 | (ID_LED_DEF1_DEF2)) | ||
659 | #define ID_LED_DEF1_DEF2 0x1 | ||
660 | #define ID_LED_DEF1_ON2 0x2 | ||
661 | #define ID_LED_DEF1_OFF2 0x3 | ||
662 | #define ID_LED_ON1_DEF2 0x4 | ||
663 | #define ID_LED_ON1_ON2 0x5 | ||
664 | #define ID_LED_ON1_OFF2 0x6 | ||
665 | #define ID_LED_OFF1_DEF2 0x7 | ||
666 | #define ID_LED_OFF1_ON2 0x8 | ||
667 | #define ID_LED_OFF1_OFF2 0x9 | ||
668 | |||
669 | #define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF | ||
670 | #define IGP_ACTIVITY_LED_ENABLE 0x0300 | ||
671 | #define IGP_LED3_MODE 0x07000000 | ||
672 | |||
673 | /* PCI/PCI-X/PCI-EX Config space */ | ||
674 | #define PCIE_DEVICE_CONTROL2 0x28 | ||
675 | #define PCIE_DEVICE_CONTROL2_16ms 0x0005 | ||
676 | |||
677 | #define PHY_REVISION_MASK 0xFFFFFFF0 | ||
678 | #define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ | ||
679 | #define MAX_PHY_MULTI_PAGE_REG 0xF | ||
680 | |||
681 | /* Bit definitions for valid PHY IDs. */ | ||
682 | /* | ||
683 | * I = Integrated | ||
684 | * E = External | ||
685 | */ | ||
686 | #define M88E1111_I_PHY_ID 0x01410CC0 | ||
687 | #define M88E1112_E_PHY_ID 0x01410C90 | ||
688 | #define I347AT4_E_PHY_ID 0x01410DC0 | ||
689 | #define IGP03E1000_E_PHY_ID 0x02A80390 | ||
690 | #define I82580_I_PHY_ID 0x015403A0 | ||
691 | #define I350_I_PHY_ID 0x015403B0 | ||
692 | #define M88_VENDOR 0x0141 | ||
693 | |||
694 | /* M88E1000 Specific Registers */ | ||
695 | #define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ | ||
696 | #define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ | ||
697 | #define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ | ||
698 | |||
699 | #define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ | ||
700 | #define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ | ||
701 | |||
702 | /* M88E1000 PHY Specific Control Register */ | ||
703 | #define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ | ||
704 | /* 1=CLK125 low, 0=CLK125 toggling */ | ||
705 | #define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ | ||
706 | /* Manual MDI configuration */ | ||
707 | #define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ | ||
708 | /* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ | ||
709 | #define M88E1000_PSCR_AUTO_X_1000T 0x0040 | ||
710 | /* Auto crossover enabled all speeds */ | ||
711 | #define M88E1000_PSCR_AUTO_X_MODE 0x0060 | ||
712 | /* | ||
713 | * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold | ||
714 | * 0=Normal 10BASE-T Rx Threshold | ||
715 | */ | ||
716 | /* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */ | ||
717 | #define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ | ||
718 | |||
719 | /* M88E1000 PHY Specific Status Register */ | ||
720 | #define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ | ||
721 | #define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ | ||
722 | #define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ | ||
723 | /* | ||
724 | * 0 = <50M | ||
725 | * 1 = 50-80M | ||
726 | * 2 = 80-110M | ||
727 | * 3 = 110-140M | ||
728 | * 4 = >140M | ||
729 | */ | ||
730 | #define M88E1000_PSSR_CABLE_LENGTH 0x0380 | ||
731 | #define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ | ||
732 | #define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ | ||
733 | |||
734 | #define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 | ||
735 | |||
736 | /* M88E1000 Extended PHY Specific Control Register */ | ||
737 | /* | ||
738 | * 1 = Lost lock detect enabled. | ||
739 | * Will assert lost lock and bring | ||
740 | * link down if idle not seen | ||
741 | * within 1ms in 1000BASE-T | ||
742 | */ | ||
743 | /* | ||
744 | * Number of times we will attempt to autonegotiate before downshifting if we | ||
745 | * are the master | ||
746 | */ | ||
747 | #define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 | ||
748 | #define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 | ||
749 | /* | ||
750 | * Number of times we will attempt to autonegotiate before downshifting if we | ||
751 | * are the slave | ||
752 | */ | ||
753 | #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 | ||
754 | #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 | ||
755 | #define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ | ||
756 | |||
757 | /* Intel i347-AT4 Registers */ | ||
758 | |||
759 | #define I347AT4_PCDL 0x10 /* PHY Cable Diagnostics Length */ | ||
760 | #define I347AT4_PCDC 0x15 /* PHY Cable Diagnostics Control */ | ||
761 | #define I347AT4_PAGE_SELECT 0x16 | ||
762 | |||
763 | /* i347-AT4 Extended PHY Specific Control Register */ | ||
764 | |||
765 | /* | ||
766 | * Number of times we will attempt to autonegotiate before downshifting if we | ||
767 | * are the master | ||
768 | */ | ||
769 | #define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800 | ||
770 | #define I347AT4_PSCR_DOWNSHIFT_MASK 0x7000 | ||
771 | #define I347AT4_PSCR_DOWNSHIFT_1X 0x0000 | ||
772 | #define I347AT4_PSCR_DOWNSHIFT_2X 0x1000 | ||
773 | #define I347AT4_PSCR_DOWNSHIFT_3X 0x2000 | ||
774 | #define I347AT4_PSCR_DOWNSHIFT_4X 0x3000 | ||
775 | #define I347AT4_PSCR_DOWNSHIFT_5X 0x4000 | ||
776 | #define I347AT4_PSCR_DOWNSHIFT_6X 0x5000 | ||
777 | #define I347AT4_PSCR_DOWNSHIFT_7X 0x6000 | ||
778 | #define I347AT4_PSCR_DOWNSHIFT_8X 0x7000 | ||
779 | |||
780 | /* i347-AT4 PHY Cable Diagnostics Control */ | ||
781 | #define I347AT4_PCDC_CABLE_LENGTH_UNIT 0x0400 /* 0=cm 1=meters */ | ||
782 | |||
783 | /* Marvell 1112 only registers */ | ||
784 | #define M88E1112_VCT_DSP_DISTANCE 0x001A | ||
785 | |||
786 | /* M88EC018 Rev 2 specific DownShift settings */ | ||
787 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 | ||
788 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 | ||
789 | |||
790 | /* MDI Control */ | ||
791 | #define E1000_MDIC_DATA_MASK 0x0000FFFF | ||
792 | #define E1000_MDIC_REG_MASK 0x001F0000 | ||
793 | #define E1000_MDIC_REG_SHIFT 16 | ||
794 | #define E1000_MDIC_PHY_MASK 0x03E00000 | ||
795 | #define E1000_MDIC_PHY_SHIFT 21 | ||
796 | #define E1000_MDIC_OP_WRITE 0x04000000 | ||
797 | #define E1000_MDIC_OP_READ 0x08000000 | ||
798 | #define E1000_MDIC_READY 0x10000000 | ||
799 | #define E1000_MDIC_INT_EN 0x20000000 | ||
800 | #define E1000_MDIC_ERROR 0x40000000 | ||
801 | #define E1000_MDIC_DEST 0x80000000 | ||
802 | |||
803 | /* Thermal Sensor */ | ||
804 | #define E1000_THSTAT_PWR_DOWN 0x00000001 /* Power Down Event */ | ||
805 | #define E1000_THSTAT_LINK_THROTTLE 0x00000002 /* Link Speed Throttle Event */ | ||
806 | |||
807 | /* Energy Efficient Ethernet */ | ||
808 | #define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* EEE Enable 1G AN */ | ||
809 | #define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* EEE Enable 100M AN */ | ||
810 | #define E1000_EEER_TX_LPI_EN 0x00010000 /* EEE Tx LPI Enable */ | ||
811 | #define E1000_EEER_RX_LPI_EN 0x00020000 /* EEE Rx LPI Enable */ | ||
812 | #define E1000_EEER_LPI_FC 0x00040000 /* EEE Enable on FC */ | ||
813 | |||
814 | /* SerDes Control */ | ||
815 | #define E1000_GEN_CTL_READY 0x80000000 | ||
816 | #define E1000_GEN_CTL_ADDRESS_SHIFT 8 | ||
817 | #define E1000_GEN_POLL_TIMEOUT 640 | ||
818 | |||
819 | #define E1000_VFTA_ENTRY_SHIFT 5 | ||
820 | #define E1000_VFTA_ENTRY_MASK 0x7F | ||
821 | #define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F | ||
822 | |||
823 | /* DMA Coalescing register fields */ | ||
824 | #define E1000_PCIEMISC_LX_DECISION 0x00000080 /* Lx power decision based | ||
825 | on DMA coal */ | ||
826 | |||
827 | /* Tx Rate-Scheduler Config fields */ | ||
828 | #define E1000_RTTBCNRC_RS_ENA 0x80000000 | ||
829 | #define E1000_RTTBCNRC_RF_DEC_MASK 0x00003FFF | ||
830 | #define E1000_RTTBCNRC_RF_INT_SHIFT 14 | ||
831 | #define E1000_RTTBCNRC_RF_INT_MASK \ | ||
832 | (E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT) | ||
833 | |||
834 | #endif | ||
diff --git a/drivers/net/igb/e1000_hw.h b/drivers/net/igb/e1000_hw.h new file mode 100644 index 00000000000..4519a136717 --- /dev/null +++ b/drivers/net/igb/e1000_hw.h | |||
@@ -0,0 +1,529 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_HW_H_ | ||
29 | #define _E1000_HW_H_ | ||
30 | |||
31 | #include <linux/types.h> | ||
32 | #include <linux/delay.h> | ||
33 | #include <linux/io.h> | ||
34 | #include <linux/netdevice.h> | ||
35 | |||
36 | #include "e1000_regs.h" | ||
37 | #include "e1000_defines.h" | ||
38 | |||
39 | struct e1000_hw; | ||
40 | |||
41 | #define E1000_DEV_ID_82576 0x10C9 | ||
42 | #define E1000_DEV_ID_82576_FIBER 0x10E6 | ||
43 | #define E1000_DEV_ID_82576_SERDES 0x10E7 | ||
44 | #define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8 | ||
45 | #define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526 | ||
46 | #define E1000_DEV_ID_82576_NS 0x150A | ||
47 | #define E1000_DEV_ID_82576_NS_SERDES 0x1518 | ||
48 | #define E1000_DEV_ID_82576_SERDES_QUAD 0x150D | ||
49 | #define E1000_DEV_ID_82575EB_COPPER 0x10A7 | ||
50 | #define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9 | ||
51 | #define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6 | ||
52 | #define E1000_DEV_ID_82580_COPPER 0x150E | ||
53 | #define E1000_DEV_ID_82580_FIBER 0x150F | ||
54 | #define E1000_DEV_ID_82580_SERDES 0x1510 | ||
55 | #define E1000_DEV_ID_82580_SGMII 0x1511 | ||
56 | #define E1000_DEV_ID_82580_COPPER_DUAL 0x1516 | ||
57 | #define E1000_DEV_ID_82580_QUAD_FIBER 0x1527 | ||
58 | #define E1000_DEV_ID_DH89XXCC_SGMII 0x0438 | ||
59 | #define E1000_DEV_ID_DH89XXCC_SERDES 0x043A | ||
60 | #define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C | ||
61 | #define E1000_DEV_ID_DH89XXCC_SFP 0x0440 | ||
62 | #define E1000_DEV_ID_I350_COPPER 0x1521 | ||
63 | #define E1000_DEV_ID_I350_FIBER 0x1522 | ||
64 | #define E1000_DEV_ID_I350_SERDES 0x1523 | ||
65 | #define E1000_DEV_ID_I350_SGMII 0x1524 | ||
66 | |||
67 | #define E1000_REVISION_2 2 | ||
68 | #define E1000_REVISION_4 4 | ||
69 | |||
70 | #define E1000_FUNC_0 0 | ||
71 | #define E1000_FUNC_1 1 | ||
72 | #define E1000_FUNC_2 2 | ||
73 | #define E1000_FUNC_3 3 | ||
74 | |||
75 | #define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0 | ||
76 | #define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3 | ||
77 | #define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6 | ||
78 | #define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9 | ||
79 | |||
80 | enum e1000_mac_type { | ||
81 | e1000_undefined = 0, | ||
82 | e1000_82575, | ||
83 | e1000_82576, | ||
84 | e1000_82580, | ||
85 | e1000_i350, | ||
86 | e1000_num_macs /* List is 1-based, so subtract 1 for true count. */ | ||
87 | }; | ||
88 | |||
89 | enum e1000_media_type { | ||
90 | e1000_media_type_unknown = 0, | ||
91 | e1000_media_type_copper = 1, | ||
92 | e1000_media_type_internal_serdes = 2, | ||
93 | e1000_num_media_types | ||
94 | }; | ||
95 | |||
96 | enum e1000_nvm_type { | ||
97 | e1000_nvm_unknown = 0, | ||
98 | e1000_nvm_none, | ||
99 | e1000_nvm_eeprom_spi, | ||
100 | e1000_nvm_flash_hw, | ||
101 | e1000_nvm_flash_sw | ||
102 | }; | ||
103 | |||
104 | enum e1000_nvm_override { | ||
105 | e1000_nvm_override_none = 0, | ||
106 | e1000_nvm_override_spi_small, | ||
107 | e1000_nvm_override_spi_large, | ||
108 | }; | ||
109 | |||
110 | enum e1000_phy_type { | ||
111 | e1000_phy_unknown = 0, | ||
112 | e1000_phy_none, | ||
113 | e1000_phy_m88, | ||
114 | e1000_phy_igp, | ||
115 | e1000_phy_igp_2, | ||
116 | e1000_phy_gg82563, | ||
117 | e1000_phy_igp_3, | ||
118 | e1000_phy_ife, | ||
119 | e1000_phy_82580, | ||
120 | }; | ||
121 | |||
122 | enum e1000_bus_type { | ||
123 | e1000_bus_type_unknown = 0, | ||
124 | e1000_bus_type_pci, | ||
125 | e1000_bus_type_pcix, | ||
126 | e1000_bus_type_pci_express, | ||
127 | e1000_bus_type_reserved | ||
128 | }; | ||
129 | |||
130 | enum e1000_bus_speed { | ||
131 | e1000_bus_speed_unknown = 0, | ||
132 | e1000_bus_speed_33, | ||
133 | e1000_bus_speed_66, | ||
134 | e1000_bus_speed_100, | ||
135 | e1000_bus_speed_120, | ||
136 | e1000_bus_speed_133, | ||
137 | e1000_bus_speed_2500, | ||
138 | e1000_bus_speed_5000, | ||
139 | e1000_bus_speed_reserved | ||
140 | }; | ||
141 | |||
142 | enum e1000_bus_width { | ||
143 | e1000_bus_width_unknown = 0, | ||
144 | e1000_bus_width_pcie_x1, | ||
145 | e1000_bus_width_pcie_x2, | ||
146 | e1000_bus_width_pcie_x4 = 4, | ||
147 | e1000_bus_width_pcie_x8 = 8, | ||
148 | e1000_bus_width_32, | ||
149 | e1000_bus_width_64, | ||
150 | e1000_bus_width_reserved | ||
151 | }; | ||
152 | |||
153 | enum e1000_1000t_rx_status { | ||
154 | e1000_1000t_rx_status_not_ok = 0, | ||
155 | e1000_1000t_rx_status_ok, | ||
156 | e1000_1000t_rx_status_undefined = 0xFF | ||
157 | }; | ||
158 | |||
159 | enum e1000_rev_polarity { | ||
160 | e1000_rev_polarity_normal = 0, | ||
161 | e1000_rev_polarity_reversed, | ||
162 | e1000_rev_polarity_undefined = 0xFF | ||
163 | }; | ||
164 | |||
165 | enum e1000_fc_mode { | ||
166 | e1000_fc_none = 0, | ||
167 | e1000_fc_rx_pause, | ||
168 | e1000_fc_tx_pause, | ||
169 | e1000_fc_full, | ||
170 | e1000_fc_default = 0xFF | ||
171 | }; | ||
172 | |||
173 | /* Statistics counters collected by the MAC */ | ||
174 | struct e1000_hw_stats { | ||
175 | u64 crcerrs; | ||
176 | u64 algnerrc; | ||
177 | u64 symerrs; | ||
178 | u64 rxerrc; | ||
179 | u64 mpc; | ||
180 | u64 scc; | ||
181 | u64 ecol; | ||
182 | u64 mcc; | ||
183 | u64 latecol; | ||
184 | u64 colc; | ||
185 | u64 dc; | ||
186 | u64 tncrs; | ||
187 | u64 sec; | ||
188 | u64 cexterr; | ||
189 | u64 rlec; | ||
190 | u64 xonrxc; | ||
191 | u64 xontxc; | ||
192 | u64 xoffrxc; | ||
193 | u64 xofftxc; | ||
194 | u64 fcruc; | ||
195 | u64 prc64; | ||
196 | u64 prc127; | ||
197 | u64 prc255; | ||
198 | u64 prc511; | ||
199 | u64 prc1023; | ||
200 | u64 prc1522; | ||
201 | u64 gprc; | ||
202 | u64 bprc; | ||
203 | u64 mprc; | ||
204 | u64 gptc; | ||
205 | u64 gorc; | ||
206 | u64 gotc; | ||
207 | u64 rnbc; | ||
208 | u64 ruc; | ||
209 | u64 rfc; | ||
210 | u64 roc; | ||
211 | u64 rjc; | ||
212 | u64 mgprc; | ||
213 | u64 mgpdc; | ||
214 | u64 mgptc; | ||
215 | u64 tor; | ||
216 | u64 tot; | ||
217 | u64 tpr; | ||
218 | u64 tpt; | ||
219 | u64 ptc64; | ||
220 | u64 ptc127; | ||
221 | u64 ptc255; | ||
222 | u64 ptc511; | ||
223 | u64 ptc1023; | ||
224 | u64 ptc1522; | ||
225 | u64 mptc; | ||
226 | u64 bptc; | ||
227 | u64 tsctc; | ||
228 | u64 tsctfc; | ||
229 | u64 iac; | ||
230 | u64 icrxptc; | ||
231 | u64 icrxatc; | ||
232 | u64 ictxptc; | ||
233 | u64 ictxatc; | ||
234 | u64 ictxqec; | ||
235 | u64 ictxqmtc; | ||
236 | u64 icrxdmtc; | ||
237 | u64 icrxoc; | ||
238 | u64 cbtmpc; | ||
239 | u64 htdpmc; | ||
240 | u64 cbrdpc; | ||
241 | u64 cbrmpc; | ||
242 | u64 rpthc; | ||
243 | u64 hgptc; | ||
244 | u64 htcbdpc; | ||
245 | u64 hgorc; | ||
246 | u64 hgotc; | ||
247 | u64 lenerrs; | ||
248 | u64 scvpc; | ||
249 | u64 hrmpc; | ||
250 | u64 doosync; | ||
251 | u64 o2bgptc; | ||
252 | u64 o2bspc; | ||
253 | u64 b2ospc; | ||
254 | u64 b2ogprc; | ||
255 | }; | ||
256 | |||
257 | struct e1000_phy_stats { | ||
258 | u32 idle_errors; | ||
259 | u32 receive_errors; | ||
260 | }; | ||
261 | |||
262 | struct e1000_host_mng_dhcp_cookie { | ||
263 | u32 signature; | ||
264 | u8 status; | ||
265 | u8 reserved0; | ||
266 | u16 vlan_id; | ||
267 | u32 reserved1; | ||
268 | u16 reserved2; | ||
269 | u8 reserved3; | ||
270 | u8 checksum; | ||
271 | }; | ||
272 | |||
273 | /* Host Interface "Rev 1" */ | ||
274 | struct e1000_host_command_header { | ||
275 | u8 command_id; | ||
276 | u8 command_length; | ||
277 | u8 command_options; | ||
278 | u8 checksum; | ||
279 | }; | ||
280 | |||
281 | #define E1000_HI_MAX_DATA_LENGTH 252 | ||
282 | struct e1000_host_command_info { | ||
283 | struct e1000_host_command_header command_header; | ||
284 | u8 command_data[E1000_HI_MAX_DATA_LENGTH]; | ||
285 | }; | ||
286 | |||
287 | /* Host Interface "Rev 2" */ | ||
288 | struct e1000_host_mng_command_header { | ||
289 | u8 command_id; | ||
290 | u8 checksum; | ||
291 | u16 reserved1; | ||
292 | u16 reserved2; | ||
293 | u16 command_length; | ||
294 | }; | ||
295 | |||
296 | #define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 | ||
297 | struct e1000_host_mng_command_info { | ||
298 | struct e1000_host_mng_command_header command_header; | ||
299 | u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; | ||
300 | }; | ||
301 | |||
302 | #include "e1000_mac.h" | ||
303 | #include "e1000_phy.h" | ||
304 | #include "e1000_nvm.h" | ||
305 | #include "e1000_mbx.h" | ||
306 | |||
307 | struct e1000_mac_operations { | ||
308 | s32 (*check_for_link)(struct e1000_hw *); | ||
309 | s32 (*reset_hw)(struct e1000_hw *); | ||
310 | s32 (*init_hw)(struct e1000_hw *); | ||
311 | bool (*check_mng_mode)(struct e1000_hw *); | ||
312 | s32 (*setup_physical_interface)(struct e1000_hw *); | ||
313 | void (*rar_set)(struct e1000_hw *, u8 *, u32); | ||
314 | s32 (*read_mac_addr)(struct e1000_hw *); | ||
315 | s32 (*get_speed_and_duplex)(struct e1000_hw *, u16 *, u16 *); | ||
316 | }; | ||
317 | |||
318 | struct e1000_phy_operations { | ||
319 | s32 (*acquire)(struct e1000_hw *); | ||
320 | s32 (*check_polarity)(struct e1000_hw *); | ||
321 | s32 (*check_reset_block)(struct e1000_hw *); | ||
322 | s32 (*force_speed_duplex)(struct e1000_hw *); | ||
323 | s32 (*get_cfg_done)(struct e1000_hw *hw); | ||
324 | s32 (*get_cable_length)(struct e1000_hw *); | ||
325 | s32 (*get_phy_info)(struct e1000_hw *); | ||
326 | s32 (*read_reg)(struct e1000_hw *, u32, u16 *); | ||
327 | void (*release)(struct e1000_hw *); | ||
328 | s32 (*reset)(struct e1000_hw *); | ||
329 | s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); | ||
330 | s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); | ||
331 | s32 (*write_reg)(struct e1000_hw *, u32, u16); | ||
332 | }; | ||
333 | |||
334 | struct e1000_nvm_operations { | ||
335 | s32 (*acquire)(struct e1000_hw *); | ||
336 | s32 (*read)(struct e1000_hw *, u16, u16, u16 *); | ||
337 | void (*release)(struct e1000_hw *); | ||
338 | s32 (*write)(struct e1000_hw *, u16, u16, u16 *); | ||
339 | s32 (*update)(struct e1000_hw *); | ||
340 | s32 (*validate)(struct e1000_hw *); | ||
341 | }; | ||
342 | |||
343 | struct e1000_info { | ||
344 | s32 (*get_invariants)(struct e1000_hw *); | ||
345 | struct e1000_mac_operations *mac_ops; | ||
346 | struct e1000_phy_operations *phy_ops; | ||
347 | struct e1000_nvm_operations *nvm_ops; | ||
348 | }; | ||
349 | |||
350 | extern const struct e1000_info e1000_82575_info; | ||
351 | |||
352 | struct e1000_mac_info { | ||
353 | struct e1000_mac_operations ops; | ||
354 | |||
355 | u8 addr[6]; | ||
356 | u8 perm_addr[6]; | ||
357 | |||
358 | enum e1000_mac_type type; | ||
359 | |||
360 | u32 ledctl_default; | ||
361 | u32 ledctl_mode1; | ||
362 | u32 ledctl_mode2; | ||
363 | u32 mc_filter_type; | ||
364 | u32 txcw; | ||
365 | |||
366 | u16 mta_reg_count; | ||
367 | u16 uta_reg_count; | ||
368 | |||
369 | /* Maximum size of the MTA register table in all supported adapters */ | ||
370 | #define MAX_MTA_REG 128 | ||
371 | u32 mta_shadow[MAX_MTA_REG]; | ||
372 | u16 rar_entry_count; | ||
373 | |||
374 | u8 forced_speed_duplex; | ||
375 | |||
376 | bool adaptive_ifs; | ||
377 | bool arc_subsystem_valid; | ||
378 | bool asf_firmware_present; | ||
379 | bool autoneg; | ||
380 | bool autoneg_failed; | ||
381 | bool disable_hw_init_bits; | ||
382 | bool get_link_status; | ||
383 | bool ifs_params_forced; | ||
384 | bool in_ifs_mode; | ||
385 | bool report_tx_early; | ||
386 | bool serdes_has_link; | ||
387 | bool tx_pkt_filtering; | ||
388 | }; | ||
389 | |||
390 | struct e1000_phy_info { | ||
391 | struct e1000_phy_operations ops; | ||
392 | |||
393 | enum e1000_phy_type type; | ||
394 | |||
395 | enum e1000_1000t_rx_status local_rx; | ||
396 | enum e1000_1000t_rx_status remote_rx; | ||
397 | enum e1000_ms_type ms_type; | ||
398 | enum e1000_ms_type original_ms_type; | ||
399 | enum e1000_rev_polarity cable_polarity; | ||
400 | enum e1000_smart_speed smart_speed; | ||
401 | |||
402 | u32 addr; | ||
403 | u32 id; | ||
404 | u32 reset_delay_us; /* in usec */ | ||
405 | u32 revision; | ||
406 | |||
407 | enum e1000_media_type media_type; | ||
408 | |||
409 | u16 autoneg_advertised; | ||
410 | u16 autoneg_mask; | ||
411 | u16 cable_length; | ||
412 | u16 max_cable_length; | ||
413 | u16 min_cable_length; | ||
414 | |||
415 | u8 mdix; | ||
416 | |||
417 | bool disable_polarity_correction; | ||
418 | bool is_mdix; | ||
419 | bool polarity_correction; | ||
420 | bool reset_disable; | ||
421 | bool speed_downgraded; | ||
422 | bool autoneg_wait_to_complete; | ||
423 | }; | ||
424 | |||
425 | struct e1000_nvm_info { | ||
426 | struct e1000_nvm_operations ops; | ||
427 | enum e1000_nvm_type type; | ||
428 | enum e1000_nvm_override override; | ||
429 | |||
430 | u32 flash_bank_size; | ||
431 | u32 flash_base_addr; | ||
432 | |||
433 | u16 word_size; | ||
434 | u16 delay_usec; | ||
435 | u16 address_bits; | ||
436 | u16 opcode_bits; | ||
437 | u16 page_size; | ||
438 | }; | ||
439 | |||
440 | struct e1000_bus_info { | ||
441 | enum e1000_bus_type type; | ||
442 | enum e1000_bus_speed speed; | ||
443 | enum e1000_bus_width width; | ||
444 | |||
445 | u32 snoop; | ||
446 | |||
447 | u16 func; | ||
448 | u16 pci_cmd_word; | ||
449 | }; | ||
450 | |||
451 | struct e1000_fc_info { | ||
452 | u32 high_water; /* Flow control high-water mark */ | ||
453 | u32 low_water; /* Flow control low-water mark */ | ||
454 | u16 pause_time; /* Flow control pause timer */ | ||
455 | bool send_xon; /* Flow control send XON */ | ||
456 | bool strict_ieee; /* Strict IEEE mode */ | ||
457 | enum e1000_fc_mode current_mode; /* Type of flow control */ | ||
458 | enum e1000_fc_mode requested_mode; | ||
459 | }; | ||
460 | |||
461 | struct e1000_mbx_operations { | ||
462 | s32 (*init_params)(struct e1000_hw *hw); | ||
463 | s32 (*read)(struct e1000_hw *, u32 *, u16, u16); | ||
464 | s32 (*write)(struct e1000_hw *, u32 *, u16, u16); | ||
465 | s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16); | ||
466 | s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16); | ||
467 | s32 (*check_for_msg)(struct e1000_hw *, u16); | ||
468 | s32 (*check_for_ack)(struct e1000_hw *, u16); | ||
469 | s32 (*check_for_rst)(struct e1000_hw *, u16); | ||
470 | }; | ||
471 | |||
472 | struct e1000_mbx_stats { | ||
473 | u32 msgs_tx; | ||
474 | u32 msgs_rx; | ||
475 | |||
476 | u32 acks; | ||
477 | u32 reqs; | ||
478 | u32 rsts; | ||
479 | }; | ||
480 | |||
481 | struct e1000_mbx_info { | ||
482 | struct e1000_mbx_operations ops; | ||
483 | struct e1000_mbx_stats stats; | ||
484 | u32 timeout; | ||
485 | u32 usec_delay; | ||
486 | u16 size; | ||
487 | }; | ||
488 | |||
489 | struct e1000_dev_spec_82575 { | ||
490 | bool sgmii_active; | ||
491 | bool global_device_reset; | ||
492 | bool eee_disable; | ||
493 | }; | ||
494 | |||
495 | struct e1000_hw { | ||
496 | void *back; | ||
497 | |||
498 | u8 __iomem *hw_addr; | ||
499 | u8 __iomem *flash_address; | ||
500 | unsigned long io_base; | ||
501 | |||
502 | struct e1000_mac_info mac; | ||
503 | struct e1000_fc_info fc; | ||
504 | struct e1000_phy_info phy; | ||
505 | struct e1000_nvm_info nvm; | ||
506 | struct e1000_bus_info bus; | ||
507 | struct e1000_mbx_info mbx; | ||
508 | struct e1000_host_mng_dhcp_cookie mng_cookie; | ||
509 | |||
510 | union { | ||
511 | struct e1000_dev_spec_82575 _82575; | ||
512 | } dev_spec; | ||
513 | |||
514 | u16 device_id; | ||
515 | u16 subsystem_vendor_id; | ||
516 | u16 subsystem_device_id; | ||
517 | u16 vendor_id; | ||
518 | |||
519 | u8 revision_id; | ||
520 | }; | ||
521 | |||
522 | extern struct net_device *igb_get_hw_dev(struct e1000_hw *hw); | ||
523 | #define hw_dbg(format, arg...) \ | ||
524 | netdev_dbg(igb_get_hw_dev(hw), format, ##arg) | ||
525 | |||
526 | /* These functions must be implemented by drivers */ | ||
527 | s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); | ||
528 | s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); | ||
529 | #endif /* _E1000_HW_H_ */ | ||
diff --git a/drivers/net/igb/e1000_mac.c b/drivers/net/igb/e1000_mac.c new file mode 100644 index 00000000000..2b5ef761d2a --- /dev/null +++ b/drivers/net/igb/e1000_mac.c | |||
@@ -0,0 +1,1421 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/if_ether.h> | ||
29 | #include <linux/delay.h> | ||
30 | #include <linux/pci.h> | ||
31 | #include <linux/netdevice.h> | ||
32 | #include <linux/etherdevice.h> | ||
33 | |||
34 | #include "e1000_mac.h" | ||
35 | |||
36 | #include "igb.h" | ||
37 | |||
38 | static s32 igb_set_default_fc(struct e1000_hw *hw); | ||
39 | static s32 igb_set_fc_watermarks(struct e1000_hw *hw); | ||
40 | |||
41 | /** | ||
42 | * igb_get_bus_info_pcie - Get PCIe bus information | ||
43 | * @hw: pointer to the HW structure | ||
44 | * | ||
45 | * Determines and stores the system bus information for a particular | ||
46 | * network interface. The following bus information is determined and stored: | ||
47 | * bus speed, bus width, type (PCIe), and PCIe function. | ||
48 | **/ | ||
49 | s32 igb_get_bus_info_pcie(struct e1000_hw *hw) | ||
50 | { | ||
51 | struct e1000_bus_info *bus = &hw->bus; | ||
52 | s32 ret_val; | ||
53 | u32 reg; | ||
54 | u16 pcie_link_status; | ||
55 | |||
56 | bus->type = e1000_bus_type_pci_express; | ||
57 | |||
58 | ret_val = igb_read_pcie_cap_reg(hw, | ||
59 | PCI_EXP_LNKSTA, | ||
60 | &pcie_link_status); | ||
61 | if (ret_val) { | ||
62 | bus->width = e1000_bus_width_unknown; | ||
63 | bus->speed = e1000_bus_speed_unknown; | ||
64 | } else { | ||
65 | switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) { | ||
66 | case PCI_EXP_LNKSTA_CLS_2_5GB: | ||
67 | bus->speed = e1000_bus_speed_2500; | ||
68 | break; | ||
69 | case PCI_EXP_LNKSTA_CLS_5_0GB: | ||
70 | bus->speed = e1000_bus_speed_5000; | ||
71 | break; | ||
72 | default: | ||
73 | bus->speed = e1000_bus_speed_unknown; | ||
74 | break; | ||
75 | } | ||
76 | |||
77 | bus->width = (enum e1000_bus_width)((pcie_link_status & | ||
78 | PCI_EXP_LNKSTA_NLW) >> | ||
79 | PCI_EXP_LNKSTA_NLW_SHIFT); | ||
80 | } | ||
81 | |||
82 | reg = rd32(E1000_STATUS); | ||
83 | bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; | ||
84 | |||
85 | return 0; | ||
86 | } | ||
87 | |||
88 | /** | ||
89 | * igb_clear_vfta - Clear VLAN filter table | ||
90 | * @hw: pointer to the HW structure | ||
91 | * | ||
92 | * Clears the register array which contains the VLAN filter table by | ||
93 | * setting all the values to 0. | ||
94 | **/ | ||
95 | void igb_clear_vfta(struct e1000_hw *hw) | ||
96 | { | ||
97 | u32 offset; | ||
98 | |||
99 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
100 | array_wr32(E1000_VFTA, offset, 0); | ||
101 | wrfl(); | ||
102 | } | ||
103 | } | ||
104 | |||
105 | /** | ||
106 | * igb_write_vfta - Write value to VLAN filter table | ||
107 | * @hw: pointer to the HW structure | ||
108 | * @offset: register offset in VLAN filter table | ||
109 | * @value: register value written to VLAN filter table | ||
110 | * | ||
111 | * Writes value at the given offset in the register array which stores | ||
112 | * the VLAN filter table. | ||
113 | **/ | ||
114 | static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | ||
115 | { | ||
116 | array_wr32(E1000_VFTA, offset, value); | ||
117 | wrfl(); | ||
118 | } | ||
119 | |||
120 | /** | ||
121 | * igb_init_rx_addrs - Initialize receive address's | ||
122 | * @hw: pointer to the HW structure | ||
123 | * @rar_count: receive address registers | ||
124 | * | ||
125 | * Setups the receive address registers by setting the base receive address | ||
126 | * register to the devices MAC address and clearing all the other receive | ||
127 | * address registers to 0. | ||
128 | **/ | ||
129 | void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) | ||
130 | { | ||
131 | u32 i; | ||
132 | u8 mac_addr[ETH_ALEN] = {0}; | ||
133 | |||
134 | /* Setup the receive address */ | ||
135 | hw_dbg("Programming MAC Address into RAR[0]\n"); | ||
136 | |||
137 | hw->mac.ops.rar_set(hw, hw->mac.addr, 0); | ||
138 | |||
139 | /* Zero out the other (rar_entry_count - 1) receive addresses */ | ||
140 | hw_dbg("Clearing RAR[1-%u]\n", rar_count-1); | ||
141 | for (i = 1; i < rar_count; i++) | ||
142 | hw->mac.ops.rar_set(hw, mac_addr, i); | ||
143 | } | ||
144 | |||
145 | /** | ||
146 | * igb_vfta_set - enable or disable vlan in VLAN filter table | ||
147 | * @hw: pointer to the HW structure | ||
148 | * @vid: VLAN id to add or remove | ||
149 | * @add: if true add filter, if false remove | ||
150 | * | ||
151 | * Sets or clears a bit in the VLAN filter table array based on VLAN id | ||
152 | * and if we are adding or removing the filter | ||
153 | **/ | ||
154 | s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add) | ||
155 | { | ||
156 | u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; | ||
157 | u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | ||
158 | u32 vfta = array_rd32(E1000_VFTA, index); | ||
159 | s32 ret_val = 0; | ||
160 | |||
161 | /* bit was set/cleared before we started */ | ||
162 | if ((!!(vfta & mask)) == add) { | ||
163 | ret_val = -E1000_ERR_CONFIG; | ||
164 | } else { | ||
165 | if (add) | ||
166 | vfta |= mask; | ||
167 | else | ||
168 | vfta &= ~mask; | ||
169 | } | ||
170 | |||
171 | igb_write_vfta(hw, index, vfta); | ||
172 | |||
173 | return ret_val; | ||
174 | } | ||
175 | |||
176 | /** | ||
177 | * igb_check_alt_mac_addr - Check for alternate MAC addr | ||
178 | * @hw: pointer to the HW structure | ||
179 | * | ||
180 | * Checks the nvm for an alternate MAC address. An alternate MAC address | ||
181 | * can be setup by pre-boot software and must be treated like a permanent | ||
182 | * address and must override the actual permanent MAC address. If an | ||
183 | * alternate MAC address is fopund it is saved in the hw struct and | ||
184 | * prgrammed into RAR0 and the cuntion returns success, otherwise the | ||
185 | * function returns an error. | ||
186 | **/ | ||
187 | s32 igb_check_alt_mac_addr(struct e1000_hw *hw) | ||
188 | { | ||
189 | u32 i; | ||
190 | s32 ret_val = 0; | ||
191 | u16 offset, nvm_alt_mac_addr_offset, nvm_data; | ||
192 | u8 alt_mac_addr[ETH_ALEN]; | ||
193 | |||
194 | ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, | ||
195 | &nvm_alt_mac_addr_offset); | ||
196 | if (ret_val) { | ||
197 | hw_dbg("NVM Read Error\n"); | ||
198 | goto out; | ||
199 | } | ||
200 | |||
201 | if (nvm_alt_mac_addr_offset == 0xFFFF) { | ||
202 | /* There is no Alternate MAC Address */ | ||
203 | goto out; | ||
204 | } | ||
205 | |||
206 | if (hw->bus.func == E1000_FUNC_1) | ||
207 | nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; | ||
208 | for (i = 0; i < ETH_ALEN; i += 2) { | ||
209 | offset = nvm_alt_mac_addr_offset + (i >> 1); | ||
210 | ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); | ||
211 | if (ret_val) { | ||
212 | hw_dbg("NVM Read Error\n"); | ||
213 | goto out; | ||
214 | } | ||
215 | |||
216 | alt_mac_addr[i] = (u8)(nvm_data & 0xFF); | ||
217 | alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); | ||
218 | } | ||
219 | |||
220 | /* if multicast bit is set, the alternate address will not be used */ | ||
221 | if (is_multicast_ether_addr(alt_mac_addr)) { | ||
222 | hw_dbg("Ignoring Alternate Mac Address with MC bit set\n"); | ||
223 | goto out; | ||
224 | } | ||
225 | |||
226 | /* | ||
227 | * We have a valid alternate MAC address, and we want to treat it the | ||
228 | * same as the normal permanent MAC address stored by the HW into the | ||
229 | * RAR. Do this by mapping this address into RAR0. | ||
230 | */ | ||
231 | hw->mac.ops.rar_set(hw, alt_mac_addr, 0); | ||
232 | |||
233 | out: | ||
234 | return ret_val; | ||
235 | } | ||
236 | |||
237 | /** | ||
238 | * igb_rar_set - Set receive address register | ||
239 | * @hw: pointer to the HW structure | ||
240 | * @addr: pointer to the receive address | ||
241 | * @index: receive address array register | ||
242 | * | ||
243 | * Sets the receive address array register at index to the address passed | ||
244 | * in by addr. | ||
245 | **/ | ||
246 | void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | ||
247 | { | ||
248 | u32 rar_low, rar_high; | ||
249 | |||
250 | /* | ||
251 | * HW expects these in little endian so we reverse the byte order | ||
252 | * from network order (big endian) to little endian | ||
253 | */ | ||
254 | rar_low = ((u32) addr[0] | | ||
255 | ((u32) addr[1] << 8) | | ||
256 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | ||
257 | |||
258 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | ||
259 | |||
260 | /* If MAC address zero, no need to set the AV bit */ | ||
261 | if (rar_low || rar_high) | ||
262 | rar_high |= E1000_RAH_AV; | ||
263 | |||
264 | /* | ||
265 | * Some bridges will combine consecutive 32-bit writes into | ||
266 | * a single burst write, which will malfunction on some parts. | ||
267 | * The flushes avoid this. | ||
268 | */ | ||
269 | wr32(E1000_RAL(index), rar_low); | ||
270 | wrfl(); | ||
271 | wr32(E1000_RAH(index), rar_high); | ||
272 | wrfl(); | ||
273 | } | ||
274 | |||
275 | /** | ||
276 | * igb_mta_set - Set multicast filter table address | ||
277 | * @hw: pointer to the HW structure | ||
278 | * @hash_value: determines the MTA register and bit to set | ||
279 | * | ||
280 | * The multicast table address is a register array of 32-bit registers. | ||
281 | * The hash_value is used to determine what register the bit is in, the | ||
282 | * current value is read, the new bit is OR'd in and the new value is | ||
283 | * written back into the register. | ||
284 | **/ | ||
285 | void igb_mta_set(struct e1000_hw *hw, u32 hash_value) | ||
286 | { | ||
287 | u32 hash_bit, hash_reg, mta; | ||
288 | |||
289 | /* | ||
290 | * The MTA is a register array of 32-bit registers. It is | ||
291 | * treated like an array of (32*mta_reg_count) bits. We want to | ||
292 | * set bit BitArray[hash_value]. So we figure out what register | ||
293 | * the bit is in, read it, OR in the new bit, then write | ||
294 | * back the new value. The (hw->mac.mta_reg_count - 1) serves as a | ||
295 | * mask to bits 31:5 of the hash value which gives us the | ||
296 | * register we're modifying. The hash bit within that register | ||
297 | * is determined by the lower 5 bits of the hash value. | ||
298 | */ | ||
299 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | ||
300 | hash_bit = hash_value & 0x1F; | ||
301 | |||
302 | mta = array_rd32(E1000_MTA, hash_reg); | ||
303 | |||
304 | mta |= (1 << hash_bit); | ||
305 | |||
306 | array_wr32(E1000_MTA, hash_reg, mta); | ||
307 | wrfl(); | ||
308 | } | ||
309 | |||
310 | /** | ||
311 | * igb_hash_mc_addr - Generate a multicast hash value | ||
312 | * @hw: pointer to the HW structure | ||
313 | * @mc_addr: pointer to a multicast address | ||
314 | * | ||
315 | * Generates a multicast address hash value which is used to determine | ||
316 | * the multicast filter table array address and new table value. See | ||
317 | * igb_mta_set() | ||
318 | **/ | ||
319 | static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | ||
320 | { | ||
321 | u32 hash_value, hash_mask; | ||
322 | u8 bit_shift = 0; | ||
323 | |||
324 | /* Register count multiplied by bits per register */ | ||
325 | hash_mask = (hw->mac.mta_reg_count * 32) - 1; | ||
326 | |||
327 | /* | ||
328 | * For a mc_filter_type of 0, bit_shift is the number of left-shifts | ||
329 | * where 0xFF would still fall within the hash mask. | ||
330 | */ | ||
331 | while (hash_mask >> bit_shift != 0xFF) | ||
332 | bit_shift++; | ||
333 | |||
334 | /* | ||
335 | * The portion of the address that is used for the hash table | ||
336 | * is determined by the mc_filter_type setting. | ||
337 | * The algorithm is such that there is a total of 8 bits of shifting. | ||
338 | * The bit_shift for a mc_filter_type of 0 represents the number of | ||
339 | * left-shifts where the MSB of mc_addr[5] would still fall within | ||
340 | * the hash_mask. Case 0 does this exactly. Since there are a total | ||
341 | * of 8 bits of shifting, then mc_addr[4] will shift right the | ||
342 | * remaining number of bits. Thus 8 - bit_shift. The rest of the | ||
343 | * cases are a variation of this algorithm...essentially raising the | ||
344 | * number of bits to shift mc_addr[5] left, while still keeping the | ||
345 | * 8-bit shifting total. | ||
346 | * | ||
347 | * For example, given the following Destination MAC Address and an | ||
348 | * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | ||
349 | * we can see that the bit_shift for case 0 is 4. These are the hash | ||
350 | * values resulting from each mc_filter_type... | ||
351 | * [0] [1] [2] [3] [4] [5] | ||
352 | * 01 AA 00 12 34 56 | ||
353 | * LSB MSB | ||
354 | * | ||
355 | * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | ||
356 | * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | ||
357 | * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | ||
358 | * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | ||
359 | */ | ||
360 | switch (hw->mac.mc_filter_type) { | ||
361 | default: | ||
362 | case 0: | ||
363 | break; | ||
364 | case 1: | ||
365 | bit_shift += 1; | ||
366 | break; | ||
367 | case 2: | ||
368 | bit_shift += 2; | ||
369 | break; | ||
370 | case 3: | ||
371 | bit_shift += 4; | ||
372 | break; | ||
373 | } | ||
374 | |||
375 | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | ||
376 | (((u16) mc_addr[5]) << bit_shift))); | ||
377 | |||
378 | return hash_value; | ||
379 | } | ||
380 | |||
381 | /** | ||
382 | * igb_update_mc_addr_list - Update Multicast addresses | ||
383 | * @hw: pointer to the HW structure | ||
384 | * @mc_addr_list: array of multicast addresses to program | ||
385 | * @mc_addr_count: number of multicast addresses to program | ||
386 | * | ||
387 | * Updates entire Multicast Table Array. | ||
388 | * The caller must have a packed mc_addr_list of multicast addresses. | ||
389 | **/ | ||
390 | void igb_update_mc_addr_list(struct e1000_hw *hw, | ||
391 | u8 *mc_addr_list, u32 mc_addr_count) | ||
392 | { | ||
393 | u32 hash_value, hash_bit, hash_reg; | ||
394 | int i; | ||
395 | |||
396 | /* clear mta_shadow */ | ||
397 | memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); | ||
398 | |||
399 | /* update mta_shadow from mc_addr_list */ | ||
400 | for (i = 0; (u32) i < mc_addr_count; i++) { | ||
401 | hash_value = igb_hash_mc_addr(hw, mc_addr_list); | ||
402 | |||
403 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | ||
404 | hash_bit = hash_value & 0x1F; | ||
405 | |||
406 | hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); | ||
407 | mc_addr_list += (ETH_ALEN); | ||
408 | } | ||
409 | |||
410 | /* replace the entire MTA table */ | ||
411 | for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) | ||
412 | array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]); | ||
413 | wrfl(); | ||
414 | } | ||
415 | |||
416 | /** | ||
417 | * igb_clear_hw_cntrs_base - Clear base hardware counters | ||
418 | * @hw: pointer to the HW structure | ||
419 | * | ||
420 | * Clears the base hardware counters by reading the counter registers. | ||
421 | **/ | ||
422 | void igb_clear_hw_cntrs_base(struct e1000_hw *hw) | ||
423 | { | ||
424 | rd32(E1000_CRCERRS); | ||
425 | rd32(E1000_SYMERRS); | ||
426 | rd32(E1000_MPC); | ||
427 | rd32(E1000_SCC); | ||
428 | rd32(E1000_ECOL); | ||
429 | rd32(E1000_MCC); | ||
430 | rd32(E1000_LATECOL); | ||
431 | rd32(E1000_COLC); | ||
432 | rd32(E1000_DC); | ||
433 | rd32(E1000_SEC); | ||
434 | rd32(E1000_RLEC); | ||
435 | rd32(E1000_XONRXC); | ||
436 | rd32(E1000_XONTXC); | ||
437 | rd32(E1000_XOFFRXC); | ||
438 | rd32(E1000_XOFFTXC); | ||
439 | rd32(E1000_FCRUC); | ||
440 | rd32(E1000_GPRC); | ||
441 | rd32(E1000_BPRC); | ||
442 | rd32(E1000_MPRC); | ||
443 | rd32(E1000_GPTC); | ||
444 | rd32(E1000_GORCL); | ||
445 | rd32(E1000_GORCH); | ||
446 | rd32(E1000_GOTCL); | ||
447 | rd32(E1000_GOTCH); | ||
448 | rd32(E1000_RNBC); | ||
449 | rd32(E1000_RUC); | ||
450 | rd32(E1000_RFC); | ||
451 | rd32(E1000_ROC); | ||
452 | rd32(E1000_RJC); | ||
453 | rd32(E1000_TORL); | ||
454 | rd32(E1000_TORH); | ||
455 | rd32(E1000_TOTL); | ||
456 | rd32(E1000_TOTH); | ||
457 | rd32(E1000_TPR); | ||
458 | rd32(E1000_TPT); | ||
459 | rd32(E1000_MPTC); | ||
460 | rd32(E1000_BPTC); | ||
461 | } | ||
462 | |||
463 | /** | ||
464 | * igb_check_for_copper_link - Check for link (Copper) | ||
465 | * @hw: pointer to the HW structure | ||
466 | * | ||
467 | * Checks to see of the link status of the hardware has changed. If a | ||
468 | * change in link status has been detected, then we read the PHY registers | ||
469 | * to get the current speed/duplex if link exists. | ||
470 | **/ | ||
471 | s32 igb_check_for_copper_link(struct e1000_hw *hw) | ||
472 | { | ||
473 | struct e1000_mac_info *mac = &hw->mac; | ||
474 | s32 ret_val; | ||
475 | bool link; | ||
476 | |||
477 | /* | ||
478 | * We only want to go out to the PHY registers to see if Auto-Neg | ||
479 | * has completed and/or if our link status has changed. The | ||
480 | * get_link_status flag is set upon receiving a Link Status | ||
481 | * Change or Rx Sequence Error interrupt. | ||
482 | */ | ||
483 | if (!mac->get_link_status) { | ||
484 | ret_val = 0; | ||
485 | goto out; | ||
486 | } | ||
487 | |||
488 | /* | ||
489 | * First we want to see if the MII Status Register reports | ||
490 | * link. If so, then we want to get the current speed/duplex | ||
491 | * of the PHY. | ||
492 | */ | ||
493 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
494 | if (ret_val) | ||
495 | goto out; | ||
496 | |||
497 | if (!link) | ||
498 | goto out; /* No link detected */ | ||
499 | |||
500 | mac->get_link_status = false; | ||
501 | |||
502 | /* | ||
503 | * Check if there was DownShift, must be checked | ||
504 | * immediately after link-up | ||
505 | */ | ||
506 | igb_check_downshift(hw); | ||
507 | |||
508 | /* | ||
509 | * If we are forcing speed/duplex, then we simply return since | ||
510 | * we have already determined whether we have link or not. | ||
511 | */ | ||
512 | if (!mac->autoneg) { | ||
513 | ret_val = -E1000_ERR_CONFIG; | ||
514 | goto out; | ||
515 | } | ||
516 | |||
517 | /* | ||
518 | * Auto-Neg is enabled. Auto Speed Detection takes care | ||
519 | * of MAC speed/duplex configuration. So we only need to | ||
520 | * configure Collision Distance in the MAC. | ||
521 | */ | ||
522 | igb_config_collision_dist(hw); | ||
523 | |||
524 | /* | ||
525 | * Configure Flow Control now that Auto-Neg has completed. | ||
526 | * First, we need to restore the desired flow control | ||
527 | * settings because we may have had to re-autoneg with a | ||
528 | * different link partner. | ||
529 | */ | ||
530 | ret_val = igb_config_fc_after_link_up(hw); | ||
531 | if (ret_val) | ||
532 | hw_dbg("Error configuring flow control\n"); | ||
533 | |||
534 | out: | ||
535 | return ret_val; | ||
536 | } | ||
537 | |||
538 | /** | ||
539 | * igb_setup_link - Setup flow control and link settings | ||
540 | * @hw: pointer to the HW structure | ||
541 | * | ||
542 | * Determines which flow control settings to use, then configures flow | ||
543 | * control. Calls the appropriate media-specific link configuration | ||
544 | * function. Assuming the adapter has a valid link partner, a valid link | ||
545 | * should be established. Assumes the hardware has previously been reset | ||
546 | * and the transmitter and receiver are not enabled. | ||
547 | **/ | ||
548 | s32 igb_setup_link(struct e1000_hw *hw) | ||
549 | { | ||
550 | s32 ret_val = 0; | ||
551 | |||
552 | /* | ||
553 | * In the case of the phy reset being blocked, we already have a link. | ||
554 | * We do not need to set it up again. | ||
555 | */ | ||
556 | if (igb_check_reset_block(hw)) | ||
557 | goto out; | ||
558 | |||
559 | /* | ||
560 | * If requested flow control is set to default, set flow control | ||
561 | * based on the EEPROM flow control settings. | ||
562 | */ | ||
563 | if (hw->fc.requested_mode == e1000_fc_default) { | ||
564 | ret_val = igb_set_default_fc(hw); | ||
565 | if (ret_val) | ||
566 | goto out; | ||
567 | } | ||
568 | |||
569 | /* | ||
570 | * We want to save off the original Flow Control configuration just | ||
571 | * in case we get disconnected and then reconnected into a different | ||
572 | * hub or switch with different Flow Control capabilities. | ||
573 | */ | ||
574 | hw->fc.current_mode = hw->fc.requested_mode; | ||
575 | |||
576 | hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); | ||
577 | |||
578 | /* Call the necessary media_type subroutine to configure the link. */ | ||
579 | ret_val = hw->mac.ops.setup_physical_interface(hw); | ||
580 | if (ret_val) | ||
581 | goto out; | ||
582 | |||
583 | /* | ||
584 | * Initialize the flow control address, type, and PAUSE timer | ||
585 | * registers to their default values. This is done even if flow | ||
586 | * control is disabled, because it does not hurt anything to | ||
587 | * initialize these registers. | ||
588 | */ | ||
589 | hw_dbg("Initializing the Flow Control address, type and timer regs\n"); | ||
590 | wr32(E1000_FCT, FLOW_CONTROL_TYPE); | ||
591 | wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
592 | wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
593 | |||
594 | wr32(E1000_FCTTV, hw->fc.pause_time); | ||
595 | |||
596 | ret_val = igb_set_fc_watermarks(hw); | ||
597 | |||
598 | out: | ||
599 | return ret_val; | ||
600 | } | ||
601 | |||
602 | /** | ||
603 | * igb_config_collision_dist - Configure collision distance | ||
604 | * @hw: pointer to the HW structure | ||
605 | * | ||
606 | * Configures the collision distance to the default value and is used | ||
607 | * during link setup. Currently no func pointer exists and all | ||
608 | * implementations are handled in the generic version of this function. | ||
609 | **/ | ||
610 | void igb_config_collision_dist(struct e1000_hw *hw) | ||
611 | { | ||
612 | u32 tctl; | ||
613 | |||
614 | tctl = rd32(E1000_TCTL); | ||
615 | |||
616 | tctl &= ~E1000_TCTL_COLD; | ||
617 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | ||
618 | |||
619 | wr32(E1000_TCTL, tctl); | ||
620 | wrfl(); | ||
621 | } | ||
622 | |||
623 | /** | ||
624 | * igb_set_fc_watermarks - Set flow control high/low watermarks | ||
625 | * @hw: pointer to the HW structure | ||
626 | * | ||
627 | * Sets the flow control high/low threshold (watermark) registers. If | ||
628 | * flow control XON frame transmission is enabled, then set XON frame | ||
629 | * tansmission as well. | ||
630 | **/ | ||
631 | static s32 igb_set_fc_watermarks(struct e1000_hw *hw) | ||
632 | { | ||
633 | s32 ret_val = 0; | ||
634 | u32 fcrtl = 0, fcrth = 0; | ||
635 | |||
636 | /* | ||
637 | * Set the flow control receive threshold registers. Normally, | ||
638 | * these registers will be set to a default threshold that may be | ||
639 | * adjusted later by the driver's runtime code. However, if the | ||
640 | * ability to transmit pause frames is not enabled, then these | ||
641 | * registers will be set to 0. | ||
642 | */ | ||
643 | if (hw->fc.current_mode & e1000_fc_tx_pause) { | ||
644 | /* | ||
645 | * We need to set up the Receive Threshold high and low water | ||
646 | * marks as well as (optionally) enabling the transmission of | ||
647 | * XON frames. | ||
648 | */ | ||
649 | fcrtl = hw->fc.low_water; | ||
650 | if (hw->fc.send_xon) | ||
651 | fcrtl |= E1000_FCRTL_XONE; | ||
652 | |||
653 | fcrth = hw->fc.high_water; | ||
654 | } | ||
655 | wr32(E1000_FCRTL, fcrtl); | ||
656 | wr32(E1000_FCRTH, fcrth); | ||
657 | |||
658 | return ret_val; | ||
659 | } | ||
660 | |||
661 | /** | ||
662 | * igb_set_default_fc - Set flow control default values | ||
663 | * @hw: pointer to the HW structure | ||
664 | * | ||
665 | * Read the EEPROM for the default values for flow control and store the | ||
666 | * values. | ||
667 | **/ | ||
668 | static s32 igb_set_default_fc(struct e1000_hw *hw) | ||
669 | { | ||
670 | s32 ret_val = 0; | ||
671 | u16 nvm_data; | ||
672 | |||
673 | /* | ||
674 | * Read and store word 0x0F of the EEPROM. This word contains bits | ||
675 | * that determine the hardware's default PAUSE (flow control) mode, | ||
676 | * a bit that determines whether the HW defaults to enabling or | ||
677 | * disabling auto-negotiation, and the direction of the | ||
678 | * SW defined pins. If there is no SW over-ride of the flow | ||
679 | * control setting, then the variable hw->fc will | ||
680 | * be initialized based on a value in the EEPROM. | ||
681 | */ | ||
682 | ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); | ||
683 | |||
684 | if (ret_val) { | ||
685 | hw_dbg("NVM Read Error\n"); | ||
686 | goto out; | ||
687 | } | ||
688 | |||
689 | if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) | ||
690 | hw->fc.requested_mode = e1000_fc_none; | ||
691 | else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == | ||
692 | NVM_WORD0F_ASM_DIR) | ||
693 | hw->fc.requested_mode = e1000_fc_tx_pause; | ||
694 | else | ||
695 | hw->fc.requested_mode = e1000_fc_full; | ||
696 | |||
697 | out: | ||
698 | return ret_val; | ||
699 | } | ||
700 | |||
701 | /** | ||
702 | * igb_force_mac_fc - Force the MAC's flow control settings | ||
703 | * @hw: pointer to the HW structure | ||
704 | * | ||
705 | * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the | ||
706 | * device control register to reflect the adapter settings. TFCE and RFCE | ||
707 | * need to be explicitly set by software when a copper PHY is used because | ||
708 | * autonegotiation is managed by the PHY rather than the MAC. Software must | ||
709 | * also configure these bits when link is forced on a fiber connection. | ||
710 | **/ | ||
711 | s32 igb_force_mac_fc(struct e1000_hw *hw) | ||
712 | { | ||
713 | u32 ctrl; | ||
714 | s32 ret_val = 0; | ||
715 | |||
716 | ctrl = rd32(E1000_CTRL); | ||
717 | |||
718 | /* | ||
719 | * Because we didn't get link via the internal auto-negotiation | ||
720 | * mechanism (we either forced link or we got link via PHY | ||
721 | * auto-neg), we have to manually enable/disable transmit an | ||
722 | * receive flow control. | ||
723 | * | ||
724 | * The "Case" statement below enables/disable flow control | ||
725 | * according to the "hw->fc.current_mode" parameter. | ||
726 | * | ||
727 | * The possible values of the "fc" parameter are: | ||
728 | * 0: Flow control is completely disabled | ||
729 | * 1: Rx flow control is enabled (we can receive pause | ||
730 | * frames but not send pause frames). | ||
731 | * 2: Tx flow control is enabled (we can send pause frames | ||
732 | * frames but we do not receive pause frames). | ||
733 | * 3: Both Rx and TX flow control (symmetric) is enabled. | ||
734 | * other: No other values should be possible at this point. | ||
735 | */ | ||
736 | hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); | ||
737 | |||
738 | switch (hw->fc.current_mode) { | ||
739 | case e1000_fc_none: | ||
740 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | ||
741 | break; | ||
742 | case e1000_fc_rx_pause: | ||
743 | ctrl &= (~E1000_CTRL_TFCE); | ||
744 | ctrl |= E1000_CTRL_RFCE; | ||
745 | break; | ||
746 | case e1000_fc_tx_pause: | ||
747 | ctrl &= (~E1000_CTRL_RFCE); | ||
748 | ctrl |= E1000_CTRL_TFCE; | ||
749 | break; | ||
750 | case e1000_fc_full: | ||
751 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | ||
752 | break; | ||
753 | default: | ||
754 | hw_dbg("Flow control param set incorrectly\n"); | ||
755 | ret_val = -E1000_ERR_CONFIG; | ||
756 | goto out; | ||
757 | } | ||
758 | |||
759 | wr32(E1000_CTRL, ctrl); | ||
760 | |||
761 | out: | ||
762 | return ret_val; | ||
763 | } | ||
764 | |||
765 | /** | ||
766 | * igb_config_fc_after_link_up - Configures flow control after link | ||
767 | * @hw: pointer to the HW structure | ||
768 | * | ||
769 | * Checks the status of auto-negotiation after link up to ensure that the | ||
770 | * speed and duplex were not forced. If the link needed to be forced, then | ||
771 | * flow control needs to be forced also. If auto-negotiation is enabled | ||
772 | * and did not fail, then we configure flow control based on our link | ||
773 | * partner. | ||
774 | **/ | ||
775 | s32 igb_config_fc_after_link_up(struct e1000_hw *hw) | ||
776 | { | ||
777 | struct e1000_mac_info *mac = &hw->mac; | ||
778 | s32 ret_val = 0; | ||
779 | u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | ||
780 | u16 speed, duplex; | ||
781 | |||
782 | /* | ||
783 | * Check for the case where we have fiber media and auto-neg failed | ||
784 | * so we had to force link. In this case, we need to force the | ||
785 | * configuration of the MAC to match the "fc" parameter. | ||
786 | */ | ||
787 | if (mac->autoneg_failed) { | ||
788 | if (hw->phy.media_type == e1000_media_type_internal_serdes) | ||
789 | ret_val = igb_force_mac_fc(hw); | ||
790 | } else { | ||
791 | if (hw->phy.media_type == e1000_media_type_copper) | ||
792 | ret_val = igb_force_mac_fc(hw); | ||
793 | } | ||
794 | |||
795 | if (ret_val) { | ||
796 | hw_dbg("Error forcing flow control settings\n"); | ||
797 | goto out; | ||
798 | } | ||
799 | |||
800 | /* | ||
801 | * Check for the case where we have copper media and auto-neg is | ||
802 | * enabled. In this case, we need to check and see if Auto-Neg | ||
803 | * has completed, and if so, how the PHY and link partner has | ||
804 | * flow control configured. | ||
805 | */ | ||
806 | if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { | ||
807 | /* | ||
808 | * Read the MII Status Register and check to see if AutoNeg | ||
809 | * has completed. We read this twice because this reg has | ||
810 | * some "sticky" (latched) bits. | ||
811 | */ | ||
812 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, | ||
813 | &mii_status_reg); | ||
814 | if (ret_val) | ||
815 | goto out; | ||
816 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, | ||
817 | &mii_status_reg); | ||
818 | if (ret_val) | ||
819 | goto out; | ||
820 | |||
821 | if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { | ||
822 | hw_dbg("Copper PHY and Auto Neg " | ||
823 | "has not completed.\n"); | ||
824 | goto out; | ||
825 | } | ||
826 | |||
827 | /* | ||
828 | * The AutoNeg process has completed, so we now need to | ||
829 | * read both the Auto Negotiation Advertisement | ||
830 | * Register (Address 4) and the Auto_Negotiation Base | ||
831 | * Page Ability Register (Address 5) to determine how | ||
832 | * flow control was negotiated. | ||
833 | */ | ||
834 | ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, | ||
835 | &mii_nway_adv_reg); | ||
836 | if (ret_val) | ||
837 | goto out; | ||
838 | ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, | ||
839 | &mii_nway_lp_ability_reg); | ||
840 | if (ret_val) | ||
841 | goto out; | ||
842 | |||
843 | /* | ||
844 | * Two bits in the Auto Negotiation Advertisement Register | ||
845 | * (Address 4) and two bits in the Auto Negotiation Base | ||
846 | * Page Ability Register (Address 5) determine flow control | ||
847 | * for both the PHY and the link partner. The following | ||
848 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | ||
849 | * 1999, describes these PAUSE resolution bits and how flow | ||
850 | * control is determined based upon these settings. | ||
851 | * NOTE: DC = Don't Care | ||
852 | * | ||
853 | * LOCAL DEVICE | LINK PARTNER | ||
854 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | ||
855 | *-------|---------|-------|---------|-------------------- | ||
856 | * 0 | 0 | DC | DC | e1000_fc_none | ||
857 | * 0 | 1 | 0 | DC | e1000_fc_none | ||
858 | * 0 | 1 | 1 | 0 | e1000_fc_none | ||
859 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
860 | * 1 | 0 | 0 | DC | e1000_fc_none | ||
861 | * 1 | DC | 1 | DC | e1000_fc_full | ||
862 | * 1 | 1 | 0 | 0 | e1000_fc_none | ||
863 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
864 | * | ||
865 | * Are both PAUSE bits set to 1? If so, this implies | ||
866 | * Symmetric Flow Control is enabled at both ends. The | ||
867 | * ASM_DIR bits are irrelevant per the spec. | ||
868 | * | ||
869 | * For Symmetric Flow Control: | ||
870 | * | ||
871 | * LOCAL DEVICE | LINK PARTNER | ||
872 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
873 | *-------|---------|-------|---------|-------------------- | ||
874 | * 1 | DC | 1 | DC | E1000_fc_full | ||
875 | * | ||
876 | */ | ||
877 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
878 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | ||
879 | /* | ||
880 | * Now we need to check if the user selected RX ONLY | ||
881 | * of pause frames. In this case, we had to advertise | ||
882 | * FULL flow control because we could not advertise RX | ||
883 | * ONLY. Hence, we must now check to see if we need to | ||
884 | * turn OFF the TRANSMISSION of PAUSE frames. | ||
885 | */ | ||
886 | if (hw->fc.requested_mode == e1000_fc_full) { | ||
887 | hw->fc.current_mode = e1000_fc_full; | ||
888 | hw_dbg("Flow Control = FULL.\r\n"); | ||
889 | } else { | ||
890 | hw->fc.current_mode = e1000_fc_rx_pause; | ||
891 | hw_dbg("Flow Control = " | ||
892 | "RX PAUSE frames only.\r\n"); | ||
893 | } | ||
894 | } | ||
895 | /* | ||
896 | * For receiving PAUSE frames ONLY. | ||
897 | * | ||
898 | * LOCAL DEVICE | LINK PARTNER | ||
899 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
900 | *-------|---------|-------|---------|-------------------- | ||
901 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
902 | */ | ||
903 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
904 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
905 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
906 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
907 | hw->fc.current_mode = e1000_fc_tx_pause; | ||
908 | hw_dbg("Flow Control = TX PAUSE frames only.\r\n"); | ||
909 | } | ||
910 | /* | ||
911 | * For transmitting PAUSE frames ONLY. | ||
912 | * | ||
913 | * LOCAL DEVICE | LINK PARTNER | ||
914 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
915 | *-------|---------|-------|---------|-------------------- | ||
916 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
917 | */ | ||
918 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
919 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
920 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
921 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
922 | hw->fc.current_mode = e1000_fc_rx_pause; | ||
923 | hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); | ||
924 | } | ||
925 | /* | ||
926 | * Per the IEEE spec, at this point flow control should be | ||
927 | * disabled. However, we want to consider that we could | ||
928 | * be connected to a legacy switch that doesn't advertise | ||
929 | * desired flow control, but can be forced on the link | ||
930 | * partner. So if we advertised no flow control, that is | ||
931 | * what we will resolve to. If we advertised some kind of | ||
932 | * receive capability (Rx Pause Only or Full Flow Control) | ||
933 | * and the link partner advertised none, we will configure | ||
934 | * ourselves to enable Rx Flow Control only. We can do | ||
935 | * this safely for two reasons: If the link partner really | ||
936 | * didn't want flow control enabled, and we enable Rx, no | ||
937 | * harm done since we won't be receiving any PAUSE frames | ||
938 | * anyway. If the intent on the link partner was to have | ||
939 | * flow control enabled, then by us enabling RX only, we | ||
940 | * can at least receive pause frames and process them. | ||
941 | * This is a good idea because in most cases, since we are | ||
942 | * predominantly a server NIC, more times than not we will | ||
943 | * be asked to delay transmission of packets than asking | ||
944 | * our link partner to pause transmission of frames. | ||
945 | */ | ||
946 | else if ((hw->fc.requested_mode == e1000_fc_none || | ||
947 | hw->fc.requested_mode == e1000_fc_tx_pause) || | ||
948 | hw->fc.strict_ieee) { | ||
949 | hw->fc.current_mode = e1000_fc_none; | ||
950 | hw_dbg("Flow Control = NONE.\r\n"); | ||
951 | } else { | ||
952 | hw->fc.current_mode = e1000_fc_rx_pause; | ||
953 | hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); | ||
954 | } | ||
955 | |||
956 | /* | ||
957 | * Now we need to do one last check... If we auto- | ||
958 | * negotiated to HALF DUPLEX, flow control should not be | ||
959 | * enabled per IEEE 802.3 spec. | ||
960 | */ | ||
961 | ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); | ||
962 | if (ret_val) { | ||
963 | hw_dbg("Error getting link speed and duplex\n"); | ||
964 | goto out; | ||
965 | } | ||
966 | |||
967 | if (duplex == HALF_DUPLEX) | ||
968 | hw->fc.current_mode = e1000_fc_none; | ||
969 | |||
970 | /* | ||
971 | * Now we call a subroutine to actually force the MAC | ||
972 | * controller to use the correct flow control settings. | ||
973 | */ | ||
974 | ret_val = igb_force_mac_fc(hw); | ||
975 | if (ret_val) { | ||
976 | hw_dbg("Error forcing flow control settings\n"); | ||
977 | goto out; | ||
978 | } | ||
979 | } | ||
980 | |||
981 | out: | ||
982 | return ret_val; | ||
983 | } | ||
984 | |||
985 | /** | ||
986 | * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex | ||
987 | * @hw: pointer to the HW structure | ||
988 | * @speed: stores the current speed | ||
989 | * @duplex: stores the current duplex | ||
990 | * | ||
991 | * Read the status register for the current speed/duplex and store the current | ||
992 | * speed and duplex for copper connections. | ||
993 | **/ | ||
994 | s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, | ||
995 | u16 *duplex) | ||
996 | { | ||
997 | u32 status; | ||
998 | |||
999 | status = rd32(E1000_STATUS); | ||
1000 | if (status & E1000_STATUS_SPEED_1000) { | ||
1001 | *speed = SPEED_1000; | ||
1002 | hw_dbg("1000 Mbs, "); | ||
1003 | } else if (status & E1000_STATUS_SPEED_100) { | ||
1004 | *speed = SPEED_100; | ||
1005 | hw_dbg("100 Mbs, "); | ||
1006 | } else { | ||
1007 | *speed = SPEED_10; | ||
1008 | hw_dbg("10 Mbs, "); | ||
1009 | } | ||
1010 | |||
1011 | if (status & E1000_STATUS_FD) { | ||
1012 | *duplex = FULL_DUPLEX; | ||
1013 | hw_dbg("Full Duplex\n"); | ||
1014 | } else { | ||
1015 | *duplex = HALF_DUPLEX; | ||
1016 | hw_dbg("Half Duplex\n"); | ||
1017 | } | ||
1018 | |||
1019 | return 0; | ||
1020 | } | ||
1021 | |||
1022 | /** | ||
1023 | * igb_get_hw_semaphore - Acquire hardware semaphore | ||
1024 | * @hw: pointer to the HW structure | ||
1025 | * | ||
1026 | * Acquire the HW semaphore to access the PHY or NVM | ||
1027 | **/ | ||
1028 | s32 igb_get_hw_semaphore(struct e1000_hw *hw) | ||
1029 | { | ||
1030 | u32 swsm; | ||
1031 | s32 ret_val = 0; | ||
1032 | s32 timeout = hw->nvm.word_size + 1; | ||
1033 | s32 i = 0; | ||
1034 | |||
1035 | /* Get the SW semaphore */ | ||
1036 | while (i < timeout) { | ||
1037 | swsm = rd32(E1000_SWSM); | ||
1038 | if (!(swsm & E1000_SWSM_SMBI)) | ||
1039 | break; | ||
1040 | |||
1041 | udelay(50); | ||
1042 | i++; | ||
1043 | } | ||
1044 | |||
1045 | if (i == timeout) { | ||
1046 | hw_dbg("Driver can't access device - SMBI bit is set.\n"); | ||
1047 | ret_val = -E1000_ERR_NVM; | ||
1048 | goto out; | ||
1049 | } | ||
1050 | |||
1051 | /* Get the FW semaphore. */ | ||
1052 | for (i = 0; i < timeout; i++) { | ||
1053 | swsm = rd32(E1000_SWSM); | ||
1054 | wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); | ||
1055 | |||
1056 | /* Semaphore acquired if bit latched */ | ||
1057 | if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) | ||
1058 | break; | ||
1059 | |||
1060 | udelay(50); | ||
1061 | } | ||
1062 | |||
1063 | if (i == timeout) { | ||
1064 | /* Release semaphores */ | ||
1065 | igb_put_hw_semaphore(hw); | ||
1066 | hw_dbg("Driver can't access the NVM\n"); | ||
1067 | ret_val = -E1000_ERR_NVM; | ||
1068 | goto out; | ||
1069 | } | ||
1070 | |||
1071 | out: | ||
1072 | return ret_val; | ||
1073 | } | ||
1074 | |||
1075 | /** | ||
1076 | * igb_put_hw_semaphore - Release hardware semaphore | ||
1077 | * @hw: pointer to the HW structure | ||
1078 | * | ||
1079 | * Release hardware semaphore used to access the PHY or NVM | ||
1080 | **/ | ||
1081 | void igb_put_hw_semaphore(struct e1000_hw *hw) | ||
1082 | { | ||
1083 | u32 swsm; | ||
1084 | |||
1085 | swsm = rd32(E1000_SWSM); | ||
1086 | |||
1087 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
1088 | |||
1089 | wr32(E1000_SWSM, swsm); | ||
1090 | } | ||
1091 | |||
1092 | /** | ||
1093 | * igb_get_auto_rd_done - Check for auto read completion | ||
1094 | * @hw: pointer to the HW structure | ||
1095 | * | ||
1096 | * Check EEPROM for Auto Read done bit. | ||
1097 | **/ | ||
1098 | s32 igb_get_auto_rd_done(struct e1000_hw *hw) | ||
1099 | { | ||
1100 | s32 i = 0; | ||
1101 | s32 ret_val = 0; | ||
1102 | |||
1103 | |||
1104 | while (i < AUTO_READ_DONE_TIMEOUT) { | ||
1105 | if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) | ||
1106 | break; | ||
1107 | msleep(1); | ||
1108 | i++; | ||
1109 | } | ||
1110 | |||
1111 | if (i == AUTO_READ_DONE_TIMEOUT) { | ||
1112 | hw_dbg("Auto read by HW from NVM has not completed.\n"); | ||
1113 | ret_val = -E1000_ERR_RESET; | ||
1114 | goto out; | ||
1115 | } | ||
1116 | |||
1117 | out: | ||
1118 | return ret_val; | ||
1119 | } | ||
1120 | |||
1121 | /** | ||
1122 | * igb_valid_led_default - Verify a valid default LED config | ||
1123 | * @hw: pointer to the HW structure | ||
1124 | * @data: pointer to the NVM (EEPROM) | ||
1125 | * | ||
1126 | * Read the EEPROM for the current default LED configuration. If the | ||
1127 | * LED configuration is not valid, set to a valid LED configuration. | ||
1128 | **/ | ||
1129 | static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) | ||
1130 | { | ||
1131 | s32 ret_val; | ||
1132 | |||
1133 | ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); | ||
1134 | if (ret_val) { | ||
1135 | hw_dbg("NVM Read Error\n"); | ||
1136 | goto out; | ||
1137 | } | ||
1138 | |||
1139 | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { | ||
1140 | switch(hw->phy.media_type) { | ||
1141 | case e1000_media_type_internal_serdes: | ||
1142 | *data = ID_LED_DEFAULT_82575_SERDES; | ||
1143 | break; | ||
1144 | case e1000_media_type_copper: | ||
1145 | default: | ||
1146 | *data = ID_LED_DEFAULT; | ||
1147 | break; | ||
1148 | } | ||
1149 | } | ||
1150 | out: | ||
1151 | return ret_val; | ||
1152 | } | ||
1153 | |||
1154 | /** | ||
1155 | * igb_id_led_init - | ||
1156 | * @hw: pointer to the HW structure | ||
1157 | * | ||
1158 | **/ | ||
1159 | s32 igb_id_led_init(struct e1000_hw *hw) | ||
1160 | { | ||
1161 | struct e1000_mac_info *mac = &hw->mac; | ||
1162 | s32 ret_val; | ||
1163 | const u32 ledctl_mask = 0x000000FF; | ||
1164 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | ||
1165 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | ||
1166 | u16 data, i, temp; | ||
1167 | const u16 led_mask = 0x0F; | ||
1168 | |||
1169 | ret_val = igb_valid_led_default(hw, &data); | ||
1170 | if (ret_val) | ||
1171 | goto out; | ||
1172 | |||
1173 | mac->ledctl_default = rd32(E1000_LEDCTL); | ||
1174 | mac->ledctl_mode1 = mac->ledctl_default; | ||
1175 | mac->ledctl_mode2 = mac->ledctl_default; | ||
1176 | |||
1177 | for (i = 0; i < 4; i++) { | ||
1178 | temp = (data >> (i << 2)) & led_mask; | ||
1179 | switch (temp) { | ||
1180 | case ID_LED_ON1_DEF2: | ||
1181 | case ID_LED_ON1_ON2: | ||
1182 | case ID_LED_ON1_OFF2: | ||
1183 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1184 | mac->ledctl_mode1 |= ledctl_on << (i << 3); | ||
1185 | break; | ||
1186 | case ID_LED_OFF1_DEF2: | ||
1187 | case ID_LED_OFF1_ON2: | ||
1188 | case ID_LED_OFF1_OFF2: | ||
1189 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1190 | mac->ledctl_mode1 |= ledctl_off << (i << 3); | ||
1191 | break; | ||
1192 | default: | ||
1193 | /* Do nothing */ | ||
1194 | break; | ||
1195 | } | ||
1196 | switch (temp) { | ||
1197 | case ID_LED_DEF1_ON2: | ||
1198 | case ID_LED_ON1_ON2: | ||
1199 | case ID_LED_OFF1_ON2: | ||
1200 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1201 | mac->ledctl_mode2 |= ledctl_on << (i << 3); | ||
1202 | break; | ||
1203 | case ID_LED_DEF1_OFF2: | ||
1204 | case ID_LED_ON1_OFF2: | ||
1205 | case ID_LED_OFF1_OFF2: | ||
1206 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1207 | mac->ledctl_mode2 |= ledctl_off << (i << 3); | ||
1208 | break; | ||
1209 | default: | ||
1210 | /* Do nothing */ | ||
1211 | break; | ||
1212 | } | ||
1213 | } | ||
1214 | |||
1215 | out: | ||
1216 | return ret_val; | ||
1217 | } | ||
1218 | |||
1219 | /** | ||
1220 | * igb_cleanup_led - Set LED config to default operation | ||
1221 | * @hw: pointer to the HW structure | ||
1222 | * | ||
1223 | * Remove the current LED configuration and set the LED configuration | ||
1224 | * to the default value, saved from the EEPROM. | ||
1225 | **/ | ||
1226 | s32 igb_cleanup_led(struct e1000_hw *hw) | ||
1227 | { | ||
1228 | wr32(E1000_LEDCTL, hw->mac.ledctl_default); | ||
1229 | return 0; | ||
1230 | } | ||
1231 | |||
1232 | /** | ||
1233 | * igb_blink_led - Blink LED | ||
1234 | * @hw: pointer to the HW structure | ||
1235 | * | ||
1236 | * Blink the led's which are set to be on. | ||
1237 | **/ | ||
1238 | s32 igb_blink_led(struct e1000_hw *hw) | ||
1239 | { | ||
1240 | u32 ledctl_blink = 0; | ||
1241 | u32 i; | ||
1242 | |||
1243 | /* | ||
1244 | * set the blink bit for each LED that's "on" (0x0E) | ||
1245 | * in ledctl_mode2 | ||
1246 | */ | ||
1247 | ledctl_blink = hw->mac.ledctl_mode2; | ||
1248 | for (i = 0; i < 4; i++) | ||
1249 | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
1250 | E1000_LEDCTL_MODE_LED_ON) | ||
1251 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << | ||
1252 | (i * 8)); | ||
1253 | |||
1254 | wr32(E1000_LEDCTL, ledctl_blink); | ||
1255 | |||
1256 | return 0; | ||
1257 | } | ||
1258 | |||
1259 | /** | ||
1260 | * igb_led_off - Turn LED off | ||
1261 | * @hw: pointer to the HW structure | ||
1262 | * | ||
1263 | * Turn LED off. | ||
1264 | **/ | ||
1265 | s32 igb_led_off(struct e1000_hw *hw) | ||
1266 | { | ||
1267 | switch (hw->phy.media_type) { | ||
1268 | case e1000_media_type_copper: | ||
1269 | wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); | ||
1270 | break; | ||
1271 | default: | ||
1272 | break; | ||
1273 | } | ||
1274 | |||
1275 | return 0; | ||
1276 | } | ||
1277 | |||
1278 | /** | ||
1279 | * igb_disable_pcie_master - Disables PCI-express master access | ||
1280 | * @hw: pointer to the HW structure | ||
1281 | * | ||
1282 | * Returns 0 (0) if successful, else returns -10 | ||
1283 | * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued | ||
1284 | * the master requests to be disabled. | ||
1285 | * | ||
1286 | * Disables PCI-Express master access and verifies there are no pending | ||
1287 | * requests. | ||
1288 | **/ | ||
1289 | s32 igb_disable_pcie_master(struct e1000_hw *hw) | ||
1290 | { | ||
1291 | u32 ctrl; | ||
1292 | s32 timeout = MASTER_DISABLE_TIMEOUT; | ||
1293 | s32 ret_val = 0; | ||
1294 | |||
1295 | if (hw->bus.type != e1000_bus_type_pci_express) | ||
1296 | goto out; | ||
1297 | |||
1298 | ctrl = rd32(E1000_CTRL); | ||
1299 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | ||
1300 | wr32(E1000_CTRL, ctrl); | ||
1301 | |||
1302 | while (timeout) { | ||
1303 | if (!(rd32(E1000_STATUS) & | ||
1304 | E1000_STATUS_GIO_MASTER_ENABLE)) | ||
1305 | break; | ||
1306 | udelay(100); | ||
1307 | timeout--; | ||
1308 | } | ||
1309 | |||
1310 | if (!timeout) { | ||
1311 | hw_dbg("Master requests are pending.\n"); | ||
1312 | ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
1313 | goto out; | ||
1314 | } | ||
1315 | |||
1316 | out: | ||
1317 | return ret_val; | ||
1318 | } | ||
1319 | |||
1320 | /** | ||
1321 | * igb_validate_mdi_setting - Verify MDI/MDIx settings | ||
1322 | * @hw: pointer to the HW structure | ||
1323 | * | ||
1324 | * Verify that when not using auto-negotitation that MDI/MDIx is correctly | ||
1325 | * set, which is forced to MDI mode only. | ||
1326 | **/ | ||
1327 | s32 igb_validate_mdi_setting(struct e1000_hw *hw) | ||
1328 | { | ||
1329 | s32 ret_val = 0; | ||
1330 | |||
1331 | if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { | ||
1332 | hw_dbg("Invalid MDI setting detected\n"); | ||
1333 | hw->phy.mdix = 1; | ||
1334 | ret_val = -E1000_ERR_CONFIG; | ||
1335 | goto out; | ||
1336 | } | ||
1337 | |||
1338 | out: | ||
1339 | return ret_val; | ||
1340 | } | ||
1341 | |||
1342 | /** | ||
1343 | * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register | ||
1344 | * @hw: pointer to the HW structure | ||
1345 | * @reg: 32bit register offset such as E1000_SCTL | ||
1346 | * @offset: register offset to write to | ||
1347 | * @data: data to write at register offset | ||
1348 | * | ||
1349 | * Writes an address/data control type register. There are several of these | ||
1350 | * and they all have the format address << 8 | data and bit 31 is polled for | ||
1351 | * completion. | ||
1352 | **/ | ||
1353 | s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, | ||
1354 | u32 offset, u8 data) | ||
1355 | { | ||
1356 | u32 i, regvalue = 0; | ||
1357 | s32 ret_val = 0; | ||
1358 | |||
1359 | /* Set up the address and data */ | ||
1360 | regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); | ||
1361 | wr32(reg, regvalue); | ||
1362 | |||
1363 | /* Poll the ready bit to see if the MDI read completed */ | ||
1364 | for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { | ||
1365 | udelay(5); | ||
1366 | regvalue = rd32(reg); | ||
1367 | if (regvalue & E1000_GEN_CTL_READY) | ||
1368 | break; | ||
1369 | } | ||
1370 | if (!(regvalue & E1000_GEN_CTL_READY)) { | ||
1371 | hw_dbg("Reg %08x did not indicate ready\n", reg); | ||
1372 | ret_val = -E1000_ERR_PHY; | ||
1373 | goto out; | ||
1374 | } | ||
1375 | |||
1376 | out: | ||
1377 | return ret_val; | ||
1378 | } | ||
1379 | |||
1380 | /** | ||
1381 | * igb_enable_mng_pass_thru - Enable processing of ARP's | ||
1382 | * @hw: pointer to the HW structure | ||
1383 | * | ||
1384 | * Verifies the hardware needs to leave interface enabled so that frames can | ||
1385 | * be directed to and from the management interface. | ||
1386 | **/ | ||
1387 | bool igb_enable_mng_pass_thru(struct e1000_hw *hw) | ||
1388 | { | ||
1389 | u32 manc; | ||
1390 | u32 fwsm, factps; | ||
1391 | bool ret_val = false; | ||
1392 | |||
1393 | if (!hw->mac.asf_firmware_present) | ||
1394 | goto out; | ||
1395 | |||
1396 | manc = rd32(E1000_MANC); | ||
1397 | |||
1398 | if (!(manc & E1000_MANC_RCV_TCO_EN)) | ||
1399 | goto out; | ||
1400 | |||
1401 | if (hw->mac.arc_subsystem_valid) { | ||
1402 | fwsm = rd32(E1000_FWSM); | ||
1403 | factps = rd32(E1000_FACTPS); | ||
1404 | |||
1405 | if (!(factps & E1000_FACTPS_MNGCG) && | ||
1406 | ((fwsm & E1000_FWSM_MODE_MASK) == | ||
1407 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { | ||
1408 | ret_val = true; | ||
1409 | goto out; | ||
1410 | } | ||
1411 | } else { | ||
1412 | if ((manc & E1000_MANC_SMBUS_EN) && | ||
1413 | !(manc & E1000_MANC_ASF_EN)) { | ||
1414 | ret_val = true; | ||
1415 | goto out; | ||
1416 | } | ||
1417 | } | ||
1418 | |||
1419 | out: | ||
1420 | return ret_val; | ||
1421 | } | ||
diff --git a/drivers/net/igb/e1000_mac.h b/drivers/net/igb/e1000_mac.h new file mode 100644 index 00000000000..4927f61fbbc --- /dev/null +++ b/drivers/net/igb/e1000_mac.h | |||
@@ -0,0 +1,90 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_MAC_H_ | ||
29 | #define _E1000_MAC_H_ | ||
30 | |||
31 | #include "e1000_hw.h" | ||
32 | |||
33 | #include "e1000_phy.h" | ||
34 | #include "e1000_nvm.h" | ||
35 | #include "e1000_defines.h" | ||
36 | |||
37 | /* | ||
38 | * Functions that should not be called directly from drivers but can be used | ||
39 | * by other files in this 'shared code' | ||
40 | */ | ||
41 | s32 igb_blink_led(struct e1000_hw *hw); | ||
42 | s32 igb_check_for_copper_link(struct e1000_hw *hw); | ||
43 | s32 igb_cleanup_led(struct e1000_hw *hw); | ||
44 | s32 igb_config_fc_after_link_up(struct e1000_hw *hw); | ||
45 | s32 igb_disable_pcie_master(struct e1000_hw *hw); | ||
46 | s32 igb_force_mac_fc(struct e1000_hw *hw); | ||
47 | s32 igb_get_auto_rd_done(struct e1000_hw *hw); | ||
48 | s32 igb_get_bus_info_pcie(struct e1000_hw *hw); | ||
49 | s32 igb_get_hw_semaphore(struct e1000_hw *hw); | ||
50 | s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, | ||
51 | u16 *duplex); | ||
52 | s32 igb_id_led_init(struct e1000_hw *hw); | ||
53 | s32 igb_led_off(struct e1000_hw *hw); | ||
54 | void igb_update_mc_addr_list(struct e1000_hw *hw, | ||
55 | u8 *mc_addr_list, u32 mc_addr_count); | ||
56 | s32 igb_setup_link(struct e1000_hw *hw); | ||
57 | s32 igb_validate_mdi_setting(struct e1000_hw *hw); | ||
58 | s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, | ||
59 | u32 offset, u8 data); | ||
60 | |||
61 | void igb_clear_hw_cntrs_base(struct e1000_hw *hw); | ||
62 | void igb_clear_vfta(struct e1000_hw *hw); | ||
63 | s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add); | ||
64 | void igb_config_collision_dist(struct e1000_hw *hw); | ||
65 | void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count); | ||
66 | void igb_mta_set(struct e1000_hw *hw, u32 hash_value); | ||
67 | void igb_put_hw_semaphore(struct e1000_hw *hw); | ||
68 | void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); | ||
69 | s32 igb_check_alt_mac_addr(struct e1000_hw *hw); | ||
70 | |||
71 | bool igb_enable_mng_pass_thru(struct e1000_hw *hw); | ||
72 | |||
73 | enum e1000_mng_mode { | ||
74 | e1000_mng_mode_none = 0, | ||
75 | e1000_mng_mode_asf, | ||
76 | e1000_mng_mode_pt, | ||
77 | e1000_mng_mode_ipmi, | ||
78 | e1000_mng_mode_host_if_only | ||
79 | }; | ||
80 | |||
81 | #define E1000_FACTPS_MNGCG 0x20000000 | ||
82 | |||
83 | #define E1000_FWSM_MODE_MASK 0xE | ||
84 | #define E1000_FWSM_MODE_SHIFT 1 | ||
85 | |||
86 | #define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 | ||
87 | |||
88 | extern void e1000_init_function_pointers_82575(struct e1000_hw *hw); | ||
89 | |||
90 | #endif | ||
diff --git a/drivers/net/igb/e1000_mbx.c b/drivers/net/igb/e1000_mbx.c new file mode 100644 index 00000000000..74f2f11ac29 --- /dev/null +++ b/drivers/net/igb/e1000_mbx.c | |||
@@ -0,0 +1,446 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include "e1000_mbx.h" | ||
29 | |||
30 | /** | ||
31 | * igb_read_mbx - Reads a message from the mailbox | ||
32 | * @hw: pointer to the HW structure | ||
33 | * @msg: The message buffer | ||
34 | * @size: Length of buffer | ||
35 | * @mbx_id: id of mailbox to read | ||
36 | * | ||
37 | * returns SUCCESS if it successfuly read message from buffer | ||
38 | **/ | ||
39 | s32 igb_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) | ||
40 | { | ||
41 | struct e1000_mbx_info *mbx = &hw->mbx; | ||
42 | s32 ret_val = -E1000_ERR_MBX; | ||
43 | |||
44 | /* limit read to size of mailbox */ | ||
45 | if (size > mbx->size) | ||
46 | size = mbx->size; | ||
47 | |||
48 | if (mbx->ops.read) | ||
49 | ret_val = mbx->ops.read(hw, msg, size, mbx_id); | ||
50 | |||
51 | return ret_val; | ||
52 | } | ||
53 | |||
54 | /** | ||
55 | * igb_write_mbx - Write a message to the mailbox | ||
56 | * @hw: pointer to the HW structure | ||
57 | * @msg: The message buffer | ||
58 | * @size: Length of buffer | ||
59 | * @mbx_id: id of mailbox to write | ||
60 | * | ||
61 | * returns SUCCESS if it successfully copied message into the buffer | ||
62 | **/ | ||
63 | s32 igb_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) | ||
64 | { | ||
65 | struct e1000_mbx_info *mbx = &hw->mbx; | ||
66 | s32 ret_val = 0; | ||
67 | |||
68 | if (size > mbx->size) | ||
69 | ret_val = -E1000_ERR_MBX; | ||
70 | |||
71 | else if (mbx->ops.write) | ||
72 | ret_val = mbx->ops.write(hw, msg, size, mbx_id); | ||
73 | |||
74 | return ret_val; | ||
75 | } | ||
76 | |||
77 | /** | ||
78 | * igb_check_for_msg - checks to see if someone sent us mail | ||
79 | * @hw: pointer to the HW structure | ||
80 | * @mbx_id: id of mailbox to check | ||
81 | * | ||
82 | * returns SUCCESS if the Status bit was found or else ERR_MBX | ||
83 | **/ | ||
84 | s32 igb_check_for_msg(struct e1000_hw *hw, u16 mbx_id) | ||
85 | { | ||
86 | struct e1000_mbx_info *mbx = &hw->mbx; | ||
87 | s32 ret_val = -E1000_ERR_MBX; | ||
88 | |||
89 | if (mbx->ops.check_for_msg) | ||
90 | ret_val = mbx->ops.check_for_msg(hw, mbx_id); | ||
91 | |||
92 | return ret_val; | ||
93 | } | ||
94 | |||
95 | /** | ||
96 | * igb_check_for_ack - checks to see if someone sent us ACK | ||
97 | * @hw: pointer to the HW structure | ||
98 | * @mbx_id: id of mailbox to check | ||
99 | * | ||
100 | * returns SUCCESS if the Status bit was found or else ERR_MBX | ||
101 | **/ | ||
102 | s32 igb_check_for_ack(struct e1000_hw *hw, u16 mbx_id) | ||
103 | { | ||
104 | struct e1000_mbx_info *mbx = &hw->mbx; | ||
105 | s32 ret_val = -E1000_ERR_MBX; | ||
106 | |||
107 | if (mbx->ops.check_for_ack) | ||
108 | ret_val = mbx->ops.check_for_ack(hw, mbx_id); | ||
109 | |||
110 | return ret_val; | ||
111 | } | ||
112 | |||
113 | /** | ||
114 | * igb_check_for_rst - checks to see if other side has reset | ||
115 | * @hw: pointer to the HW structure | ||
116 | * @mbx_id: id of mailbox to check | ||
117 | * | ||
118 | * returns SUCCESS if the Status bit was found or else ERR_MBX | ||
119 | **/ | ||
120 | s32 igb_check_for_rst(struct e1000_hw *hw, u16 mbx_id) | ||
121 | { | ||
122 | struct e1000_mbx_info *mbx = &hw->mbx; | ||
123 | s32 ret_val = -E1000_ERR_MBX; | ||
124 | |||
125 | if (mbx->ops.check_for_rst) | ||
126 | ret_val = mbx->ops.check_for_rst(hw, mbx_id); | ||
127 | |||
128 | return ret_val; | ||
129 | } | ||
130 | |||
131 | /** | ||
132 | * igb_poll_for_msg - Wait for message notification | ||
133 | * @hw: pointer to the HW structure | ||
134 | * @mbx_id: id of mailbox to write | ||
135 | * | ||
136 | * returns SUCCESS if it successfully received a message notification | ||
137 | **/ | ||
138 | static s32 igb_poll_for_msg(struct e1000_hw *hw, u16 mbx_id) | ||
139 | { | ||
140 | struct e1000_mbx_info *mbx = &hw->mbx; | ||
141 | int countdown = mbx->timeout; | ||
142 | |||
143 | if (!countdown || !mbx->ops.check_for_msg) | ||
144 | goto out; | ||
145 | |||
146 | while (countdown && mbx->ops.check_for_msg(hw, mbx_id)) { | ||
147 | countdown--; | ||
148 | if (!countdown) | ||
149 | break; | ||
150 | udelay(mbx->usec_delay); | ||
151 | } | ||
152 | |||
153 | /* if we failed, all future posted messages fail until reset */ | ||
154 | if (!countdown) | ||
155 | mbx->timeout = 0; | ||
156 | out: | ||
157 | return countdown ? 0 : -E1000_ERR_MBX; | ||
158 | } | ||
159 | |||
160 | /** | ||
161 | * igb_poll_for_ack - Wait for message acknowledgement | ||
162 | * @hw: pointer to the HW structure | ||
163 | * @mbx_id: id of mailbox to write | ||
164 | * | ||
165 | * returns SUCCESS if it successfully received a message acknowledgement | ||
166 | **/ | ||
167 | static s32 igb_poll_for_ack(struct e1000_hw *hw, u16 mbx_id) | ||
168 | { | ||
169 | struct e1000_mbx_info *mbx = &hw->mbx; | ||
170 | int countdown = mbx->timeout; | ||
171 | |||
172 | if (!countdown || !mbx->ops.check_for_ack) | ||
173 | goto out; | ||
174 | |||
175 | while (countdown && mbx->ops.check_for_ack(hw, mbx_id)) { | ||
176 | countdown--; | ||
177 | if (!countdown) | ||
178 | break; | ||
179 | udelay(mbx->usec_delay); | ||
180 | } | ||
181 | |||
182 | /* if we failed, all future posted messages fail until reset */ | ||
183 | if (!countdown) | ||
184 | mbx->timeout = 0; | ||
185 | out: | ||
186 | return countdown ? 0 : -E1000_ERR_MBX; | ||
187 | } | ||
188 | |||
189 | /** | ||
190 | * igb_read_posted_mbx - Wait for message notification and receive message | ||
191 | * @hw: pointer to the HW structure | ||
192 | * @msg: The message buffer | ||
193 | * @size: Length of buffer | ||
194 | * @mbx_id: id of mailbox to write | ||
195 | * | ||
196 | * returns SUCCESS if it successfully received a message notification and | ||
197 | * copied it into the receive buffer. | ||
198 | **/ | ||
199 | static s32 igb_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) | ||
200 | { | ||
201 | struct e1000_mbx_info *mbx = &hw->mbx; | ||
202 | s32 ret_val = -E1000_ERR_MBX; | ||
203 | |||
204 | if (!mbx->ops.read) | ||
205 | goto out; | ||
206 | |||
207 | ret_val = igb_poll_for_msg(hw, mbx_id); | ||
208 | |||
209 | if (!ret_val) | ||
210 | ret_val = mbx->ops.read(hw, msg, size, mbx_id); | ||
211 | out: | ||
212 | return ret_val; | ||
213 | } | ||
214 | |||
215 | /** | ||
216 | * igb_write_posted_mbx - Write a message to the mailbox, wait for ack | ||
217 | * @hw: pointer to the HW structure | ||
218 | * @msg: The message buffer | ||
219 | * @size: Length of buffer | ||
220 | * @mbx_id: id of mailbox to write | ||
221 | * | ||
222 | * returns SUCCESS if it successfully copied message into the buffer and | ||
223 | * received an ack to that message within delay * timeout period | ||
224 | **/ | ||
225 | static s32 igb_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) | ||
226 | { | ||
227 | struct e1000_mbx_info *mbx = &hw->mbx; | ||
228 | s32 ret_val = -E1000_ERR_MBX; | ||
229 | |||
230 | /* exit if either we can't write or there isn't a defined timeout */ | ||
231 | if (!mbx->ops.write || !mbx->timeout) | ||
232 | goto out; | ||
233 | |||
234 | /* send msg */ | ||
235 | ret_val = mbx->ops.write(hw, msg, size, mbx_id); | ||
236 | |||
237 | /* if msg sent wait until we receive an ack */ | ||
238 | if (!ret_val) | ||
239 | ret_val = igb_poll_for_ack(hw, mbx_id); | ||
240 | out: | ||
241 | return ret_val; | ||
242 | } | ||
243 | |||
244 | static s32 igb_check_for_bit_pf(struct e1000_hw *hw, u32 mask) | ||
245 | { | ||
246 | u32 mbvficr = rd32(E1000_MBVFICR); | ||
247 | s32 ret_val = -E1000_ERR_MBX; | ||
248 | |||
249 | if (mbvficr & mask) { | ||
250 | ret_val = 0; | ||
251 | wr32(E1000_MBVFICR, mask); | ||
252 | } | ||
253 | |||
254 | return ret_val; | ||
255 | } | ||
256 | |||
257 | /** | ||
258 | * igb_check_for_msg_pf - checks to see if the VF has sent mail | ||
259 | * @hw: pointer to the HW structure | ||
260 | * @vf_number: the VF index | ||
261 | * | ||
262 | * returns SUCCESS if the VF has set the Status bit or else ERR_MBX | ||
263 | **/ | ||
264 | static s32 igb_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number) | ||
265 | { | ||
266 | s32 ret_val = -E1000_ERR_MBX; | ||
267 | |||
268 | if (!igb_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) { | ||
269 | ret_val = 0; | ||
270 | hw->mbx.stats.reqs++; | ||
271 | } | ||
272 | |||
273 | return ret_val; | ||
274 | } | ||
275 | |||
276 | /** | ||
277 | * igb_check_for_ack_pf - checks to see if the VF has ACKed | ||
278 | * @hw: pointer to the HW structure | ||
279 | * @vf_number: the VF index | ||
280 | * | ||
281 | * returns SUCCESS if the VF has set the Status bit or else ERR_MBX | ||
282 | **/ | ||
283 | static s32 igb_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number) | ||
284 | { | ||
285 | s32 ret_val = -E1000_ERR_MBX; | ||
286 | |||
287 | if (!igb_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) { | ||
288 | ret_val = 0; | ||
289 | hw->mbx.stats.acks++; | ||
290 | } | ||
291 | |||
292 | return ret_val; | ||
293 | } | ||
294 | |||
295 | /** | ||
296 | * igb_check_for_rst_pf - checks to see if the VF has reset | ||
297 | * @hw: pointer to the HW structure | ||
298 | * @vf_number: the VF index | ||
299 | * | ||
300 | * returns SUCCESS if the VF has set the Status bit or else ERR_MBX | ||
301 | **/ | ||
302 | static s32 igb_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number) | ||
303 | { | ||
304 | u32 vflre = rd32(E1000_VFLRE); | ||
305 | s32 ret_val = -E1000_ERR_MBX; | ||
306 | |||
307 | if (vflre & (1 << vf_number)) { | ||
308 | ret_val = 0; | ||
309 | wr32(E1000_VFLRE, (1 << vf_number)); | ||
310 | hw->mbx.stats.rsts++; | ||
311 | } | ||
312 | |||
313 | return ret_val; | ||
314 | } | ||
315 | |||
316 | /** | ||
317 | * igb_obtain_mbx_lock_pf - obtain mailbox lock | ||
318 | * @hw: pointer to the HW structure | ||
319 | * @vf_number: the VF index | ||
320 | * | ||
321 | * return SUCCESS if we obtained the mailbox lock | ||
322 | **/ | ||
323 | static s32 igb_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number) | ||
324 | { | ||
325 | s32 ret_val = -E1000_ERR_MBX; | ||
326 | u32 p2v_mailbox; | ||
327 | |||
328 | |||
329 | /* Take ownership of the buffer */ | ||
330 | wr32(E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_PFU); | ||
331 | |||
332 | /* reserve mailbox for vf use */ | ||
333 | p2v_mailbox = rd32(E1000_P2VMAILBOX(vf_number)); | ||
334 | if (p2v_mailbox & E1000_P2VMAILBOX_PFU) | ||
335 | ret_val = 0; | ||
336 | |||
337 | return ret_val; | ||
338 | } | ||
339 | |||
340 | /** | ||
341 | * igb_write_mbx_pf - Places a message in the mailbox | ||
342 | * @hw: pointer to the HW structure | ||
343 | * @msg: The message buffer | ||
344 | * @size: Length of buffer | ||
345 | * @vf_number: the VF index | ||
346 | * | ||
347 | * returns SUCCESS if it successfully copied message into the buffer | ||
348 | **/ | ||
349 | static s32 igb_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, | ||
350 | u16 vf_number) | ||
351 | { | ||
352 | s32 ret_val; | ||
353 | u16 i; | ||
354 | |||
355 | /* lock the mailbox to prevent pf/vf race condition */ | ||
356 | ret_val = igb_obtain_mbx_lock_pf(hw, vf_number); | ||
357 | if (ret_val) | ||
358 | goto out_no_write; | ||
359 | |||
360 | /* flush msg and acks as we are overwriting the message buffer */ | ||
361 | igb_check_for_msg_pf(hw, vf_number); | ||
362 | igb_check_for_ack_pf(hw, vf_number); | ||
363 | |||
364 | /* copy the caller specified message to the mailbox memory buffer */ | ||
365 | for (i = 0; i < size; i++) | ||
366 | array_wr32(E1000_VMBMEM(vf_number), i, msg[i]); | ||
367 | |||
368 | /* Interrupt VF to tell it a message has been sent and release buffer*/ | ||
369 | wr32(E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS); | ||
370 | |||
371 | /* update stats */ | ||
372 | hw->mbx.stats.msgs_tx++; | ||
373 | |||
374 | out_no_write: | ||
375 | return ret_val; | ||
376 | |||
377 | } | ||
378 | |||
379 | /** | ||
380 | * igb_read_mbx_pf - Read a message from the mailbox | ||
381 | * @hw: pointer to the HW structure | ||
382 | * @msg: The message buffer | ||
383 | * @size: Length of buffer | ||
384 | * @vf_number: the VF index | ||
385 | * | ||
386 | * This function copies a message from the mailbox buffer to the caller's | ||
387 | * memory buffer. The presumption is that the caller knows that there was | ||
388 | * a message due to a VF request so no polling for message is needed. | ||
389 | **/ | ||
390 | static s32 igb_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, | ||
391 | u16 vf_number) | ||
392 | { | ||
393 | s32 ret_val; | ||
394 | u16 i; | ||
395 | |||
396 | /* lock the mailbox to prevent pf/vf race condition */ | ||
397 | ret_val = igb_obtain_mbx_lock_pf(hw, vf_number); | ||
398 | if (ret_val) | ||
399 | goto out_no_read; | ||
400 | |||
401 | /* copy the message to the mailbox memory buffer */ | ||
402 | for (i = 0; i < size; i++) | ||
403 | msg[i] = array_rd32(E1000_VMBMEM(vf_number), i); | ||
404 | |||
405 | /* Acknowledge the message and release buffer */ | ||
406 | wr32(E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK); | ||
407 | |||
408 | /* update stats */ | ||
409 | hw->mbx.stats.msgs_rx++; | ||
410 | |||
411 | out_no_read: | ||
412 | return ret_val; | ||
413 | } | ||
414 | |||
415 | /** | ||
416 | * e1000_init_mbx_params_pf - set initial values for pf mailbox | ||
417 | * @hw: pointer to the HW structure | ||
418 | * | ||
419 | * Initializes the hw->mbx struct to correct values for pf mailbox | ||
420 | */ | ||
421 | s32 igb_init_mbx_params_pf(struct e1000_hw *hw) | ||
422 | { | ||
423 | struct e1000_mbx_info *mbx = &hw->mbx; | ||
424 | |||
425 | mbx->timeout = 0; | ||
426 | mbx->usec_delay = 0; | ||
427 | |||
428 | mbx->size = E1000_VFMAILBOX_SIZE; | ||
429 | |||
430 | mbx->ops.read = igb_read_mbx_pf; | ||
431 | mbx->ops.write = igb_write_mbx_pf; | ||
432 | mbx->ops.read_posted = igb_read_posted_mbx; | ||
433 | mbx->ops.write_posted = igb_write_posted_mbx; | ||
434 | mbx->ops.check_for_msg = igb_check_for_msg_pf; | ||
435 | mbx->ops.check_for_ack = igb_check_for_ack_pf; | ||
436 | mbx->ops.check_for_rst = igb_check_for_rst_pf; | ||
437 | |||
438 | mbx->stats.msgs_tx = 0; | ||
439 | mbx->stats.msgs_rx = 0; | ||
440 | mbx->stats.reqs = 0; | ||
441 | mbx->stats.acks = 0; | ||
442 | mbx->stats.rsts = 0; | ||
443 | |||
444 | return 0; | ||
445 | } | ||
446 | |||
diff --git a/drivers/net/igb/e1000_mbx.h b/drivers/net/igb/e1000_mbx.h new file mode 100644 index 00000000000..eddb0f83dce --- /dev/null +++ b/drivers/net/igb/e1000_mbx.h | |||
@@ -0,0 +1,77 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_MBX_H_ | ||
29 | #define _E1000_MBX_H_ | ||
30 | |||
31 | #include "e1000_hw.h" | ||
32 | |||
33 | #define E1000_P2VMAILBOX_STS 0x00000001 /* Initiate message send to VF */ | ||
34 | #define E1000_P2VMAILBOX_ACK 0x00000002 /* Ack message recv'd from VF */ | ||
35 | #define E1000_P2VMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */ | ||
36 | #define E1000_P2VMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */ | ||
37 | #define E1000_P2VMAILBOX_RVFU 0x00000010 /* Reset VFU - used when VF stuck */ | ||
38 | |||
39 | #define E1000_MBVFICR_VFREQ_MASK 0x000000FF /* bits for VF messages */ | ||
40 | #define E1000_MBVFICR_VFREQ_VF1 0x00000001 /* bit for VF 1 message */ | ||
41 | #define E1000_MBVFICR_VFACK_MASK 0x00FF0000 /* bits for VF acks */ | ||
42 | #define E1000_MBVFICR_VFACK_VF1 0x00010000 /* bit for VF 1 ack */ | ||
43 | |||
44 | #define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */ | ||
45 | |||
46 | /* If it's a E1000_VF_* msg then it originates in the VF and is sent to the | ||
47 | * PF. The reverse is true if it is E1000_PF_*. | ||
48 | * Message ACK's are the value or'd with 0xF0000000 | ||
49 | */ | ||
50 | #define E1000_VT_MSGTYPE_ACK 0x80000000 /* Messages below or'd with | ||
51 | * this are the ACK */ | ||
52 | #define E1000_VT_MSGTYPE_NACK 0x40000000 /* Messages below or'd with | ||
53 | * this are the NACK */ | ||
54 | #define E1000_VT_MSGTYPE_CTS 0x20000000 /* Indicates that VF is still | ||
55 | clear to send requests */ | ||
56 | #define E1000_VT_MSGINFO_SHIFT 16 | ||
57 | /* bits 23:16 are used for exra info for certain messages */ | ||
58 | #define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT) | ||
59 | |||
60 | #define E1000_VF_RESET 0x01 /* VF requests reset */ | ||
61 | #define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests to set MAC addr */ | ||
62 | #define E1000_VF_SET_MULTICAST 0x03 /* VF requests to set MC addr */ | ||
63 | #define E1000_VF_SET_VLAN 0x04 /* VF requests to set VLAN */ | ||
64 | #define E1000_VF_SET_LPE 0x05 /* VF requests to set VMOLR.LPE */ | ||
65 | #define E1000_VF_SET_PROMISC 0x06 /*VF requests to clear VMOLR.ROPE/MPME*/ | ||
66 | #define E1000_VF_SET_PROMISC_MULTICAST (0x02 << E1000_VT_MSGINFO_SHIFT) | ||
67 | |||
68 | #define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */ | ||
69 | |||
70 | s32 igb_read_mbx(struct e1000_hw *, u32 *, u16, u16); | ||
71 | s32 igb_write_mbx(struct e1000_hw *, u32 *, u16, u16); | ||
72 | s32 igb_check_for_msg(struct e1000_hw *, u16); | ||
73 | s32 igb_check_for_ack(struct e1000_hw *, u16); | ||
74 | s32 igb_check_for_rst(struct e1000_hw *, u16); | ||
75 | s32 igb_init_mbx_params_pf(struct e1000_hw *); | ||
76 | |||
77 | #endif /* _E1000_MBX_H_ */ | ||
diff --git a/drivers/net/igb/e1000_nvm.c b/drivers/net/igb/e1000_nvm.c new file mode 100644 index 00000000000..40407124e72 --- /dev/null +++ b/drivers/net/igb/e1000_nvm.c | |||
@@ -0,0 +1,713 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/if_ether.h> | ||
29 | #include <linux/delay.h> | ||
30 | |||
31 | #include "e1000_mac.h" | ||
32 | #include "e1000_nvm.h" | ||
33 | |||
34 | /** | ||
35 | * igb_raise_eec_clk - Raise EEPROM clock | ||
36 | * @hw: pointer to the HW structure | ||
37 | * @eecd: pointer to the EEPROM | ||
38 | * | ||
39 | * Enable/Raise the EEPROM clock bit. | ||
40 | **/ | ||
41 | static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) | ||
42 | { | ||
43 | *eecd = *eecd | E1000_EECD_SK; | ||
44 | wr32(E1000_EECD, *eecd); | ||
45 | wrfl(); | ||
46 | udelay(hw->nvm.delay_usec); | ||
47 | } | ||
48 | |||
49 | /** | ||
50 | * igb_lower_eec_clk - Lower EEPROM clock | ||
51 | * @hw: pointer to the HW structure | ||
52 | * @eecd: pointer to the EEPROM | ||
53 | * | ||
54 | * Clear/Lower the EEPROM clock bit. | ||
55 | **/ | ||
56 | static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) | ||
57 | { | ||
58 | *eecd = *eecd & ~E1000_EECD_SK; | ||
59 | wr32(E1000_EECD, *eecd); | ||
60 | wrfl(); | ||
61 | udelay(hw->nvm.delay_usec); | ||
62 | } | ||
63 | |||
64 | /** | ||
65 | * igb_shift_out_eec_bits - Shift data bits our to the EEPROM | ||
66 | * @hw: pointer to the HW structure | ||
67 | * @data: data to send to the EEPROM | ||
68 | * @count: number of bits to shift out | ||
69 | * | ||
70 | * We need to shift 'count' bits out to the EEPROM. So, the value in the | ||
71 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | ||
72 | * In order to do this, "data" must be broken down into bits. | ||
73 | **/ | ||
74 | static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) | ||
75 | { | ||
76 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
77 | u32 eecd = rd32(E1000_EECD); | ||
78 | u32 mask; | ||
79 | |||
80 | mask = 0x01 << (count - 1); | ||
81 | if (nvm->type == e1000_nvm_eeprom_spi) | ||
82 | eecd |= E1000_EECD_DO; | ||
83 | |||
84 | do { | ||
85 | eecd &= ~E1000_EECD_DI; | ||
86 | |||
87 | if (data & mask) | ||
88 | eecd |= E1000_EECD_DI; | ||
89 | |||
90 | wr32(E1000_EECD, eecd); | ||
91 | wrfl(); | ||
92 | |||
93 | udelay(nvm->delay_usec); | ||
94 | |||
95 | igb_raise_eec_clk(hw, &eecd); | ||
96 | igb_lower_eec_clk(hw, &eecd); | ||
97 | |||
98 | mask >>= 1; | ||
99 | } while (mask); | ||
100 | |||
101 | eecd &= ~E1000_EECD_DI; | ||
102 | wr32(E1000_EECD, eecd); | ||
103 | } | ||
104 | |||
105 | /** | ||
106 | * igb_shift_in_eec_bits - Shift data bits in from the EEPROM | ||
107 | * @hw: pointer to the HW structure | ||
108 | * @count: number of bits to shift in | ||
109 | * | ||
110 | * In order to read a register from the EEPROM, we need to shift 'count' bits | ||
111 | * in from the EEPROM. Bits are "shifted in" by raising the clock input to | ||
112 | * the EEPROM (setting the SK bit), and then reading the value of the data out | ||
113 | * "DO" bit. During this "shifting in" process the data in "DI" bit should | ||
114 | * always be clear. | ||
115 | **/ | ||
116 | static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count) | ||
117 | { | ||
118 | u32 eecd; | ||
119 | u32 i; | ||
120 | u16 data; | ||
121 | |||
122 | eecd = rd32(E1000_EECD); | ||
123 | |||
124 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | ||
125 | data = 0; | ||
126 | |||
127 | for (i = 0; i < count; i++) { | ||
128 | data <<= 1; | ||
129 | igb_raise_eec_clk(hw, &eecd); | ||
130 | |||
131 | eecd = rd32(E1000_EECD); | ||
132 | |||
133 | eecd &= ~E1000_EECD_DI; | ||
134 | if (eecd & E1000_EECD_DO) | ||
135 | data |= 1; | ||
136 | |||
137 | igb_lower_eec_clk(hw, &eecd); | ||
138 | } | ||
139 | |||
140 | return data; | ||
141 | } | ||
142 | |||
143 | /** | ||
144 | * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion | ||
145 | * @hw: pointer to the HW structure | ||
146 | * @ee_reg: EEPROM flag for polling | ||
147 | * | ||
148 | * Polls the EEPROM status bit for either read or write completion based | ||
149 | * upon the value of 'ee_reg'. | ||
150 | **/ | ||
151 | static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) | ||
152 | { | ||
153 | u32 attempts = 100000; | ||
154 | u32 i, reg = 0; | ||
155 | s32 ret_val = -E1000_ERR_NVM; | ||
156 | |||
157 | for (i = 0; i < attempts; i++) { | ||
158 | if (ee_reg == E1000_NVM_POLL_READ) | ||
159 | reg = rd32(E1000_EERD); | ||
160 | else | ||
161 | reg = rd32(E1000_EEWR); | ||
162 | |||
163 | if (reg & E1000_NVM_RW_REG_DONE) { | ||
164 | ret_val = 0; | ||
165 | break; | ||
166 | } | ||
167 | |||
168 | udelay(5); | ||
169 | } | ||
170 | |||
171 | return ret_val; | ||
172 | } | ||
173 | |||
174 | /** | ||
175 | * igb_acquire_nvm - Generic request for access to EEPROM | ||
176 | * @hw: pointer to the HW structure | ||
177 | * | ||
178 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. | ||
179 | * Return successful if access grant bit set, else clear the request for | ||
180 | * EEPROM access and return -E1000_ERR_NVM (-1). | ||
181 | **/ | ||
182 | s32 igb_acquire_nvm(struct e1000_hw *hw) | ||
183 | { | ||
184 | u32 eecd = rd32(E1000_EECD); | ||
185 | s32 timeout = E1000_NVM_GRANT_ATTEMPTS; | ||
186 | s32 ret_val = 0; | ||
187 | |||
188 | |||
189 | wr32(E1000_EECD, eecd | E1000_EECD_REQ); | ||
190 | eecd = rd32(E1000_EECD); | ||
191 | |||
192 | while (timeout) { | ||
193 | if (eecd & E1000_EECD_GNT) | ||
194 | break; | ||
195 | udelay(5); | ||
196 | eecd = rd32(E1000_EECD); | ||
197 | timeout--; | ||
198 | } | ||
199 | |||
200 | if (!timeout) { | ||
201 | eecd &= ~E1000_EECD_REQ; | ||
202 | wr32(E1000_EECD, eecd); | ||
203 | hw_dbg("Could not acquire NVM grant\n"); | ||
204 | ret_val = -E1000_ERR_NVM; | ||
205 | } | ||
206 | |||
207 | return ret_val; | ||
208 | } | ||
209 | |||
210 | /** | ||
211 | * igb_standby_nvm - Return EEPROM to standby state | ||
212 | * @hw: pointer to the HW structure | ||
213 | * | ||
214 | * Return the EEPROM to a standby state. | ||
215 | **/ | ||
216 | static void igb_standby_nvm(struct e1000_hw *hw) | ||
217 | { | ||
218 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
219 | u32 eecd = rd32(E1000_EECD); | ||
220 | |||
221 | if (nvm->type == e1000_nvm_eeprom_spi) { | ||
222 | /* Toggle CS to flush commands */ | ||
223 | eecd |= E1000_EECD_CS; | ||
224 | wr32(E1000_EECD, eecd); | ||
225 | wrfl(); | ||
226 | udelay(nvm->delay_usec); | ||
227 | eecd &= ~E1000_EECD_CS; | ||
228 | wr32(E1000_EECD, eecd); | ||
229 | wrfl(); | ||
230 | udelay(nvm->delay_usec); | ||
231 | } | ||
232 | } | ||
233 | |||
234 | /** | ||
235 | * e1000_stop_nvm - Terminate EEPROM command | ||
236 | * @hw: pointer to the HW structure | ||
237 | * | ||
238 | * Terminates the current command by inverting the EEPROM's chip select pin. | ||
239 | **/ | ||
240 | static void e1000_stop_nvm(struct e1000_hw *hw) | ||
241 | { | ||
242 | u32 eecd; | ||
243 | |||
244 | eecd = rd32(E1000_EECD); | ||
245 | if (hw->nvm.type == e1000_nvm_eeprom_spi) { | ||
246 | /* Pull CS high */ | ||
247 | eecd |= E1000_EECD_CS; | ||
248 | igb_lower_eec_clk(hw, &eecd); | ||
249 | } | ||
250 | } | ||
251 | |||
252 | /** | ||
253 | * igb_release_nvm - Release exclusive access to EEPROM | ||
254 | * @hw: pointer to the HW structure | ||
255 | * | ||
256 | * Stop any current commands to the EEPROM and clear the EEPROM request bit. | ||
257 | **/ | ||
258 | void igb_release_nvm(struct e1000_hw *hw) | ||
259 | { | ||
260 | u32 eecd; | ||
261 | |||
262 | e1000_stop_nvm(hw); | ||
263 | |||
264 | eecd = rd32(E1000_EECD); | ||
265 | eecd &= ~E1000_EECD_REQ; | ||
266 | wr32(E1000_EECD, eecd); | ||
267 | } | ||
268 | |||
269 | /** | ||
270 | * igb_ready_nvm_eeprom - Prepares EEPROM for read/write | ||
271 | * @hw: pointer to the HW structure | ||
272 | * | ||
273 | * Setups the EEPROM for reading and writing. | ||
274 | **/ | ||
275 | static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw) | ||
276 | { | ||
277 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
278 | u32 eecd = rd32(E1000_EECD); | ||
279 | s32 ret_val = 0; | ||
280 | u16 timeout = 0; | ||
281 | u8 spi_stat_reg; | ||
282 | |||
283 | |||
284 | if (nvm->type == e1000_nvm_eeprom_spi) { | ||
285 | /* Clear SK and CS */ | ||
286 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | ||
287 | wr32(E1000_EECD, eecd); | ||
288 | wrfl(); | ||
289 | udelay(1); | ||
290 | timeout = NVM_MAX_RETRY_SPI; | ||
291 | |||
292 | /* | ||
293 | * Read "Status Register" repeatedly until the LSB is cleared. | ||
294 | * The EEPROM will signal that the command has been completed | ||
295 | * by clearing bit 0 of the internal status register. If it's | ||
296 | * not cleared within 'timeout', then error out. | ||
297 | */ | ||
298 | while (timeout) { | ||
299 | igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, | ||
300 | hw->nvm.opcode_bits); | ||
301 | spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8); | ||
302 | if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) | ||
303 | break; | ||
304 | |||
305 | udelay(5); | ||
306 | igb_standby_nvm(hw); | ||
307 | timeout--; | ||
308 | } | ||
309 | |||
310 | if (!timeout) { | ||
311 | hw_dbg("SPI NVM Status error\n"); | ||
312 | ret_val = -E1000_ERR_NVM; | ||
313 | goto out; | ||
314 | } | ||
315 | } | ||
316 | |||
317 | out: | ||
318 | return ret_val; | ||
319 | } | ||
320 | |||
321 | /** | ||
322 | * igb_read_nvm_spi - Read EEPROM's using SPI | ||
323 | * @hw: pointer to the HW structure | ||
324 | * @offset: offset of word in the EEPROM to read | ||
325 | * @words: number of words to read | ||
326 | * @data: word read from the EEPROM | ||
327 | * | ||
328 | * Reads a 16 bit word from the EEPROM. | ||
329 | **/ | ||
330 | s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
331 | { | ||
332 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
333 | u32 i = 0; | ||
334 | s32 ret_val; | ||
335 | u16 word_in; | ||
336 | u8 read_opcode = NVM_READ_OPCODE_SPI; | ||
337 | |||
338 | /* | ||
339 | * A check for invalid values: offset too large, too many words, | ||
340 | * and not enough words. | ||
341 | */ | ||
342 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
343 | (words == 0)) { | ||
344 | hw_dbg("nvm parameter(s) out of bounds\n"); | ||
345 | ret_val = -E1000_ERR_NVM; | ||
346 | goto out; | ||
347 | } | ||
348 | |||
349 | ret_val = nvm->ops.acquire(hw); | ||
350 | if (ret_val) | ||
351 | goto out; | ||
352 | |||
353 | ret_val = igb_ready_nvm_eeprom(hw); | ||
354 | if (ret_val) | ||
355 | goto release; | ||
356 | |||
357 | igb_standby_nvm(hw); | ||
358 | |||
359 | if ((nvm->address_bits == 8) && (offset >= 128)) | ||
360 | read_opcode |= NVM_A8_OPCODE_SPI; | ||
361 | |||
362 | /* Send the READ command (opcode + addr) */ | ||
363 | igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); | ||
364 | igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); | ||
365 | |||
366 | /* | ||
367 | * Read the data. SPI NVMs increment the address with each byte | ||
368 | * read and will roll over if reading beyond the end. This allows | ||
369 | * us to read the whole NVM from any offset | ||
370 | */ | ||
371 | for (i = 0; i < words; i++) { | ||
372 | word_in = igb_shift_in_eec_bits(hw, 16); | ||
373 | data[i] = (word_in >> 8) | (word_in << 8); | ||
374 | } | ||
375 | |||
376 | release: | ||
377 | nvm->ops.release(hw); | ||
378 | |||
379 | out: | ||
380 | return ret_val; | ||
381 | } | ||
382 | |||
383 | /** | ||
384 | * igb_read_nvm_eerd - Reads EEPROM using EERD register | ||
385 | * @hw: pointer to the HW structure | ||
386 | * @offset: offset of word in the EEPROM to read | ||
387 | * @words: number of words to read | ||
388 | * @data: word read from the EEPROM | ||
389 | * | ||
390 | * Reads a 16 bit word from the EEPROM using the EERD register. | ||
391 | **/ | ||
392 | s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
393 | { | ||
394 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
395 | u32 i, eerd = 0; | ||
396 | s32 ret_val = 0; | ||
397 | |||
398 | /* | ||
399 | * A check for invalid values: offset too large, too many words, | ||
400 | * and not enough words. | ||
401 | */ | ||
402 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
403 | (words == 0)) { | ||
404 | hw_dbg("nvm parameter(s) out of bounds\n"); | ||
405 | ret_val = -E1000_ERR_NVM; | ||
406 | goto out; | ||
407 | } | ||
408 | |||
409 | for (i = 0; i < words; i++) { | ||
410 | eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + | ||
411 | E1000_NVM_RW_REG_START; | ||
412 | |||
413 | wr32(E1000_EERD, eerd); | ||
414 | ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); | ||
415 | if (ret_val) | ||
416 | break; | ||
417 | |||
418 | data[i] = (rd32(E1000_EERD) >> | ||
419 | E1000_NVM_RW_REG_DATA); | ||
420 | } | ||
421 | |||
422 | out: | ||
423 | return ret_val; | ||
424 | } | ||
425 | |||
426 | /** | ||
427 | * igb_write_nvm_spi - Write to EEPROM using SPI | ||
428 | * @hw: pointer to the HW structure | ||
429 | * @offset: offset within the EEPROM to be written to | ||
430 | * @words: number of words to write | ||
431 | * @data: 16 bit word(s) to be written to the EEPROM | ||
432 | * | ||
433 | * Writes data to EEPROM at offset using SPI interface. | ||
434 | * | ||
435 | * If e1000_update_nvm_checksum is not called after this function , the | ||
436 | * EEPROM will most likley contain an invalid checksum. | ||
437 | **/ | ||
438 | s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
439 | { | ||
440 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
441 | s32 ret_val; | ||
442 | u16 widx = 0; | ||
443 | |||
444 | /* | ||
445 | * A check for invalid values: offset too large, too many words, | ||
446 | * and not enough words. | ||
447 | */ | ||
448 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
449 | (words == 0)) { | ||
450 | hw_dbg("nvm parameter(s) out of bounds\n"); | ||
451 | ret_val = -E1000_ERR_NVM; | ||
452 | goto out; | ||
453 | } | ||
454 | |||
455 | ret_val = hw->nvm.ops.acquire(hw); | ||
456 | if (ret_val) | ||
457 | goto out; | ||
458 | |||
459 | msleep(10); | ||
460 | |||
461 | while (widx < words) { | ||
462 | u8 write_opcode = NVM_WRITE_OPCODE_SPI; | ||
463 | |||
464 | ret_val = igb_ready_nvm_eeprom(hw); | ||
465 | if (ret_val) | ||
466 | goto release; | ||
467 | |||
468 | igb_standby_nvm(hw); | ||
469 | |||
470 | /* Send the WRITE ENABLE command (8 bit opcode) */ | ||
471 | igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, | ||
472 | nvm->opcode_bits); | ||
473 | |||
474 | igb_standby_nvm(hw); | ||
475 | |||
476 | /* | ||
477 | * Some SPI eeproms use the 8th address bit embedded in the | ||
478 | * opcode | ||
479 | */ | ||
480 | if ((nvm->address_bits == 8) && (offset >= 128)) | ||
481 | write_opcode |= NVM_A8_OPCODE_SPI; | ||
482 | |||
483 | /* Send the Write command (8-bit opcode + addr) */ | ||
484 | igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); | ||
485 | igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), | ||
486 | nvm->address_bits); | ||
487 | |||
488 | /* Loop to allow for up to whole page write of eeprom */ | ||
489 | while (widx < words) { | ||
490 | u16 word_out = data[widx]; | ||
491 | word_out = (word_out >> 8) | (word_out << 8); | ||
492 | igb_shift_out_eec_bits(hw, word_out, 16); | ||
493 | widx++; | ||
494 | |||
495 | if ((((offset + widx) * 2) % nvm->page_size) == 0) { | ||
496 | igb_standby_nvm(hw); | ||
497 | break; | ||
498 | } | ||
499 | } | ||
500 | } | ||
501 | |||
502 | msleep(10); | ||
503 | release: | ||
504 | hw->nvm.ops.release(hw); | ||
505 | |||
506 | out: | ||
507 | return ret_val; | ||
508 | } | ||
509 | |||
510 | /** | ||
511 | * igb_read_part_string - Read device part number | ||
512 | * @hw: pointer to the HW structure | ||
513 | * @part_num: pointer to device part number | ||
514 | * @part_num_size: size of part number buffer | ||
515 | * | ||
516 | * Reads the product board assembly (PBA) number from the EEPROM and stores | ||
517 | * the value in part_num. | ||
518 | **/ | ||
519 | s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size) | ||
520 | { | ||
521 | s32 ret_val; | ||
522 | u16 nvm_data; | ||
523 | u16 pointer; | ||
524 | u16 offset; | ||
525 | u16 length; | ||
526 | |||
527 | if (part_num == NULL) { | ||
528 | hw_dbg("PBA string buffer was null\n"); | ||
529 | ret_val = E1000_ERR_INVALID_ARGUMENT; | ||
530 | goto out; | ||
531 | } | ||
532 | |||
533 | ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); | ||
534 | if (ret_val) { | ||
535 | hw_dbg("NVM Read Error\n"); | ||
536 | goto out; | ||
537 | } | ||
538 | |||
539 | ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer); | ||
540 | if (ret_val) { | ||
541 | hw_dbg("NVM Read Error\n"); | ||
542 | goto out; | ||
543 | } | ||
544 | |||
545 | /* | ||
546 | * if nvm_data is not ptr guard the PBA must be in legacy format which | ||
547 | * means pointer is actually our second data word for the PBA number | ||
548 | * and we can decode it into an ascii string | ||
549 | */ | ||
550 | if (nvm_data != NVM_PBA_PTR_GUARD) { | ||
551 | hw_dbg("NVM PBA number is not stored as string\n"); | ||
552 | |||
553 | /* we will need 11 characters to store the PBA */ | ||
554 | if (part_num_size < 11) { | ||
555 | hw_dbg("PBA string buffer too small\n"); | ||
556 | return E1000_ERR_NO_SPACE; | ||
557 | } | ||
558 | |||
559 | /* extract hex string from data and pointer */ | ||
560 | part_num[0] = (nvm_data >> 12) & 0xF; | ||
561 | part_num[1] = (nvm_data >> 8) & 0xF; | ||
562 | part_num[2] = (nvm_data >> 4) & 0xF; | ||
563 | part_num[3] = nvm_data & 0xF; | ||
564 | part_num[4] = (pointer >> 12) & 0xF; | ||
565 | part_num[5] = (pointer >> 8) & 0xF; | ||
566 | part_num[6] = '-'; | ||
567 | part_num[7] = 0; | ||
568 | part_num[8] = (pointer >> 4) & 0xF; | ||
569 | part_num[9] = pointer & 0xF; | ||
570 | |||
571 | /* put a null character on the end of our string */ | ||
572 | part_num[10] = '\0'; | ||
573 | |||
574 | /* switch all the data but the '-' to hex char */ | ||
575 | for (offset = 0; offset < 10; offset++) { | ||
576 | if (part_num[offset] < 0xA) | ||
577 | part_num[offset] += '0'; | ||
578 | else if (part_num[offset] < 0x10) | ||
579 | part_num[offset] += 'A' - 0xA; | ||
580 | } | ||
581 | |||
582 | goto out; | ||
583 | } | ||
584 | |||
585 | ret_val = hw->nvm.ops.read(hw, pointer, 1, &length); | ||
586 | if (ret_val) { | ||
587 | hw_dbg("NVM Read Error\n"); | ||
588 | goto out; | ||
589 | } | ||
590 | |||
591 | if (length == 0xFFFF || length == 0) { | ||
592 | hw_dbg("NVM PBA number section invalid length\n"); | ||
593 | ret_val = E1000_ERR_NVM_PBA_SECTION; | ||
594 | goto out; | ||
595 | } | ||
596 | /* check if part_num buffer is big enough */ | ||
597 | if (part_num_size < (((u32)length * 2) - 1)) { | ||
598 | hw_dbg("PBA string buffer too small\n"); | ||
599 | ret_val = E1000_ERR_NO_SPACE; | ||
600 | goto out; | ||
601 | } | ||
602 | |||
603 | /* trim pba length from start of string */ | ||
604 | pointer++; | ||
605 | length--; | ||
606 | |||
607 | for (offset = 0; offset < length; offset++) { | ||
608 | ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data); | ||
609 | if (ret_val) { | ||
610 | hw_dbg("NVM Read Error\n"); | ||
611 | goto out; | ||
612 | } | ||
613 | part_num[offset * 2] = (u8)(nvm_data >> 8); | ||
614 | part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); | ||
615 | } | ||
616 | part_num[offset * 2] = '\0'; | ||
617 | |||
618 | out: | ||
619 | return ret_val; | ||
620 | } | ||
621 | |||
622 | /** | ||
623 | * igb_read_mac_addr - Read device MAC address | ||
624 | * @hw: pointer to the HW structure | ||
625 | * | ||
626 | * Reads the device MAC address from the EEPROM and stores the value. | ||
627 | * Since devices with two ports use the same EEPROM, we increment the | ||
628 | * last bit in the MAC address for the second port. | ||
629 | **/ | ||
630 | s32 igb_read_mac_addr(struct e1000_hw *hw) | ||
631 | { | ||
632 | u32 rar_high; | ||
633 | u32 rar_low; | ||
634 | u16 i; | ||
635 | |||
636 | rar_high = rd32(E1000_RAH(0)); | ||
637 | rar_low = rd32(E1000_RAL(0)); | ||
638 | |||
639 | for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) | ||
640 | hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); | ||
641 | |||
642 | for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) | ||
643 | hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); | ||
644 | |||
645 | for (i = 0; i < ETH_ALEN; i++) | ||
646 | hw->mac.addr[i] = hw->mac.perm_addr[i]; | ||
647 | |||
648 | return 0; | ||
649 | } | ||
650 | |||
651 | /** | ||
652 | * igb_validate_nvm_checksum - Validate EEPROM checksum | ||
653 | * @hw: pointer to the HW structure | ||
654 | * | ||
655 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM | ||
656 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. | ||
657 | **/ | ||
658 | s32 igb_validate_nvm_checksum(struct e1000_hw *hw) | ||
659 | { | ||
660 | s32 ret_val = 0; | ||
661 | u16 checksum = 0; | ||
662 | u16 i, nvm_data; | ||
663 | |||
664 | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { | ||
665 | ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); | ||
666 | if (ret_val) { | ||
667 | hw_dbg("NVM Read Error\n"); | ||
668 | goto out; | ||
669 | } | ||
670 | checksum += nvm_data; | ||
671 | } | ||
672 | |||
673 | if (checksum != (u16) NVM_SUM) { | ||
674 | hw_dbg("NVM Checksum Invalid\n"); | ||
675 | ret_val = -E1000_ERR_NVM; | ||
676 | goto out; | ||
677 | } | ||
678 | |||
679 | out: | ||
680 | return ret_val; | ||
681 | } | ||
682 | |||
683 | /** | ||
684 | * igb_update_nvm_checksum - Update EEPROM checksum | ||
685 | * @hw: pointer to the HW structure | ||
686 | * | ||
687 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM | ||
688 | * up to the checksum. Then calculates the EEPROM checksum and writes the | ||
689 | * value to the EEPROM. | ||
690 | **/ | ||
691 | s32 igb_update_nvm_checksum(struct e1000_hw *hw) | ||
692 | { | ||
693 | s32 ret_val; | ||
694 | u16 checksum = 0; | ||
695 | u16 i, nvm_data; | ||
696 | |||
697 | for (i = 0; i < NVM_CHECKSUM_REG; i++) { | ||
698 | ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); | ||
699 | if (ret_val) { | ||
700 | hw_dbg("NVM Read Error while updating checksum.\n"); | ||
701 | goto out; | ||
702 | } | ||
703 | checksum += nvm_data; | ||
704 | } | ||
705 | checksum = (u16) NVM_SUM - checksum; | ||
706 | ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); | ||
707 | if (ret_val) | ||
708 | hw_dbg("NVM Write Error while updating checksum.\n"); | ||
709 | |||
710 | out: | ||
711 | return ret_val; | ||
712 | } | ||
713 | |||
diff --git a/drivers/net/igb/e1000_nvm.h b/drivers/net/igb/e1000_nvm.h new file mode 100644 index 00000000000..a2a7ca9fa73 --- /dev/null +++ b/drivers/net/igb/e1000_nvm.h | |||
@@ -0,0 +1,43 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_NVM_H_ | ||
29 | #define _E1000_NVM_H_ | ||
30 | |||
31 | s32 igb_acquire_nvm(struct e1000_hw *hw); | ||
32 | void igb_release_nvm(struct e1000_hw *hw); | ||
33 | s32 igb_read_mac_addr(struct e1000_hw *hw); | ||
34 | s32 igb_read_part_num(struct e1000_hw *hw, u32 *part_num); | ||
35 | s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, | ||
36 | u32 part_num_size); | ||
37 | s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | ||
38 | s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | ||
39 | s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | ||
40 | s32 igb_validate_nvm_checksum(struct e1000_hw *hw); | ||
41 | s32 igb_update_nvm_checksum(struct e1000_hw *hw); | ||
42 | |||
43 | #endif | ||
diff --git a/drivers/net/igb/e1000_phy.c b/drivers/net/igb/e1000_phy.c new file mode 100644 index 00000000000..e662554c62d --- /dev/null +++ b/drivers/net/igb/e1000_phy.c | |||
@@ -0,0 +1,2341 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/if_ether.h> | ||
29 | #include <linux/delay.h> | ||
30 | |||
31 | #include "e1000_mac.h" | ||
32 | #include "e1000_phy.h" | ||
33 | |||
34 | static s32 igb_phy_setup_autoneg(struct e1000_hw *hw); | ||
35 | static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, | ||
36 | u16 *phy_ctrl); | ||
37 | static s32 igb_wait_autoneg(struct e1000_hw *hw); | ||
38 | |||
39 | /* Cable length tables */ | ||
40 | static const u16 e1000_m88_cable_length_table[] = | ||
41 | { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; | ||
42 | #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ | ||
43 | (sizeof(e1000_m88_cable_length_table) / \ | ||
44 | sizeof(e1000_m88_cable_length_table[0])) | ||
45 | |||
46 | static const u16 e1000_igp_2_cable_length_table[] = | ||
47 | { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, | ||
48 | 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, | ||
49 | 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, | ||
50 | 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, | ||
51 | 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, | ||
52 | 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, | ||
53 | 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, | ||
54 | 104, 109, 114, 118, 121, 124}; | ||
55 | #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ | ||
56 | (sizeof(e1000_igp_2_cable_length_table) / \ | ||
57 | sizeof(e1000_igp_2_cable_length_table[0])) | ||
58 | |||
59 | /** | ||
60 | * igb_check_reset_block - Check if PHY reset is blocked | ||
61 | * @hw: pointer to the HW structure | ||
62 | * | ||
63 | * Read the PHY management control register and check whether a PHY reset | ||
64 | * is blocked. If a reset is not blocked return 0, otherwise | ||
65 | * return E1000_BLK_PHY_RESET (12). | ||
66 | **/ | ||
67 | s32 igb_check_reset_block(struct e1000_hw *hw) | ||
68 | { | ||
69 | u32 manc; | ||
70 | |||
71 | manc = rd32(E1000_MANC); | ||
72 | |||
73 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | ||
74 | E1000_BLK_PHY_RESET : 0; | ||
75 | } | ||
76 | |||
77 | /** | ||
78 | * igb_get_phy_id - Retrieve the PHY ID and revision | ||
79 | * @hw: pointer to the HW structure | ||
80 | * | ||
81 | * Reads the PHY registers and stores the PHY ID and possibly the PHY | ||
82 | * revision in the hardware structure. | ||
83 | **/ | ||
84 | s32 igb_get_phy_id(struct e1000_hw *hw) | ||
85 | { | ||
86 | struct e1000_phy_info *phy = &hw->phy; | ||
87 | s32 ret_val = 0; | ||
88 | u16 phy_id; | ||
89 | |||
90 | ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); | ||
91 | if (ret_val) | ||
92 | goto out; | ||
93 | |||
94 | phy->id = (u32)(phy_id << 16); | ||
95 | udelay(20); | ||
96 | ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); | ||
97 | if (ret_val) | ||
98 | goto out; | ||
99 | |||
100 | phy->id |= (u32)(phy_id & PHY_REVISION_MASK); | ||
101 | phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); | ||
102 | |||
103 | out: | ||
104 | return ret_val; | ||
105 | } | ||
106 | |||
107 | /** | ||
108 | * igb_phy_reset_dsp - Reset PHY DSP | ||
109 | * @hw: pointer to the HW structure | ||
110 | * | ||
111 | * Reset the digital signal processor. | ||
112 | **/ | ||
113 | static s32 igb_phy_reset_dsp(struct e1000_hw *hw) | ||
114 | { | ||
115 | s32 ret_val = 0; | ||
116 | |||
117 | if (!(hw->phy.ops.write_reg)) | ||
118 | goto out; | ||
119 | |||
120 | ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); | ||
121 | if (ret_val) | ||
122 | goto out; | ||
123 | |||
124 | ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); | ||
125 | |||
126 | out: | ||
127 | return ret_val; | ||
128 | } | ||
129 | |||
130 | /** | ||
131 | * igb_read_phy_reg_mdic - Read MDI control register | ||
132 | * @hw: pointer to the HW structure | ||
133 | * @offset: register offset to be read | ||
134 | * @data: pointer to the read data | ||
135 | * | ||
136 | * Reads the MDI control regsiter in the PHY at offset and stores the | ||
137 | * information read to data. | ||
138 | **/ | ||
139 | s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) | ||
140 | { | ||
141 | struct e1000_phy_info *phy = &hw->phy; | ||
142 | u32 i, mdic = 0; | ||
143 | s32 ret_val = 0; | ||
144 | |||
145 | if (offset > MAX_PHY_REG_ADDRESS) { | ||
146 | hw_dbg("PHY Address %d is out of range\n", offset); | ||
147 | ret_val = -E1000_ERR_PARAM; | ||
148 | goto out; | ||
149 | } | ||
150 | |||
151 | /* | ||
152 | * Set up Op-code, Phy Address, and register offset in the MDI | ||
153 | * Control register. The MAC will take care of interfacing with the | ||
154 | * PHY to retrieve the desired data. | ||
155 | */ | ||
156 | mdic = ((offset << E1000_MDIC_REG_SHIFT) | | ||
157 | (phy->addr << E1000_MDIC_PHY_SHIFT) | | ||
158 | (E1000_MDIC_OP_READ)); | ||
159 | |||
160 | wr32(E1000_MDIC, mdic); | ||
161 | |||
162 | /* | ||
163 | * Poll the ready bit to see if the MDI read completed | ||
164 | * Increasing the time out as testing showed failures with | ||
165 | * the lower time out | ||
166 | */ | ||
167 | for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { | ||
168 | udelay(50); | ||
169 | mdic = rd32(E1000_MDIC); | ||
170 | if (mdic & E1000_MDIC_READY) | ||
171 | break; | ||
172 | } | ||
173 | if (!(mdic & E1000_MDIC_READY)) { | ||
174 | hw_dbg("MDI Read did not complete\n"); | ||
175 | ret_val = -E1000_ERR_PHY; | ||
176 | goto out; | ||
177 | } | ||
178 | if (mdic & E1000_MDIC_ERROR) { | ||
179 | hw_dbg("MDI Error\n"); | ||
180 | ret_val = -E1000_ERR_PHY; | ||
181 | goto out; | ||
182 | } | ||
183 | *data = (u16) mdic; | ||
184 | |||
185 | out: | ||
186 | return ret_val; | ||
187 | } | ||
188 | |||
189 | /** | ||
190 | * igb_write_phy_reg_mdic - Write MDI control register | ||
191 | * @hw: pointer to the HW structure | ||
192 | * @offset: register offset to write to | ||
193 | * @data: data to write to register at offset | ||
194 | * | ||
195 | * Writes data to MDI control register in the PHY at offset. | ||
196 | **/ | ||
197 | s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) | ||
198 | { | ||
199 | struct e1000_phy_info *phy = &hw->phy; | ||
200 | u32 i, mdic = 0; | ||
201 | s32 ret_val = 0; | ||
202 | |||
203 | if (offset > MAX_PHY_REG_ADDRESS) { | ||
204 | hw_dbg("PHY Address %d is out of range\n", offset); | ||
205 | ret_val = -E1000_ERR_PARAM; | ||
206 | goto out; | ||
207 | } | ||
208 | |||
209 | /* | ||
210 | * Set up Op-code, Phy Address, and register offset in the MDI | ||
211 | * Control register. The MAC will take care of interfacing with the | ||
212 | * PHY to retrieve the desired data. | ||
213 | */ | ||
214 | mdic = (((u32)data) | | ||
215 | (offset << E1000_MDIC_REG_SHIFT) | | ||
216 | (phy->addr << E1000_MDIC_PHY_SHIFT) | | ||
217 | (E1000_MDIC_OP_WRITE)); | ||
218 | |||
219 | wr32(E1000_MDIC, mdic); | ||
220 | |||
221 | /* | ||
222 | * Poll the ready bit to see if the MDI read completed | ||
223 | * Increasing the time out as testing showed failures with | ||
224 | * the lower time out | ||
225 | */ | ||
226 | for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { | ||
227 | udelay(50); | ||
228 | mdic = rd32(E1000_MDIC); | ||
229 | if (mdic & E1000_MDIC_READY) | ||
230 | break; | ||
231 | } | ||
232 | if (!(mdic & E1000_MDIC_READY)) { | ||
233 | hw_dbg("MDI Write did not complete\n"); | ||
234 | ret_val = -E1000_ERR_PHY; | ||
235 | goto out; | ||
236 | } | ||
237 | if (mdic & E1000_MDIC_ERROR) { | ||
238 | hw_dbg("MDI Error\n"); | ||
239 | ret_val = -E1000_ERR_PHY; | ||
240 | goto out; | ||
241 | } | ||
242 | |||
243 | out: | ||
244 | return ret_val; | ||
245 | } | ||
246 | |||
247 | /** | ||
248 | * igb_read_phy_reg_i2c - Read PHY register using i2c | ||
249 | * @hw: pointer to the HW structure | ||
250 | * @offset: register offset to be read | ||
251 | * @data: pointer to the read data | ||
252 | * | ||
253 | * Reads the PHY register at offset using the i2c interface and stores the | ||
254 | * retrieved information in data. | ||
255 | **/ | ||
256 | s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) | ||
257 | { | ||
258 | struct e1000_phy_info *phy = &hw->phy; | ||
259 | u32 i, i2ccmd = 0; | ||
260 | |||
261 | |||
262 | /* | ||
263 | * Set up Op-code, Phy Address, and register address in the I2CCMD | ||
264 | * register. The MAC will take care of interfacing with the | ||
265 | * PHY to retrieve the desired data. | ||
266 | */ | ||
267 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | | ||
268 | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | | ||
269 | (E1000_I2CCMD_OPCODE_READ)); | ||
270 | |||
271 | wr32(E1000_I2CCMD, i2ccmd); | ||
272 | |||
273 | /* Poll the ready bit to see if the I2C read completed */ | ||
274 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { | ||
275 | udelay(50); | ||
276 | i2ccmd = rd32(E1000_I2CCMD); | ||
277 | if (i2ccmd & E1000_I2CCMD_READY) | ||
278 | break; | ||
279 | } | ||
280 | if (!(i2ccmd & E1000_I2CCMD_READY)) { | ||
281 | hw_dbg("I2CCMD Read did not complete\n"); | ||
282 | return -E1000_ERR_PHY; | ||
283 | } | ||
284 | if (i2ccmd & E1000_I2CCMD_ERROR) { | ||
285 | hw_dbg("I2CCMD Error bit set\n"); | ||
286 | return -E1000_ERR_PHY; | ||
287 | } | ||
288 | |||
289 | /* Need to byte-swap the 16-bit value. */ | ||
290 | *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); | ||
291 | |||
292 | return 0; | ||
293 | } | ||
294 | |||
295 | /** | ||
296 | * igb_write_phy_reg_i2c - Write PHY register using i2c | ||
297 | * @hw: pointer to the HW structure | ||
298 | * @offset: register offset to write to | ||
299 | * @data: data to write at register offset | ||
300 | * | ||
301 | * Writes the data to PHY register at the offset using the i2c interface. | ||
302 | **/ | ||
303 | s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) | ||
304 | { | ||
305 | struct e1000_phy_info *phy = &hw->phy; | ||
306 | u32 i, i2ccmd = 0; | ||
307 | u16 phy_data_swapped; | ||
308 | |||
309 | |||
310 | /* Swap the data bytes for the I2C interface */ | ||
311 | phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); | ||
312 | |||
313 | /* | ||
314 | * Set up Op-code, Phy Address, and register address in the I2CCMD | ||
315 | * register. The MAC will take care of interfacing with the | ||
316 | * PHY to retrieve the desired data. | ||
317 | */ | ||
318 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | | ||
319 | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | | ||
320 | E1000_I2CCMD_OPCODE_WRITE | | ||
321 | phy_data_swapped); | ||
322 | |||
323 | wr32(E1000_I2CCMD, i2ccmd); | ||
324 | |||
325 | /* Poll the ready bit to see if the I2C read completed */ | ||
326 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { | ||
327 | udelay(50); | ||
328 | i2ccmd = rd32(E1000_I2CCMD); | ||
329 | if (i2ccmd & E1000_I2CCMD_READY) | ||
330 | break; | ||
331 | } | ||
332 | if (!(i2ccmd & E1000_I2CCMD_READY)) { | ||
333 | hw_dbg("I2CCMD Write did not complete\n"); | ||
334 | return -E1000_ERR_PHY; | ||
335 | } | ||
336 | if (i2ccmd & E1000_I2CCMD_ERROR) { | ||
337 | hw_dbg("I2CCMD Error bit set\n"); | ||
338 | return -E1000_ERR_PHY; | ||
339 | } | ||
340 | |||
341 | return 0; | ||
342 | } | ||
343 | |||
344 | /** | ||
345 | * igb_read_phy_reg_igp - Read igp PHY register | ||
346 | * @hw: pointer to the HW structure | ||
347 | * @offset: register offset to be read | ||
348 | * @data: pointer to the read data | ||
349 | * | ||
350 | * Acquires semaphore, if necessary, then reads the PHY register at offset | ||
351 | * and storing the retrieved information in data. Release any acquired | ||
352 | * semaphores before exiting. | ||
353 | **/ | ||
354 | s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) | ||
355 | { | ||
356 | s32 ret_val = 0; | ||
357 | |||
358 | if (!(hw->phy.ops.acquire)) | ||
359 | goto out; | ||
360 | |||
361 | ret_val = hw->phy.ops.acquire(hw); | ||
362 | if (ret_val) | ||
363 | goto out; | ||
364 | |||
365 | if (offset > MAX_PHY_MULTI_PAGE_REG) { | ||
366 | ret_val = igb_write_phy_reg_mdic(hw, | ||
367 | IGP01E1000_PHY_PAGE_SELECT, | ||
368 | (u16)offset); | ||
369 | if (ret_val) { | ||
370 | hw->phy.ops.release(hw); | ||
371 | goto out; | ||
372 | } | ||
373 | } | ||
374 | |||
375 | ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, | ||
376 | data); | ||
377 | |||
378 | hw->phy.ops.release(hw); | ||
379 | |||
380 | out: | ||
381 | return ret_val; | ||
382 | } | ||
383 | |||
384 | /** | ||
385 | * igb_write_phy_reg_igp - Write igp PHY register | ||
386 | * @hw: pointer to the HW structure | ||
387 | * @offset: register offset to write to | ||
388 | * @data: data to write at register offset | ||
389 | * | ||
390 | * Acquires semaphore, if necessary, then writes the data to PHY register | ||
391 | * at the offset. Release any acquired semaphores before exiting. | ||
392 | **/ | ||
393 | s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) | ||
394 | { | ||
395 | s32 ret_val = 0; | ||
396 | |||
397 | if (!(hw->phy.ops.acquire)) | ||
398 | goto out; | ||
399 | |||
400 | ret_val = hw->phy.ops.acquire(hw); | ||
401 | if (ret_val) | ||
402 | goto out; | ||
403 | |||
404 | if (offset > MAX_PHY_MULTI_PAGE_REG) { | ||
405 | ret_val = igb_write_phy_reg_mdic(hw, | ||
406 | IGP01E1000_PHY_PAGE_SELECT, | ||
407 | (u16)offset); | ||
408 | if (ret_val) { | ||
409 | hw->phy.ops.release(hw); | ||
410 | goto out; | ||
411 | } | ||
412 | } | ||
413 | |||
414 | ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, | ||
415 | data); | ||
416 | |||
417 | hw->phy.ops.release(hw); | ||
418 | |||
419 | out: | ||
420 | return ret_val; | ||
421 | } | ||
422 | |||
423 | /** | ||
424 | * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link | ||
425 | * @hw: pointer to the HW structure | ||
426 | * | ||
427 | * Sets up Carrier-sense on Transmit and downshift values. | ||
428 | **/ | ||
429 | s32 igb_copper_link_setup_82580(struct e1000_hw *hw) | ||
430 | { | ||
431 | struct e1000_phy_info *phy = &hw->phy; | ||
432 | s32 ret_val; | ||
433 | u16 phy_data; | ||
434 | |||
435 | |||
436 | if (phy->reset_disable) { | ||
437 | ret_val = 0; | ||
438 | goto out; | ||
439 | } | ||
440 | |||
441 | if (phy->type == e1000_phy_82580) { | ||
442 | ret_val = hw->phy.ops.reset(hw); | ||
443 | if (ret_val) { | ||
444 | hw_dbg("Error resetting the PHY.\n"); | ||
445 | goto out; | ||
446 | } | ||
447 | } | ||
448 | |||
449 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
450 | ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data); | ||
451 | if (ret_val) | ||
452 | goto out; | ||
453 | |||
454 | phy_data |= I82580_CFG_ASSERT_CRS_ON_TX; | ||
455 | |||
456 | /* Enable downshift */ | ||
457 | phy_data |= I82580_CFG_ENABLE_DOWNSHIFT; | ||
458 | |||
459 | ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data); | ||
460 | |||
461 | out: | ||
462 | return ret_val; | ||
463 | } | ||
464 | |||
465 | /** | ||
466 | * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link | ||
467 | * @hw: pointer to the HW structure | ||
468 | * | ||
469 | * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock | ||
470 | * and downshift values are set also. | ||
471 | **/ | ||
472 | s32 igb_copper_link_setup_m88(struct e1000_hw *hw) | ||
473 | { | ||
474 | struct e1000_phy_info *phy = &hw->phy; | ||
475 | s32 ret_val; | ||
476 | u16 phy_data; | ||
477 | |||
478 | if (phy->reset_disable) { | ||
479 | ret_val = 0; | ||
480 | goto out; | ||
481 | } | ||
482 | |||
483 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
484 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
485 | if (ret_val) | ||
486 | goto out; | ||
487 | |||
488 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
489 | |||
490 | /* | ||
491 | * Options: | ||
492 | * MDI/MDI-X = 0 (default) | ||
493 | * 0 - Auto for all speeds | ||
494 | * 1 - MDI mode | ||
495 | * 2 - MDI-X mode | ||
496 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
497 | */ | ||
498 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
499 | |||
500 | switch (phy->mdix) { | ||
501 | case 1: | ||
502 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
503 | break; | ||
504 | case 2: | ||
505 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
506 | break; | ||
507 | case 3: | ||
508 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
509 | break; | ||
510 | case 0: | ||
511 | default: | ||
512 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
513 | break; | ||
514 | } | ||
515 | |||
516 | /* | ||
517 | * Options: | ||
518 | * disable_polarity_correction = 0 (default) | ||
519 | * Automatic Correction for Reversed Cable Polarity | ||
520 | * 0 - Disabled | ||
521 | * 1 - Enabled | ||
522 | */ | ||
523 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
524 | if (phy->disable_polarity_correction == 1) | ||
525 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
526 | |||
527 | ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
528 | if (ret_val) | ||
529 | goto out; | ||
530 | |||
531 | if (phy->revision < E1000_REVISION_4) { | ||
532 | /* | ||
533 | * Force TX_CLK in the Extended PHY Specific Control Register | ||
534 | * to 25MHz clock. | ||
535 | */ | ||
536 | ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
537 | &phy_data); | ||
538 | if (ret_val) | ||
539 | goto out; | ||
540 | |||
541 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
542 | |||
543 | if ((phy->revision == E1000_REVISION_2) && | ||
544 | (phy->id == M88E1111_I_PHY_ID)) { | ||
545 | /* 82573L PHY - set the downshift counter to 5x. */ | ||
546 | phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; | ||
547 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | ||
548 | } else { | ||
549 | /* Configure Master and Slave downshift values */ | ||
550 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
551 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | ||
552 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | ||
553 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | ||
554 | } | ||
555 | ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
556 | phy_data); | ||
557 | if (ret_val) | ||
558 | goto out; | ||
559 | } | ||
560 | |||
561 | /* Commit the changes. */ | ||
562 | ret_val = igb_phy_sw_reset(hw); | ||
563 | if (ret_val) { | ||
564 | hw_dbg("Error committing the PHY changes\n"); | ||
565 | goto out; | ||
566 | } | ||
567 | |||
568 | out: | ||
569 | return ret_val; | ||
570 | } | ||
571 | |||
572 | /** | ||
573 | * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link | ||
574 | * @hw: pointer to the HW structure | ||
575 | * | ||
576 | * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. | ||
577 | * Also enables and sets the downshift parameters. | ||
578 | **/ | ||
579 | s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw) | ||
580 | { | ||
581 | struct e1000_phy_info *phy = &hw->phy; | ||
582 | s32 ret_val; | ||
583 | u16 phy_data; | ||
584 | |||
585 | if (phy->reset_disable) { | ||
586 | ret_val = 0; | ||
587 | goto out; | ||
588 | } | ||
589 | |||
590 | /* Enable CRS on Tx. This must be set for half-duplex operation. */ | ||
591 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
592 | if (ret_val) | ||
593 | goto out; | ||
594 | |||
595 | /* | ||
596 | * Options: | ||
597 | * MDI/MDI-X = 0 (default) | ||
598 | * 0 - Auto for all speeds | ||
599 | * 1 - MDI mode | ||
600 | * 2 - MDI-X mode | ||
601 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
602 | */ | ||
603 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
604 | |||
605 | switch (phy->mdix) { | ||
606 | case 1: | ||
607 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
608 | break; | ||
609 | case 2: | ||
610 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
611 | break; | ||
612 | case 3: | ||
613 | /* M88E1112 does not support this mode) */ | ||
614 | if (phy->id != M88E1112_E_PHY_ID) { | ||
615 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
616 | break; | ||
617 | } | ||
618 | case 0: | ||
619 | default: | ||
620 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
621 | break; | ||
622 | } | ||
623 | |||
624 | /* | ||
625 | * Options: | ||
626 | * disable_polarity_correction = 0 (default) | ||
627 | * Automatic Correction for Reversed Cable Polarity | ||
628 | * 0 - Disabled | ||
629 | * 1 - Enabled | ||
630 | */ | ||
631 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
632 | if (phy->disable_polarity_correction == 1) | ||
633 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
634 | |||
635 | /* Enable downshift and setting it to X6 */ | ||
636 | phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; | ||
637 | phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; | ||
638 | phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; | ||
639 | |||
640 | ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
641 | if (ret_val) | ||
642 | goto out; | ||
643 | |||
644 | /* Commit the changes. */ | ||
645 | ret_val = igb_phy_sw_reset(hw); | ||
646 | if (ret_val) { | ||
647 | hw_dbg("Error committing the PHY changes\n"); | ||
648 | goto out; | ||
649 | } | ||
650 | |||
651 | out: | ||
652 | return ret_val; | ||
653 | } | ||
654 | |||
655 | /** | ||
656 | * igb_copper_link_setup_igp - Setup igp PHY's for copper link | ||
657 | * @hw: pointer to the HW structure | ||
658 | * | ||
659 | * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for | ||
660 | * igp PHY's. | ||
661 | **/ | ||
662 | s32 igb_copper_link_setup_igp(struct e1000_hw *hw) | ||
663 | { | ||
664 | struct e1000_phy_info *phy = &hw->phy; | ||
665 | s32 ret_val; | ||
666 | u16 data; | ||
667 | |||
668 | if (phy->reset_disable) { | ||
669 | ret_val = 0; | ||
670 | goto out; | ||
671 | } | ||
672 | |||
673 | ret_val = phy->ops.reset(hw); | ||
674 | if (ret_val) { | ||
675 | hw_dbg("Error resetting the PHY.\n"); | ||
676 | goto out; | ||
677 | } | ||
678 | |||
679 | /* | ||
680 | * Wait 100ms for MAC to configure PHY from NVM settings, to avoid | ||
681 | * timeout issues when LFS is enabled. | ||
682 | */ | ||
683 | msleep(100); | ||
684 | |||
685 | /* | ||
686 | * The NVM settings will configure LPLU in D3 for | ||
687 | * non-IGP1 PHYs. | ||
688 | */ | ||
689 | if (phy->type == e1000_phy_igp) { | ||
690 | /* disable lplu d3 during driver init */ | ||
691 | if (phy->ops.set_d3_lplu_state) | ||
692 | ret_val = phy->ops.set_d3_lplu_state(hw, false); | ||
693 | if (ret_val) { | ||
694 | hw_dbg("Error Disabling LPLU D3\n"); | ||
695 | goto out; | ||
696 | } | ||
697 | } | ||
698 | |||
699 | /* disable lplu d0 during driver init */ | ||
700 | ret_val = phy->ops.set_d0_lplu_state(hw, false); | ||
701 | if (ret_val) { | ||
702 | hw_dbg("Error Disabling LPLU D0\n"); | ||
703 | goto out; | ||
704 | } | ||
705 | /* Configure mdi-mdix settings */ | ||
706 | ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); | ||
707 | if (ret_val) | ||
708 | goto out; | ||
709 | |||
710 | data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
711 | |||
712 | switch (phy->mdix) { | ||
713 | case 1: | ||
714 | data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
715 | break; | ||
716 | case 2: | ||
717 | data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
718 | break; | ||
719 | case 0: | ||
720 | default: | ||
721 | data |= IGP01E1000_PSCR_AUTO_MDIX; | ||
722 | break; | ||
723 | } | ||
724 | ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); | ||
725 | if (ret_val) | ||
726 | goto out; | ||
727 | |||
728 | /* set auto-master slave resolution settings */ | ||
729 | if (hw->mac.autoneg) { | ||
730 | /* | ||
731 | * when autonegotiation advertisement is only 1000Mbps then we | ||
732 | * should disable SmartSpeed and enable Auto MasterSlave | ||
733 | * resolution as hardware default. | ||
734 | */ | ||
735 | if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { | ||
736 | /* Disable SmartSpeed */ | ||
737 | ret_val = phy->ops.read_reg(hw, | ||
738 | IGP01E1000_PHY_PORT_CONFIG, | ||
739 | &data); | ||
740 | if (ret_val) | ||
741 | goto out; | ||
742 | |||
743 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
744 | ret_val = phy->ops.write_reg(hw, | ||
745 | IGP01E1000_PHY_PORT_CONFIG, | ||
746 | data); | ||
747 | if (ret_val) | ||
748 | goto out; | ||
749 | |||
750 | /* Set auto Master/Slave resolution process */ | ||
751 | ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); | ||
752 | if (ret_val) | ||
753 | goto out; | ||
754 | |||
755 | data &= ~CR_1000T_MS_ENABLE; | ||
756 | ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); | ||
757 | if (ret_val) | ||
758 | goto out; | ||
759 | } | ||
760 | |||
761 | ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); | ||
762 | if (ret_val) | ||
763 | goto out; | ||
764 | |||
765 | /* load defaults for future use */ | ||
766 | phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? | ||
767 | ((data & CR_1000T_MS_VALUE) ? | ||
768 | e1000_ms_force_master : | ||
769 | e1000_ms_force_slave) : | ||
770 | e1000_ms_auto; | ||
771 | |||
772 | switch (phy->ms_type) { | ||
773 | case e1000_ms_force_master: | ||
774 | data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | ||
775 | break; | ||
776 | case e1000_ms_force_slave: | ||
777 | data |= CR_1000T_MS_ENABLE; | ||
778 | data &= ~(CR_1000T_MS_VALUE); | ||
779 | break; | ||
780 | case e1000_ms_auto: | ||
781 | data &= ~CR_1000T_MS_ENABLE; | ||
782 | default: | ||
783 | break; | ||
784 | } | ||
785 | ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); | ||
786 | if (ret_val) | ||
787 | goto out; | ||
788 | } | ||
789 | |||
790 | out: | ||
791 | return ret_val; | ||
792 | } | ||
793 | |||
794 | /** | ||
795 | * igb_copper_link_autoneg - Setup/Enable autoneg for copper link | ||
796 | * @hw: pointer to the HW structure | ||
797 | * | ||
798 | * Performs initial bounds checking on autoneg advertisement parameter, then | ||
799 | * configure to advertise the full capability. Setup the PHY to autoneg | ||
800 | * and restart the negotiation process between the link partner. If | ||
801 | * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. | ||
802 | **/ | ||
803 | static s32 igb_copper_link_autoneg(struct e1000_hw *hw) | ||
804 | { | ||
805 | struct e1000_phy_info *phy = &hw->phy; | ||
806 | s32 ret_val; | ||
807 | u16 phy_ctrl; | ||
808 | |||
809 | /* | ||
810 | * Perform some bounds checking on the autoneg advertisement | ||
811 | * parameter. | ||
812 | */ | ||
813 | phy->autoneg_advertised &= phy->autoneg_mask; | ||
814 | |||
815 | /* | ||
816 | * If autoneg_advertised is zero, we assume it was not defaulted | ||
817 | * by the calling code so we set to advertise full capability. | ||
818 | */ | ||
819 | if (phy->autoneg_advertised == 0) | ||
820 | phy->autoneg_advertised = phy->autoneg_mask; | ||
821 | |||
822 | hw_dbg("Reconfiguring auto-neg advertisement params\n"); | ||
823 | ret_val = igb_phy_setup_autoneg(hw); | ||
824 | if (ret_val) { | ||
825 | hw_dbg("Error Setting up Auto-Negotiation\n"); | ||
826 | goto out; | ||
827 | } | ||
828 | hw_dbg("Restarting Auto-Neg\n"); | ||
829 | |||
830 | /* | ||
831 | * Restart auto-negotiation by setting the Auto Neg Enable bit and | ||
832 | * the Auto Neg Restart bit in the PHY control register. | ||
833 | */ | ||
834 | ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); | ||
835 | if (ret_val) | ||
836 | goto out; | ||
837 | |||
838 | phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | ||
839 | ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); | ||
840 | if (ret_val) | ||
841 | goto out; | ||
842 | |||
843 | /* | ||
844 | * Does the user want to wait for Auto-Neg to complete here, or | ||
845 | * check at a later time (for example, callback routine). | ||
846 | */ | ||
847 | if (phy->autoneg_wait_to_complete) { | ||
848 | ret_val = igb_wait_autoneg(hw); | ||
849 | if (ret_val) { | ||
850 | hw_dbg("Error while waiting for " | ||
851 | "autoneg to complete\n"); | ||
852 | goto out; | ||
853 | } | ||
854 | } | ||
855 | |||
856 | hw->mac.get_link_status = true; | ||
857 | |||
858 | out: | ||
859 | return ret_val; | ||
860 | } | ||
861 | |||
862 | /** | ||
863 | * igb_phy_setup_autoneg - Configure PHY for auto-negotiation | ||
864 | * @hw: pointer to the HW structure | ||
865 | * | ||
866 | * Reads the MII auto-neg advertisement register and/or the 1000T control | ||
867 | * register and if the PHY is already setup for auto-negotiation, then | ||
868 | * return successful. Otherwise, setup advertisement and flow control to | ||
869 | * the appropriate values for the wanted auto-negotiation. | ||
870 | **/ | ||
871 | static s32 igb_phy_setup_autoneg(struct e1000_hw *hw) | ||
872 | { | ||
873 | struct e1000_phy_info *phy = &hw->phy; | ||
874 | s32 ret_val; | ||
875 | u16 mii_autoneg_adv_reg; | ||
876 | u16 mii_1000t_ctrl_reg = 0; | ||
877 | |||
878 | phy->autoneg_advertised &= phy->autoneg_mask; | ||
879 | |||
880 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | ||
881 | ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | ||
882 | if (ret_val) | ||
883 | goto out; | ||
884 | |||
885 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { | ||
886 | /* Read the MII 1000Base-T Control Register (Address 9). */ | ||
887 | ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, | ||
888 | &mii_1000t_ctrl_reg); | ||
889 | if (ret_val) | ||
890 | goto out; | ||
891 | } | ||
892 | |||
893 | /* | ||
894 | * Need to parse both autoneg_advertised and fc and set up | ||
895 | * the appropriate PHY registers. First we will parse for | ||
896 | * autoneg_advertised software override. Since we can advertise | ||
897 | * a plethora of combinations, we need to check each bit | ||
898 | * individually. | ||
899 | */ | ||
900 | |||
901 | /* | ||
902 | * First we clear all the 10/100 mb speed bits in the Auto-Neg | ||
903 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | ||
904 | * the 1000Base-T Control Register (Address 9). | ||
905 | */ | ||
906 | mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | | ||
907 | NWAY_AR_100TX_HD_CAPS | | ||
908 | NWAY_AR_10T_FD_CAPS | | ||
909 | NWAY_AR_10T_HD_CAPS); | ||
910 | mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); | ||
911 | |||
912 | hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); | ||
913 | |||
914 | /* Do we want to advertise 10 Mb Half Duplex? */ | ||
915 | if (phy->autoneg_advertised & ADVERTISE_10_HALF) { | ||
916 | hw_dbg("Advertise 10mb Half duplex\n"); | ||
917 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | ||
918 | } | ||
919 | |||
920 | /* Do we want to advertise 10 Mb Full Duplex? */ | ||
921 | if (phy->autoneg_advertised & ADVERTISE_10_FULL) { | ||
922 | hw_dbg("Advertise 10mb Full duplex\n"); | ||
923 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | ||
924 | } | ||
925 | |||
926 | /* Do we want to advertise 100 Mb Half Duplex? */ | ||
927 | if (phy->autoneg_advertised & ADVERTISE_100_HALF) { | ||
928 | hw_dbg("Advertise 100mb Half duplex\n"); | ||
929 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | ||
930 | } | ||
931 | |||
932 | /* Do we want to advertise 100 Mb Full Duplex? */ | ||
933 | if (phy->autoneg_advertised & ADVERTISE_100_FULL) { | ||
934 | hw_dbg("Advertise 100mb Full duplex\n"); | ||
935 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | ||
936 | } | ||
937 | |||
938 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | ||
939 | if (phy->autoneg_advertised & ADVERTISE_1000_HALF) | ||
940 | hw_dbg("Advertise 1000mb Half duplex request denied!\n"); | ||
941 | |||
942 | /* Do we want to advertise 1000 Mb Full Duplex? */ | ||
943 | if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { | ||
944 | hw_dbg("Advertise 1000mb Full duplex\n"); | ||
945 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | ||
946 | } | ||
947 | |||
948 | /* | ||
949 | * Check for a software override of the flow control settings, and | ||
950 | * setup the PHY advertisement registers accordingly. If | ||
951 | * auto-negotiation is enabled, then software will have to set the | ||
952 | * "PAUSE" bits to the correct value in the Auto-Negotiation | ||
953 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- | ||
954 | * negotiation. | ||
955 | * | ||
956 | * The possible values of the "fc" parameter are: | ||
957 | * 0: Flow control is completely disabled | ||
958 | * 1: Rx flow control is enabled (we can receive pause frames | ||
959 | * but not send pause frames). | ||
960 | * 2: Tx flow control is enabled (we can send pause frames | ||
961 | * but we do not support receiving pause frames). | ||
962 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
963 | * other: No software override. The flow control configuration | ||
964 | * in the EEPROM is used. | ||
965 | */ | ||
966 | switch (hw->fc.current_mode) { | ||
967 | case e1000_fc_none: | ||
968 | /* | ||
969 | * Flow control (RX & TX) is completely disabled by a | ||
970 | * software over-ride. | ||
971 | */ | ||
972 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
973 | break; | ||
974 | case e1000_fc_rx_pause: | ||
975 | /* | ||
976 | * RX Flow control is enabled, and TX Flow control is | ||
977 | * disabled, by a software over-ride. | ||
978 | * | ||
979 | * Since there really isn't a way to advertise that we are | ||
980 | * capable of RX Pause ONLY, we will advertise that we | ||
981 | * support both symmetric and asymmetric RX PAUSE. Later | ||
982 | * (in e1000_config_fc_after_link_up) we will disable the | ||
983 | * hw's ability to send PAUSE frames. | ||
984 | */ | ||
985 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
986 | break; | ||
987 | case e1000_fc_tx_pause: | ||
988 | /* | ||
989 | * TX Flow control is enabled, and RX Flow control is | ||
990 | * disabled, by a software over-ride. | ||
991 | */ | ||
992 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | ||
993 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | ||
994 | break; | ||
995 | case e1000_fc_full: | ||
996 | /* | ||
997 | * Flow control (both RX and TX) is enabled by a software | ||
998 | * over-ride. | ||
999 | */ | ||
1000 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1001 | break; | ||
1002 | default: | ||
1003 | hw_dbg("Flow control param set incorrectly\n"); | ||
1004 | ret_val = -E1000_ERR_CONFIG; | ||
1005 | goto out; | ||
1006 | } | ||
1007 | |||
1008 | ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | ||
1009 | if (ret_val) | ||
1010 | goto out; | ||
1011 | |||
1012 | hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | ||
1013 | |||
1014 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { | ||
1015 | ret_val = phy->ops.write_reg(hw, | ||
1016 | PHY_1000T_CTRL, | ||
1017 | mii_1000t_ctrl_reg); | ||
1018 | if (ret_val) | ||
1019 | goto out; | ||
1020 | } | ||
1021 | |||
1022 | out: | ||
1023 | return ret_val; | ||
1024 | } | ||
1025 | |||
1026 | /** | ||
1027 | * igb_setup_copper_link - Configure copper link settings | ||
1028 | * @hw: pointer to the HW structure | ||
1029 | * | ||
1030 | * Calls the appropriate function to configure the link for auto-neg or forced | ||
1031 | * speed and duplex. Then we check for link, once link is established calls | ||
1032 | * to configure collision distance and flow control are called. If link is | ||
1033 | * not established, we return -E1000_ERR_PHY (-2). | ||
1034 | **/ | ||
1035 | s32 igb_setup_copper_link(struct e1000_hw *hw) | ||
1036 | { | ||
1037 | s32 ret_val; | ||
1038 | bool link; | ||
1039 | |||
1040 | |||
1041 | if (hw->mac.autoneg) { | ||
1042 | /* | ||
1043 | * Setup autoneg and flow control advertisement and perform | ||
1044 | * autonegotiation. | ||
1045 | */ | ||
1046 | ret_val = igb_copper_link_autoneg(hw); | ||
1047 | if (ret_val) | ||
1048 | goto out; | ||
1049 | } else { | ||
1050 | /* | ||
1051 | * PHY will be set to 10H, 10F, 100H or 100F | ||
1052 | * depending on user settings. | ||
1053 | */ | ||
1054 | hw_dbg("Forcing Speed and Duplex\n"); | ||
1055 | ret_val = hw->phy.ops.force_speed_duplex(hw); | ||
1056 | if (ret_val) { | ||
1057 | hw_dbg("Error Forcing Speed and Duplex\n"); | ||
1058 | goto out; | ||
1059 | } | ||
1060 | } | ||
1061 | |||
1062 | /* | ||
1063 | * Check link status. Wait up to 100 microseconds for link to become | ||
1064 | * valid. | ||
1065 | */ | ||
1066 | ret_val = igb_phy_has_link(hw, | ||
1067 | COPPER_LINK_UP_LIMIT, | ||
1068 | 10, | ||
1069 | &link); | ||
1070 | if (ret_val) | ||
1071 | goto out; | ||
1072 | |||
1073 | if (link) { | ||
1074 | hw_dbg("Valid link established!!!\n"); | ||
1075 | igb_config_collision_dist(hw); | ||
1076 | ret_val = igb_config_fc_after_link_up(hw); | ||
1077 | } else { | ||
1078 | hw_dbg("Unable to establish link!!!\n"); | ||
1079 | } | ||
1080 | |||
1081 | out: | ||
1082 | return ret_val; | ||
1083 | } | ||
1084 | |||
1085 | /** | ||
1086 | * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY | ||
1087 | * @hw: pointer to the HW structure | ||
1088 | * | ||
1089 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
1090 | * auto-crossover to force MDI manually. Waits for link and returns | ||
1091 | * successful if link up is successful, else -E1000_ERR_PHY (-2). | ||
1092 | **/ | ||
1093 | s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw) | ||
1094 | { | ||
1095 | struct e1000_phy_info *phy = &hw->phy; | ||
1096 | s32 ret_val; | ||
1097 | u16 phy_data; | ||
1098 | bool link; | ||
1099 | |||
1100 | ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); | ||
1101 | if (ret_val) | ||
1102 | goto out; | ||
1103 | |||
1104 | igb_phy_force_speed_duplex_setup(hw, &phy_data); | ||
1105 | |||
1106 | ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); | ||
1107 | if (ret_val) | ||
1108 | goto out; | ||
1109 | |||
1110 | /* | ||
1111 | * Clear Auto-Crossover to force MDI manually. IGP requires MDI | ||
1112 | * forced whenever speed and duplex are forced. | ||
1113 | */ | ||
1114 | ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | ||
1115 | if (ret_val) | ||
1116 | goto out; | ||
1117 | |||
1118 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
1119 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1120 | |||
1121 | ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | ||
1122 | if (ret_val) | ||
1123 | goto out; | ||
1124 | |||
1125 | hw_dbg("IGP PSCR: %X\n", phy_data); | ||
1126 | |||
1127 | udelay(1); | ||
1128 | |||
1129 | if (phy->autoneg_wait_to_complete) { | ||
1130 | hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); | ||
1131 | |||
1132 | ret_val = igb_phy_has_link(hw, | ||
1133 | PHY_FORCE_LIMIT, | ||
1134 | 100000, | ||
1135 | &link); | ||
1136 | if (ret_val) | ||
1137 | goto out; | ||
1138 | |||
1139 | if (!link) | ||
1140 | hw_dbg("Link taking longer than expected.\n"); | ||
1141 | |||
1142 | /* Try once more */ | ||
1143 | ret_val = igb_phy_has_link(hw, | ||
1144 | PHY_FORCE_LIMIT, | ||
1145 | 100000, | ||
1146 | &link); | ||
1147 | if (ret_val) | ||
1148 | goto out; | ||
1149 | } | ||
1150 | |||
1151 | out: | ||
1152 | return ret_val; | ||
1153 | } | ||
1154 | |||
1155 | /** | ||
1156 | * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY | ||
1157 | * @hw: pointer to the HW structure | ||
1158 | * | ||
1159 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
1160 | * auto-crossover to force MDI manually. Resets the PHY to commit the | ||
1161 | * changes. If time expires while waiting for link up, we reset the DSP. | ||
1162 | * After reset, TX_CLK and CRS on TX must be set. Return successful upon | ||
1163 | * successful completion, else return corresponding error code. | ||
1164 | **/ | ||
1165 | s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw) | ||
1166 | { | ||
1167 | struct e1000_phy_info *phy = &hw->phy; | ||
1168 | s32 ret_val; | ||
1169 | u16 phy_data; | ||
1170 | bool link; | ||
1171 | |||
1172 | /* | ||
1173 | * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | ||
1174 | * forced whenever speed and duplex are forced. | ||
1175 | */ | ||
1176 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1177 | if (ret_val) | ||
1178 | goto out; | ||
1179 | |||
1180 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1181 | ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1182 | if (ret_val) | ||
1183 | goto out; | ||
1184 | |||
1185 | hw_dbg("M88E1000 PSCR: %X\n", phy_data); | ||
1186 | |||
1187 | ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); | ||
1188 | if (ret_val) | ||
1189 | goto out; | ||
1190 | |||
1191 | igb_phy_force_speed_duplex_setup(hw, &phy_data); | ||
1192 | |||
1193 | ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); | ||
1194 | if (ret_val) | ||
1195 | goto out; | ||
1196 | |||
1197 | /* Reset the phy to commit changes. */ | ||
1198 | ret_val = igb_phy_sw_reset(hw); | ||
1199 | if (ret_val) | ||
1200 | goto out; | ||
1201 | |||
1202 | if (phy->autoneg_wait_to_complete) { | ||
1203 | hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); | ||
1204 | |||
1205 | ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); | ||
1206 | if (ret_val) | ||
1207 | goto out; | ||
1208 | |||
1209 | if (!link) { | ||
1210 | if (hw->phy.type != e1000_phy_m88 || | ||
1211 | hw->phy.id == I347AT4_E_PHY_ID || | ||
1212 | hw->phy.id == M88E1112_E_PHY_ID) { | ||
1213 | hw_dbg("Link taking longer than expected.\n"); | ||
1214 | } else { | ||
1215 | |||
1216 | /* | ||
1217 | * We didn't get link. | ||
1218 | * Reset the DSP and cross our fingers. | ||
1219 | */ | ||
1220 | ret_val = phy->ops.write_reg(hw, | ||
1221 | M88E1000_PHY_PAGE_SELECT, | ||
1222 | 0x001d); | ||
1223 | if (ret_val) | ||
1224 | goto out; | ||
1225 | ret_val = igb_phy_reset_dsp(hw); | ||
1226 | if (ret_val) | ||
1227 | goto out; | ||
1228 | } | ||
1229 | } | ||
1230 | |||
1231 | /* Try once more */ | ||
1232 | ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, | ||
1233 | 100000, &link); | ||
1234 | if (ret_val) | ||
1235 | goto out; | ||
1236 | } | ||
1237 | |||
1238 | if (hw->phy.type != e1000_phy_m88 || | ||
1239 | hw->phy.id == I347AT4_E_PHY_ID || | ||
1240 | hw->phy.id == M88E1112_E_PHY_ID) | ||
1241 | goto out; | ||
1242 | |||
1243 | ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
1244 | if (ret_val) | ||
1245 | goto out; | ||
1246 | |||
1247 | /* | ||
1248 | * Resetting the phy means we need to re-force TX_CLK in the | ||
1249 | * Extended PHY Specific Control Register to 25MHz clock from | ||
1250 | * the reset value of 2.5MHz. | ||
1251 | */ | ||
1252 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1253 | ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | ||
1254 | if (ret_val) | ||
1255 | goto out; | ||
1256 | |||
1257 | /* | ||
1258 | * In addition, we must re-enable CRS on Tx for both half and full | ||
1259 | * duplex. | ||
1260 | */ | ||
1261 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1262 | if (ret_val) | ||
1263 | goto out; | ||
1264 | |||
1265 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1266 | ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1267 | |||
1268 | out: | ||
1269 | return ret_val; | ||
1270 | } | ||
1271 | |||
1272 | /** | ||
1273 | * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex | ||
1274 | * @hw: pointer to the HW structure | ||
1275 | * @phy_ctrl: pointer to current value of PHY_CONTROL | ||
1276 | * | ||
1277 | * Forces speed and duplex on the PHY by doing the following: disable flow | ||
1278 | * control, force speed/duplex on the MAC, disable auto speed detection, | ||
1279 | * disable auto-negotiation, configure duplex, configure speed, configure | ||
1280 | * the collision distance, write configuration to CTRL register. The | ||
1281 | * caller must write to the PHY_CONTROL register for these settings to | ||
1282 | * take affect. | ||
1283 | **/ | ||
1284 | static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, | ||
1285 | u16 *phy_ctrl) | ||
1286 | { | ||
1287 | struct e1000_mac_info *mac = &hw->mac; | ||
1288 | u32 ctrl; | ||
1289 | |||
1290 | /* Turn off flow control when forcing speed/duplex */ | ||
1291 | hw->fc.current_mode = e1000_fc_none; | ||
1292 | |||
1293 | /* Force speed/duplex on the mac */ | ||
1294 | ctrl = rd32(E1000_CTRL); | ||
1295 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1296 | ctrl &= ~E1000_CTRL_SPD_SEL; | ||
1297 | |||
1298 | /* Disable Auto Speed Detection */ | ||
1299 | ctrl &= ~E1000_CTRL_ASDE; | ||
1300 | |||
1301 | /* Disable autoneg on the phy */ | ||
1302 | *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; | ||
1303 | |||
1304 | /* Forcing Full or Half Duplex? */ | ||
1305 | if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { | ||
1306 | ctrl &= ~E1000_CTRL_FD; | ||
1307 | *phy_ctrl &= ~MII_CR_FULL_DUPLEX; | ||
1308 | hw_dbg("Half Duplex\n"); | ||
1309 | } else { | ||
1310 | ctrl |= E1000_CTRL_FD; | ||
1311 | *phy_ctrl |= MII_CR_FULL_DUPLEX; | ||
1312 | hw_dbg("Full Duplex\n"); | ||
1313 | } | ||
1314 | |||
1315 | /* Forcing 10mb or 100mb? */ | ||
1316 | if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { | ||
1317 | ctrl |= E1000_CTRL_SPD_100; | ||
1318 | *phy_ctrl |= MII_CR_SPEED_100; | ||
1319 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | ||
1320 | hw_dbg("Forcing 100mb\n"); | ||
1321 | } else { | ||
1322 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | ||
1323 | *phy_ctrl |= MII_CR_SPEED_10; | ||
1324 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | ||
1325 | hw_dbg("Forcing 10mb\n"); | ||
1326 | } | ||
1327 | |||
1328 | igb_config_collision_dist(hw); | ||
1329 | |||
1330 | wr32(E1000_CTRL, ctrl); | ||
1331 | } | ||
1332 | |||
1333 | /** | ||
1334 | * igb_set_d3_lplu_state - Sets low power link up state for D3 | ||
1335 | * @hw: pointer to the HW structure | ||
1336 | * @active: boolean used to enable/disable lplu | ||
1337 | * | ||
1338 | * Success returns 0, Failure returns 1 | ||
1339 | * | ||
1340 | * The low power link up (lplu) state is set to the power management level D3 | ||
1341 | * and SmartSpeed is disabled when active is true, else clear lplu for D3 | ||
1342 | * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU | ||
1343 | * is used during Dx states where the power conservation is most important. | ||
1344 | * During driver activity, SmartSpeed should be enabled so performance is | ||
1345 | * maintained. | ||
1346 | **/ | ||
1347 | s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active) | ||
1348 | { | ||
1349 | struct e1000_phy_info *phy = &hw->phy; | ||
1350 | s32 ret_val = 0; | ||
1351 | u16 data; | ||
1352 | |||
1353 | if (!(hw->phy.ops.read_reg)) | ||
1354 | goto out; | ||
1355 | |||
1356 | ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); | ||
1357 | if (ret_val) | ||
1358 | goto out; | ||
1359 | |||
1360 | if (!active) { | ||
1361 | data &= ~IGP02E1000_PM_D3_LPLU; | ||
1362 | ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
1363 | data); | ||
1364 | if (ret_val) | ||
1365 | goto out; | ||
1366 | /* | ||
1367 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
1368 | * during Dx states where the power conservation is most | ||
1369 | * important. During driver activity we should enable | ||
1370 | * SmartSpeed, so performance is maintained. | ||
1371 | */ | ||
1372 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
1373 | ret_val = phy->ops.read_reg(hw, | ||
1374 | IGP01E1000_PHY_PORT_CONFIG, | ||
1375 | &data); | ||
1376 | if (ret_val) | ||
1377 | goto out; | ||
1378 | |||
1379 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
1380 | ret_val = phy->ops.write_reg(hw, | ||
1381 | IGP01E1000_PHY_PORT_CONFIG, | ||
1382 | data); | ||
1383 | if (ret_val) | ||
1384 | goto out; | ||
1385 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
1386 | ret_val = phy->ops.read_reg(hw, | ||
1387 | IGP01E1000_PHY_PORT_CONFIG, | ||
1388 | &data); | ||
1389 | if (ret_val) | ||
1390 | goto out; | ||
1391 | |||
1392 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1393 | ret_val = phy->ops.write_reg(hw, | ||
1394 | IGP01E1000_PHY_PORT_CONFIG, | ||
1395 | data); | ||
1396 | if (ret_val) | ||
1397 | goto out; | ||
1398 | } | ||
1399 | } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | ||
1400 | (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || | ||
1401 | (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { | ||
1402 | data |= IGP02E1000_PM_D3_LPLU; | ||
1403 | ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
1404 | data); | ||
1405 | if (ret_val) | ||
1406 | goto out; | ||
1407 | |||
1408 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
1409 | ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1410 | &data); | ||
1411 | if (ret_val) | ||
1412 | goto out; | ||
1413 | |||
1414 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1415 | ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1416 | data); | ||
1417 | } | ||
1418 | |||
1419 | out: | ||
1420 | return ret_val; | ||
1421 | } | ||
1422 | |||
1423 | /** | ||
1424 | * igb_check_downshift - Checks whether a downshift in speed occurred | ||
1425 | * @hw: pointer to the HW structure | ||
1426 | * | ||
1427 | * Success returns 0, Failure returns 1 | ||
1428 | * | ||
1429 | * A downshift is detected by querying the PHY link health. | ||
1430 | **/ | ||
1431 | s32 igb_check_downshift(struct e1000_hw *hw) | ||
1432 | { | ||
1433 | struct e1000_phy_info *phy = &hw->phy; | ||
1434 | s32 ret_val; | ||
1435 | u16 phy_data, offset, mask; | ||
1436 | |||
1437 | switch (phy->type) { | ||
1438 | case e1000_phy_m88: | ||
1439 | case e1000_phy_gg82563: | ||
1440 | offset = M88E1000_PHY_SPEC_STATUS; | ||
1441 | mask = M88E1000_PSSR_DOWNSHIFT; | ||
1442 | break; | ||
1443 | case e1000_phy_igp_2: | ||
1444 | case e1000_phy_igp: | ||
1445 | case e1000_phy_igp_3: | ||
1446 | offset = IGP01E1000_PHY_LINK_HEALTH; | ||
1447 | mask = IGP01E1000_PLHR_SS_DOWNGRADE; | ||
1448 | break; | ||
1449 | default: | ||
1450 | /* speed downshift not supported */ | ||
1451 | phy->speed_downgraded = false; | ||
1452 | ret_val = 0; | ||
1453 | goto out; | ||
1454 | } | ||
1455 | |||
1456 | ret_val = phy->ops.read_reg(hw, offset, &phy_data); | ||
1457 | |||
1458 | if (!ret_val) | ||
1459 | phy->speed_downgraded = (phy_data & mask) ? true : false; | ||
1460 | |||
1461 | out: | ||
1462 | return ret_val; | ||
1463 | } | ||
1464 | |||
1465 | /** | ||
1466 | * igb_check_polarity_m88 - Checks the polarity. | ||
1467 | * @hw: pointer to the HW structure | ||
1468 | * | ||
1469 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
1470 | * | ||
1471 | * Polarity is determined based on the PHY specific status register. | ||
1472 | **/ | ||
1473 | static s32 igb_check_polarity_m88(struct e1000_hw *hw) | ||
1474 | { | ||
1475 | struct e1000_phy_info *phy = &hw->phy; | ||
1476 | s32 ret_val; | ||
1477 | u16 data; | ||
1478 | |||
1479 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); | ||
1480 | |||
1481 | if (!ret_val) | ||
1482 | phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) | ||
1483 | ? e1000_rev_polarity_reversed | ||
1484 | : e1000_rev_polarity_normal; | ||
1485 | |||
1486 | return ret_val; | ||
1487 | } | ||
1488 | |||
1489 | /** | ||
1490 | * igb_check_polarity_igp - Checks the polarity. | ||
1491 | * @hw: pointer to the HW structure | ||
1492 | * | ||
1493 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
1494 | * | ||
1495 | * Polarity is determined based on the PHY port status register, and the | ||
1496 | * current speed (since there is no polarity at 100Mbps). | ||
1497 | **/ | ||
1498 | static s32 igb_check_polarity_igp(struct e1000_hw *hw) | ||
1499 | { | ||
1500 | struct e1000_phy_info *phy = &hw->phy; | ||
1501 | s32 ret_val; | ||
1502 | u16 data, offset, mask; | ||
1503 | |||
1504 | /* | ||
1505 | * Polarity is determined based on the speed of | ||
1506 | * our connection. | ||
1507 | */ | ||
1508 | ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); | ||
1509 | if (ret_val) | ||
1510 | goto out; | ||
1511 | |||
1512 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1513 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
1514 | offset = IGP01E1000_PHY_PCS_INIT_REG; | ||
1515 | mask = IGP01E1000_PHY_POLARITY_MASK; | ||
1516 | } else { | ||
1517 | /* | ||
1518 | * This really only applies to 10Mbps since | ||
1519 | * there is no polarity for 100Mbps (always 0). | ||
1520 | */ | ||
1521 | offset = IGP01E1000_PHY_PORT_STATUS; | ||
1522 | mask = IGP01E1000_PSSR_POLARITY_REVERSED; | ||
1523 | } | ||
1524 | |||
1525 | ret_val = phy->ops.read_reg(hw, offset, &data); | ||
1526 | |||
1527 | if (!ret_val) | ||
1528 | phy->cable_polarity = (data & mask) | ||
1529 | ? e1000_rev_polarity_reversed | ||
1530 | : e1000_rev_polarity_normal; | ||
1531 | |||
1532 | out: | ||
1533 | return ret_val; | ||
1534 | } | ||
1535 | |||
1536 | /** | ||
1537 | * igb_wait_autoneg - Wait for auto-neg compeletion | ||
1538 | * @hw: pointer to the HW structure | ||
1539 | * | ||
1540 | * Waits for auto-negotiation to complete or for the auto-negotiation time | ||
1541 | * limit to expire, which ever happens first. | ||
1542 | **/ | ||
1543 | static s32 igb_wait_autoneg(struct e1000_hw *hw) | ||
1544 | { | ||
1545 | s32 ret_val = 0; | ||
1546 | u16 i, phy_status; | ||
1547 | |||
1548 | /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ | ||
1549 | for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { | ||
1550 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); | ||
1551 | if (ret_val) | ||
1552 | break; | ||
1553 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); | ||
1554 | if (ret_val) | ||
1555 | break; | ||
1556 | if (phy_status & MII_SR_AUTONEG_COMPLETE) | ||
1557 | break; | ||
1558 | msleep(100); | ||
1559 | } | ||
1560 | |||
1561 | /* | ||
1562 | * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation | ||
1563 | * has completed. | ||
1564 | */ | ||
1565 | return ret_val; | ||
1566 | } | ||
1567 | |||
1568 | /** | ||
1569 | * igb_phy_has_link - Polls PHY for link | ||
1570 | * @hw: pointer to the HW structure | ||
1571 | * @iterations: number of times to poll for link | ||
1572 | * @usec_interval: delay between polling attempts | ||
1573 | * @success: pointer to whether polling was successful or not | ||
1574 | * | ||
1575 | * Polls the PHY status register for link, 'iterations' number of times. | ||
1576 | **/ | ||
1577 | s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations, | ||
1578 | u32 usec_interval, bool *success) | ||
1579 | { | ||
1580 | s32 ret_val = 0; | ||
1581 | u16 i, phy_status; | ||
1582 | |||
1583 | for (i = 0; i < iterations; i++) { | ||
1584 | /* | ||
1585 | * Some PHYs require the PHY_STATUS register to be read | ||
1586 | * twice due to the link bit being sticky. No harm doing | ||
1587 | * it across the board. | ||
1588 | */ | ||
1589 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); | ||
1590 | if (ret_val) { | ||
1591 | /* | ||
1592 | * If the first read fails, another entity may have | ||
1593 | * ownership of the resources, wait and try again to | ||
1594 | * see if they have relinquished the resources yet. | ||
1595 | */ | ||
1596 | udelay(usec_interval); | ||
1597 | } | ||
1598 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); | ||
1599 | if (ret_val) | ||
1600 | break; | ||
1601 | if (phy_status & MII_SR_LINK_STATUS) | ||
1602 | break; | ||
1603 | if (usec_interval >= 1000) | ||
1604 | mdelay(usec_interval/1000); | ||
1605 | else | ||
1606 | udelay(usec_interval); | ||
1607 | } | ||
1608 | |||
1609 | *success = (i < iterations) ? true : false; | ||
1610 | |||
1611 | return ret_val; | ||
1612 | } | ||
1613 | |||
1614 | /** | ||
1615 | * igb_get_cable_length_m88 - Determine cable length for m88 PHY | ||
1616 | * @hw: pointer to the HW structure | ||
1617 | * | ||
1618 | * Reads the PHY specific status register to retrieve the cable length | ||
1619 | * information. The cable length is determined by averaging the minimum and | ||
1620 | * maximum values to get the "average" cable length. The m88 PHY has four | ||
1621 | * possible cable length values, which are: | ||
1622 | * Register Value Cable Length | ||
1623 | * 0 < 50 meters | ||
1624 | * 1 50 - 80 meters | ||
1625 | * 2 80 - 110 meters | ||
1626 | * 3 110 - 140 meters | ||
1627 | * 4 > 140 meters | ||
1628 | **/ | ||
1629 | s32 igb_get_cable_length_m88(struct e1000_hw *hw) | ||
1630 | { | ||
1631 | struct e1000_phy_info *phy = &hw->phy; | ||
1632 | s32 ret_val; | ||
1633 | u16 phy_data, index; | ||
1634 | |||
1635 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
1636 | if (ret_val) | ||
1637 | goto out; | ||
1638 | |||
1639 | index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | ||
1640 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | ||
1641 | if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { | ||
1642 | ret_val = -E1000_ERR_PHY; | ||
1643 | goto out; | ||
1644 | } | ||
1645 | |||
1646 | phy->min_cable_length = e1000_m88_cable_length_table[index]; | ||
1647 | phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; | ||
1648 | |||
1649 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | ||
1650 | |||
1651 | out: | ||
1652 | return ret_val; | ||
1653 | } | ||
1654 | |||
1655 | s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw) | ||
1656 | { | ||
1657 | struct e1000_phy_info *phy = &hw->phy; | ||
1658 | s32 ret_val; | ||
1659 | u16 phy_data, phy_data2, index, default_page, is_cm; | ||
1660 | |||
1661 | switch (hw->phy.id) { | ||
1662 | case I347AT4_E_PHY_ID: | ||
1663 | /* Remember the original page select and set it to 7 */ | ||
1664 | ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, | ||
1665 | &default_page); | ||
1666 | if (ret_val) | ||
1667 | goto out; | ||
1668 | |||
1669 | ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); | ||
1670 | if (ret_val) | ||
1671 | goto out; | ||
1672 | |||
1673 | /* Get cable length from PHY Cable Diagnostics Control Reg */ | ||
1674 | ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), | ||
1675 | &phy_data); | ||
1676 | if (ret_val) | ||
1677 | goto out; | ||
1678 | |||
1679 | /* Check if the unit of cable length is meters or cm */ | ||
1680 | ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); | ||
1681 | if (ret_val) | ||
1682 | goto out; | ||
1683 | |||
1684 | is_cm = !(phy_data & I347AT4_PCDC_CABLE_LENGTH_UNIT); | ||
1685 | |||
1686 | /* Populate the phy structure with cable length in meters */ | ||
1687 | phy->min_cable_length = phy_data / (is_cm ? 100 : 1); | ||
1688 | phy->max_cable_length = phy_data / (is_cm ? 100 : 1); | ||
1689 | phy->cable_length = phy_data / (is_cm ? 100 : 1); | ||
1690 | |||
1691 | /* Reset the page selec to its original value */ | ||
1692 | ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, | ||
1693 | default_page); | ||
1694 | if (ret_val) | ||
1695 | goto out; | ||
1696 | break; | ||
1697 | case M88E1112_E_PHY_ID: | ||
1698 | /* Remember the original page select and set it to 5 */ | ||
1699 | ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, | ||
1700 | &default_page); | ||
1701 | if (ret_val) | ||
1702 | goto out; | ||
1703 | |||
1704 | ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); | ||
1705 | if (ret_val) | ||
1706 | goto out; | ||
1707 | |||
1708 | ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, | ||
1709 | &phy_data); | ||
1710 | if (ret_val) | ||
1711 | goto out; | ||
1712 | |||
1713 | index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | ||
1714 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | ||
1715 | if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { | ||
1716 | ret_val = -E1000_ERR_PHY; | ||
1717 | goto out; | ||
1718 | } | ||
1719 | |||
1720 | phy->min_cable_length = e1000_m88_cable_length_table[index]; | ||
1721 | phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; | ||
1722 | |||
1723 | phy->cable_length = (phy->min_cable_length + | ||
1724 | phy->max_cable_length) / 2; | ||
1725 | |||
1726 | /* Reset the page select to its original value */ | ||
1727 | ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, | ||
1728 | default_page); | ||
1729 | if (ret_val) | ||
1730 | goto out; | ||
1731 | |||
1732 | break; | ||
1733 | default: | ||
1734 | ret_val = -E1000_ERR_PHY; | ||
1735 | goto out; | ||
1736 | } | ||
1737 | |||
1738 | out: | ||
1739 | return ret_val; | ||
1740 | } | ||
1741 | |||
1742 | /** | ||
1743 | * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY | ||
1744 | * @hw: pointer to the HW structure | ||
1745 | * | ||
1746 | * The automatic gain control (agc) normalizes the amplitude of the | ||
1747 | * received signal, adjusting for the attenuation produced by the | ||
1748 | * cable. By reading the AGC registers, which represent the | ||
1749 | * combination of coarse and fine gain value, the value can be put | ||
1750 | * into a lookup table to obtain the approximate cable length | ||
1751 | * for each channel. | ||
1752 | **/ | ||
1753 | s32 igb_get_cable_length_igp_2(struct e1000_hw *hw) | ||
1754 | { | ||
1755 | struct e1000_phy_info *phy = &hw->phy; | ||
1756 | s32 ret_val = 0; | ||
1757 | u16 phy_data, i, agc_value = 0; | ||
1758 | u16 cur_agc_index, max_agc_index = 0; | ||
1759 | u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; | ||
1760 | static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { | ||
1761 | IGP02E1000_PHY_AGC_A, | ||
1762 | IGP02E1000_PHY_AGC_B, | ||
1763 | IGP02E1000_PHY_AGC_C, | ||
1764 | IGP02E1000_PHY_AGC_D | ||
1765 | }; | ||
1766 | |||
1767 | /* Read the AGC registers for all channels */ | ||
1768 | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { | ||
1769 | ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); | ||
1770 | if (ret_val) | ||
1771 | goto out; | ||
1772 | |||
1773 | /* | ||
1774 | * Getting bits 15:9, which represent the combination of | ||
1775 | * coarse and fine gain values. The result is a number | ||
1776 | * that can be put into the lookup table to obtain the | ||
1777 | * approximate cable length. | ||
1778 | */ | ||
1779 | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | ||
1780 | IGP02E1000_AGC_LENGTH_MASK; | ||
1781 | |||
1782 | /* Array index bound check. */ | ||
1783 | if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || | ||
1784 | (cur_agc_index == 0)) { | ||
1785 | ret_val = -E1000_ERR_PHY; | ||
1786 | goto out; | ||
1787 | } | ||
1788 | |||
1789 | /* Remove min & max AGC values from calculation. */ | ||
1790 | if (e1000_igp_2_cable_length_table[min_agc_index] > | ||
1791 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
1792 | min_agc_index = cur_agc_index; | ||
1793 | if (e1000_igp_2_cable_length_table[max_agc_index] < | ||
1794 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
1795 | max_agc_index = cur_agc_index; | ||
1796 | |||
1797 | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; | ||
1798 | } | ||
1799 | |||
1800 | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + | ||
1801 | e1000_igp_2_cable_length_table[max_agc_index]); | ||
1802 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | ||
1803 | |||
1804 | /* Calculate cable length with the error range of +/- 10 meters. */ | ||
1805 | phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? | ||
1806 | (agc_value - IGP02E1000_AGC_RANGE) : 0; | ||
1807 | phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; | ||
1808 | |||
1809 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | ||
1810 | |||
1811 | out: | ||
1812 | return ret_val; | ||
1813 | } | ||
1814 | |||
1815 | /** | ||
1816 | * igb_get_phy_info_m88 - Retrieve PHY information | ||
1817 | * @hw: pointer to the HW structure | ||
1818 | * | ||
1819 | * Valid for only copper links. Read the PHY status register (sticky read) | ||
1820 | * to verify that link is up. Read the PHY special control register to | ||
1821 | * determine the polarity and 10base-T extended distance. Read the PHY | ||
1822 | * special status register to determine MDI/MDIx and current speed. If | ||
1823 | * speed is 1000, then determine cable length, local and remote receiver. | ||
1824 | **/ | ||
1825 | s32 igb_get_phy_info_m88(struct e1000_hw *hw) | ||
1826 | { | ||
1827 | struct e1000_phy_info *phy = &hw->phy; | ||
1828 | s32 ret_val; | ||
1829 | u16 phy_data; | ||
1830 | bool link; | ||
1831 | |||
1832 | if (phy->media_type != e1000_media_type_copper) { | ||
1833 | hw_dbg("Phy info is only valid for copper media\n"); | ||
1834 | ret_val = -E1000_ERR_CONFIG; | ||
1835 | goto out; | ||
1836 | } | ||
1837 | |||
1838 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
1839 | if (ret_val) | ||
1840 | goto out; | ||
1841 | |||
1842 | if (!link) { | ||
1843 | hw_dbg("Phy info is only valid if link is up\n"); | ||
1844 | ret_val = -E1000_ERR_CONFIG; | ||
1845 | goto out; | ||
1846 | } | ||
1847 | |||
1848 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1849 | if (ret_val) | ||
1850 | goto out; | ||
1851 | |||
1852 | phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) | ||
1853 | ? true : false; | ||
1854 | |||
1855 | ret_val = igb_check_polarity_m88(hw); | ||
1856 | if (ret_val) | ||
1857 | goto out; | ||
1858 | |||
1859 | ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
1860 | if (ret_val) | ||
1861 | goto out; | ||
1862 | |||
1863 | phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false; | ||
1864 | |||
1865 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | ||
1866 | ret_val = phy->ops.get_cable_length(hw); | ||
1867 | if (ret_val) | ||
1868 | goto out; | ||
1869 | |||
1870 | ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); | ||
1871 | if (ret_val) | ||
1872 | goto out; | ||
1873 | |||
1874 | phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) | ||
1875 | ? e1000_1000t_rx_status_ok | ||
1876 | : e1000_1000t_rx_status_not_ok; | ||
1877 | |||
1878 | phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) | ||
1879 | ? e1000_1000t_rx_status_ok | ||
1880 | : e1000_1000t_rx_status_not_ok; | ||
1881 | } else { | ||
1882 | /* Set values to "undefined" */ | ||
1883 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
1884 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
1885 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
1886 | } | ||
1887 | |||
1888 | out: | ||
1889 | return ret_val; | ||
1890 | } | ||
1891 | |||
1892 | /** | ||
1893 | * igb_get_phy_info_igp - Retrieve igp PHY information | ||
1894 | * @hw: pointer to the HW structure | ||
1895 | * | ||
1896 | * Read PHY status to determine if link is up. If link is up, then | ||
1897 | * set/determine 10base-T extended distance and polarity correction. Read | ||
1898 | * PHY port status to determine MDI/MDIx and speed. Based on the speed, | ||
1899 | * determine on the cable length, local and remote receiver. | ||
1900 | **/ | ||
1901 | s32 igb_get_phy_info_igp(struct e1000_hw *hw) | ||
1902 | { | ||
1903 | struct e1000_phy_info *phy = &hw->phy; | ||
1904 | s32 ret_val; | ||
1905 | u16 data; | ||
1906 | bool link; | ||
1907 | |||
1908 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
1909 | if (ret_val) | ||
1910 | goto out; | ||
1911 | |||
1912 | if (!link) { | ||
1913 | hw_dbg("Phy info is only valid if link is up\n"); | ||
1914 | ret_val = -E1000_ERR_CONFIG; | ||
1915 | goto out; | ||
1916 | } | ||
1917 | |||
1918 | phy->polarity_correction = true; | ||
1919 | |||
1920 | ret_val = igb_check_polarity_igp(hw); | ||
1921 | if (ret_val) | ||
1922 | goto out; | ||
1923 | |||
1924 | ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); | ||
1925 | if (ret_val) | ||
1926 | goto out; | ||
1927 | |||
1928 | phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false; | ||
1929 | |||
1930 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1931 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
1932 | ret_val = phy->ops.get_cable_length(hw); | ||
1933 | if (ret_val) | ||
1934 | goto out; | ||
1935 | |||
1936 | ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); | ||
1937 | if (ret_val) | ||
1938 | goto out; | ||
1939 | |||
1940 | phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) | ||
1941 | ? e1000_1000t_rx_status_ok | ||
1942 | : e1000_1000t_rx_status_not_ok; | ||
1943 | |||
1944 | phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) | ||
1945 | ? e1000_1000t_rx_status_ok | ||
1946 | : e1000_1000t_rx_status_not_ok; | ||
1947 | } else { | ||
1948 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
1949 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
1950 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
1951 | } | ||
1952 | |||
1953 | out: | ||
1954 | return ret_val; | ||
1955 | } | ||
1956 | |||
1957 | /** | ||
1958 | * igb_phy_sw_reset - PHY software reset | ||
1959 | * @hw: pointer to the HW structure | ||
1960 | * | ||
1961 | * Does a software reset of the PHY by reading the PHY control register and | ||
1962 | * setting/write the control register reset bit to the PHY. | ||
1963 | **/ | ||
1964 | s32 igb_phy_sw_reset(struct e1000_hw *hw) | ||
1965 | { | ||
1966 | s32 ret_val = 0; | ||
1967 | u16 phy_ctrl; | ||
1968 | |||
1969 | if (!(hw->phy.ops.read_reg)) | ||
1970 | goto out; | ||
1971 | |||
1972 | ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); | ||
1973 | if (ret_val) | ||
1974 | goto out; | ||
1975 | |||
1976 | phy_ctrl |= MII_CR_RESET; | ||
1977 | ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); | ||
1978 | if (ret_val) | ||
1979 | goto out; | ||
1980 | |||
1981 | udelay(1); | ||
1982 | |||
1983 | out: | ||
1984 | return ret_val; | ||
1985 | } | ||
1986 | |||
1987 | /** | ||
1988 | * igb_phy_hw_reset - PHY hardware reset | ||
1989 | * @hw: pointer to the HW structure | ||
1990 | * | ||
1991 | * Verify the reset block is not blocking us from resetting. Acquire | ||
1992 | * semaphore (if necessary) and read/set/write the device control reset | ||
1993 | * bit in the PHY. Wait the appropriate delay time for the device to | ||
1994 | * reset and relase the semaphore (if necessary). | ||
1995 | **/ | ||
1996 | s32 igb_phy_hw_reset(struct e1000_hw *hw) | ||
1997 | { | ||
1998 | struct e1000_phy_info *phy = &hw->phy; | ||
1999 | s32 ret_val; | ||
2000 | u32 ctrl; | ||
2001 | |||
2002 | ret_val = igb_check_reset_block(hw); | ||
2003 | if (ret_val) { | ||
2004 | ret_val = 0; | ||
2005 | goto out; | ||
2006 | } | ||
2007 | |||
2008 | ret_val = phy->ops.acquire(hw); | ||
2009 | if (ret_val) | ||
2010 | goto out; | ||
2011 | |||
2012 | ctrl = rd32(E1000_CTRL); | ||
2013 | wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); | ||
2014 | wrfl(); | ||
2015 | |||
2016 | udelay(phy->reset_delay_us); | ||
2017 | |||
2018 | wr32(E1000_CTRL, ctrl); | ||
2019 | wrfl(); | ||
2020 | |||
2021 | udelay(150); | ||
2022 | |||
2023 | phy->ops.release(hw); | ||
2024 | |||
2025 | ret_val = phy->ops.get_cfg_done(hw); | ||
2026 | |||
2027 | out: | ||
2028 | return ret_val; | ||
2029 | } | ||
2030 | |||
2031 | /** | ||
2032 | * igb_phy_init_script_igp3 - Inits the IGP3 PHY | ||
2033 | * @hw: pointer to the HW structure | ||
2034 | * | ||
2035 | * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. | ||
2036 | **/ | ||
2037 | s32 igb_phy_init_script_igp3(struct e1000_hw *hw) | ||
2038 | { | ||
2039 | hw_dbg("Running IGP 3 PHY init script\n"); | ||
2040 | |||
2041 | /* PHY init IGP 3 */ | ||
2042 | /* Enable rise/fall, 10-mode work in class-A */ | ||
2043 | hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); | ||
2044 | /* Remove all caps from Replica path filter */ | ||
2045 | hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); | ||
2046 | /* Bias trimming for ADC, AFE and Driver (Default) */ | ||
2047 | hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); | ||
2048 | /* Increase Hybrid poly bias */ | ||
2049 | hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); | ||
2050 | /* Add 4% to TX amplitude in Giga mode */ | ||
2051 | hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); | ||
2052 | /* Disable trimming (TTT) */ | ||
2053 | hw->phy.ops.write_reg(hw, 0x2011, 0x0000); | ||
2054 | /* Poly DC correction to 94.6% + 2% for all channels */ | ||
2055 | hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); | ||
2056 | /* ABS DC correction to 95.9% */ | ||
2057 | hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); | ||
2058 | /* BG temp curve trim */ | ||
2059 | hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); | ||
2060 | /* Increasing ADC OPAMP stage 1 currents to max */ | ||
2061 | hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); | ||
2062 | /* Force 1000 ( required for enabling PHY regs configuration) */ | ||
2063 | hw->phy.ops.write_reg(hw, 0x0000, 0x0140); | ||
2064 | /* Set upd_freq to 6 */ | ||
2065 | hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); | ||
2066 | /* Disable NPDFE */ | ||
2067 | hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); | ||
2068 | /* Disable adaptive fixed FFE (Default) */ | ||
2069 | hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); | ||
2070 | /* Enable FFE hysteresis */ | ||
2071 | hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); | ||
2072 | /* Fixed FFE for short cable lengths */ | ||
2073 | hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); | ||
2074 | /* Fixed FFE for medium cable lengths */ | ||
2075 | hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); | ||
2076 | /* Fixed FFE for long cable lengths */ | ||
2077 | hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); | ||
2078 | /* Enable Adaptive Clip Threshold */ | ||
2079 | hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); | ||
2080 | /* AHT reset limit to 1 */ | ||
2081 | hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); | ||
2082 | /* Set AHT master delay to 127 msec */ | ||
2083 | hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); | ||
2084 | /* Set scan bits for AHT */ | ||
2085 | hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); | ||
2086 | /* Set AHT Preset bits */ | ||
2087 | hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); | ||
2088 | /* Change integ_factor of channel A to 3 */ | ||
2089 | hw->phy.ops.write_reg(hw, 0x1895, 0x0003); | ||
2090 | /* Change prop_factor of channels BCD to 8 */ | ||
2091 | hw->phy.ops.write_reg(hw, 0x1796, 0x0008); | ||
2092 | /* Change cg_icount + enable integbp for channels BCD */ | ||
2093 | hw->phy.ops.write_reg(hw, 0x1798, 0xD008); | ||
2094 | /* | ||
2095 | * Change cg_icount + enable integbp + change prop_factor_master | ||
2096 | * to 8 for channel A | ||
2097 | */ | ||
2098 | hw->phy.ops.write_reg(hw, 0x1898, 0xD918); | ||
2099 | /* Disable AHT in Slave mode on channel A */ | ||
2100 | hw->phy.ops.write_reg(hw, 0x187A, 0x0800); | ||
2101 | /* | ||
2102 | * Enable LPLU and disable AN to 1000 in non-D0a states, | ||
2103 | * Enable SPD+B2B | ||
2104 | */ | ||
2105 | hw->phy.ops.write_reg(hw, 0x0019, 0x008D); | ||
2106 | /* Enable restart AN on an1000_dis change */ | ||
2107 | hw->phy.ops.write_reg(hw, 0x001B, 0x2080); | ||
2108 | /* Enable wh_fifo read clock in 10/100 modes */ | ||
2109 | hw->phy.ops.write_reg(hw, 0x0014, 0x0045); | ||
2110 | /* Restart AN, Speed selection is 1000 */ | ||
2111 | hw->phy.ops.write_reg(hw, 0x0000, 0x1340); | ||
2112 | |||
2113 | return 0; | ||
2114 | } | ||
2115 | |||
2116 | /** | ||
2117 | * igb_power_up_phy_copper - Restore copper link in case of PHY power down | ||
2118 | * @hw: pointer to the HW structure | ||
2119 | * | ||
2120 | * In the case of a PHY power down to save power, or to turn off link during a | ||
2121 | * driver unload, restore the link to previous settings. | ||
2122 | **/ | ||
2123 | void igb_power_up_phy_copper(struct e1000_hw *hw) | ||
2124 | { | ||
2125 | u16 mii_reg = 0; | ||
2126 | |||
2127 | /* The PHY will retain its settings across a power down/up cycle */ | ||
2128 | hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); | ||
2129 | mii_reg &= ~MII_CR_POWER_DOWN; | ||
2130 | hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); | ||
2131 | } | ||
2132 | |||
2133 | /** | ||
2134 | * igb_power_down_phy_copper - Power down copper PHY | ||
2135 | * @hw: pointer to the HW structure | ||
2136 | * | ||
2137 | * Power down PHY to save power when interface is down and wake on lan | ||
2138 | * is not enabled. | ||
2139 | **/ | ||
2140 | void igb_power_down_phy_copper(struct e1000_hw *hw) | ||
2141 | { | ||
2142 | u16 mii_reg = 0; | ||
2143 | |||
2144 | /* The PHY will retain its settings across a power down/up cycle */ | ||
2145 | hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); | ||
2146 | mii_reg |= MII_CR_POWER_DOWN; | ||
2147 | hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); | ||
2148 | msleep(1); | ||
2149 | } | ||
2150 | |||
2151 | /** | ||
2152 | * igb_check_polarity_82580 - Checks the polarity. | ||
2153 | * @hw: pointer to the HW structure | ||
2154 | * | ||
2155 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
2156 | * | ||
2157 | * Polarity is determined based on the PHY specific status register. | ||
2158 | **/ | ||
2159 | static s32 igb_check_polarity_82580(struct e1000_hw *hw) | ||
2160 | { | ||
2161 | struct e1000_phy_info *phy = &hw->phy; | ||
2162 | s32 ret_val; | ||
2163 | u16 data; | ||
2164 | |||
2165 | |||
2166 | ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); | ||
2167 | |||
2168 | if (!ret_val) | ||
2169 | phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY) | ||
2170 | ? e1000_rev_polarity_reversed | ||
2171 | : e1000_rev_polarity_normal; | ||
2172 | |||
2173 | return ret_val; | ||
2174 | } | ||
2175 | |||
2176 | /** | ||
2177 | * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY | ||
2178 | * @hw: pointer to the HW structure | ||
2179 | * | ||
2180 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
2181 | * auto-crossover to force MDI manually. Waits for link and returns | ||
2182 | * successful if link up is successful, else -E1000_ERR_PHY (-2). | ||
2183 | **/ | ||
2184 | s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw) | ||
2185 | { | ||
2186 | struct e1000_phy_info *phy = &hw->phy; | ||
2187 | s32 ret_val; | ||
2188 | u16 phy_data; | ||
2189 | bool link; | ||
2190 | |||
2191 | |||
2192 | ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); | ||
2193 | if (ret_val) | ||
2194 | goto out; | ||
2195 | |||
2196 | igb_phy_force_speed_duplex_setup(hw, &phy_data); | ||
2197 | |||
2198 | ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); | ||
2199 | if (ret_val) | ||
2200 | goto out; | ||
2201 | |||
2202 | /* | ||
2203 | * Clear Auto-Crossover to force MDI manually. 82580 requires MDI | ||
2204 | * forced whenever speed and duplex are forced. | ||
2205 | */ | ||
2206 | ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); | ||
2207 | if (ret_val) | ||
2208 | goto out; | ||
2209 | |||
2210 | phy_data &= ~I82580_PHY_CTRL2_AUTO_MDIX; | ||
2211 | phy_data &= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX; | ||
2212 | |||
2213 | ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); | ||
2214 | if (ret_val) | ||
2215 | goto out; | ||
2216 | |||
2217 | hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data); | ||
2218 | |||
2219 | udelay(1); | ||
2220 | |||
2221 | if (phy->autoneg_wait_to_complete) { | ||
2222 | hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n"); | ||
2223 | |||
2224 | ret_val = igb_phy_has_link(hw, | ||
2225 | PHY_FORCE_LIMIT, | ||
2226 | 100000, | ||
2227 | &link); | ||
2228 | if (ret_val) | ||
2229 | goto out; | ||
2230 | |||
2231 | if (!link) | ||
2232 | hw_dbg("Link taking longer than expected.\n"); | ||
2233 | |||
2234 | /* Try once more */ | ||
2235 | ret_val = igb_phy_has_link(hw, | ||
2236 | PHY_FORCE_LIMIT, | ||
2237 | 100000, | ||
2238 | &link); | ||
2239 | if (ret_val) | ||
2240 | goto out; | ||
2241 | } | ||
2242 | |||
2243 | out: | ||
2244 | return ret_val; | ||
2245 | } | ||
2246 | |||
2247 | /** | ||
2248 | * igb_get_phy_info_82580 - Retrieve I82580 PHY information | ||
2249 | * @hw: pointer to the HW structure | ||
2250 | * | ||
2251 | * Read PHY status to determine if link is up. If link is up, then | ||
2252 | * set/determine 10base-T extended distance and polarity correction. Read | ||
2253 | * PHY port status to determine MDI/MDIx and speed. Based on the speed, | ||
2254 | * determine on the cable length, local and remote receiver. | ||
2255 | **/ | ||
2256 | s32 igb_get_phy_info_82580(struct e1000_hw *hw) | ||
2257 | { | ||
2258 | struct e1000_phy_info *phy = &hw->phy; | ||
2259 | s32 ret_val; | ||
2260 | u16 data; | ||
2261 | bool link; | ||
2262 | |||
2263 | |||
2264 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
2265 | if (ret_val) | ||
2266 | goto out; | ||
2267 | |||
2268 | if (!link) { | ||
2269 | hw_dbg("Phy info is only valid if link is up\n"); | ||
2270 | ret_val = -E1000_ERR_CONFIG; | ||
2271 | goto out; | ||
2272 | } | ||
2273 | |||
2274 | phy->polarity_correction = true; | ||
2275 | |||
2276 | ret_val = igb_check_polarity_82580(hw); | ||
2277 | if (ret_val) | ||
2278 | goto out; | ||
2279 | |||
2280 | ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); | ||
2281 | if (ret_val) | ||
2282 | goto out; | ||
2283 | |||
2284 | phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false; | ||
2285 | |||
2286 | if ((data & I82580_PHY_STATUS2_SPEED_MASK) == | ||
2287 | I82580_PHY_STATUS2_SPEED_1000MBPS) { | ||
2288 | ret_val = hw->phy.ops.get_cable_length(hw); | ||
2289 | if (ret_val) | ||
2290 | goto out; | ||
2291 | |||
2292 | ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); | ||
2293 | if (ret_val) | ||
2294 | goto out; | ||
2295 | |||
2296 | phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) | ||
2297 | ? e1000_1000t_rx_status_ok | ||
2298 | : e1000_1000t_rx_status_not_ok; | ||
2299 | |||
2300 | phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) | ||
2301 | ? e1000_1000t_rx_status_ok | ||
2302 | : e1000_1000t_rx_status_not_ok; | ||
2303 | } else { | ||
2304 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
2305 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
2306 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
2307 | } | ||
2308 | |||
2309 | out: | ||
2310 | return ret_val; | ||
2311 | } | ||
2312 | |||
2313 | /** | ||
2314 | * igb_get_cable_length_82580 - Determine cable length for 82580 PHY | ||
2315 | * @hw: pointer to the HW structure | ||
2316 | * | ||
2317 | * Reads the diagnostic status register and verifies result is valid before | ||
2318 | * placing it in the phy_cable_length field. | ||
2319 | **/ | ||
2320 | s32 igb_get_cable_length_82580(struct e1000_hw *hw) | ||
2321 | { | ||
2322 | struct e1000_phy_info *phy = &hw->phy; | ||
2323 | s32 ret_val; | ||
2324 | u16 phy_data, length; | ||
2325 | |||
2326 | |||
2327 | ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data); | ||
2328 | if (ret_val) | ||
2329 | goto out; | ||
2330 | |||
2331 | length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >> | ||
2332 | I82580_DSTATUS_CABLE_LENGTH_SHIFT; | ||
2333 | |||
2334 | if (length == E1000_CABLE_LENGTH_UNDEFINED) | ||
2335 | ret_val = -E1000_ERR_PHY; | ||
2336 | |||
2337 | phy->cable_length = length; | ||
2338 | |||
2339 | out: | ||
2340 | return ret_val; | ||
2341 | } | ||
diff --git a/drivers/net/igb/e1000_phy.h b/drivers/net/igb/e1000_phy.h new file mode 100644 index 00000000000..8510797b9d8 --- /dev/null +++ b/drivers/net/igb/e1000_phy.h | |||
@@ -0,0 +1,136 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_PHY_H_ | ||
29 | #define _E1000_PHY_H_ | ||
30 | |||
31 | enum e1000_ms_type { | ||
32 | e1000_ms_hw_default = 0, | ||
33 | e1000_ms_force_master, | ||
34 | e1000_ms_force_slave, | ||
35 | e1000_ms_auto | ||
36 | }; | ||
37 | |||
38 | enum e1000_smart_speed { | ||
39 | e1000_smart_speed_default = 0, | ||
40 | e1000_smart_speed_on, | ||
41 | e1000_smart_speed_off | ||
42 | }; | ||
43 | |||
44 | s32 igb_check_downshift(struct e1000_hw *hw); | ||
45 | s32 igb_check_reset_block(struct e1000_hw *hw); | ||
46 | s32 igb_copper_link_setup_igp(struct e1000_hw *hw); | ||
47 | s32 igb_copper_link_setup_m88(struct e1000_hw *hw); | ||
48 | s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw); | ||
49 | s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw); | ||
50 | s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw); | ||
51 | s32 igb_get_cable_length_m88(struct e1000_hw *hw); | ||
52 | s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw); | ||
53 | s32 igb_get_cable_length_igp_2(struct e1000_hw *hw); | ||
54 | s32 igb_get_phy_id(struct e1000_hw *hw); | ||
55 | s32 igb_get_phy_info_igp(struct e1000_hw *hw); | ||
56 | s32 igb_get_phy_info_m88(struct e1000_hw *hw); | ||
57 | s32 igb_phy_sw_reset(struct e1000_hw *hw); | ||
58 | s32 igb_phy_hw_reset(struct e1000_hw *hw); | ||
59 | s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data); | ||
60 | s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active); | ||
61 | s32 igb_setup_copper_link(struct e1000_hw *hw); | ||
62 | s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data); | ||
63 | s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations, | ||
64 | u32 usec_interval, bool *success); | ||
65 | void igb_power_up_phy_copper(struct e1000_hw *hw); | ||
66 | void igb_power_down_phy_copper(struct e1000_hw *hw); | ||
67 | s32 igb_phy_init_script_igp3(struct e1000_hw *hw); | ||
68 | s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data); | ||
69 | s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data); | ||
70 | s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data); | ||
71 | s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data); | ||
72 | s32 igb_copper_link_setup_82580(struct e1000_hw *hw); | ||
73 | s32 igb_get_phy_info_82580(struct e1000_hw *hw); | ||
74 | s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw); | ||
75 | s32 igb_get_cable_length_82580(struct e1000_hw *hw); | ||
76 | |||
77 | /* IGP01E1000 Specific Registers */ | ||
78 | #define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */ | ||
79 | #define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */ | ||
80 | #define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */ | ||
81 | #define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ | ||
82 | #define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ | ||
83 | #define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ | ||
84 | #define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 | ||
85 | #define IGP01E1000_PHY_POLARITY_MASK 0x0078 | ||
86 | #define IGP01E1000_PSCR_AUTO_MDIX 0x1000 | ||
87 | #define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */ | ||
88 | #define IGP01E1000_PSCFR_SMART_SPEED 0x0080 | ||
89 | |||
90 | #define I82580_ADDR_REG 16 | ||
91 | #define I82580_CFG_REG 22 | ||
92 | #define I82580_CFG_ASSERT_CRS_ON_TX (1 << 15) | ||
93 | #define I82580_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */ | ||
94 | #define I82580_CTRL_REG 23 | ||
95 | #define I82580_CTRL_DOWNSHIFT_MASK (7 << 10) | ||
96 | |||
97 | /* 82580 specific PHY registers */ | ||
98 | #define I82580_PHY_CTRL_2 18 | ||
99 | #define I82580_PHY_LBK_CTRL 19 | ||
100 | #define I82580_PHY_STATUS_2 26 | ||
101 | #define I82580_PHY_DIAG_STATUS 31 | ||
102 | |||
103 | /* I82580 PHY Status 2 */ | ||
104 | #define I82580_PHY_STATUS2_REV_POLARITY 0x0400 | ||
105 | #define I82580_PHY_STATUS2_MDIX 0x0800 | ||
106 | #define I82580_PHY_STATUS2_SPEED_MASK 0x0300 | ||
107 | #define I82580_PHY_STATUS2_SPEED_1000MBPS 0x0200 | ||
108 | #define I82580_PHY_STATUS2_SPEED_100MBPS 0x0100 | ||
109 | |||
110 | /* I82580 PHY Control 2 */ | ||
111 | #define I82580_PHY_CTRL2_AUTO_MDIX 0x0400 | ||
112 | #define I82580_PHY_CTRL2_FORCE_MDI_MDIX 0x0200 | ||
113 | |||
114 | /* I82580 PHY Diagnostics Status */ | ||
115 | #define I82580_DSTATUS_CABLE_LENGTH 0x03FC | ||
116 | #define I82580_DSTATUS_CABLE_LENGTH_SHIFT 2 | ||
117 | /* Enable flexible speed on link-up */ | ||
118 | #define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */ | ||
119 | #define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */ | ||
120 | #define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 | ||
121 | #define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 | ||
122 | #define IGP01E1000_PSSR_MDIX 0x0800 | ||
123 | #define IGP01E1000_PSSR_SPEED_MASK 0xC000 | ||
124 | #define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 | ||
125 | #define IGP02E1000_PHY_CHANNEL_NUM 4 | ||
126 | #define IGP02E1000_PHY_AGC_A 0x11B1 | ||
127 | #define IGP02E1000_PHY_AGC_B 0x12B1 | ||
128 | #define IGP02E1000_PHY_AGC_C 0x14B1 | ||
129 | #define IGP02E1000_PHY_AGC_D 0x18B1 | ||
130 | #define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */ | ||
131 | #define IGP02E1000_AGC_LENGTH_MASK 0x7F | ||
132 | #define IGP02E1000_AGC_RANGE 15 | ||
133 | |||
134 | #define E1000_CABLE_LENGTH_UNDEFINED 0xFF | ||
135 | |||
136 | #endif | ||
diff --git a/drivers/net/igb/e1000_regs.h b/drivers/net/igb/e1000_regs.h new file mode 100644 index 00000000000..0990f6d860c --- /dev/null +++ b/drivers/net/igb/e1000_regs.h | |||
@@ -0,0 +1,354 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_REGS_H_ | ||
29 | #define _E1000_REGS_H_ | ||
30 | |||
31 | #define E1000_CTRL 0x00000 /* Device Control - RW */ | ||
32 | #define E1000_STATUS 0x00008 /* Device Status - RO */ | ||
33 | #define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ | ||
34 | #define E1000_EERD 0x00014 /* EEPROM Read - RW */ | ||
35 | #define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ | ||
36 | #define E1000_MDIC 0x00020 /* MDI Control - RW */ | ||
37 | #define E1000_MDICNFG 0x00E04 /* MDI Config - RW */ | ||
38 | #define E1000_SCTL 0x00024 /* SerDes Control - RW */ | ||
39 | #define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ | ||
40 | #define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ | ||
41 | #define E1000_FCT 0x00030 /* Flow Control Type - RW */ | ||
42 | #define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */ | ||
43 | #define E1000_VET 0x00038 /* VLAN Ether Type - RW */ | ||
44 | #define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ | ||
45 | #define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ | ||
46 | #define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ | ||
47 | #define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ | ||
48 | #define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ | ||
49 | #define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ | ||
50 | #define E1000_RCTL 0x00100 /* RX Control - RW */ | ||
51 | #define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ | ||
52 | #define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ | ||
53 | #define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */ | ||
54 | #define E1000_EITR(_n) (0x01680 + (0x4 * (_n))) | ||
55 | #define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */ | ||
56 | #define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */ | ||
57 | #define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */ | ||
58 | #define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */ | ||
59 | #define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */ | ||
60 | #define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */ | ||
61 | #define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */ | ||
62 | #define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */ | ||
63 | #define E1000_TCTL 0x00400 /* TX Control - RW */ | ||
64 | #define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */ | ||
65 | #define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */ | ||
66 | #define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ | ||
67 | #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ | ||
68 | #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ | ||
69 | #define E1000_PBS 0x01008 /* Packet Buffer Size */ | ||
70 | #define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ | ||
71 | #define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ | ||
72 | #define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */ | ||
73 | #define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */ | ||
74 | #define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */ | ||
75 | #define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ | ||
76 | #define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ | ||
77 | #define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */ | ||
78 | |||
79 | /* IEEE 1588 TIMESYNCH */ | ||
80 | #define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */ | ||
81 | #define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */ | ||
82 | #define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */ | ||
83 | #define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */ | ||
84 | #define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */ | ||
85 | #define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */ | ||
86 | #define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */ | ||
87 | #define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */ | ||
88 | #define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */ | ||
89 | #define E1000_SYSTIML 0x0B600 /* System time register Low - RO */ | ||
90 | #define E1000_SYSTIMH 0x0B604 /* System time register High - RO */ | ||
91 | #define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */ | ||
92 | #define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */ | ||
93 | #define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */ | ||
94 | |||
95 | /* Filtering Registers */ | ||
96 | #define E1000_SAQF(_n) (0x5980 + 4 * (_n)) | ||
97 | #define E1000_DAQF(_n) (0x59A0 + 4 * (_n)) | ||
98 | #define E1000_SPQF(_n) (0x59C0 + 4 * (_n)) | ||
99 | #define E1000_FTQF(_n) (0x59E0 + 4 * (_n)) | ||
100 | #define E1000_SAQF0 E1000_SAQF(0) | ||
101 | #define E1000_DAQF0 E1000_DAQF(0) | ||
102 | #define E1000_SPQF0 E1000_SPQF(0) | ||
103 | #define E1000_FTQF0 E1000_FTQF(0) | ||
104 | #define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */ | ||
105 | #define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */ | ||
106 | |||
107 | #define E1000_RQDPC(_n) (0x0C030 + ((_n) * 0x40)) | ||
108 | |||
109 | /* DMA Coalescing registers */ | ||
110 | #define E1000_DMACR 0x02508 /* Control Register */ | ||
111 | #define E1000_DMCTXTH 0x03550 /* Transmit Threshold */ | ||
112 | #define E1000_DMCTLX 0x02514 /* Time to Lx Request */ | ||
113 | #define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */ | ||
114 | #define E1000_DMCCNT 0x05DD4 /* Current Rx Count */ | ||
115 | #define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */ | ||
116 | #define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */ | ||
117 | |||
118 | /* TX Rate Limit Registers */ | ||
119 | #define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select - WO */ | ||
120 | #define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config - WO */ | ||
121 | |||
122 | /* Split and Replication RX Control - RW */ | ||
123 | #define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */ | ||
124 | /* | ||
125 | * Convenience macros | ||
126 | * | ||
127 | * Note: "_n" is the queue number of the register to be written to. | ||
128 | * | ||
129 | * Example usage: | ||
130 | * E1000_RDBAL_REG(current_rx_queue) | ||
131 | */ | ||
132 | #define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) \ | ||
133 | : (0x0C000 + ((_n) * 0x40))) | ||
134 | #define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) \ | ||
135 | : (0x0C004 + ((_n) * 0x40))) | ||
136 | #define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) \ | ||
137 | : (0x0C008 + ((_n) * 0x40))) | ||
138 | #define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) \ | ||
139 | : (0x0C00C + ((_n) * 0x40))) | ||
140 | #define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) \ | ||
141 | : (0x0C010 + ((_n) * 0x40))) | ||
142 | #define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) \ | ||
143 | : (0x0C018 + ((_n) * 0x40))) | ||
144 | #define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) \ | ||
145 | : (0x0C028 + ((_n) * 0x40))) | ||
146 | #define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) \ | ||
147 | : (0x0E000 + ((_n) * 0x40))) | ||
148 | #define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) \ | ||
149 | : (0x0E004 + ((_n) * 0x40))) | ||
150 | #define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) \ | ||
151 | : (0x0E008 + ((_n) * 0x40))) | ||
152 | #define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) \ | ||
153 | : (0x0E010 + ((_n) * 0x40))) | ||
154 | #define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) \ | ||
155 | : (0x0E018 + ((_n) * 0x40))) | ||
156 | #define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) \ | ||
157 | : (0x0E028 + ((_n) * 0x40))) | ||
158 | #define E1000_DCA_TXCTRL(_n) (0x03814 + (_n << 8)) | ||
159 | #define E1000_DCA_RXCTRL(_n) (0x02814 + (_n << 8)) | ||
160 | #define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) \ | ||
161 | : (0x0E038 + ((_n) * 0x40))) | ||
162 | #define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) \ | ||
163 | : (0x0E03C + ((_n) * 0x40))) | ||
164 | #define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ | ||
165 | #define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ | ||
166 | #define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ | ||
167 | #define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */ | ||
168 | #define E1000_DTXCTL 0x03590 /* DMA TX Control - RW */ | ||
169 | #define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ | ||
170 | #define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ | ||
171 | #define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ | ||
172 | #define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ | ||
173 | #define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ | ||
174 | #define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ | ||
175 | #define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ | ||
176 | #define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ | ||
177 | #define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ | ||
178 | #define E1000_COLC 0x04028 /* Collision Count - R/clr */ | ||
179 | #define E1000_DC 0x04030 /* Defer Count - R/clr */ | ||
180 | #define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */ | ||
181 | #define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ | ||
182 | #define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ | ||
183 | #define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ | ||
184 | #define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */ | ||
185 | #define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */ | ||
186 | #define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */ | ||
187 | #define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */ | ||
188 | #define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */ | ||
189 | #define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */ | ||
190 | #define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */ | ||
191 | #define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */ | ||
192 | #define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */ | ||
193 | #define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */ | ||
194 | #define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */ | ||
195 | #define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */ | ||
196 | #define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */ | ||
197 | #define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */ | ||
198 | #define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */ | ||
199 | #define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */ | ||
200 | #define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */ | ||
201 | #define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */ | ||
202 | #define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */ | ||
203 | #define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */ | ||
204 | #define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */ | ||
205 | #define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */ | ||
206 | #define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */ | ||
207 | #define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */ | ||
208 | #define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */ | ||
209 | #define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ | ||
210 | #define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */ | ||
211 | #define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */ | ||
212 | #define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */ | ||
213 | #define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */ | ||
214 | #define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */ | ||
215 | #define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */ | ||
216 | #define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */ | ||
217 | #define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */ | ||
218 | #define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */ | ||
219 | #define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */ | ||
220 | #define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */ | ||
221 | #define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */ | ||
222 | #define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */ | ||
223 | #define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */ | ||
224 | #define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ | ||
225 | #define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ | ||
226 | #define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ | ||
227 | #define E1000_IAC 0x04100 /* Interrupt Assertion Count */ | ||
228 | /* Interrupt Cause Rx Packet Timer Expire Count */ | ||
229 | #define E1000_ICRXPTC 0x04104 | ||
230 | /* Interrupt Cause Rx Absolute Timer Expire Count */ | ||
231 | #define E1000_ICRXATC 0x04108 | ||
232 | /* Interrupt Cause Tx Packet Timer Expire Count */ | ||
233 | #define E1000_ICTXPTC 0x0410C | ||
234 | /* Interrupt Cause Tx Absolute Timer Expire Count */ | ||
235 | #define E1000_ICTXATC 0x04110 | ||
236 | /* Interrupt Cause Tx Queue Empty Count */ | ||
237 | #define E1000_ICTXQEC 0x04118 | ||
238 | /* Interrupt Cause Tx Queue Minimum Threshold Count */ | ||
239 | #define E1000_ICTXQMTC 0x0411C | ||
240 | /* Interrupt Cause Rx Descriptor Minimum Threshold Count */ | ||
241 | #define E1000_ICRXDMTC 0x04120 | ||
242 | #define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ | ||
243 | #define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */ | ||
244 | #define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */ | ||
245 | #define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */ | ||
246 | #define E1000_CBTMPC 0x0402C /* Circuit Breaker TX Packet Count */ | ||
247 | #define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */ | ||
248 | #define E1000_CBRMPC 0x040FC /* Circuit Breaker RX Packet Count */ | ||
249 | #define E1000_RPTHC 0x04104 /* Rx Packets To Host */ | ||
250 | #define E1000_HGPTC 0x04118 /* Host Good Packets TX Count */ | ||
251 | #define E1000_HTCBDPC 0x04124 /* Host TX Circuit Breaker Dropped Count */ | ||
252 | #define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */ | ||
253 | #define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */ | ||
254 | #define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */ | ||
255 | #define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */ | ||
256 | #define E1000_LENERRS 0x04138 /* Length Errors Count */ | ||
257 | #define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */ | ||
258 | #define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */ | ||
259 | #define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */ | ||
260 | #define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */ | ||
261 | #define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Page - RW */ | ||
262 | #define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ | ||
263 | #define E1000_RLPML 0x05004 /* RX Long Packet Max Length */ | ||
264 | #define E1000_RFCTL 0x05008 /* Receive Filter Control*/ | ||
265 | #define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ | ||
266 | #define E1000_RA 0x05400 /* Receive Address - RW Array */ | ||
267 | #define E1000_RA2 0x054E0 /* 2nd half of receive address array - RW Array */ | ||
268 | #define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4)) | ||
269 | #define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \ | ||
270 | (0x054E0 + ((_i - 16) * 8))) | ||
271 | #define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \ | ||
272 | (0x054E4 + ((_i - 16) * 8))) | ||
273 | #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8)) | ||
274 | #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4)) | ||
275 | #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4)) | ||
276 | #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8)) | ||
277 | #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8)) | ||
278 | #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8)) | ||
279 | #define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ | ||
280 | #define E1000_VT_CTL 0x0581C /* VMDq Control - RW */ | ||
281 | #define E1000_WUC 0x05800 /* Wakeup Control - RW */ | ||
282 | #define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ | ||
283 | #define E1000_WUS 0x05810 /* Wakeup Status - RO */ | ||
284 | #define E1000_MANC 0x05820 /* Management Control - RW */ | ||
285 | #define E1000_IPAV 0x05838 /* IP Address Valid - RW */ | ||
286 | #define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ | ||
287 | |||
288 | #define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */ | ||
289 | #define E1000_CCMCTL 0x05B48 /* CCM Control Register */ | ||
290 | #define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */ | ||
291 | #define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */ | ||
292 | #define E1000_GCR 0x05B00 /* PCI-Ex Control */ | ||
293 | #define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ | ||
294 | #define E1000_SWSM 0x05B50 /* SW Semaphore */ | ||
295 | #define E1000_FWSM 0x05B54 /* FW Semaphore */ | ||
296 | #define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */ | ||
297 | |||
298 | /* RSS registers */ | ||
299 | #define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ | ||
300 | #define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */ | ||
301 | #define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate Interrupt Ext*/ | ||
302 | #define E1000_IMIRVP 0x05AC0 /* Immediate Interrupt RX VLAN Priority - RW */ | ||
303 | /* MSI-X Allocation Register (_i) - RW */ | ||
304 | #define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) | ||
305 | /* Redirection Table - RW Array */ | ||
306 | #define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) | ||
307 | #define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW Array */ | ||
308 | |||
309 | /* VT Registers */ | ||
310 | #define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */ | ||
311 | #define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */ | ||
312 | #define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */ | ||
313 | #define E1000_VFRE 0x00C8C /* VF Receive Enables */ | ||
314 | #define E1000_VFTE 0x00C90 /* VF Transmit Enables */ | ||
315 | #define E1000_QDE 0x02408 /* Queue Drop Enable - RW */ | ||
316 | #define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */ | ||
317 | #define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */ | ||
318 | #define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */ | ||
319 | #define E1000_UTA 0x0A000 /* Unicast Table Array - RW */ | ||
320 | #define E1000_IOVTCL 0x05BBC /* IOV Control Register */ | ||
321 | /* These act per VF so an array friendly macro is used */ | ||
322 | #define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n))) | ||
323 | #define E1000_VMBMEM(_n) (0x00800 + (64 * (_n))) | ||
324 | #define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n))) | ||
325 | #define E1000_VLVF(_n) (0x05D00 + (4 * (_n))) /* VLAN Virtual Machine | ||
326 | * Filter - RW */ | ||
327 | #define E1000_VMVIR(_n) (0x03700 + (4 * (_n))) | ||
328 | |||
329 | #define wr32(reg, value) (writel(value, hw->hw_addr + reg)) | ||
330 | #define rd32(reg) (readl(hw->hw_addr + reg)) | ||
331 | #define wrfl() ((void)rd32(E1000_STATUS)) | ||
332 | |||
333 | #define array_wr32(reg, offset, value) \ | ||
334 | (writel(value, hw->hw_addr + reg + ((offset) << 2))) | ||
335 | #define array_rd32(reg, offset) \ | ||
336 | (readl(hw->hw_addr + reg + ((offset) << 2))) | ||
337 | |||
338 | /* DMA Coalescing registers */ | ||
339 | #define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */ | ||
340 | |||
341 | /* Energy Efficient Ethernet "EEE" register */ | ||
342 | #define E1000_IPCNFG 0x0E38 /* Internal PHY Configuration */ | ||
343 | #define E1000_EEER 0x0E30 /* Energy Efficient Ethernet */ | ||
344 | |||
345 | /* Thermal Sensor Register */ | ||
346 | #define E1000_THSTAT 0x08110 /* Thermal Sensor Status */ | ||
347 | |||
348 | /* OS2BMC Registers */ | ||
349 | #define E1000_B2OSPC 0x08FE0 /* BMC2OS packets sent by BMC */ | ||
350 | #define E1000_B2OGPRC 0x04158 /* BMC2OS packets received by host */ | ||
351 | #define E1000_O2BGPTC 0x08FE4 /* OS2BMC packets received by BMC */ | ||
352 | #define E1000_O2BSPC 0x0415C /* OS2BMC packets transmitted by host */ | ||
353 | |||
354 | #endif | ||
diff --git a/drivers/net/igb/igb.h b/drivers/net/igb/igb.h new file mode 100644 index 00000000000..265e151b66c --- /dev/null +++ b/drivers/net/igb/igb.h | |||
@@ -0,0 +1,415 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | |||
29 | /* Linux PRO/1000 Ethernet Driver main header file */ | ||
30 | |||
31 | #ifndef _IGB_H_ | ||
32 | #define _IGB_H_ | ||
33 | |||
34 | #include "e1000_mac.h" | ||
35 | #include "e1000_82575.h" | ||
36 | |||
37 | #include <linux/clocksource.h> | ||
38 | #include <linux/timecompare.h> | ||
39 | #include <linux/net_tstamp.h> | ||
40 | #include <linux/bitops.h> | ||
41 | #include <linux/if_vlan.h> | ||
42 | |||
43 | struct igb_adapter; | ||
44 | |||
45 | /* ((1000000000ns / (6000ints/s * 1024ns)) << 2 = 648 */ | ||
46 | #define IGB_START_ITR 648 | ||
47 | |||
48 | /* TX/RX descriptor defines */ | ||
49 | #define IGB_DEFAULT_TXD 256 | ||
50 | #define IGB_MIN_TXD 80 | ||
51 | #define IGB_MAX_TXD 4096 | ||
52 | |||
53 | #define IGB_DEFAULT_RXD 256 | ||
54 | #define IGB_MIN_RXD 80 | ||
55 | #define IGB_MAX_RXD 4096 | ||
56 | |||
57 | #define IGB_DEFAULT_ITR 3 /* dynamic */ | ||
58 | #define IGB_MAX_ITR_USECS 10000 | ||
59 | #define IGB_MIN_ITR_USECS 10 | ||
60 | #define NON_Q_VECTORS 1 | ||
61 | #define MAX_Q_VECTORS 8 | ||
62 | |||
63 | /* Transmit and receive queues */ | ||
64 | #define IGB_MAX_RX_QUEUES (adapter->vfs_allocated_count ? 2 : \ | ||
65 | (hw->mac.type > e1000_82575 ? 8 : 4)) | ||
66 | #define IGB_ABS_MAX_TX_QUEUES 8 | ||
67 | #define IGB_MAX_TX_QUEUES IGB_MAX_RX_QUEUES | ||
68 | |||
69 | #define IGB_MAX_VF_MC_ENTRIES 30 | ||
70 | #define IGB_MAX_VF_FUNCTIONS 8 | ||
71 | #define IGB_MAX_VFTA_ENTRIES 128 | ||
72 | |||
73 | struct vf_data_storage { | ||
74 | unsigned char vf_mac_addresses[ETH_ALEN]; | ||
75 | u16 vf_mc_hashes[IGB_MAX_VF_MC_ENTRIES]; | ||
76 | u16 num_vf_mc_hashes; | ||
77 | u16 vlans_enabled; | ||
78 | u32 flags; | ||
79 | unsigned long last_nack; | ||
80 | u16 pf_vlan; /* When set, guest VLAN config not allowed. */ | ||
81 | u16 pf_qos; | ||
82 | u16 tx_rate; | ||
83 | }; | ||
84 | |||
85 | #define IGB_VF_FLAG_CTS 0x00000001 /* VF is clear to send data */ | ||
86 | #define IGB_VF_FLAG_UNI_PROMISC 0x00000002 /* VF has unicast promisc */ | ||
87 | #define IGB_VF_FLAG_MULTI_PROMISC 0x00000004 /* VF has multicast promisc */ | ||
88 | #define IGB_VF_FLAG_PF_SET_MAC 0x00000008 /* PF has set MAC address */ | ||
89 | |||
90 | /* RX descriptor control thresholds. | ||
91 | * PTHRESH - MAC will consider prefetch if it has fewer than this number of | ||
92 | * descriptors available in its onboard memory. | ||
93 | * Setting this to 0 disables RX descriptor prefetch. | ||
94 | * HTHRESH - MAC will only prefetch if there are at least this many descriptors | ||
95 | * available in host memory. | ||
96 | * If PTHRESH is 0, this should also be 0. | ||
97 | * WTHRESH - RX descriptor writeback threshold - MAC will delay writing back | ||
98 | * descriptors until either it has this many to write back, or the | ||
99 | * ITR timer expires. | ||
100 | */ | ||
101 | #define IGB_RX_PTHRESH 8 | ||
102 | #define IGB_RX_HTHRESH 8 | ||
103 | #define IGB_RX_WTHRESH 1 | ||
104 | #define IGB_TX_PTHRESH 8 | ||
105 | #define IGB_TX_HTHRESH 1 | ||
106 | #define IGB_TX_WTHRESH ((hw->mac.type == e1000_82576 && \ | ||
107 | adapter->msix_entries) ? 1 : 16) | ||
108 | |||
109 | /* this is the size past which hardware will drop packets when setting LPE=0 */ | ||
110 | #define MAXIMUM_ETHERNET_VLAN_SIZE 1522 | ||
111 | |||
112 | /* Supported Rx Buffer Sizes */ | ||
113 | #define IGB_RXBUFFER_64 64 /* Used for packet split */ | ||
114 | #define IGB_RXBUFFER_128 128 /* Used for packet split */ | ||
115 | #define IGB_RXBUFFER_1024 1024 | ||
116 | #define IGB_RXBUFFER_2048 2048 | ||
117 | #define IGB_RXBUFFER_16384 16384 | ||
118 | |||
119 | #define MAX_STD_JUMBO_FRAME_SIZE 9234 | ||
120 | |||
121 | /* How many Tx Descriptors do we need to call netif_wake_queue ? */ | ||
122 | #define IGB_TX_QUEUE_WAKE 16 | ||
123 | /* How many Rx Buffers do we bundle into one write to the hardware ? */ | ||
124 | #define IGB_RX_BUFFER_WRITE 16 /* Must be power of 2 */ | ||
125 | |||
126 | #define AUTO_ALL_MODES 0 | ||
127 | #define IGB_EEPROM_APME 0x0400 | ||
128 | |||
129 | #ifndef IGB_MASTER_SLAVE | ||
130 | /* Switch to override PHY master/slave setting */ | ||
131 | #define IGB_MASTER_SLAVE e1000_ms_hw_default | ||
132 | #endif | ||
133 | |||
134 | #define IGB_MNG_VLAN_NONE -1 | ||
135 | |||
136 | /* wrapper around a pointer to a socket buffer, | ||
137 | * so a DMA handle can be stored along with the buffer */ | ||
138 | struct igb_buffer { | ||
139 | struct sk_buff *skb; | ||
140 | dma_addr_t dma; | ||
141 | union { | ||
142 | /* TX */ | ||
143 | struct { | ||
144 | unsigned long time_stamp; | ||
145 | u16 length; | ||
146 | u16 next_to_watch; | ||
147 | unsigned int bytecount; | ||
148 | u16 gso_segs; | ||
149 | u8 tx_flags; | ||
150 | u8 mapped_as_page; | ||
151 | }; | ||
152 | /* RX */ | ||
153 | struct { | ||
154 | struct page *page; | ||
155 | dma_addr_t page_dma; | ||
156 | u16 page_offset; | ||
157 | }; | ||
158 | }; | ||
159 | }; | ||
160 | |||
161 | struct igb_tx_queue_stats { | ||
162 | u64 packets; | ||
163 | u64 bytes; | ||
164 | u64 restart_queue; | ||
165 | u64 restart_queue2; | ||
166 | }; | ||
167 | |||
168 | struct igb_rx_queue_stats { | ||
169 | u64 packets; | ||
170 | u64 bytes; | ||
171 | u64 drops; | ||
172 | u64 csum_err; | ||
173 | u64 alloc_failed; | ||
174 | }; | ||
175 | |||
176 | struct igb_q_vector { | ||
177 | struct igb_adapter *adapter; /* backlink */ | ||
178 | struct igb_ring *rx_ring; | ||
179 | struct igb_ring *tx_ring; | ||
180 | struct napi_struct napi; | ||
181 | |||
182 | u32 eims_value; | ||
183 | u16 cpu; | ||
184 | |||
185 | u16 itr_val; | ||
186 | u8 set_itr; | ||
187 | void __iomem *itr_register; | ||
188 | |||
189 | char name[IFNAMSIZ + 9]; | ||
190 | }; | ||
191 | |||
192 | struct igb_ring { | ||
193 | struct igb_q_vector *q_vector; /* backlink to q_vector */ | ||
194 | struct net_device *netdev; /* back pointer to net_device */ | ||
195 | struct device *dev; /* device pointer for dma mapping */ | ||
196 | dma_addr_t dma; /* phys address of the ring */ | ||
197 | void *desc; /* descriptor ring memory */ | ||
198 | unsigned int size; /* length of desc. ring in bytes */ | ||
199 | u16 count; /* number of desc. in the ring */ | ||
200 | u16 next_to_use; | ||
201 | u16 next_to_clean; | ||
202 | u8 queue_index; | ||
203 | u8 reg_idx; | ||
204 | void __iomem *head; | ||
205 | void __iomem *tail; | ||
206 | struct igb_buffer *buffer_info; /* array of buffer info structs */ | ||
207 | |||
208 | unsigned int total_bytes; | ||
209 | unsigned int total_packets; | ||
210 | |||
211 | u32 flags; | ||
212 | |||
213 | union { | ||
214 | /* TX */ | ||
215 | struct { | ||
216 | struct igb_tx_queue_stats tx_stats; | ||
217 | struct u64_stats_sync tx_syncp; | ||
218 | struct u64_stats_sync tx_syncp2; | ||
219 | bool detect_tx_hung; | ||
220 | }; | ||
221 | /* RX */ | ||
222 | struct { | ||
223 | struct igb_rx_queue_stats rx_stats; | ||
224 | struct u64_stats_sync rx_syncp; | ||
225 | u32 rx_buffer_len; | ||
226 | }; | ||
227 | }; | ||
228 | }; | ||
229 | |||
230 | #define IGB_RING_FLAG_RX_CSUM 0x00000001 /* RX CSUM enabled */ | ||
231 | #define IGB_RING_FLAG_RX_SCTP_CSUM 0x00000002 /* SCTP CSUM offload enabled */ | ||
232 | |||
233 | #define IGB_RING_FLAG_TX_CTX_IDX 0x00000001 /* HW requires context index */ | ||
234 | |||
235 | #define IGB_ADVTXD_DCMD (E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS) | ||
236 | |||
237 | #define E1000_RX_DESC_ADV(R, i) \ | ||
238 | (&(((union e1000_adv_rx_desc *)((R).desc))[i])) | ||
239 | #define E1000_TX_DESC_ADV(R, i) \ | ||
240 | (&(((union e1000_adv_tx_desc *)((R).desc))[i])) | ||
241 | #define E1000_TX_CTXTDESC_ADV(R, i) \ | ||
242 | (&(((struct e1000_adv_tx_context_desc *)((R).desc))[i])) | ||
243 | |||
244 | /* igb_desc_unused - calculate if we have unused descriptors */ | ||
245 | static inline int igb_desc_unused(struct igb_ring *ring) | ||
246 | { | ||
247 | if (ring->next_to_clean > ring->next_to_use) | ||
248 | return ring->next_to_clean - ring->next_to_use - 1; | ||
249 | |||
250 | return ring->count + ring->next_to_clean - ring->next_to_use - 1; | ||
251 | } | ||
252 | |||
253 | /* board specific private data structure */ | ||
254 | struct igb_adapter { | ||
255 | struct timer_list watchdog_timer; | ||
256 | struct timer_list phy_info_timer; | ||
257 | unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; | ||
258 | u16 mng_vlan_id; | ||
259 | u32 bd_number; | ||
260 | u32 wol; | ||
261 | u32 en_mng_pt; | ||
262 | u16 link_speed; | ||
263 | u16 link_duplex; | ||
264 | |||
265 | /* Interrupt Throttle Rate */ | ||
266 | u32 rx_itr_setting; | ||
267 | u32 tx_itr_setting; | ||
268 | u16 tx_itr; | ||
269 | u16 rx_itr; | ||
270 | |||
271 | struct work_struct reset_task; | ||
272 | struct work_struct watchdog_task; | ||
273 | bool fc_autoneg; | ||
274 | u8 tx_timeout_factor; | ||
275 | struct timer_list blink_timer; | ||
276 | unsigned long led_status; | ||
277 | |||
278 | /* TX */ | ||
279 | struct igb_ring *tx_ring[16]; | ||
280 | u32 tx_timeout_count; | ||
281 | |||
282 | /* RX */ | ||
283 | struct igb_ring *rx_ring[16]; | ||
284 | int num_tx_queues; | ||
285 | int num_rx_queues; | ||
286 | |||
287 | u32 max_frame_size; | ||
288 | u32 min_frame_size; | ||
289 | |||
290 | /* OS defined structs */ | ||
291 | struct net_device *netdev; | ||
292 | struct pci_dev *pdev; | ||
293 | struct cyclecounter cycles; | ||
294 | struct timecounter clock; | ||
295 | struct timecompare compare; | ||
296 | struct hwtstamp_config hwtstamp_config; | ||
297 | |||
298 | spinlock_t stats64_lock; | ||
299 | struct rtnl_link_stats64 stats64; | ||
300 | |||
301 | /* structs defined in e1000_hw.h */ | ||
302 | struct e1000_hw hw; | ||
303 | struct e1000_hw_stats stats; | ||
304 | struct e1000_phy_info phy_info; | ||
305 | struct e1000_phy_stats phy_stats; | ||
306 | |||
307 | u32 test_icr; | ||
308 | struct igb_ring test_tx_ring; | ||
309 | struct igb_ring test_rx_ring; | ||
310 | |||
311 | int msg_enable; | ||
312 | |||
313 | unsigned int num_q_vectors; | ||
314 | struct igb_q_vector *q_vector[MAX_Q_VECTORS]; | ||
315 | struct msix_entry *msix_entries; | ||
316 | u32 eims_enable_mask; | ||
317 | u32 eims_other; | ||
318 | |||
319 | /* to not mess up cache alignment, always add to the bottom */ | ||
320 | unsigned long state; | ||
321 | unsigned int flags; | ||
322 | u32 eeprom_wol; | ||
323 | |||
324 | struct igb_ring *multi_tx_table[IGB_ABS_MAX_TX_QUEUES]; | ||
325 | u16 tx_ring_count; | ||
326 | u16 rx_ring_count; | ||
327 | unsigned int vfs_allocated_count; | ||
328 | struct vf_data_storage *vf_data; | ||
329 | int vf_rate_link_speed; | ||
330 | u32 rss_queues; | ||
331 | u32 wvbr; | ||
332 | }; | ||
333 | |||
334 | #define IGB_FLAG_HAS_MSI (1 << 0) | ||
335 | #define IGB_FLAG_DCA_ENABLED (1 << 1) | ||
336 | #define IGB_FLAG_QUAD_PORT_A (1 << 2) | ||
337 | #define IGB_FLAG_QUEUE_PAIRS (1 << 3) | ||
338 | #define IGB_FLAG_DMAC (1 << 4) | ||
339 | |||
340 | /* DMA Coalescing defines */ | ||
341 | #define IGB_MIN_TXPBSIZE 20408 | ||
342 | #define IGB_TX_BUF_4096 4096 | ||
343 | #define IGB_DMCTLX_DCFLUSH_DIS 0x80000000 /* Disable DMA Coal Flush */ | ||
344 | |||
345 | #define IGB_82576_TSYNC_SHIFT 19 | ||
346 | #define IGB_82580_TSYNC_SHIFT 24 | ||
347 | #define IGB_TS_HDR_LEN 16 | ||
348 | enum e1000_state_t { | ||
349 | __IGB_TESTING, | ||
350 | __IGB_RESETTING, | ||
351 | __IGB_DOWN | ||
352 | }; | ||
353 | |||
354 | enum igb_boards { | ||
355 | board_82575, | ||
356 | }; | ||
357 | |||
358 | extern char igb_driver_name[]; | ||
359 | extern char igb_driver_version[]; | ||
360 | |||
361 | extern int igb_up(struct igb_adapter *); | ||
362 | extern void igb_down(struct igb_adapter *); | ||
363 | extern void igb_reinit_locked(struct igb_adapter *); | ||
364 | extern void igb_reset(struct igb_adapter *); | ||
365 | extern int igb_set_spd_dplx(struct igb_adapter *, u32, u8); | ||
366 | extern int igb_setup_tx_resources(struct igb_ring *); | ||
367 | extern int igb_setup_rx_resources(struct igb_ring *); | ||
368 | extern void igb_free_tx_resources(struct igb_ring *); | ||
369 | extern void igb_free_rx_resources(struct igb_ring *); | ||
370 | extern void igb_configure_tx_ring(struct igb_adapter *, struct igb_ring *); | ||
371 | extern void igb_configure_rx_ring(struct igb_adapter *, struct igb_ring *); | ||
372 | extern void igb_setup_tctl(struct igb_adapter *); | ||
373 | extern void igb_setup_rctl(struct igb_adapter *); | ||
374 | extern netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *, struct igb_ring *); | ||
375 | extern void igb_unmap_and_free_tx_resource(struct igb_ring *, | ||
376 | struct igb_buffer *); | ||
377 | extern void igb_alloc_rx_buffers_adv(struct igb_ring *, int); | ||
378 | extern void igb_update_stats(struct igb_adapter *, struct rtnl_link_stats64 *); | ||
379 | extern bool igb_has_link(struct igb_adapter *adapter); | ||
380 | extern void igb_set_ethtool_ops(struct net_device *); | ||
381 | extern void igb_power_up_link(struct igb_adapter *); | ||
382 | |||
383 | static inline s32 igb_reset_phy(struct e1000_hw *hw) | ||
384 | { | ||
385 | if (hw->phy.ops.reset) | ||
386 | return hw->phy.ops.reset(hw); | ||
387 | |||
388 | return 0; | ||
389 | } | ||
390 | |||
391 | static inline s32 igb_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) | ||
392 | { | ||
393 | if (hw->phy.ops.read_reg) | ||
394 | return hw->phy.ops.read_reg(hw, offset, data); | ||
395 | |||
396 | return 0; | ||
397 | } | ||
398 | |||
399 | static inline s32 igb_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) | ||
400 | { | ||
401 | if (hw->phy.ops.write_reg) | ||
402 | return hw->phy.ops.write_reg(hw, offset, data); | ||
403 | |||
404 | return 0; | ||
405 | } | ||
406 | |||
407 | static inline s32 igb_get_phy_info(struct e1000_hw *hw) | ||
408 | { | ||
409 | if (hw->phy.ops.get_phy_info) | ||
410 | return hw->phy.ops.get_phy_info(hw); | ||
411 | |||
412 | return 0; | ||
413 | } | ||
414 | |||
415 | #endif /* _IGB_H_ */ | ||
diff --git a/drivers/net/igb/igb_ethtool.c b/drivers/net/igb/igb_ethtool.c new file mode 100644 index 00000000000..414b0225be8 --- /dev/null +++ b/drivers/net/igb/igb_ethtool.c | |||
@@ -0,0 +1,2201 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | /* ethtool support for igb */ | ||
29 | |||
30 | #include <linux/vmalloc.h> | ||
31 | #include <linux/netdevice.h> | ||
32 | #include <linux/pci.h> | ||
33 | #include <linux/delay.h> | ||
34 | #include <linux/interrupt.h> | ||
35 | #include <linux/if_ether.h> | ||
36 | #include <linux/ethtool.h> | ||
37 | #include <linux/sched.h> | ||
38 | #include <linux/slab.h> | ||
39 | |||
40 | #include "igb.h" | ||
41 | |||
42 | struct igb_stats { | ||
43 | char stat_string[ETH_GSTRING_LEN]; | ||
44 | int sizeof_stat; | ||
45 | int stat_offset; | ||
46 | }; | ||
47 | |||
48 | #define IGB_STAT(_name, _stat) { \ | ||
49 | .stat_string = _name, \ | ||
50 | .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \ | ||
51 | .stat_offset = offsetof(struct igb_adapter, _stat) \ | ||
52 | } | ||
53 | static const struct igb_stats igb_gstrings_stats[] = { | ||
54 | IGB_STAT("rx_packets", stats.gprc), | ||
55 | IGB_STAT("tx_packets", stats.gptc), | ||
56 | IGB_STAT("rx_bytes", stats.gorc), | ||
57 | IGB_STAT("tx_bytes", stats.gotc), | ||
58 | IGB_STAT("rx_broadcast", stats.bprc), | ||
59 | IGB_STAT("tx_broadcast", stats.bptc), | ||
60 | IGB_STAT("rx_multicast", stats.mprc), | ||
61 | IGB_STAT("tx_multicast", stats.mptc), | ||
62 | IGB_STAT("multicast", stats.mprc), | ||
63 | IGB_STAT("collisions", stats.colc), | ||
64 | IGB_STAT("rx_crc_errors", stats.crcerrs), | ||
65 | IGB_STAT("rx_no_buffer_count", stats.rnbc), | ||
66 | IGB_STAT("rx_missed_errors", stats.mpc), | ||
67 | IGB_STAT("tx_aborted_errors", stats.ecol), | ||
68 | IGB_STAT("tx_carrier_errors", stats.tncrs), | ||
69 | IGB_STAT("tx_window_errors", stats.latecol), | ||
70 | IGB_STAT("tx_abort_late_coll", stats.latecol), | ||
71 | IGB_STAT("tx_deferred_ok", stats.dc), | ||
72 | IGB_STAT("tx_single_coll_ok", stats.scc), | ||
73 | IGB_STAT("tx_multi_coll_ok", stats.mcc), | ||
74 | IGB_STAT("tx_timeout_count", tx_timeout_count), | ||
75 | IGB_STAT("rx_long_length_errors", stats.roc), | ||
76 | IGB_STAT("rx_short_length_errors", stats.ruc), | ||
77 | IGB_STAT("rx_align_errors", stats.algnerrc), | ||
78 | IGB_STAT("tx_tcp_seg_good", stats.tsctc), | ||
79 | IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), | ||
80 | IGB_STAT("rx_flow_control_xon", stats.xonrxc), | ||
81 | IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), | ||
82 | IGB_STAT("tx_flow_control_xon", stats.xontxc), | ||
83 | IGB_STAT("tx_flow_control_xoff", stats.xofftxc), | ||
84 | IGB_STAT("rx_long_byte_count", stats.gorc), | ||
85 | IGB_STAT("tx_dma_out_of_sync", stats.doosync), | ||
86 | IGB_STAT("tx_smbus", stats.mgptc), | ||
87 | IGB_STAT("rx_smbus", stats.mgprc), | ||
88 | IGB_STAT("dropped_smbus", stats.mgpdc), | ||
89 | IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), | ||
90 | IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), | ||
91 | IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), | ||
92 | IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), | ||
93 | }; | ||
94 | |||
95 | #define IGB_NETDEV_STAT(_net_stat) { \ | ||
96 | .stat_string = __stringify(_net_stat), \ | ||
97 | .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \ | ||
98 | .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \ | ||
99 | } | ||
100 | static const struct igb_stats igb_gstrings_net_stats[] = { | ||
101 | IGB_NETDEV_STAT(rx_errors), | ||
102 | IGB_NETDEV_STAT(tx_errors), | ||
103 | IGB_NETDEV_STAT(tx_dropped), | ||
104 | IGB_NETDEV_STAT(rx_length_errors), | ||
105 | IGB_NETDEV_STAT(rx_over_errors), | ||
106 | IGB_NETDEV_STAT(rx_frame_errors), | ||
107 | IGB_NETDEV_STAT(rx_fifo_errors), | ||
108 | IGB_NETDEV_STAT(tx_fifo_errors), | ||
109 | IGB_NETDEV_STAT(tx_heartbeat_errors) | ||
110 | }; | ||
111 | |||
112 | #define IGB_GLOBAL_STATS_LEN \ | ||
113 | (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)) | ||
114 | #define IGB_NETDEV_STATS_LEN \ | ||
115 | (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats)) | ||
116 | #define IGB_RX_QUEUE_STATS_LEN \ | ||
117 | (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) | ||
118 | |||
119 | #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */ | ||
120 | |||
121 | #define IGB_QUEUE_STATS_LEN \ | ||
122 | ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ | ||
123 | IGB_RX_QUEUE_STATS_LEN) + \ | ||
124 | (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ | ||
125 | IGB_TX_QUEUE_STATS_LEN)) | ||
126 | #define IGB_STATS_LEN \ | ||
127 | (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) | ||
128 | |||
129 | static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { | ||
130 | "Register test (offline)", "Eeprom test (offline)", | ||
131 | "Interrupt test (offline)", "Loopback test (offline)", | ||
132 | "Link test (on/offline)" | ||
133 | }; | ||
134 | #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) | ||
135 | |||
136 | static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | ||
137 | { | ||
138 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
139 | struct e1000_hw *hw = &adapter->hw; | ||
140 | u32 status; | ||
141 | |||
142 | if (hw->phy.media_type == e1000_media_type_copper) { | ||
143 | |||
144 | ecmd->supported = (SUPPORTED_10baseT_Half | | ||
145 | SUPPORTED_10baseT_Full | | ||
146 | SUPPORTED_100baseT_Half | | ||
147 | SUPPORTED_100baseT_Full | | ||
148 | SUPPORTED_1000baseT_Full| | ||
149 | SUPPORTED_Autoneg | | ||
150 | SUPPORTED_TP); | ||
151 | ecmd->advertising = ADVERTISED_TP; | ||
152 | |||
153 | if (hw->mac.autoneg == 1) { | ||
154 | ecmd->advertising |= ADVERTISED_Autoneg; | ||
155 | /* the e1000 autoneg seems to match ethtool nicely */ | ||
156 | ecmd->advertising |= hw->phy.autoneg_advertised; | ||
157 | } | ||
158 | |||
159 | ecmd->port = PORT_TP; | ||
160 | ecmd->phy_address = hw->phy.addr; | ||
161 | } else { | ||
162 | ecmd->supported = (SUPPORTED_1000baseT_Full | | ||
163 | SUPPORTED_FIBRE | | ||
164 | SUPPORTED_Autoneg); | ||
165 | |||
166 | ecmd->advertising = (ADVERTISED_1000baseT_Full | | ||
167 | ADVERTISED_FIBRE | | ||
168 | ADVERTISED_Autoneg); | ||
169 | |||
170 | ecmd->port = PORT_FIBRE; | ||
171 | } | ||
172 | |||
173 | ecmd->transceiver = XCVR_INTERNAL; | ||
174 | |||
175 | status = rd32(E1000_STATUS); | ||
176 | |||
177 | if (status & E1000_STATUS_LU) { | ||
178 | |||
179 | if ((status & E1000_STATUS_SPEED_1000) || | ||
180 | hw->phy.media_type != e1000_media_type_copper) | ||
181 | ethtool_cmd_speed_set(ecmd, SPEED_1000); | ||
182 | else if (status & E1000_STATUS_SPEED_100) | ||
183 | ethtool_cmd_speed_set(ecmd, SPEED_100); | ||
184 | else | ||
185 | ethtool_cmd_speed_set(ecmd, SPEED_10); | ||
186 | |||
187 | if ((status & E1000_STATUS_FD) || | ||
188 | hw->phy.media_type != e1000_media_type_copper) | ||
189 | ecmd->duplex = DUPLEX_FULL; | ||
190 | else | ||
191 | ecmd->duplex = DUPLEX_HALF; | ||
192 | } else { | ||
193 | ethtool_cmd_speed_set(ecmd, -1); | ||
194 | ecmd->duplex = -1; | ||
195 | } | ||
196 | |||
197 | ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE; | ||
198 | return 0; | ||
199 | } | ||
200 | |||
201 | static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | ||
202 | { | ||
203 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
204 | struct e1000_hw *hw = &adapter->hw; | ||
205 | |||
206 | /* When SoL/IDER sessions are active, autoneg/speed/duplex | ||
207 | * cannot be changed */ | ||
208 | if (igb_check_reset_block(hw)) { | ||
209 | dev_err(&adapter->pdev->dev, "Cannot change link " | ||
210 | "characteristics when SoL/IDER is active.\n"); | ||
211 | return -EINVAL; | ||
212 | } | ||
213 | |||
214 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
215 | msleep(1); | ||
216 | |||
217 | if (ecmd->autoneg == AUTONEG_ENABLE) { | ||
218 | hw->mac.autoneg = 1; | ||
219 | hw->phy.autoneg_advertised = ecmd->advertising | | ||
220 | ADVERTISED_TP | | ||
221 | ADVERTISED_Autoneg; | ||
222 | ecmd->advertising = hw->phy.autoneg_advertised; | ||
223 | if (adapter->fc_autoneg) | ||
224 | hw->fc.requested_mode = e1000_fc_default; | ||
225 | } else { | ||
226 | u32 speed = ethtool_cmd_speed(ecmd); | ||
227 | if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) { | ||
228 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
229 | return -EINVAL; | ||
230 | } | ||
231 | } | ||
232 | |||
233 | /* reset the link */ | ||
234 | if (netif_running(adapter->netdev)) { | ||
235 | igb_down(adapter); | ||
236 | igb_up(adapter); | ||
237 | } else | ||
238 | igb_reset(adapter); | ||
239 | |||
240 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
241 | return 0; | ||
242 | } | ||
243 | |||
244 | static u32 igb_get_link(struct net_device *netdev) | ||
245 | { | ||
246 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
247 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
248 | |||
249 | /* | ||
250 | * If the link is not reported up to netdev, interrupts are disabled, | ||
251 | * and so the physical link state may have changed since we last | ||
252 | * looked. Set get_link_status to make sure that the true link | ||
253 | * state is interrogated, rather than pulling a cached and possibly | ||
254 | * stale link state from the driver. | ||
255 | */ | ||
256 | if (!netif_carrier_ok(netdev)) | ||
257 | mac->get_link_status = 1; | ||
258 | |||
259 | return igb_has_link(adapter); | ||
260 | } | ||
261 | |||
262 | static void igb_get_pauseparam(struct net_device *netdev, | ||
263 | struct ethtool_pauseparam *pause) | ||
264 | { | ||
265 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
266 | struct e1000_hw *hw = &adapter->hw; | ||
267 | |||
268 | pause->autoneg = | ||
269 | (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); | ||
270 | |||
271 | if (hw->fc.current_mode == e1000_fc_rx_pause) | ||
272 | pause->rx_pause = 1; | ||
273 | else if (hw->fc.current_mode == e1000_fc_tx_pause) | ||
274 | pause->tx_pause = 1; | ||
275 | else if (hw->fc.current_mode == e1000_fc_full) { | ||
276 | pause->rx_pause = 1; | ||
277 | pause->tx_pause = 1; | ||
278 | } | ||
279 | } | ||
280 | |||
281 | static int igb_set_pauseparam(struct net_device *netdev, | ||
282 | struct ethtool_pauseparam *pause) | ||
283 | { | ||
284 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
285 | struct e1000_hw *hw = &adapter->hw; | ||
286 | int retval = 0; | ||
287 | |||
288 | adapter->fc_autoneg = pause->autoneg; | ||
289 | |||
290 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
291 | msleep(1); | ||
292 | |||
293 | if (adapter->fc_autoneg == AUTONEG_ENABLE) { | ||
294 | hw->fc.requested_mode = e1000_fc_default; | ||
295 | if (netif_running(adapter->netdev)) { | ||
296 | igb_down(adapter); | ||
297 | igb_up(adapter); | ||
298 | } else { | ||
299 | igb_reset(adapter); | ||
300 | } | ||
301 | } else { | ||
302 | if (pause->rx_pause && pause->tx_pause) | ||
303 | hw->fc.requested_mode = e1000_fc_full; | ||
304 | else if (pause->rx_pause && !pause->tx_pause) | ||
305 | hw->fc.requested_mode = e1000_fc_rx_pause; | ||
306 | else if (!pause->rx_pause && pause->tx_pause) | ||
307 | hw->fc.requested_mode = e1000_fc_tx_pause; | ||
308 | else if (!pause->rx_pause && !pause->tx_pause) | ||
309 | hw->fc.requested_mode = e1000_fc_none; | ||
310 | |||
311 | hw->fc.current_mode = hw->fc.requested_mode; | ||
312 | |||
313 | retval = ((hw->phy.media_type == e1000_media_type_copper) ? | ||
314 | igb_force_mac_fc(hw) : igb_setup_link(hw)); | ||
315 | } | ||
316 | |||
317 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
318 | return retval; | ||
319 | } | ||
320 | |||
321 | static u32 igb_get_msglevel(struct net_device *netdev) | ||
322 | { | ||
323 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
324 | return adapter->msg_enable; | ||
325 | } | ||
326 | |||
327 | static void igb_set_msglevel(struct net_device *netdev, u32 data) | ||
328 | { | ||
329 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
330 | adapter->msg_enable = data; | ||
331 | } | ||
332 | |||
333 | static int igb_get_regs_len(struct net_device *netdev) | ||
334 | { | ||
335 | #define IGB_REGS_LEN 551 | ||
336 | return IGB_REGS_LEN * sizeof(u32); | ||
337 | } | ||
338 | |||
339 | static void igb_get_regs(struct net_device *netdev, | ||
340 | struct ethtool_regs *regs, void *p) | ||
341 | { | ||
342 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
343 | struct e1000_hw *hw = &adapter->hw; | ||
344 | u32 *regs_buff = p; | ||
345 | u8 i; | ||
346 | |||
347 | memset(p, 0, IGB_REGS_LEN * sizeof(u32)); | ||
348 | |||
349 | regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; | ||
350 | |||
351 | /* General Registers */ | ||
352 | regs_buff[0] = rd32(E1000_CTRL); | ||
353 | regs_buff[1] = rd32(E1000_STATUS); | ||
354 | regs_buff[2] = rd32(E1000_CTRL_EXT); | ||
355 | regs_buff[3] = rd32(E1000_MDIC); | ||
356 | regs_buff[4] = rd32(E1000_SCTL); | ||
357 | regs_buff[5] = rd32(E1000_CONNSW); | ||
358 | regs_buff[6] = rd32(E1000_VET); | ||
359 | regs_buff[7] = rd32(E1000_LEDCTL); | ||
360 | regs_buff[8] = rd32(E1000_PBA); | ||
361 | regs_buff[9] = rd32(E1000_PBS); | ||
362 | regs_buff[10] = rd32(E1000_FRTIMER); | ||
363 | regs_buff[11] = rd32(E1000_TCPTIMER); | ||
364 | |||
365 | /* NVM Register */ | ||
366 | regs_buff[12] = rd32(E1000_EECD); | ||
367 | |||
368 | /* Interrupt */ | ||
369 | /* Reading EICS for EICR because they read the | ||
370 | * same but EICS does not clear on read */ | ||
371 | regs_buff[13] = rd32(E1000_EICS); | ||
372 | regs_buff[14] = rd32(E1000_EICS); | ||
373 | regs_buff[15] = rd32(E1000_EIMS); | ||
374 | regs_buff[16] = rd32(E1000_EIMC); | ||
375 | regs_buff[17] = rd32(E1000_EIAC); | ||
376 | regs_buff[18] = rd32(E1000_EIAM); | ||
377 | /* Reading ICS for ICR because they read the | ||
378 | * same but ICS does not clear on read */ | ||
379 | regs_buff[19] = rd32(E1000_ICS); | ||
380 | regs_buff[20] = rd32(E1000_ICS); | ||
381 | regs_buff[21] = rd32(E1000_IMS); | ||
382 | regs_buff[22] = rd32(E1000_IMC); | ||
383 | regs_buff[23] = rd32(E1000_IAC); | ||
384 | regs_buff[24] = rd32(E1000_IAM); | ||
385 | regs_buff[25] = rd32(E1000_IMIRVP); | ||
386 | |||
387 | /* Flow Control */ | ||
388 | regs_buff[26] = rd32(E1000_FCAL); | ||
389 | regs_buff[27] = rd32(E1000_FCAH); | ||
390 | regs_buff[28] = rd32(E1000_FCTTV); | ||
391 | regs_buff[29] = rd32(E1000_FCRTL); | ||
392 | regs_buff[30] = rd32(E1000_FCRTH); | ||
393 | regs_buff[31] = rd32(E1000_FCRTV); | ||
394 | |||
395 | /* Receive */ | ||
396 | regs_buff[32] = rd32(E1000_RCTL); | ||
397 | regs_buff[33] = rd32(E1000_RXCSUM); | ||
398 | regs_buff[34] = rd32(E1000_RLPML); | ||
399 | regs_buff[35] = rd32(E1000_RFCTL); | ||
400 | regs_buff[36] = rd32(E1000_MRQC); | ||
401 | regs_buff[37] = rd32(E1000_VT_CTL); | ||
402 | |||
403 | /* Transmit */ | ||
404 | regs_buff[38] = rd32(E1000_TCTL); | ||
405 | regs_buff[39] = rd32(E1000_TCTL_EXT); | ||
406 | regs_buff[40] = rd32(E1000_TIPG); | ||
407 | regs_buff[41] = rd32(E1000_DTXCTL); | ||
408 | |||
409 | /* Wake Up */ | ||
410 | regs_buff[42] = rd32(E1000_WUC); | ||
411 | regs_buff[43] = rd32(E1000_WUFC); | ||
412 | regs_buff[44] = rd32(E1000_WUS); | ||
413 | regs_buff[45] = rd32(E1000_IPAV); | ||
414 | regs_buff[46] = rd32(E1000_WUPL); | ||
415 | |||
416 | /* MAC */ | ||
417 | regs_buff[47] = rd32(E1000_PCS_CFG0); | ||
418 | regs_buff[48] = rd32(E1000_PCS_LCTL); | ||
419 | regs_buff[49] = rd32(E1000_PCS_LSTAT); | ||
420 | regs_buff[50] = rd32(E1000_PCS_ANADV); | ||
421 | regs_buff[51] = rd32(E1000_PCS_LPAB); | ||
422 | regs_buff[52] = rd32(E1000_PCS_NPTX); | ||
423 | regs_buff[53] = rd32(E1000_PCS_LPABNP); | ||
424 | |||
425 | /* Statistics */ | ||
426 | regs_buff[54] = adapter->stats.crcerrs; | ||
427 | regs_buff[55] = adapter->stats.algnerrc; | ||
428 | regs_buff[56] = adapter->stats.symerrs; | ||
429 | regs_buff[57] = adapter->stats.rxerrc; | ||
430 | regs_buff[58] = adapter->stats.mpc; | ||
431 | regs_buff[59] = adapter->stats.scc; | ||
432 | regs_buff[60] = adapter->stats.ecol; | ||
433 | regs_buff[61] = adapter->stats.mcc; | ||
434 | regs_buff[62] = adapter->stats.latecol; | ||
435 | regs_buff[63] = adapter->stats.colc; | ||
436 | regs_buff[64] = adapter->stats.dc; | ||
437 | regs_buff[65] = adapter->stats.tncrs; | ||
438 | regs_buff[66] = adapter->stats.sec; | ||
439 | regs_buff[67] = adapter->stats.htdpmc; | ||
440 | regs_buff[68] = adapter->stats.rlec; | ||
441 | regs_buff[69] = adapter->stats.xonrxc; | ||
442 | regs_buff[70] = adapter->stats.xontxc; | ||
443 | regs_buff[71] = adapter->stats.xoffrxc; | ||
444 | regs_buff[72] = adapter->stats.xofftxc; | ||
445 | regs_buff[73] = adapter->stats.fcruc; | ||
446 | regs_buff[74] = adapter->stats.prc64; | ||
447 | regs_buff[75] = adapter->stats.prc127; | ||
448 | regs_buff[76] = adapter->stats.prc255; | ||
449 | regs_buff[77] = adapter->stats.prc511; | ||
450 | regs_buff[78] = adapter->stats.prc1023; | ||
451 | regs_buff[79] = adapter->stats.prc1522; | ||
452 | regs_buff[80] = adapter->stats.gprc; | ||
453 | regs_buff[81] = adapter->stats.bprc; | ||
454 | regs_buff[82] = adapter->stats.mprc; | ||
455 | regs_buff[83] = adapter->stats.gptc; | ||
456 | regs_buff[84] = adapter->stats.gorc; | ||
457 | regs_buff[86] = adapter->stats.gotc; | ||
458 | regs_buff[88] = adapter->stats.rnbc; | ||
459 | regs_buff[89] = adapter->stats.ruc; | ||
460 | regs_buff[90] = adapter->stats.rfc; | ||
461 | regs_buff[91] = adapter->stats.roc; | ||
462 | regs_buff[92] = adapter->stats.rjc; | ||
463 | regs_buff[93] = adapter->stats.mgprc; | ||
464 | regs_buff[94] = adapter->stats.mgpdc; | ||
465 | regs_buff[95] = adapter->stats.mgptc; | ||
466 | regs_buff[96] = adapter->stats.tor; | ||
467 | regs_buff[98] = adapter->stats.tot; | ||
468 | regs_buff[100] = adapter->stats.tpr; | ||
469 | regs_buff[101] = adapter->stats.tpt; | ||
470 | regs_buff[102] = adapter->stats.ptc64; | ||
471 | regs_buff[103] = adapter->stats.ptc127; | ||
472 | regs_buff[104] = adapter->stats.ptc255; | ||
473 | regs_buff[105] = adapter->stats.ptc511; | ||
474 | regs_buff[106] = adapter->stats.ptc1023; | ||
475 | regs_buff[107] = adapter->stats.ptc1522; | ||
476 | regs_buff[108] = adapter->stats.mptc; | ||
477 | regs_buff[109] = adapter->stats.bptc; | ||
478 | regs_buff[110] = adapter->stats.tsctc; | ||
479 | regs_buff[111] = adapter->stats.iac; | ||
480 | regs_buff[112] = adapter->stats.rpthc; | ||
481 | regs_buff[113] = adapter->stats.hgptc; | ||
482 | regs_buff[114] = adapter->stats.hgorc; | ||
483 | regs_buff[116] = adapter->stats.hgotc; | ||
484 | regs_buff[118] = adapter->stats.lenerrs; | ||
485 | regs_buff[119] = adapter->stats.scvpc; | ||
486 | regs_buff[120] = adapter->stats.hrmpc; | ||
487 | |||
488 | for (i = 0; i < 4; i++) | ||
489 | regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); | ||
490 | for (i = 0; i < 4; i++) | ||
491 | regs_buff[125 + i] = rd32(E1000_PSRTYPE(i)); | ||
492 | for (i = 0; i < 4; i++) | ||
493 | regs_buff[129 + i] = rd32(E1000_RDBAL(i)); | ||
494 | for (i = 0; i < 4; i++) | ||
495 | regs_buff[133 + i] = rd32(E1000_RDBAH(i)); | ||
496 | for (i = 0; i < 4; i++) | ||
497 | regs_buff[137 + i] = rd32(E1000_RDLEN(i)); | ||
498 | for (i = 0; i < 4; i++) | ||
499 | regs_buff[141 + i] = rd32(E1000_RDH(i)); | ||
500 | for (i = 0; i < 4; i++) | ||
501 | regs_buff[145 + i] = rd32(E1000_RDT(i)); | ||
502 | for (i = 0; i < 4; i++) | ||
503 | regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); | ||
504 | |||
505 | for (i = 0; i < 10; i++) | ||
506 | regs_buff[153 + i] = rd32(E1000_EITR(i)); | ||
507 | for (i = 0; i < 8; i++) | ||
508 | regs_buff[163 + i] = rd32(E1000_IMIR(i)); | ||
509 | for (i = 0; i < 8; i++) | ||
510 | regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); | ||
511 | for (i = 0; i < 16; i++) | ||
512 | regs_buff[179 + i] = rd32(E1000_RAL(i)); | ||
513 | for (i = 0; i < 16; i++) | ||
514 | regs_buff[195 + i] = rd32(E1000_RAH(i)); | ||
515 | |||
516 | for (i = 0; i < 4; i++) | ||
517 | regs_buff[211 + i] = rd32(E1000_TDBAL(i)); | ||
518 | for (i = 0; i < 4; i++) | ||
519 | regs_buff[215 + i] = rd32(E1000_TDBAH(i)); | ||
520 | for (i = 0; i < 4; i++) | ||
521 | regs_buff[219 + i] = rd32(E1000_TDLEN(i)); | ||
522 | for (i = 0; i < 4; i++) | ||
523 | regs_buff[223 + i] = rd32(E1000_TDH(i)); | ||
524 | for (i = 0; i < 4; i++) | ||
525 | regs_buff[227 + i] = rd32(E1000_TDT(i)); | ||
526 | for (i = 0; i < 4; i++) | ||
527 | regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); | ||
528 | for (i = 0; i < 4; i++) | ||
529 | regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); | ||
530 | for (i = 0; i < 4; i++) | ||
531 | regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); | ||
532 | for (i = 0; i < 4; i++) | ||
533 | regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); | ||
534 | |||
535 | for (i = 0; i < 4; i++) | ||
536 | regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); | ||
537 | for (i = 0; i < 4; i++) | ||
538 | regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); | ||
539 | for (i = 0; i < 32; i++) | ||
540 | regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); | ||
541 | for (i = 0; i < 128; i++) | ||
542 | regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); | ||
543 | for (i = 0; i < 128; i++) | ||
544 | regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); | ||
545 | for (i = 0; i < 4; i++) | ||
546 | regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); | ||
547 | |||
548 | regs_buff[547] = rd32(E1000_TDFH); | ||
549 | regs_buff[548] = rd32(E1000_TDFT); | ||
550 | regs_buff[549] = rd32(E1000_TDFHS); | ||
551 | regs_buff[550] = rd32(E1000_TDFPC); | ||
552 | regs_buff[551] = adapter->stats.o2bgptc; | ||
553 | regs_buff[552] = adapter->stats.b2ospc; | ||
554 | regs_buff[553] = adapter->stats.o2bspc; | ||
555 | regs_buff[554] = adapter->stats.b2ogprc; | ||
556 | } | ||
557 | |||
558 | static int igb_get_eeprom_len(struct net_device *netdev) | ||
559 | { | ||
560 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
561 | return adapter->hw.nvm.word_size * 2; | ||
562 | } | ||
563 | |||
564 | static int igb_get_eeprom(struct net_device *netdev, | ||
565 | struct ethtool_eeprom *eeprom, u8 *bytes) | ||
566 | { | ||
567 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
568 | struct e1000_hw *hw = &adapter->hw; | ||
569 | u16 *eeprom_buff; | ||
570 | int first_word, last_word; | ||
571 | int ret_val = 0; | ||
572 | u16 i; | ||
573 | |||
574 | if (eeprom->len == 0) | ||
575 | return -EINVAL; | ||
576 | |||
577 | eeprom->magic = hw->vendor_id | (hw->device_id << 16); | ||
578 | |||
579 | first_word = eeprom->offset >> 1; | ||
580 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
581 | |||
582 | eeprom_buff = kmalloc(sizeof(u16) * | ||
583 | (last_word - first_word + 1), GFP_KERNEL); | ||
584 | if (!eeprom_buff) | ||
585 | return -ENOMEM; | ||
586 | |||
587 | if (hw->nvm.type == e1000_nvm_eeprom_spi) | ||
588 | ret_val = hw->nvm.ops.read(hw, first_word, | ||
589 | last_word - first_word + 1, | ||
590 | eeprom_buff); | ||
591 | else { | ||
592 | for (i = 0; i < last_word - first_word + 1; i++) { | ||
593 | ret_val = hw->nvm.ops.read(hw, first_word + i, 1, | ||
594 | &eeprom_buff[i]); | ||
595 | if (ret_val) | ||
596 | break; | ||
597 | } | ||
598 | } | ||
599 | |||
600 | /* Device's eeprom is always little-endian, word addressable */ | ||
601 | for (i = 0; i < last_word - first_word + 1; i++) | ||
602 | le16_to_cpus(&eeprom_buff[i]); | ||
603 | |||
604 | memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), | ||
605 | eeprom->len); | ||
606 | kfree(eeprom_buff); | ||
607 | |||
608 | return ret_val; | ||
609 | } | ||
610 | |||
611 | static int igb_set_eeprom(struct net_device *netdev, | ||
612 | struct ethtool_eeprom *eeprom, u8 *bytes) | ||
613 | { | ||
614 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
615 | struct e1000_hw *hw = &adapter->hw; | ||
616 | u16 *eeprom_buff; | ||
617 | void *ptr; | ||
618 | int max_len, first_word, last_word, ret_val = 0; | ||
619 | u16 i; | ||
620 | |||
621 | if (eeprom->len == 0) | ||
622 | return -EOPNOTSUPP; | ||
623 | |||
624 | if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) | ||
625 | return -EFAULT; | ||
626 | |||
627 | max_len = hw->nvm.word_size * 2; | ||
628 | |||
629 | first_word = eeprom->offset >> 1; | ||
630 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
631 | eeprom_buff = kmalloc(max_len, GFP_KERNEL); | ||
632 | if (!eeprom_buff) | ||
633 | return -ENOMEM; | ||
634 | |||
635 | ptr = (void *)eeprom_buff; | ||
636 | |||
637 | if (eeprom->offset & 1) { | ||
638 | /* need read/modify/write of first changed EEPROM word */ | ||
639 | /* only the second byte of the word is being modified */ | ||
640 | ret_val = hw->nvm.ops.read(hw, first_word, 1, | ||
641 | &eeprom_buff[0]); | ||
642 | ptr++; | ||
643 | } | ||
644 | if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { | ||
645 | /* need read/modify/write of last changed EEPROM word */ | ||
646 | /* only the first byte of the word is being modified */ | ||
647 | ret_val = hw->nvm.ops.read(hw, last_word, 1, | ||
648 | &eeprom_buff[last_word - first_word]); | ||
649 | } | ||
650 | |||
651 | /* Device's eeprom is always little-endian, word addressable */ | ||
652 | for (i = 0; i < last_word - first_word + 1; i++) | ||
653 | le16_to_cpus(&eeprom_buff[i]); | ||
654 | |||
655 | memcpy(ptr, bytes, eeprom->len); | ||
656 | |||
657 | for (i = 0; i < last_word - first_word + 1; i++) | ||
658 | eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); | ||
659 | |||
660 | ret_val = hw->nvm.ops.write(hw, first_word, | ||
661 | last_word - first_word + 1, eeprom_buff); | ||
662 | |||
663 | /* Update the checksum over the first part of the EEPROM if needed | ||
664 | * and flush shadow RAM for 82573 controllers */ | ||
665 | if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG))) | ||
666 | hw->nvm.ops.update(hw); | ||
667 | |||
668 | kfree(eeprom_buff); | ||
669 | return ret_val; | ||
670 | } | ||
671 | |||
672 | static void igb_get_drvinfo(struct net_device *netdev, | ||
673 | struct ethtool_drvinfo *drvinfo) | ||
674 | { | ||
675 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
676 | char firmware_version[32]; | ||
677 | u16 eeprom_data; | ||
678 | |||
679 | strncpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver) - 1); | ||
680 | strncpy(drvinfo->version, igb_driver_version, | ||
681 | sizeof(drvinfo->version) - 1); | ||
682 | |||
683 | /* EEPROM image version # is reported as firmware version # for | ||
684 | * 82575 controllers */ | ||
685 | adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data); | ||
686 | sprintf(firmware_version, "%d.%d-%d", | ||
687 | (eeprom_data & 0xF000) >> 12, | ||
688 | (eeprom_data & 0x0FF0) >> 4, | ||
689 | eeprom_data & 0x000F); | ||
690 | |||
691 | strncpy(drvinfo->fw_version, firmware_version, | ||
692 | sizeof(drvinfo->fw_version) - 1); | ||
693 | strncpy(drvinfo->bus_info, pci_name(adapter->pdev), | ||
694 | sizeof(drvinfo->bus_info) - 1); | ||
695 | drvinfo->n_stats = IGB_STATS_LEN; | ||
696 | drvinfo->testinfo_len = IGB_TEST_LEN; | ||
697 | drvinfo->regdump_len = igb_get_regs_len(netdev); | ||
698 | drvinfo->eedump_len = igb_get_eeprom_len(netdev); | ||
699 | } | ||
700 | |||
701 | static void igb_get_ringparam(struct net_device *netdev, | ||
702 | struct ethtool_ringparam *ring) | ||
703 | { | ||
704 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
705 | |||
706 | ring->rx_max_pending = IGB_MAX_RXD; | ||
707 | ring->tx_max_pending = IGB_MAX_TXD; | ||
708 | ring->rx_mini_max_pending = 0; | ||
709 | ring->rx_jumbo_max_pending = 0; | ||
710 | ring->rx_pending = adapter->rx_ring_count; | ||
711 | ring->tx_pending = adapter->tx_ring_count; | ||
712 | ring->rx_mini_pending = 0; | ||
713 | ring->rx_jumbo_pending = 0; | ||
714 | } | ||
715 | |||
716 | static int igb_set_ringparam(struct net_device *netdev, | ||
717 | struct ethtool_ringparam *ring) | ||
718 | { | ||
719 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
720 | struct igb_ring *temp_ring; | ||
721 | int i, err = 0; | ||
722 | u16 new_rx_count, new_tx_count; | ||
723 | |||
724 | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) | ||
725 | return -EINVAL; | ||
726 | |||
727 | new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD); | ||
728 | new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD); | ||
729 | new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); | ||
730 | |||
731 | new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD); | ||
732 | new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD); | ||
733 | new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); | ||
734 | |||
735 | if ((new_tx_count == adapter->tx_ring_count) && | ||
736 | (new_rx_count == adapter->rx_ring_count)) { | ||
737 | /* nothing to do */ | ||
738 | return 0; | ||
739 | } | ||
740 | |||
741 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
742 | msleep(1); | ||
743 | |||
744 | if (!netif_running(adapter->netdev)) { | ||
745 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
746 | adapter->tx_ring[i]->count = new_tx_count; | ||
747 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
748 | adapter->rx_ring[i]->count = new_rx_count; | ||
749 | adapter->tx_ring_count = new_tx_count; | ||
750 | adapter->rx_ring_count = new_rx_count; | ||
751 | goto clear_reset; | ||
752 | } | ||
753 | |||
754 | if (adapter->num_tx_queues > adapter->num_rx_queues) | ||
755 | temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring)); | ||
756 | else | ||
757 | temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring)); | ||
758 | |||
759 | if (!temp_ring) { | ||
760 | err = -ENOMEM; | ||
761 | goto clear_reset; | ||
762 | } | ||
763 | |||
764 | igb_down(adapter); | ||
765 | |||
766 | /* | ||
767 | * We can't just free everything and then setup again, | ||
768 | * because the ISRs in MSI-X mode get passed pointers | ||
769 | * to the tx and rx ring structs. | ||
770 | */ | ||
771 | if (new_tx_count != adapter->tx_ring_count) { | ||
772 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
773 | memcpy(&temp_ring[i], adapter->tx_ring[i], | ||
774 | sizeof(struct igb_ring)); | ||
775 | |||
776 | temp_ring[i].count = new_tx_count; | ||
777 | err = igb_setup_tx_resources(&temp_ring[i]); | ||
778 | if (err) { | ||
779 | while (i) { | ||
780 | i--; | ||
781 | igb_free_tx_resources(&temp_ring[i]); | ||
782 | } | ||
783 | goto err_setup; | ||
784 | } | ||
785 | } | ||
786 | |||
787 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
788 | igb_free_tx_resources(adapter->tx_ring[i]); | ||
789 | |||
790 | memcpy(adapter->tx_ring[i], &temp_ring[i], | ||
791 | sizeof(struct igb_ring)); | ||
792 | } | ||
793 | |||
794 | adapter->tx_ring_count = new_tx_count; | ||
795 | } | ||
796 | |||
797 | if (new_rx_count != adapter->rx_ring_count) { | ||
798 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
799 | memcpy(&temp_ring[i], adapter->rx_ring[i], | ||
800 | sizeof(struct igb_ring)); | ||
801 | |||
802 | temp_ring[i].count = new_rx_count; | ||
803 | err = igb_setup_rx_resources(&temp_ring[i]); | ||
804 | if (err) { | ||
805 | while (i) { | ||
806 | i--; | ||
807 | igb_free_rx_resources(&temp_ring[i]); | ||
808 | } | ||
809 | goto err_setup; | ||
810 | } | ||
811 | |||
812 | } | ||
813 | |||
814 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
815 | igb_free_rx_resources(adapter->rx_ring[i]); | ||
816 | |||
817 | memcpy(adapter->rx_ring[i], &temp_ring[i], | ||
818 | sizeof(struct igb_ring)); | ||
819 | } | ||
820 | |||
821 | adapter->rx_ring_count = new_rx_count; | ||
822 | } | ||
823 | err_setup: | ||
824 | igb_up(adapter); | ||
825 | vfree(temp_ring); | ||
826 | clear_reset: | ||
827 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
828 | return err; | ||
829 | } | ||
830 | |||
831 | /* ethtool register test data */ | ||
832 | struct igb_reg_test { | ||
833 | u16 reg; | ||
834 | u16 reg_offset; | ||
835 | u16 array_len; | ||
836 | u16 test_type; | ||
837 | u32 mask; | ||
838 | u32 write; | ||
839 | }; | ||
840 | |||
841 | /* In the hardware, registers are laid out either singly, in arrays | ||
842 | * spaced 0x100 bytes apart, or in contiguous tables. We assume | ||
843 | * most tests take place on arrays or single registers (handled | ||
844 | * as a single-element array) and special-case the tables. | ||
845 | * Table tests are always pattern tests. | ||
846 | * | ||
847 | * We also make provision for some required setup steps by specifying | ||
848 | * registers to be written without any read-back testing. | ||
849 | */ | ||
850 | |||
851 | #define PATTERN_TEST 1 | ||
852 | #define SET_READ_TEST 2 | ||
853 | #define WRITE_NO_TEST 3 | ||
854 | #define TABLE32_TEST 4 | ||
855 | #define TABLE64_TEST_LO 5 | ||
856 | #define TABLE64_TEST_HI 6 | ||
857 | |||
858 | /* i350 reg test */ | ||
859 | static struct igb_reg_test reg_test_i350[] = { | ||
860 | { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
861 | { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, | ||
862 | { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, | ||
863 | { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 }, | ||
864 | { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
865 | { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
866 | { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, | ||
867 | { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
868 | { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
869 | { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, | ||
870 | /* RDH is read-only for i350, only test RDT. */ | ||
871 | { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
872 | { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
873 | { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, | ||
874 | { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
875 | { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, | ||
876 | { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
877 | { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
878 | { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, | ||
879 | { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
880 | { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
881 | { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, | ||
882 | { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
883 | { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
884 | { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, | ||
885 | { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, | ||
886 | { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, | ||
887 | { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, | ||
888 | { E1000_RA, 0, 16, TABLE64_TEST_LO, | ||
889 | 0xFFFFFFFF, 0xFFFFFFFF }, | ||
890 | { E1000_RA, 0, 16, TABLE64_TEST_HI, | ||
891 | 0xC3FFFFFF, 0xFFFFFFFF }, | ||
892 | { E1000_RA2, 0, 16, TABLE64_TEST_LO, | ||
893 | 0xFFFFFFFF, 0xFFFFFFFF }, | ||
894 | { E1000_RA2, 0, 16, TABLE64_TEST_HI, | ||
895 | 0xC3FFFFFF, 0xFFFFFFFF }, | ||
896 | { E1000_MTA, 0, 128, TABLE32_TEST, | ||
897 | 0xFFFFFFFF, 0xFFFFFFFF }, | ||
898 | { 0, 0, 0, 0 } | ||
899 | }; | ||
900 | |||
901 | /* 82580 reg test */ | ||
902 | static struct igb_reg_test reg_test_82580[] = { | ||
903 | { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
904 | { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, | ||
905 | { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, | ||
906 | { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
907 | { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
908 | { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
909 | { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, | ||
910 | { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
911 | { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
912 | { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, | ||
913 | /* RDH is read-only for 82580, only test RDT. */ | ||
914 | { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
915 | { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
916 | { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, | ||
917 | { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
918 | { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, | ||
919 | { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
920 | { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
921 | { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, | ||
922 | { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
923 | { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
924 | { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, | ||
925 | { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
926 | { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
927 | { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, | ||
928 | { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, | ||
929 | { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, | ||
930 | { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, | ||
931 | { E1000_RA, 0, 16, TABLE64_TEST_LO, | ||
932 | 0xFFFFFFFF, 0xFFFFFFFF }, | ||
933 | { E1000_RA, 0, 16, TABLE64_TEST_HI, | ||
934 | 0x83FFFFFF, 0xFFFFFFFF }, | ||
935 | { E1000_RA2, 0, 8, TABLE64_TEST_LO, | ||
936 | 0xFFFFFFFF, 0xFFFFFFFF }, | ||
937 | { E1000_RA2, 0, 8, TABLE64_TEST_HI, | ||
938 | 0x83FFFFFF, 0xFFFFFFFF }, | ||
939 | { E1000_MTA, 0, 128, TABLE32_TEST, | ||
940 | 0xFFFFFFFF, 0xFFFFFFFF }, | ||
941 | { 0, 0, 0, 0 } | ||
942 | }; | ||
943 | |||
944 | /* 82576 reg test */ | ||
945 | static struct igb_reg_test reg_test_82576[] = { | ||
946 | { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
947 | { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, | ||
948 | { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, | ||
949 | { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
950 | { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
951 | { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
952 | { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, | ||
953 | { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
954 | { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
955 | { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, | ||
956 | /* Enable all RX queues before testing. */ | ||
957 | { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, | ||
958 | { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, | ||
959 | /* RDH is read-only for 82576, only test RDT. */ | ||
960 | { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
961 | { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
962 | { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, | ||
963 | { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, | ||
964 | { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, | ||
965 | { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
966 | { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, | ||
967 | { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
968 | { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
969 | { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, | ||
970 | { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
971 | { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
972 | { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, | ||
973 | { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, | ||
974 | { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, | ||
975 | { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, | ||
976 | { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, | ||
977 | { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
978 | { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, | ||
979 | { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
980 | { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, | ||
981 | { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
982 | { 0, 0, 0, 0 } | ||
983 | }; | ||
984 | |||
985 | /* 82575 register test */ | ||
986 | static struct igb_reg_test reg_test_82575[] = { | ||
987 | { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
988 | { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, | ||
989 | { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, | ||
990 | { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
991 | { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
992 | { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
993 | { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, | ||
994 | /* Enable all four RX queues before testing. */ | ||
995 | { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, | ||
996 | /* RDH is read-only for 82575, only test RDT. */ | ||
997 | { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
998 | { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, | ||
999 | { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, | ||
1000 | { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
1001 | { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, | ||
1002 | { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
1003 | { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
1004 | { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, | ||
1005 | { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, | ||
1006 | { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, | ||
1007 | { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, | ||
1008 | { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, | ||
1009 | { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, | ||
1010 | { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
1011 | { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, | ||
1012 | { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
1013 | { 0, 0, 0, 0 } | ||
1014 | }; | ||
1015 | |||
1016 | static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, | ||
1017 | int reg, u32 mask, u32 write) | ||
1018 | { | ||
1019 | struct e1000_hw *hw = &adapter->hw; | ||
1020 | u32 pat, val; | ||
1021 | static const u32 _test[] = | ||
1022 | {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; | ||
1023 | for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { | ||
1024 | wr32(reg, (_test[pat] & write)); | ||
1025 | val = rd32(reg) & mask; | ||
1026 | if (val != (_test[pat] & write & mask)) { | ||
1027 | dev_err(&adapter->pdev->dev, "pattern test reg %04X " | ||
1028 | "failed: got 0x%08X expected 0x%08X\n", | ||
1029 | reg, val, (_test[pat] & write & mask)); | ||
1030 | *data = reg; | ||
1031 | return 1; | ||
1032 | } | ||
1033 | } | ||
1034 | |||
1035 | return 0; | ||
1036 | } | ||
1037 | |||
1038 | static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, | ||
1039 | int reg, u32 mask, u32 write) | ||
1040 | { | ||
1041 | struct e1000_hw *hw = &adapter->hw; | ||
1042 | u32 val; | ||
1043 | wr32(reg, write & mask); | ||
1044 | val = rd32(reg); | ||
1045 | if ((write & mask) != (val & mask)) { | ||
1046 | dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:" | ||
1047 | " got 0x%08X expected 0x%08X\n", reg, | ||
1048 | (val & mask), (write & mask)); | ||
1049 | *data = reg; | ||
1050 | return 1; | ||
1051 | } | ||
1052 | |||
1053 | return 0; | ||
1054 | } | ||
1055 | |||
1056 | #define REG_PATTERN_TEST(reg, mask, write) \ | ||
1057 | do { \ | ||
1058 | if (reg_pattern_test(adapter, data, reg, mask, write)) \ | ||
1059 | return 1; \ | ||
1060 | } while (0) | ||
1061 | |||
1062 | #define REG_SET_AND_CHECK(reg, mask, write) \ | ||
1063 | do { \ | ||
1064 | if (reg_set_and_check(adapter, data, reg, mask, write)) \ | ||
1065 | return 1; \ | ||
1066 | } while (0) | ||
1067 | |||
1068 | static int igb_reg_test(struct igb_adapter *adapter, u64 *data) | ||
1069 | { | ||
1070 | struct e1000_hw *hw = &adapter->hw; | ||
1071 | struct igb_reg_test *test; | ||
1072 | u32 value, before, after; | ||
1073 | u32 i, toggle; | ||
1074 | |||
1075 | switch (adapter->hw.mac.type) { | ||
1076 | case e1000_i350: | ||
1077 | test = reg_test_i350; | ||
1078 | toggle = 0x7FEFF3FF; | ||
1079 | break; | ||
1080 | case e1000_82580: | ||
1081 | test = reg_test_82580; | ||
1082 | toggle = 0x7FEFF3FF; | ||
1083 | break; | ||
1084 | case e1000_82576: | ||
1085 | test = reg_test_82576; | ||
1086 | toggle = 0x7FFFF3FF; | ||
1087 | break; | ||
1088 | default: | ||
1089 | test = reg_test_82575; | ||
1090 | toggle = 0x7FFFF3FF; | ||
1091 | break; | ||
1092 | } | ||
1093 | |||
1094 | /* Because the status register is such a special case, | ||
1095 | * we handle it separately from the rest of the register | ||
1096 | * tests. Some bits are read-only, some toggle, and some | ||
1097 | * are writable on newer MACs. | ||
1098 | */ | ||
1099 | before = rd32(E1000_STATUS); | ||
1100 | value = (rd32(E1000_STATUS) & toggle); | ||
1101 | wr32(E1000_STATUS, toggle); | ||
1102 | after = rd32(E1000_STATUS) & toggle; | ||
1103 | if (value != after) { | ||
1104 | dev_err(&adapter->pdev->dev, "failed STATUS register test " | ||
1105 | "got: 0x%08X expected: 0x%08X\n", after, value); | ||
1106 | *data = 1; | ||
1107 | return 1; | ||
1108 | } | ||
1109 | /* restore previous status */ | ||
1110 | wr32(E1000_STATUS, before); | ||
1111 | |||
1112 | /* Perform the remainder of the register test, looping through | ||
1113 | * the test table until we either fail or reach the null entry. | ||
1114 | */ | ||
1115 | while (test->reg) { | ||
1116 | for (i = 0; i < test->array_len; i++) { | ||
1117 | switch (test->test_type) { | ||
1118 | case PATTERN_TEST: | ||
1119 | REG_PATTERN_TEST(test->reg + | ||
1120 | (i * test->reg_offset), | ||
1121 | test->mask, | ||
1122 | test->write); | ||
1123 | break; | ||
1124 | case SET_READ_TEST: | ||
1125 | REG_SET_AND_CHECK(test->reg + | ||
1126 | (i * test->reg_offset), | ||
1127 | test->mask, | ||
1128 | test->write); | ||
1129 | break; | ||
1130 | case WRITE_NO_TEST: | ||
1131 | writel(test->write, | ||
1132 | (adapter->hw.hw_addr + test->reg) | ||
1133 | + (i * test->reg_offset)); | ||
1134 | break; | ||
1135 | case TABLE32_TEST: | ||
1136 | REG_PATTERN_TEST(test->reg + (i * 4), | ||
1137 | test->mask, | ||
1138 | test->write); | ||
1139 | break; | ||
1140 | case TABLE64_TEST_LO: | ||
1141 | REG_PATTERN_TEST(test->reg + (i * 8), | ||
1142 | test->mask, | ||
1143 | test->write); | ||
1144 | break; | ||
1145 | case TABLE64_TEST_HI: | ||
1146 | REG_PATTERN_TEST((test->reg + 4) + (i * 8), | ||
1147 | test->mask, | ||
1148 | test->write); | ||
1149 | break; | ||
1150 | } | ||
1151 | } | ||
1152 | test++; | ||
1153 | } | ||
1154 | |||
1155 | *data = 0; | ||
1156 | return 0; | ||
1157 | } | ||
1158 | |||
1159 | static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) | ||
1160 | { | ||
1161 | u16 temp; | ||
1162 | u16 checksum = 0; | ||
1163 | u16 i; | ||
1164 | |||
1165 | *data = 0; | ||
1166 | /* Read and add up the contents of the EEPROM */ | ||
1167 | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { | ||
1168 | if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) { | ||
1169 | *data = 1; | ||
1170 | break; | ||
1171 | } | ||
1172 | checksum += temp; | ||
1173 | } | ||
1174 | |||
1175 | /* If Checksum is not Correct return error else test passed */ | ||
1176 | if ((checksum != (u16) NVM_SUM) && !(*data)) | ||
1177 | *data = 2; | ||
1178 | |||
1179 | return *data; | ||
1180 | } | ||
1181 | |||
1182 | static irqreturn_t igb_test_intr(int irq, void *data) | ||
1183 | { | ||
1184 | struct igb_adapter *adapter = (struct igb_adapter *) data; | ||
1185 | struct e1000_hw *hw = &adapter->hw; | ||
1186 | |||
1187 | adapter->test_icr |= rd32(E1000_ICR); | ||
1188 | |||
1189 | return IRQ_HANDLED; | ||
1190 | } | ||
1191 | |||
1192 | static int igb_intr_test(struct igb_adapter *adapter, u64 *data) | ||
1193 | { | ||
1194 | struct e1000_hw *hw = &adapter->hw; | ||
1195 | struct net_device *netdev = adapter->netdev; | ||
1196 | u32 mask, ics_mask, i = 0, shared_int = true; | ||
1197 | u32 irq = adapter->pdev->irq; | ||
1198 | |||
1199 | *data = 0; | ||
1200 | |||
1201 | /* Hook up test interrupt handler just for this test */ | ||
1202 | if (adapter->msix_entries) { | ||
1203 | if (request_irq(adapter->msix_entries[0].vector, | ||
1204 | igb_test_intr, 0, netdev->name, adapter)) { | ||
1205 | *data = 1; | ||
1206 | return -1; | ||
1207 | } | ||
1208 | } else if (adapter->flags & IGB_FLAG_HAS_MSI) { | ||
1209 | shared_int = false; | ||
1210 | if (request_irq(irq, | ||
1211 | igb_test_intr, 0, netdev->name, adapter)) { | ||
1212 | *data = 1; | ||
1213 | return -1; | ||
1214 | } | ||
1215 | } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, | ||
1216 | netdev->name, adapter)) { | ||
1217 | shared_int = false; | ||
1218 | } else if (request_irq(irq, igb_test_intr, IRQF_SHARED, | ||
1219 | netdev->name, adapter)) { | ||
1220 | *data = 1; | ||
1221 | return -1; | ||
1222 | } | ||
1223 | dev_info(&adapter->pdev->dev, "testing %s interrupt\n", | ||
1224 | (shared_int ? "shared" : "unshared")); | ||
1225 | |||
1226 | /* Disable all the interrupts */ | ||
1227 | wr32(E1000_IMC, ~0); | ||
1228 | wrfl(); | ||
1229 | msleep(10); | ||
1230 | |||
1231 | /* Define all writable bits for ICS */ | ||
1232 | switch (hw->mac.type) { | ||
1233 | case e1000_82575: | ||
1234 | ics_mask = 0x37F47EDD; | ||
1235 | break; | ||
1236 | case e1000_82576: | ||
1237 | ics_mask = 0x77D4FBFD; | ||
1238 | break; | ||
1239 | case e1000_82580: | ||
1240 | ics_mask = 0x77DCFED5; | ||
1241 | break; | ||
1242 | case e1000_i350: | ||
1243 | ics_mask = 0x77DCFED5; | ||
1244 | break; | ||
1245 | default: | ||
1246 | ics_mask = 0x7FFFFFFF; | ||
1247 | break; | ||
1248 | } | ||
1249 | |||
1250 | /* Test each interrupt */ | ||
1251 | for (; i < 31; i++) { | ||
1252 | /* Interrupt to test */ | ||
1253 | mask = 1 << i; | ||
1254 | |||
1255 | if (!(mask & ics_mask)) | ||
1256 | continue; | ||
1257 | |||
1258 | if (!shared_int) { | ||
1259 | /* Disable the interrupt to be reported in | ||
1260 | * the cause register and then force the same | ||
1261 | * interrupt and see if one gets posted. If | ||
1262 | * an interrupt was posted to the bus, the | ||
1263 | * test failed. | ||
1264 | */ | ||
1265 | adapter->test_icr = 0; | ||
1266 | |||
1267 | /* Flush any pending interrupts */ | ||
1268 | wr32(E1000_ICR, ~0); | ||
1269 | |||
1270 | wr32(E1000_IMC, mask); | ||
1271 | wr32(E1000_ICS, mask); | ||
1272 | wrfl(); | ||
1273 | msleep(10); | ||
1274 | |||
1275 | if (adapter->test_icr & mask) { | ||
1276 | *data = 3; | ||
1277 | break; | ||
1278 | } | ||
1279 | } | ||
1280 | |||
1281 | /* Enable the interrupt to be reported in | ||
1282 | * the cause register and then force the same | ||
1283 | * interrupt and see if one gets posted. If | ||
1284 | * an interrupt was not posted to the bus, the | ||
1285 | * test failed. | ||
1286 | */ | ||
1287 | adapter->test_icr = 0; | ||
1288 | |||
1289 | /* Flush any pending interrupts */ | ||
1290 | wr32(E1000_ICR, ~0); | ||
1291 | |||
1292 | wr32(E1000_IMS, mask); | ||
1293 | wr32(E1000_ICS, mask); | ||
1294 | wrfl(); | ||
1295 | msleep(10); | ||
1296 | |||
1297 | if (!(adapter->test_icr & mask)) { | ||
1298 | *data = 4; | ||
1299 | break; | ||
1300 | } | ||
1301 | |||
1302 | if (!shared_int) { | ||
1303 | /* Disable the other interrupts to be reported in | ||
1304 | * the cause register and then force the other | ||
1305 | * interrupts and see if any get posted. If | ||
1306 | * an interrupt was posted to the bus, the | ||
1307 | * test failed. | ||
1308 | */ | ||
1309 | adapter->test_icr = 0; | ||
1310 | |||
1311 | /* Flush any pending interrupts */ | ||
1312 | wr32(E1000_ICR, ~0); | ||
1313 | |||
1314 | wr32(E1000_IMC, ~mask); | ||
1315 | wr32(E1000_ICS, ~mask); | ||
1316 | wrfl(); | ||
1317 | msleep(10); | ||
1318 | |||
1319 | if (adapter->test_icr & mask) { | ||
1320 | *data = 5; | ||
1321 | break; | ||
1322 | } | ||
1323 | } | ||
1324 | } | ||
1325 | |||
1326 | /* Disable all the interrupts */ | ||
1327 | wr32(E1000_IMC, ~0); | ||
1328 | wrfl(); | ||
1329 | msleep(10); | ||
1330 | |||
1331 | /* Unhook test interrupt handler */ | ||
1332 | if (adapter->msix_entries) | ||
1333 | free_irq(adapter->msix_entries[0].vector, adapter); | ||
1334 | else | ||
1335 | free_irq(irq, adapter); | ||
1336 | |||
1337 | return *data; | ||
1338 | } | ||
1339 | |||
1340 | static void igb_free_desc_rings(struct igb_adapter *adapter) | ||
1341 | { | ||
1342 | igb_free_tx_resources(&adapter->test_tx_ring); | ||
1343 | igb_free_rx_resources(&adapter->test_rx_ring); | ||
1344 | } | ||
1345 | |||
1346 | static int igb_setup_desc_rings(struct igb_adapter *adapter) | ||
1347 | { | ||
1348 | struct igb_ring *tx_ring = &adapter->test_tx_ring; | ||
1349 | struct igb_ring *rx_ring = &adapter->test_rx_ring; | ||
1350 | struct e1000_hw *hw = &adapter->hw; | ||
1351 | int ret_val; | ||
1352 | |||
1353 | /* Setup Tx descriptor ring and Tx buffers */ | ||
1354 | tx_ring->count = IGB_DEFAULT_TXD; | ||
1355 | tx_ring->dev = &adapter->pdev->dev; | ||
1356 | tx_ring->netdev = adapter->netdev; | ||
1357 | tx_ring->reg_idx = adapter->vfs_allocated_count; | ||
1358 | |||
1359 | if (igb_setup_tx_resources(tx_ring)) { | ||
1360 | ret_val = 1; | ||
1361 | goto err_nomem; | ||
1362 | } | ||
1363 | |||
1364 | igb_setup_tctl(adapter); | ||
1365 | igb_configure_tx_ring(adapter, tx_ring); | ||
1366 | |||
1367 | /* Setup Rx descriptor ring and Rx buffers */ | ||
1368 | rx_ring->count = IGB_DEFAULT_RXD; | ||
1369 | rx_ring->dev = &adapter->pdev->dev; | ||
1370 | rx_ring->netdev = adapter->netdev; | ||
1371 | rx_ring->rx_buffer_len = IGB_RXBUFFER_2048; | ||
1372 | rx_ring->reg_idx = adapter->vfs_allocated_count; | ||
1373 | |||
1374 | if (igb_setup_rx_resources(rx_ring)) { | ||
1375 | ret_val = 3; | ||
1376 | goto err_nomem; | ||
1377 | } | ||
1378 | |||
1379 | /* set the default queue to queue 0 of PF */ | ||
1380 | wr32(E1000_MRQC, adapter->vfs_allocated_count << 3); | ||
1381 | |||
1382 | /* enable receive ring */ | ||
1383 | igb_setup_rctl(adapter); | ||
1384 | igb_configure_rx_ring(adapter, rx_ring); | ||
1385 | |||
1386 | igb_alloc_rx_buffers_adv(rx_ring, igb_desc_unused(rx_ring)); | ||
1387 | |||
1388 | return 0; | ||
1389 | |||
1390 | err_nomem: | ||
1391 | igb_free_desc_rings(adapter); | ||
1392 | return ret_val; | ||
1393 | } | ||
1394 | |||
1395 | static void igb_phy_disable_receiver(struct igb_adapter *adapter) | ||
1396 | { | ||
1397 | struct e1000_hw *hw = &adapter->hw; | ||
1398 | |||
1399 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | ||
1400 | igb_write_phy_reg(hw, 29, 0x001F); | ||
1401 | igb_write_phy_reg(hw, 30, 0x8FFC); | ||
1402 | igb_write_phy_reg(hw, 29, 0x001A); | ||
1403 | igb_write_phy_reg(hw, 30, 0x8FF0); | ||
1404 | } | ||
1405 | |||
1406 | static int igb_integrated_phy_loopback(struct igb_adapter *adapter) | ||
1407 | { | ||
1408 | struct e1000_hw *hw = &adapter->hw; | ||
1409 | u32 ctrl_reg = 0; | ||
1410 | |||
1411 | hw->mac.autoneg = false; | ||
1412 | |||
1413 | if (hw->phy.type == e1000_phy_m88) { | ||
1414 | /* Auto-MDI/MDIX Off */ | ||
1415 | igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); | ||
1416 | /* reset to update Auto-MDI/MDIX */ | ||
1417 | igb_write_phy_reg(hw, PHY_CONTROL, 0x9140); | ||
1418 | /* autoneg off */ | ||
1419 | igb_write_phy_reg(hw, PHY_CONTROL, 0x8140); | ||
1420 | } else if (hw->phy.type == e1000_phy_82580) { | ||
1421 | /* enable MII loopback */ | ||
1422 | igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041); | ||
1423 | } | ||
1424 | |||
1425 | ctrl_reg = rd32(E1000_CTRL); | ||
1426 | |||
1427 | /* force 1000, set loopback */ | ||
1428 | igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); | ||
1429 | |||
1430 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
1431 | ctrl_reg = rd32(E1000_CTRL); | ||
1432 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | ||
1433 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
1434 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
1435 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | ||
1436 | E1000_CTRL_FD | /* Force Duplex to FULL */ | ||
1437 | E1000_CTRL_SLU); /* Set link up enable bit */ | ||
1438 | |||
1439 | if (hw->phy.type == e1000_phy_m88) | ||
1440 | ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ | ||
1441 | |||
1442 | wr32(E1000_CTRL, ctrl_reg); | ||
1443 | |||
1444 | /* Disable the receiver on the PHY so when a cable is plugged in, the | ||
1445 | * PHY does not begin to autoneg when a cable is reconnected to the NIC. | ||
1446 | */ | ||
1447 | if (hw->phy.type == e1000_phy_m88) | ||
1448 | igb_phy_disable_receiver(adapter); | ||
1449 | |||
1450 | udelay(500); | ||
1451 | |||
1452 | return 0; | ||
1453 | } | ||
1454 | |||
1455 | static int igb_set_phy_loopback(struct igb_adapter *adapter) | ||
1456 | { | ||
1457 | return igb_integrated_phy_loopback(adapter); | ||
1458 | } | ||
1459 | |||
1460 | static int igb_setup_loopback_test(struct igb_adapter *adapter) | ||
1461 | { | ||
1462 | struct e1000_hw *hw = &adapter->hw; | ||
1463 | u32 reg; | ||
1464 | |||
1465 | reg = rd32(E1000_CTRL_EXT); | ||
1466 | |||
1467 | /* use CTRL_EXT to identify link type as SGMII can appear as copper */ | ||
1468 | if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { | ||
1469 | if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || | ||
1470 | (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || | ||
1471 | (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || | ||
1472 | (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { | ||
1473 | |||
1474 | /* Enable DH89xxCC MPHY for near end loopback */ | ||
1475 | reg = rd32(E1000_MPHY_ADDR_CTL); | ||
1476 | reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | | ||
1477 | E1000_MPHY_PCS_CLK_REG_OFFSET; | ||
1478 | wr32(E1000_MPHY_ADDR_CTL, reg); | ||
1479 | |||
1480 | reg = rd32(E1000_MPHY_DATA); | ||
1481 | reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; | ||
1482 | wr32(E1000_MPHY_DATA, reg); | ||
1483 | } | ||
1484 | |||
1485 | reg = rd32(E1000_RCTL); | ||
1486 | reg |= E1000_RCTL_LBM_TCVR; | ||
1487 | wr32(E1000_RCTL, reg); | ||
1488 | |||
1489 | wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); | ||
1490 | |||
1491 | reg = rd32(E1000_CTRL); | ||
1492 | reg &= ~(E1000_CTRL_RFCE | | ||
1493 | E1000_CTRL_TFCE | | ||
1494 | E1000_CTRL_LRST); | ||
1495 | reg |= E1000_CTRL_SLU | | ||
1496 | E1000_CTRL_FD; | ||
1497 | wr32(E1000_CTRL, reg); | ||
1498 | |||
1499 | /* Unset switch control to serdes energy detect */ | ||
1500 | reg = rd32(E1000_CONNSW); | ||
1501 | reg &= ~E1000_CONNSW_ENRGSRC; | ||
1502 | wr32(E1000_CONNSW, reg); | ||
1503 | |||
1504 | /* Set PCS register for forced speed */ | ||
1505 | reg = rd32(E1000_PCS_LCTL); | ||
1506 | reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ | ||
1507 | reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ | ||
1508 | E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ | ||
1509 | E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ | ||
1510 | E1000_PCS_LCTL_FSD | /* Force Speed */ | ||
1511 | E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ | ||
1512 | wr32(E1000_PCS_LCTL, reg); | ||
1513 | |||
1514 | return 0; | ||
1515 | } | ||
1516 | |||
1517 | return igb_set_phy_loopback(adapter); | ||
1518 | } | ||
1519 | |||
1520 | static void igb_loopback_cleanup(struct igb_adapter *adapter) | ||
1521 | { | ||
1522 | struct e1000_hw *hw = &adapter->hw; | ||
1523 | u32 rctl; | ||
1524 | u16 phy_reg; | ||
1525 | |||
1526 | if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || | ||
1527 | (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || | ||
1528 | (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || | ||
1529 | (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { | ||
1530 | u32 reg; | ||
1531 | |||
1532 | /* Disable near end loopback on DH89xxCC */ | ||
1533 | reg = rd32(E1000_MPHY_ADDR_CTL); | ||
1534 | reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | | ||
1535 | E1000_MPHY_PCS_CLK_REG_OFFSET; | ||
1536 | wr32(E1000_MPHY_ADDR_CTL, reg); | ||
1537 | |||
1538 | reg = rd32(E1000_MPHY_DATA); | ||
1539 | reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; | ||
1540 | wr32(E1000_MPHY_DATA, reg); | ||
1541 | } | ||
1542 | |||
1543 | rctl = rd32(E1000_RCTL); | ||
1544 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | ||
1545 | wr32(E1000_RCTL, rctl); | ||
1546 | |||
1547 | hw->mac.autoneg = true; | ||
1548 | igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg); | ||
1549 | if (phy_reg & MII_CR_LOOPBACK) { | ||
1550 | phy_reg &= ~MII_CR_LOOPBACK; | ||
1551 | igb_write_phy_reg(hw, PHY_CONTROL, phy_reg); | ||
1552 | igb_phy_sw_reset(hw); | ||
1553 | } | ||
1554 | } | ||
1555 | |||
1556 | static void igb_create_lbtest_frame(struct sk_buff *skb, | ||
1557 | unsigned int frame_size) | ||
1558 | { | ||
1559 | memset(skb->data, 0xFF, frame_size); | ||
1560 | frame_size /= 2; | ||
1561 | memset(&skb->data[frame_size], 0xAA, frame_size - 1); | ||
1562 | memset(&skb->data[frame_size + 10], 0xBE, 1); | ||
1563 | memset(&skb->data[frame_size + 12], 0xAF, 1); | ||
1564 | } | ||
1565 | |||
1566 | static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) | ||
1567 | { | ||
1568 | frame_size /= 2; | ||
1569 | if (*(skb->data + 3) == 0xFF) { | ||
1570 | if ((*(skb->data + frame_size + 10) == 0xBE) && | ||
1571 | (*(skb->data + frame_size + 12) == 0xAF)) { | ||
1572 | return 0; | ||
1573 | } | ||
1574 | } | ||
1575 | return 13; | ||
1576 | } | ||
1577 | |||
1578 | static int igb_clean_test_rings(struct igb_ring *rx_ring, | ||
1579 | struct igb_ring *tx_ring, | ||
1580 | unsigned int size) | ||
1581 | { | ||
1582 | union e1000_adv_rx_desc *rx_desc; | ||
1583 | struct igb_buffer *buffer_info; | ||
1584 | int rx_ntc, tx_ntc, count = 0; | ||
1585 | u32 staterr; | ||
1586 | |||
1587 | /* initialize next to clean and descriptor values */ | ||
1588 | rx_ntc = rx_ring->next_to_clean; | ||
1589 | tx_ntc = tx_ring->next_to_clean; | ||
1590 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc); | ||
1591 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
1592 | |||
1593 | while (staterr & E1000_RXD_STAT_DD) { | ||
1594 | /* check rx buffer */ | ||
1595 | buffer_info = &rx_ring->buffer_info[rx_ntc]; | ||
1596 | |||
1597 | /* unmap rx buffer, will be remapped by alloc_rx_buffers */ | ||
1598 | dma_unmap_single(rx_ring->dev, | ||
1599 | buffer_info->dma, | ||
1600 | rx_ring->rx_buffer_len, | ||
1601 | DMA_FROM_DEVICE); | ||
1602 | buffer_info->dma = 0; | ||
1603 | |||
1604 | /* verify contents of skb */ | ||
1605 | if (!igb_check_lbtest_frame(buffer_info->skb, size)) | ||
1606 | count++; | ||
1607 | |||
1608 | /* unmap buffer on tx side */ | ||
1609 | buffer_info = &tx_ring->buffer_info[tx_ntc]; | ||
1610 | igb_unmap_and_free_tx_resource(tx_ring, buffer_info); | ||
1611 | |||
1612 | /* increment rx/tx next to clean counters */ | ||
1613 | rx_ntc++; | ||
1614 | if (rx_ntc == rx_ring->count) | ||
1615 | rx_ntc = 0; | ||
1616 | tx_ntc++; | ||
1617 | if (tx_ntc == tx_ring->count) | ||
1618 | tx_ntc = 0; | ||
1619 | |||
1620 | /* fetch next descriptor */ | ||
1621 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc); | ||
1622 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
1623 | } | ||
1624 | |||
1625 | /* re-map buffers to ring, store next to clean values */ | ||
1626 | igb_alloc_rx_buffers_adv(rx_ring, count); | ||
1627 | rx_ring->next_to_clean = rx_ntc; | ||
1628 | tx_ring->next_to_clean = tx_ntc; | ||
1629 | |||
1630 | return count; | ||
1631 | } | ||
1632 | |||
1633 | static int igb_run_loopback_test(struct igb_adapter *adapter) | ||
1634 | { | ||
1635 | struct igb_ring *tx_ring = &adapter->test_tx_ring; | ||
1636 | struct igb_ring *rx_ring = &adapter->test_rx_ring; | ||
1637 | int i, j, lc, good_cnt, ret_val = 0; | ||
1638 | unsigned int size = 1024; | ||
1639 | netdev_tx_t tx_ret_val; | ||
1640 | struct sk_buff *skb; | ||
1641 | |||
1642 | /* allocate test skb */ | ||
1643 | skb = alloc_skb(size, GFP_KERNEL); | ||
1644 | if (!skb) | ||
1645 | return 11; | ||
1646 | |||
1647 | /* place data into test skb */ | ||
1648 | igb_create_lbtest_frame(skb, size); | ||
1649 | skb_put(skb, size); | ||
1650 | |||
1651 | /* | ||
1652 | * Calculate the loop count based on the largest descriptor ring | ||
1653 | * The idea is to wrap the largest ring a number of times using 64 | ||
1654 | * send/receive pairs during each loop | ||
1655 | */ | ||
1656 | |||
1657 | if (rx_ring->count <= tx_ring->count) | ||
1658 | lc = ((tx_ring->count / 64) * 2) + 1; | ||
1659 | else | ||
1660 | lc = ((rx_ring->count / 64) * 2) + 1; | ||
1661 | |||
1662 | for (j = 0; j <= lc; j++) { /* loop count loop */ | ||
1663 | /* reset count of good packets */ | ||
1664 | good_cnt = 0; | ||
1665 | |||
1666 | /* place 64 packets on the transmit queue*/ | ||
1667 | for (i = 0; i < 64; i++) { | ||
1668 | skb_get(skb); | ||
1669 | tx_ret_val = igb_xmit_frame_ring_adv(skb, tx_ring); | ||
1670 | if (tx_ret_val == NETDEV_TX_OK) | ||
1671 | good_cnt++; | ||
1672 | } | ||
1673 | |||
1674 | if (good_cnt != 64) { | ||
1675 | ret_val = 12; | ||
1676 | break; | ||
1677 | } | ||
1678 | |||
1679 | /* allow 200 milliseconds for packets to go from tx to rx */ | ||
1680 | msleep(200); | ||
1681 | |||
1682 | good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); | ||
1683 | if (good_cnt != 64) { | ||
1684 | ret_val = 13; | ||
1685 | break; | ||
1686 | } | ||
1687 | } /* end loop count loop */ | ||
1688 | |||
1689 | /* free the original skb */ | ||
1690 | kfree_skb(skb); | ||
1691 | |||
1692 | return ret_val; | ||
1693 | } | ||
1694 | |||
1695 | static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) | ||
1696 | { | ||
1697 | /* PHY loopback cannot be performed if SoL/IDER | ||
1698 | * sessions are active */ | ||
1699 | if (igb_check_reset_block(&adapter->hw)) { | ||
1700 | dev_err(&adapter->pdev->dev, | ||
1701 | "Cannot do PHY loopback test " | ||
1702 | "when SoL/IDER is active.\n"); | ||
1703 | *data = 0; | ||
1704 | goto out; | ||
1705 | } | ||
1706 | *data = igb_setup_desc_rings(adapter); | ||
1707 | if (*data) | ||
1708 | goto out; | ||
1709 | *data = igb_setup_loopback_test(adapter); | ||
1710 | if (*data) | ||
1711 | goto err_loopback; | ||
1712 | *data = igb_run_loopback_test(adapter); | ||
1713 | igb_loopback_cleanup(adapter); | ||
1714 | |||
1715 | err_loopback: | ||
1716 | igb_free_desc_rings(adapter); | ||
1717 | out: | ||
1718 | return *data; | ||
1719 | } | ||
1720 | |||
1721 | static int igb_link_test(struct igb_adapter *adapter, u64 *data) | ||
1722 | { | ||
1723 | struct e1000_hw *hw = &adapter->hw; | ||
1724 | *data = 0; | ||
1725 | if (hw->phy.media_type == e1000_media_type_internal_serdes) { | ||
1726 | int i = 0; | ||
1727 | hw->mac.serdes_has_link = false; | ||
1728 | |||
1729 | /* On some blade server designs, link establishment | ||
1730 | * could take as long as 2-3 minutes */ | ||
1731 | do { | ||
1732 | hw->mac.ops.check_for_link(&adapter->hw); | ||
1733 | if (hw->mac.serdes_has_link) | ||
1734 | return *data; | ||
1735 | msleep(20); | ||
1736 | } while (i++ < 3750); | ||
1737 | |||
1738 | *data = 1; | ||
1739 | } else { | ||
1740 | hw->mac.ops.check_for_link(&adapter->hw); | ||
1741 | if (hw->mac.autoneg) | ||
1742 | msleep(4000); | ||
1743 | |||
1744 | if (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) | ||
1745 | *data = 1; | ||
1746 | } | ||
1747 | return *data; | ||
1748 | } | ||
1749 | |||
1750 | static void igb_diag_test(struct net_device *netdev, | ||
1751 | struct ethtool_test *eth_test, u64 *data) | ||
1752 | { | ||
1753 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1754 | u16 autoneg_advertised; | ||
1755 | u8 forced_speed_duplex, autoneg; | ||
1756 | bool if_running = netif_running(netdev); | ||
1757 | |||
1758 | set_bit(__IGB_TESTING, &adapter->state); | ||
1759 | if (eth_test->flags == ETH_TEST_FL_OFFLINE) { | ||
1760 | /* Offline tests */ | ||
1761 | |||
1762 | /* save speed, duplex, autoneg settings */ | ||
1763 | autoneg_advertised = adapter->hw.phy.autoneg_advertised; | ||
1764 | forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; | ||
1765 | autoneg = adapter->hw.mac.autoneg; | ||
1766 | |||
1767 | dev_info(&adapter->pdev->dev, "offline testing starting\n"); | ||
1768 | |||
1769 | /* power up link for link test */ | ||
1770 | igb_power_up_link(adapter); | ||
1771 | |||
1772 | /* Link test performed before hardware reset so autoneg doesn't | ||
1773 | * interfere with test result */ | ||
1774 | if (igb_link_test(adapter, &data[4])) | ||
1775 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1776 | |||
1777 | if (if_running) | ||
1778 | /* indicate we're in test mode */ | ||
1779 | dev_close(netdev); | ||
1780 | else | ||
1781 | igb_reset(adapter); | ||
1782 | |||
1783 | if (igb_reg_test(adapter, &data[0])) | ||
1784 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1785 | |||
1786 | igb_reset(adapter); | ||
1787 | if (igb_eeprom_test(adapter, &data[1])) | ||
1788 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1789 | |||
1790 | igb_reset(adapter); | ||
1791 | if (igb_intr_test(adapter, &data[2])) | ||
1792 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1793 | |||
1794 | igb_reset(adapter); | ||
1795 | /* power up link for loopback test */ | ||
1796 | igb_power_up_link(adapter); | ||
1797 | if (igb_loopback_test(adapter, &data[3])) | ||
1798 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1799 | |||
1800 | /* restore speed, duplex, autoneg settings */ | ||
1801 | adapter->hw.phy.autoneg_advertised = autoneg_advertised; | ||
1802 | adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; | ||
1803 | adapter->hw.mac.autoneg = autoneg; | ||
1804 | |||
1805 | /* force this routine to wait until autoneg complete/timeout */ | ||
1806 | adapter->hw.phy.autoneg_wait_to_complete = true; | ||
1807 | igb_reset(adapter); | ||
1808 | adapter->hw.phy.autoneg_wait_to_complete = false; | ||
1809 | |||
1810 | clear_bit(__IGB_TESTING, &adapter->state); | ||
1811 | if (if_running) | ||
1812 | dev_open(netdev); | ||
1813 | } else { | ||
1814 | dev_info(&adapter->pdev->dev, "online testing starting\n"); | ||
1815 | |||
1816 | /* PHY is powered down when interface is down */ | ||
1817 | if (if_running && igb_link_test(adapter, &data[4])) | ||
1818 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1819 | else | ||
1820 | data[4] = 0; | ||
1821 | |||
1822 | /* Online tests aren't run; pass by default */ | ||
1823 | data[0] = 0; | ||
1824 | data[1] = 0; | ||
1825 | data[2] = 0; | ||
1826 | data[3] = 0; | ||
1827 | |||
1828 | clear_bit(__IGB_TESTING, &adapter->state); | ||
1829 | } | ||
1830 | msleep_interruptible(4 * 1000); | ||
1831 | } | ||
1832 | |||
1833 | static int igb_wol_exclusion(struct igb_adapter *adapter, | ||
1834 | struct ethtool_wolinfo *wol) | ||
1835 | { | ||
1836 | struct e1000_hw *hw = &adapter->hw; | ||
1837 | int retval = 1; /* fail by default */ | ||
1838 | |||
1839 | switch (hw->device_id) { | ||
1840 | case E1000_DEV_ID_82575GB_QUAD_COPPER: | ||
1841 | /* WoL not supported */ | ||
1842 | wol->supported = 0; | ||
1843 | break; | ||
1844 | case E1000_DEV_ID_82575EB_FIBER_SERDES: | ||
1845 | case E1000_DEV_ID_82576_FIBER: | ||
1846 | case E1000_DEV_ID_82576_SERDES: | ||
1847 | /* Wake events not supported on port B */ | ||
1848 | if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) { | ||
1849 | wol->supported = 0; | ||
1850 | break; | ||
1851 | } | ||
1852 | /* return success for non excluded adapter ports */ | ||
1853 | retval = 0; | ||
1854 | break; | ||
1855 | case E1000_DEV_ID_82576_QUAD_COPPER: | ||
1856 | case E1000_DEV_ID_82576_QUAD_COPPER_ET2: | ||
1857 | /* quad port adapters only support WoL on port A */ | ||
1858 | if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) { | ||
1859 | wol->supported = 0; | ||
1860 | break; | ||
1861 | } | ||
1862 | /* return success for non excluded adapter ports */ | ||
1863 | retval = 0; | ||
1864 | break; | ||
1865 | default: | ||
1866 | /* dual port cards only support WoL on port A from now on | ||
1867 | * unless it was enabled in the eeprom for port B | ||
1868 | * so exclude FUNC_1 ports from having WoL enabled */ | ||
1869 | if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) && | ||
1870 | !adapter->eeprom_wol) { | ||
1871 | wol->supported = 0; | ||
1872 | break; | ||
1873 | } | ||
1874 | |||
1875 | retval = 0; | ||
1876 | } | ||
1877 | |||
1878 | return retval; | ||
1879 | } | ||
1880 | |||
1881 | static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | ||
1882 | { | ||
1883 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1884 | |||
1885 | wol->supported = WAKE_UCAST | WAKE_MCAST | | ||
1886 | WAKE_BCAST | WAKE_MAGIC | | ||
1887 | WAKE_PHY; | ||
1888 | wol->wolopts = 0; | ||
1889 | |||
1890 | /* this function will set ->supported = 0 and return 1 if wol is not | ||
1891 | * supported by this hardware */ | ||
1892 | if (igb_wol_exclusion(adapter, wol) || | ||
1893 | !device_can_wakeup(&adapter->pdev->dev)) | ||
1894 | return; | ||
1895 | |||
1896 | /* apply any specific unsupported masks here */ | ||
1897 | switch (adapter->hw.device_id) { | ||
1898 | default: | ||
1899 | break; | ||
1900 | } | ||
1901 | |||
1902 | if (adapter->wol & E1000_WUFC_EX) | ||
1903 | wol->wolopts |= WAKE_UCAST; | ||
1904 | if (adapter->wol & E1000_WUFC_MC) | ||
1905 | wol->wolopts |= WAKE_MCAST; | ||
1906 | if (adapter->wol & E1000_WUFC_BC) | ||
1907 | wol->wolopts |= WAKE_BCAST; | ||
1908 | if (adapter->wol & E1000_WUFC_MAG) | ||
1909 | wol->wolopts |= WAKE_MAGIC; | ||
1910 | if (adapter->wol & E1000_WUFC_LNKC) | ||
1911 | wol->wolopts |= WAKE_PHY; | ||
1912 | } | ||
1913 | |||
1914 | static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | ||
1915 | { | ||
1916 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1917 | |||
1918 | if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) | ||
1919 | return -EOPNOTSUPP; | ||
1920 | |||
1921 | if (igb_wol_exclusion(adapter, wol) || | ||
1922 | !device_can_wakeup(&adapter->pdev->dev)) | ||
1923 | return wol->wolopts ? -EOPNOTSUPP : 0; | ||
1924 | |||
1925 | /* these settings will always override what we currently have */ | ||
1926 | adapter->wol = 0; | ||
1927 | |||
1928 | if (wol->wolopts & WAKE_UCAST) | ||
1929 | adapter->wol |= E1000_WUFC_EX; | ||
1930 | if (wol->wolopts & WAKE_MCAST) | ||
1931 | adapter->wol |= E1000_WUFC_MC; | ||
1932 | if (wol->wolopts & WAKE_BCAST) | ||
1933 | adapter->wol |= E1000_WUFC_BC; | ||
1934 | if (wol->wolopts & WAKE_MAGIC) | ||
1935 | adapter->wol |= E1000_WUFC_MAG; | ||
1936 | if (wol->wolopts & WAKE_PHY) | ||
1937 | adapter->wol |= E1000_WUFC_LNKC; | ||
1938 | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | ||
1939 | |||
1940 | return 0; | ||
1941 | } | ||
1942 | |||
1943 | /* bit defines for adapter->led_status */ | ||
1944 | #define IGB_LED_ON 0 | ||
1945 | |||
1946 | static int igb_set_phys_id(struct net_device *netdev, | ||
1947 | enum ethtool_phys_id_state state) | ||
1948 | { | ||
1949 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1950 | struct e1000_hw *hw = &adapter->hw; | ||
1951 | |||
1952 | switch (state) { | ||
1953 | case ETHTOOL_ID_ACTIVE: | ||
1954 | igb_blink_led(hw); | ||
1955 | return 2; | ||
1956 | case ETHTOOL_ID_ON: | ||
1957 | igb_blink_led(hw); | ||
1958 | break; | ||
1959 | case ETHTOOL_ID_OFF: | ||
1960 | igb_led_off(hw); | ||
1961 | break; | ||
1962 | case ETHTOOL_ID_INACTIVE: | ||
1963 | igb_led_off(hw); | ||
1964 | clear_bit(IGB_LED_ON, &adapter->led_status); | ||
1965 | igb_cleanup_led(hw); | ||
1966 | break; | ||
1967 | } | ||
1968 | |||
1969 | return 0; | ||
1970 | } | ||
1971 | |||
1972 | static int igb_set_coalesce(struct net_device *netdev, | ||
1973 | struct ethtool_coalesce *ec) | ||
1974 | { | ||
1975 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1976 | int i; | ||
1977 | |||
1978 | if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || | ||
1979 | ((ec->rx_coalesce_usecs > 3) && | ||
1980 | (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || | ||
1981 | (ec->rx_coalesce_usecs == 2)) | ||
1982 | return -EINVAL; | ||
1983 | |||
1984 | if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || | ||
1985 | ((ec->tx_coalesce_usecs > 3) && | ||
1986 | (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || | ||
1987 | (ec->tx_coalesce_usecs == 2)) | ||
1988 | return -EINVAL; | ||
1989 | |||
1990 | if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) | ||
1991 | return -EINVAL; | ||
1992 | |||
1993 | /* If ITR is disabled, disable DMAC */ | ||
1994 | if (ec->rx_coalesce_usecs == 0) { | ||
1995 | if (adapter->flags & IGB_FLAG_DMAC) | ||
1996 | adapter->flags &= ~IGB_FLAG_DMAC; | ||
1997 | } | ||
1998 | |||
1999 | /* convert to rate of irq's per second */ | ||
2000 | if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) | ||
2001 | adapter->rx_itr_setting = ec->rx_coalesce_usecs; | ||
2002 | else | ||
2003 | adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; | ||
2004 | |||
2005 | /* convert to rate of irq's per second */ | ||
2006 | if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) | ||
2007 | adapter->tx_itr_setting = adapter->rx_itr_setting; | ||
2008 | else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) | ||
2009 | adapter->tx_itr_setting = ec->tx_coalesce_usecs; | ||
2010 | else | ||
2011 | adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; | ||
2012 | |||
2013 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
2014 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
2015 | if (q_vector->rx_ring) | ||
2016 | q_vector->itr_val = adapter->rx_itr_setting; | ||
2017 | else | ||
2018 | q_vector->itr_val = adapter->tx_itr_setting; | ||
2019 | if (q_vector->itr_val && q_vector->itr_val <= 3) | ||
2020 | q_vector->itr_val = IGB_START_ITR; | ||
2021 | q_vector->set_itr = 1; | ||
2022 | } | ||
2023 | |||
2024 | return 0; | ||
2025 | } | ||
2026 | |||
2027 | static int igb_get_coalesce(struct net_device *netdev, | ||
2028 | struct ethtool_coalesce *ec) | ||
2029 | { | ||
2030 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2031 | |||
2032 | if (adapter->rx_itr_setting <= 3) | ||
2033 | ec->rx_coalesce_usecs = adapter->rx_itr_setting; | ||
2034 | else | ||
2035 | ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; | ||
2036 | |||
2037 | if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { | ||
2038 | if (adapter->tx_itr_setting <= 3) | ||
2039 | ec->tx_coalesce_usecs = adapter->tx_itr_setting; | ||
2040 | else | ||
2041 | ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; | ||
2042 | } | ||
2043 | |||
2044 | return 0; | ||
2045 | } | ||
2046 | |||
2047 | static int igb_nway_reset(struct net_device *netdev) | ||
2048 | { | ||
2049 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2050 | if (netif_running(netdev)) | ||
2051 | igb_reinit_locked(adapter); | ||
2052 | return 0; | ||
2053 | } | ||
2054 | |||
2055 | static int igb_get_sset_count(struct net_device *netdev, int sset) | ||
2056 | { | ||
2057 | switch (sset) { | ||
2058 | case ETH_SS_STATS: | ||
2059 | return IGB_STATS_LEN; | ||
2060 | case ETH_SS_TEST: | ||
2061 | return IGB_TEST_LEN; | ||
2062 | default: | ||
2063 | return -ENOTSUPP; | ||
2064 | } | ||
2065 | } | ||
2066 | |||
2067 | static void igb_get_ethtool_stats(struct net_device *netdev, | ||
2068 | struct ethtool_stats *stats, u64 *data) | ||
2069 | { | ||
2070 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2071 | struct rtnl_link_stats64 *net_stats = &adapter->stats64; | ||
2072 | unsigned int start; | ||
2073 | struct igb_ring *ring; | ||
2074 | int i, j; | ||
2075 | char *p; | ||
2076 | |||
2077 | spin_lock(&adapter->stats64_lock); | ||
2078 | igb_update_stats(adapter, net_stats); | ||
2079 | |||
2080 | for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { | ||
2081 | p = (char *)adapter + igb_gstrings_stats[i].stat_offset; | ||
2082 | data[i] = (igb_gstrings_stats[i].sizeof_stat == | ||
2083 | sizeof(u64)) ? *(u64 *)p : *(u32 *)p; | ||
2084 | } | ||
2085 | for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { | ||
2086 | p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; | ||
2087 | data[i] = (igb_gstrings_net_stats[j].sizeof_stat == | ||
2088 | sizeof(u64)) ? *(u64 *)p : *(u32 *)p; | ||
2089 | } | ||
2090 | for (j = 0; j < adapter->num_tx_queues; j++) { | ||
2091 | u64 restart2; | ||
2092 | |||
2093 | ring = adapter->tx_ring[j]; | ||
2094 | do { | ||
2095 | start = u64_stats_fetch_begin_bh(&ring->tx_syncp); | ||
2096 | data[i] = ring->tx_stats.packets; | ||
2097 | data[i+1] = ring->tx_stats.bytes; | ||
2098 | data[i+2] = ring->tx_stats.restart_queue; | ||
2099 | } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); | ||
2100 | do { | ||
2101 | start = u64_stats_fetch_begin_bh(&ring->tx_syncp2); | ||
2102 | restart2 = ring->tx_stats.restart_queue2; | ||
2103 | } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start)); | ||
2104 | data[i+2] += restart2; | ||
2105 | |||
2106 | i += IGB_TX_QUEUE_STATS_LEN; | ||
2107 | } | ||
2108 | for (j = 0; j < adapter->num_rx_queues; j++) { | ||
2109 | ring = adapter->rx_ring[j]; | ||
2110 | do { | ||
2111 | start = u64_stats_fetch_begin_bh(&ring->rx_syncp); | ||
2112 | data[i] = ring->rx_stats.packets; | ||
2113 | data[i+1] = ring->rx_stats.bytes; | ||
2114 | data[i+2] = ring->rx_stats.drops; | ||
2115 | data[i+3] = ring->rx_stats.csum_err; | ||
2116 | data[i+4] = ring->rx_stats.alloc_failed; | ||
2117 | } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); | ||
2118 | i += IGB_RX_QUEUE_STATS_LEN; | ||
2119 | } | ||
2120 | spin_unlock(&adapter->stats64_lock); | ||
2121 | } | ||
2122 | |||
2123 | static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) | ||
2124 | { | ||
2125 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2126 | u8 *p = data; | ||
2127 | int i; | ||
2128 | |||
2129 | switch (stringset) { | ||
2130 | case ETH_SS_TEST: | ||
2131 | memcpy(data, *igb_gstrings_test, | ||
2132 | IGB_TEST_LEN*ETH_GSTRING_LEN); | ||
2133 | break; | ||
2134 | case ETH_SS_STATS: | ||
2135 | for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { | ||
2136 | memcpy(p, igb_gstrings_stats[i].stat_string, | ||
2137 | ETH_GSTRING_LEN); | ||
2138 | p += ETH_GSTRING_LEN; | ||
2139 | } | ||
2140 | for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) { | ||
2141 | memcpy(p, igb_gstrings_net_stats[i].stat_string, | ||
2142 | ETH_GSTRING_LEN); | ||
2143 | p += ETH_GSTRING_LEN; | ||
2144 | } | ||
2145 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
2146 | sprintf(p, "tx_queue_%u_packets", i); | ||
2147 | p += ETH_GSTRING_LEN; | ||
2148 | sprintf(p, "tx_queue_%u_bytes", i); | ||
2149 | p += ETH_GSTRING_LEN; | ||
2150 | sprintf(p, "tx_queue_%u_restart", i); | ||
2151 | p += ETH_GSTRING_LEN; | ||
2152 | } | ||
2153 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
2154 | sprintf(p, "rx_queue_%u_packets", i); | ||
2155 | p += ETH_GSTRING_LEN; | ||
2156 | sprintf(p, "rx_queue_%u_bytes", i); | ||
2157 | p += ETH_GSTRING_LEN; | ||
2158 | sprintf(p, "rx_queue_%u_drops", i); | ||
2159 | p += ETH_GSTRING_LEN; | ||
2160 | sprintf(p, "rx_queue_%u_csum_err", i); | ||
2161 | p += ETH_GSTRING_LEN; | ||
2162 | sprintf(p, "rx_queue_%u_alloc_failed", i); | ||
2163 | p += ETH_GSTRING_LEN; | ||
2164 | } | ||
2165 | /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ | ||
2166 | break; | ||
2167 | } | ||
2168 | } | ||
2169 | |||
2170 | static const struct ethtool_ops igb_ethtool_ops = { | ||
2171 | .get_settings = igb_get_settings, | ||
2172 | .set_settings = igb_set_settings, | ||
2173 | .get_drvinfo = igb_get_drvinfo, | ||
2174 | .get_regs_len = igb_get_regs_len, | ||
2175 | .get_regs = igb_get_regs, | ||
2176 | .get_wol = igb_get_wol, | ||
2177 | .set_wol = igb_set_wol, | ||
2178 | .get_msglevel = igb_get_msglevel, | ||
2179 | .set_msglevel = igb_set_msglevel, | ||
2180 | .nway_reset = igb_nway_reset, | ||
2181 | .get_link = igb_get_link, | ||
2182 | .get_eeprom_len = igb_get_eeprom_len, | ||
2183 | .get_eeprom = igb_get_eeprom, | ||
2184 | .set_eeprom = igb_set_eeprom, | ||
2185 | .get_ringparam = igb_get_ringparam, | ||
2186 | .set_ringparam = igb_set_ringparam, | ||
2187 | .get_pauseparam = igb_get_pauseparam, | ||
2188 | .set_pauseparam = igb_set_pauseparam, | ||
2189 | .self_test = igb_diag_test, | ||
2190 | .get_strings = igb_get_strings, | ||
2191 | .set_phys_id = igb_set_phys_id, | ||
2192 | .get_sset_count = igb_get_sset_count, | ||
2193 | .get_ethtool_stats = igb_get_ethtool_stats, | ||
2194 | .get_coalesce = igb_get_coalesce, | ||
2195 | .set_coalesce = igb_set_coalesce, | ||
2196 | }; | ||
2197 | |||
2198 | void igb_set_ethtool_ops(struct net_device *netdev) | ||
2199 | { | ||
2200 | SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops); | ||
2201 | } | ||
diff --git a/drivers/net/igb/igb_main.c b/drivers/net/igb/igb_main.c new file mode 100644 index 00000000000..40d4c405fd7 --- /dev/null +++ b/drivers/net/igb/igb_main.c | |||
@@ -0,0 +1,6890 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/module.h> | ||
29 | #include <linux/types.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/bitops.h> | ||
32 | #include <linux/vmalloc.h> | ||
33 | #include <linux/pagemap.h> | ||
34 | #include <linux/netdevice.h> | ||
35 | #include <linux/ipv6.h> | ||
36 | #include <linux/slab.h> | ||
37 | #include <net/checksum.h> | ||
38 | #include <net/ip6_checksum.h> | ||
39 | #include <linux/net_tstamp.h> | ||
40 | #include <linux/mii.h> | ||
41 | #include <linux/ethtool.h> | ||
42 | #include <linux/if_vlan.h> | ||
43 | #include <linux/pci.h> | ||
44 | #include <linux/pci-aspm.h> | ||
45 | #include <linux/delay.h> | ||
46 | #include <linux/interrupt.h> | ||
47 | #include <linux/if_ether.h> | ||
48 | #include <linux/aer.h> | ||
49 | #include <linux/prefetch.h> | ||
50 | #ifdef CONFIG_IGB_DCA | ||
51 | #include <linux/dca.h> | ||
52 | #endif | ||
53 | #include "igb.h" | ||
54 | |||
55 | #define MAJ 3 | ||
56 | #define MIN 0 | ||
57 | #define BUILD 6 | ||
58 | #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ | ||
59 | __stringify(BUILD) "-k" | ||
60 | char igb_driver_name[] = "igb"; | ||
61 | char igb_driver_version[] = DRV_VERSION; | ||
62 | static const char igb_driver_string[] = | ||
63 | "Intel(R) Gigabit Ethernet Network Driver"; | ||
64 | static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation."; | ||
65 | |||
66 | static const struct e1000_info *igb_info_tbl[] = { | ||
67 | [board_82575] = &e1000_82575_info, | ||
68 | }; | ||
69 | |||
70 | static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = { | ||
71 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, | ||
72 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, | ||
73 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, | ||
74 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, | ||
75 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, | ||
76 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, | ||
77 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, | ||
78 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, | ||
79 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, | ||
80 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, | ||
81 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, | ||
82 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, | ||
83 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, | ||
84 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, | ||
85 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, | ||
86 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, | ||
87 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, | ||
88 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, | ||
89 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, | ||
90 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, | ||
91 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, | ||
92 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, | ||
93 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, | ||
94 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, | ||
95 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, | ||
96 | /* required last entry */ | ||
97 | {0, } | ||
98 | }; | ||
99 | |||
100 | MODULE_DEVICE_TABLE(pci, igb_pci_tbl); | ||
101 | |||
102 | void igb_reset(struct igb_adapter *); | ||
103 | static int igb_setup_all_tx_resources(struct igb_adapter *); | ||
104 | static int igb_setup_all_rx_resources(struct igb_adapter *); | ||
105 | static void igb_free_all_tx_resources(struct igb_adapter *); | ||
106 | static void igb_free_all_rx_resources(struct igb_adapter *); | ||
107 | static void igb_setup_mrqc(struct igb_adapter *); | ||
108 | static int igb_probe(struct pci_dev *, const struct pci_device_id *); | ||
109 | static void __devexit igb_remove(struct pci_dev *pdev); | ||
110 | static void igb_init_hw_timer(struct igb_adapter *adapter); | ||
111 | static int igb_sw_init(struct igb_adapter *); | ||
112 | static int igb_open(struct net_device *); | ||
113 | static int igb_close(struct net_device *); | ||
114 | static void igb_configure_tx(struct igb_adapter *); | ||
115 | static void igb_configure_rx(struct igb_adapter *); | ||
116 | static void igb_clean_all_tx_rings(struct igb_adapter *); | ||
117 | static void igb_clean_all_rx_rings(struct igb_adapter *); | ||
118 | static void igb_clean_tx_ring(struct igb_ring *); | ||
119 | static void igb_clean_rx_ring(struct igb_ring *); | ||
120 | static void igb_set_rx_mode(struct net_device *); | ||
121 | static void igb_update_phy_info(unsigned long); | ||
122 | static void igb_watchdog(unsigned long); | ||
123 | static void igb_watchdog_task(struct work_struct *); | ||
124 | static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *); | ||
125 | static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, | ||
126 | struct rtnl_link_stats64 *stats); | ||
127 | static int igb_change_mtu(struct net_device *, int); | ||
128 | static int igb_set_mac(struct net_device *, void *); | ||
129 | static void igb_set_uta(struct igb_adapter *adapter); | ||
130 | static irqreturn_t igb_intr(int irq, void *); | ||
131 | static irqreturn_t igb_intr_msi(int irq, void *); | ||
132 | static irqreturn_t igb_msix_other(int irq, void *); | ||
133 | static irqreturn_t igb_msix_ring(int irq, void *); | ||
134 | #ifdef CONFIG_IGB_DCA | ||
135 | static void igb_update_dca(struct igb_q_vector *); | ||
136 | static void igb_setup_dca(struct igb_adapter *); | ||
137 | #endif /* CONFIG_IGB_DCA */ | ||
138 | static bool igb_clean_tx_irq(struct igb_q_vector *); | ||
139 | static int igb_poll(struct napi_struct *, int); | ||
140 | static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int); | ||
141 | static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); | ||
142 | static void igb_tx_timeout(struct net_device *); | ||
143 | static void igb_reset_task(struct work_struct *); | ||
144 | static void igb_vlan_mode(struct net_device *netdev, u32 features); | ||
145 | static void igb_vlan_rx_add_vid(struct net_device *, u16); | ||
146 | static void igb_vlan_rx_kill_vid(struct net_device *, u16); | ||
147 | static void igb_restore_vlan(struct igb_adapter *); | ||
148 | static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); | ||
149 | static void igb_ping_all_vfs(struct igb_adapter *); | ||
150 | static void igb_msg_task(struct igb_adapter *); | ||
151 | static void igb_vmm_control(struct igb_adapter *); | ||
152 | static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); | ||
153 | static void igb_restore_vf_multicasts(struct igb_adapter *adapter); | ||
154 | static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); | ||
155 | static int igb_ndo_set_vf_vlan(struct net_device *netdev, | ||
156 | int vf, u16 vlan, u8 qos); | ||
157 | static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate); | ||
158 | static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, | ||
159 | struct ifla_vf_info *ivi); | ||
160 | static void igb_check_vf_rate_limit(struct igb_adapter *); | ||
161 | |||
162 | #ifdef CONFIG_PM | ||
163 | static int igb_suspend(struct pci_dev *, pm_message_t); | ||
164 | static int igb_resume(struct pci_dev *); | ||
165 | #endif | ||
166 | static void igb_shutdown(struct pci_dev *); | ||
167 | #ifdef CONFIG_IGB_DCA | ||
168 | static int igb_notify_dca(struct notifier_block *, unsigned long, void *); | ||
169 | static struct notifier_block dca_notifier = { | ||
170 | .notifier_call = igb_notify_dca, | ||
171 | .next = NULL, | ||
172 | .priority = 0 | ||
173 | }; | ||
174 | #endif | ||
175 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
176 | /* for netdump / net console */ | ||
177 | static void igb_netpoll(struct net_device *); | ||
178 | #endif | ||
179 | #ifdef CONFIG_PCI_IOV | ||
180 | static unsigned int max_vfs = 0; | ||
181 | module_param(max_vfs, uint, 0); | ||
182 | MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate " | ||
183 | "per physical function"); | ||
184 | #endif /* CONFIG_PCI_IOV */ | ||
185 | |||
186 | static pci_ers_result_t igb_io_error_detected(struct pci_dev *, | ||
187 | pci_channel_state_t); | ||
188 | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); | ||
189 | static void igb_io_resume(struct pci_dev *); | ||
190 | |||
191 | static struct pci_error_handlers igb_err_handler = { | ||
192 | .error_detected = igb_io_error_detected, | ||
193 | .slot_reset = igb_io_slot_reset, | ||
194 | .resume = igb_io_resume, | ||
195 | }; | ||
196 | |||
197 | |||
198 | static struct pci_driver igb_driver = { | ||
199 | .name = igb_driver_name, | ||
200 | .id_table = igb_pci_tbl, | ||
201 | .probe = igb_probe, | ||
202 | .remove = __devexit_p(igb_remove), | ||
203 | #ifdef CONFIG_PM | ||
204 | /* Power Management Hooks */ | ||
205 | .suspend = igb_suspend, | ||
206 | .resume = igb_resume, | ||
207 | #endif | ||
208 | .shutdown = igb_shutdown, | ||
209 | .err_handler = &igb_err_handler | ||
210 | }; | ||
211 | |||
212 | MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); | ||
213 | MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); | ||
214 | MODULE_LICENSE("GPL"); | ||
215 | MODULE_VERSION(DRV_VERSION); | ||
216 | |||
217 | struct igb_reg_info { | ||
218 | u32 ofs; | ||
219 | char *name; | ||
220 | }; | ||
221 | |||
222 | static const struct igb_reg_info igb_reg_info_tbl[] = { | ||
223 | |||
224 | /* General Registers */ | ||
225 | {E1000_CTRL, "CTRL"}, | ||
226 | {E1000_STATUS, "STATUS"}, | ||
227 | {E1000_CTRL_EXT, "CTRL_EXT"}, | ||
228 | |||
229 | /* Interrupt Registers */ | ||
230 | {E1000_ICR, "ICR"}, | ||
231 | |||
232 | /* RX Registers */ | ||
233 | {E1000_RCTL, "RCTL"}, | ||
234 | {E1000_RDLEN(0), "RDLEN"}, | ||
235 | {E1000_RDH(0), "RDH"}, | ||
236 | {E1000_RDT(0), "RDT"}, | ||
237 | {E1000_RXDCTL(0), "RXDCTL"}, | ||
238 | {E1000_RDBAL(0), "RDBAL"}, | ||
239 | {E1000_RDBAH(0), "RDBAH"}, | ||
240 | |||
241 | /* TX Registers */ | ||
242 | {E1000_TCTL, "TCTL"}, | ||
243 | {E1000_TDBAL(0), "TDBAL"}, | ||
244 | {E1000_TDBAH(0), "TDBAH"}, | ||
245 | {E1000_TDLEN(0), "TDLEN"}, | ||
246 | {E1000_TDH(0), "TDH"}, | ||
247 | {E1000_TDT(0), "TDT"}, | ||
248 | {E1000_TXDCTL(0), "TXDCTL"}, | ||
249 | {E1000_TDFH, "TDFH"}, | ||
250 | {E1000_TDFT, "TDFT"}, | ||
251 | {E1000_TDFHS, "TDFHS"}, | ||
252 | {E1000_TDFPC, "TDFPC"}, | ||
253 | |||
254 | /* List Terminator */ | ||
255 | {} | ||
256 | }; | ||
257 | |||
258 | /* | ||
259 | * igb_regdump - register printout routine | ||
260 | */ | ||
261 | static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) | ||
262 | { | ||
263 | int n = 0; | ||
264 | char rname[16]; | ||
265 | u32 regs[8]; | ||
266 | |||
267 | switch (reginfo->ofs) { | ||
268 | case E1000_RDLEN(0): | ||
269 | for (n = 0; n < 4; n++) | ||
270 | regs[n] = rd32(E1000_RDLEN(n)); | ||
271 | break; | ||
272 | case E1000_RDH(0): | ||
273 | for (n = 0; n < 4; n++) | ||
274 | regs[n] = rd32(E1000_RDH(n)); | ||
275 | break; | ||
276 | case E1000_RDT(0): | ||
277 | for (n = 0; n < 4; n++) | ||
278 | regs[n] = rd32(E1000_RDT(n)); | ||
279 | break; | ||
280 | case E1000_RXDCTL(0): | ||
281 | for (n = 0; n < 4; n++) | ||
282 | regs[n] = rd32(E1000_RXDCTL(n)); | ||
283 | break; | ||
284 | case E1000_RDBAL(0): | ||
285 | for (n = 0; n < 4; n++) | ||
286 | regs[n] = rd32(E1000_RDBAL(n)); | ||
287 | break; | ||
288 | case E1000_RDBAH(0): | ||
289 | for (n = 0; n < 4; n++) | ||
290 | regs[n] = rd32(E1000_RDBAH(n)); | ||
291 | break; | ||
292 | case E1000_TDBAL(0): | ||
293 | for (n = 0; n < 4; n++) | ||
294 | regs[n] = rd32(E1000_RDBAL(n)); | ||
295 | break; | ||
296 | case E1000_TDBAH(0): | ||
297 | for (n = 0; n < 4; n++) | ||
298 | regs[n] = rd32(E1000_TDBAH(n)); | ||
299 | break; | ||
300 | case E1000_TDLEN(0): | ||
301 | for (n = 0; n < 4; n++) | ||
302 | regs[n] = rd32(E1000_TDLEN(n)); | ||
303 | break; | ||
304 | case E1000_TDH(0): | ||
305 | for (n = 0; n < 4; n++) | ||
306 | regs[n] = rd32(E1000_TDH(n)); | ||
307 | break; | ||
308 | case E1000_TDT(0): | ||
309 | for (n = 0; n < 4; n++) | ||
310 | regs[n] = rd32(E1000_TDT(n)); | ||
311 | break; | ||
312 | case E1000_TXDCTL(0): | ||
313 | for (n = 0; n < 4; n++) | ||
314 | regs[n] = rd32(E1000_TXDCTL(n)); | ||
315 | break; | ||
316 | default: | ||
317 | printk(KERN_INFO "%-15s %08x\n", | ||
318 | reginfo->name, rd32(reginfo->ofs)); | ||
319 | return; | ||
320 | } | ||
321 | |||
322 | snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); | ||
323 | printk(KERN_INFO "%-15s ", rname); | ||
324 | for (n = 0; n < 4; n++) | ||
325 | printk(KERN_CONT "%08x ", regs[n]); | ||
326 | printk(KERN_CONT "\n"); | ||
327 | } | ||
328 | |||
329 | /* | ||
330 | * igb_dump - Print registers, tx-rings and rx-rings | ||
331 | */ | ||
332 | static void igb_dump(struct igb_adapter *adapter) | ||
333 | { | ||
334 | struct net_device *netdev = adapter->netdev; | ||
335 | struct e1000_hw *hw = &adapter->hw; | ||
336 | struct igb_reg_info *reginfo; | ||
337 | int n = 0; | ||
338 | struct igb_ring *tx_ring; | ||
339 | union e1000_adv_tx_desc *tx_desc; | ||
340 | struct my_u0 { u64 a; u64 b; } *u0; | ||
341 | struct igb_buffer *buffer_info; | ||
342 | struct igb_ring *rx_ring; | ||
343 | union e1000_adv_rx_desc *rx_desc; | ||
344 | u32 staterr; | ||
345 | int i = 0; | ||
346 | |||
347 | if (!netif_msg_hw(adapter)) | ||
348 | return; | ||
349 | |||
350 | /* Print netdevice Info */ | ||
351 | if (netdev) { | ||
352 | dev_info(&adapter->pdev->dev, "Net device Info\n"); | ||
353 | printk(KERN_INFO "Device Name state " | ||
354 | "trans_start last_rx\n"); | ||
355 | printk(KERN_INFO "%-15s %016lX %016lX %016lX\n", | ||
356 | netdev->name, | ||
357 | netdev->state, | ||
358 | netdev->trans_start, | ||
359 | netdev->last_rx); | ||
360 | } | ||
361 | |||
362 | /* Print Registers */ | ||
363 | dev_info(&adapter->pdev->dev, "Register Dump\n"); | ||
364 | printk(KERN_INFO " Register Name Value\n"); | ||
365 | for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; | ||
366 | reginfo->name; reginfo++) { | ||
367 | igb_regdump(hw, reginfo); | ||
368 | } | ||
369 | |||
370 | /* Print TX Ring Summary */ | ||
371 | if (!netdev || !netif_running(netdev)) | ||
372 | goto exit; | ||
373 | |||
374 | dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); | ||
375 | printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]" | ||
376 | " leng ntw timestamp\n"); | ||
377 | for (n = 0; n < adapter->num_tx_queues; n++) { | ||
378 | tx_ring = adapter->tx_ring[n]; | ||
379 | buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; | ||
380 | printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n", | ||
381 | n, tx_ring->next_to_use, tx_ring->next_to_clean, | ||
382 | (u64)buffer_info->dma, | ||
383 | buffer_info->length, | ||
384 | buffer_info->next_to_watch, | ||
385 | (u64)buffer_info->time_stamp); | ||
386 | } | ||
387 | |||
388 | /* Print TX Rings */ | ||
389 | if (!netif_msg_tx_done(adapter)) | ||
390 | goto rx_ring_summary; | ||
391 | |||
392 | dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); | ||
393 | |||
394 | /* Transmit Descriptor Formats | ||
395 | * | ||
396 | * Advanced Transmit Descriptor | ||
397 | * +--------------------------------------------------------------+ | ||
398 | * 0 | Buffer Address [63:0] | | ||
399 | * +--------------------------------------------------------------+ | ||
400 | * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | | ||
401 | * +--------------------------------------------------------------+ | ||
402 | * 63 46 45 40 39 38 36 35 32 31 24 15 0 | ||
403 | */ | ||
404 | |||
405 | for (n = 0; n < adapter->num_tx_queues; n++) { | ||
406 | tx_ring = adapter->tx_ring[n]; | ||
407 | printk(KERN_INFO "------------------------------------\n"); | ||
408 | printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index); | ||
409 | printk(KERN_INFO "------------------------------------\n"); | ||
410 | printk(KERN_INFO "T [desc] [address 63:0 ] " | ||
411 | "[PlPOCIStDDM Ln] [bi->dma ] " | ||
412 | "leng ntw timestamp bi->skb\n"); | ||
413 | |||
414 | for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { | ||
415 | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | ||
416 | buffer_info = &tx_ring->buffer_info[i]; | ||
417 | u0 = (struct my_u0 *)tx_desc; | ||
418 | printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX" | ||
419 | " %04X %3X %016llX %p", i, | ||
420 | le64_to_cpu(u0->a), | ||
421 | le64_to_cpu(u0->b), | ||
422 | (u64)buffer_info->dma, | ||
423 | buffer_info->length, | ||
424 | buffer_info->next_to_watch, | ||
425 | (u64)buffer_info->time_stamp, | ||
426 | buffer_info->skb); | ||
427 | if (i == tx_ring->next_to_use && | ||
428 | i == tx_ring->next_to_clean) | ||
429 | printk(KERN_CONT " NTC/U\n"); | ||
430 | else if (i == tx_ring->next_to_use) | ||
431 | printk(KERN_CONT " NTU\n"); | ||
432 | else if (i == tx_ring->next_to_clean) | ||
433 | printk(KERN_CONT " NTC\n"); | ||
434 | else | ||
435 | printk(KERN_CONT "\n"); | ||
436 | |||
437 | if (netif_msg_pktdata(adapter) && buffer_info->dma != 0) | ||
438 | print_hex_dump(KERN_INFO, "", | ||
439 | DUMP_PREFIX_ADDRESS, | ||
440 | 16, 1, phys_to_virt(buffer_info->dma), | ||
441 | buffer_info->length, true); | ||
442 | } | ||
443 | } | ||
444 | |||
445 | /* Print RX Rings Summary */ | ||
446 | rx_ring_summary: | ||
447 | dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); | ||
448 | printk(KERN_INFO "Queue [NTU] [NTC]\n"); | ||
449 | for (n = 0; n < adapter->num_rx_queues; n++) { | ||
450 | rx_ring = adapter->rx_ring[n]; | ||
451 | printk(KERN_INFO " %5d %5X %5X\n", n, | ||
452 | rx_ring->next_to_use, rx_ring->next_to_clean); | ||
453 | } | ||
454 | |||
455 | /* Print RX Rings */ | ||
456 | if (!netif_msg_rx_status(adapter)) | ||
457 | goto exit; | ||
458 | |||
459 | dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); | ||
460 | |||
461 | /* Advanced Receive Descriptor (Read) Format | ||
462 | * 63 1 0 | ||
463 | * +-----------------------------------------------------+ | ||
464 | * 0 | Packet Buffer Address [63:1] |A0/NSE| | ||
465 | * +----------------------------------------------+------+ | ||
466 | * 8 | Header Buffer Address [63:1] | DD | | ||
467 | * +-----------------------------------------------------+ | ||
468 | * | ||
469 | * | ||
470 | * Advanced Receive Descriptor (Write-Back) Format | ||
471 | * | ||
472 | * 63 48 47 32 31 30 21 20 17 16 4 3 0 | ||
473 | * +------------------------------------------------------+ | ||
474 | * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | | ||
475 | * | Checksum Ident | | | | Type | Type | | ||
476 | * +------------------------------------------------------+ | ||
477 | * 8 | VLAN Tag | Length | Extended Error | Extended Status | | ||
478 | * +------------------------------------------------------+ | ||
479 | * 63 48 47 32 31 20 19 0 | ||
480 | */ | ||
481 | |||
482 | for (n = 0; n < adapter->num_rx_queues; n++) { | ||
483 | rx_ring = adapter->rx_ring[n]; | ||
484 | printk(KERN_INFO "------------------------------------\n"); | ||
485 | printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index); | ||
486 | printk(KERN_INFO "------------------------------------\n"); | ||
487 | printk(KERN_INFO "R [desc] [ PktBuf A0] " | ||
488 | "[ HeadBuf DD] [bi->dma ] [bi->skb] " | ||
489 | "<-- Adv Rx Read format\n"); | ||
490 | printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] " | ||
491 | "[vl er S cks ln] ---------------- [bi->skb] " | ||
492 | "<-- Adv Rx Write-Back format\n"); | ||
493 | |||
494 | for (i = 0; i < rx_ring->count; i++) { | ||
495 | buffer_info = &rx_ring->buffer_info[i]; | ||
496 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
497 | u0 = (struct my_u0 *)rx_desc; | ||
498 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
499 | if (staterr & E1000_RXD_STAT_DD) { | ||
500 | /* Descriptor Done */ | ||
501 | printk(KERN_INFO "RWB[0x%03X] %016llX " | ||
502 | "%016llX ---------------- %p", i, | ||
503 | le64_to_cpu(u0->a), | ||
504 | le64_to_cpu(u0->b), | ||
505 | buffer_info->skb); | ||
506 | } else { | ||
507 | printk(KERN_INFO "R [0x%03X] %016llX " | ||
508 | "%016llX %016llX %p", i, | ||
509 | le64_to_cpu(u0->a), | ||
510 | le64_to_cpu(u0->b), | ||
511 | (u64)buffer_info->dma, | ||
512 | buffer_info->skb); | ||
513 | |||
514 | if (netif_msg_pktdata(adapter)) { | ||
515 | print_hex_dump(KERN_INFO, "", | ||
516 | DUMP_PREFIX_ADDRESS, | ||
517 | 16, 1, | ||
518 | phys_to_virt(buffer_info->dma), | ||
519 | rx_ring->rx_buffer_len, true); | ||
520 | if (rx_ring->rx_buffer_len | ||
521 | < IGB_RXBUFFER_1024) | ||
522 | print_hex_dump(KERN_INFO, "", | ||
523 | DUMP_PREFIX_ADDRESS, | ||
524 | 16, 1, | ||
525 | phys_to_virt( | ||
526 | buffer_info->page_dma + | ||
527 | buffer_info->page_offset), | ||
528 | PAGE_SIZE/2, true); | ||
529 | } | ||
530 | } | ||
531 | |||
532 | if (i == rx_ring->next_to_use) | ||
533 | printk(KERN_CONT " NTU\n"); | ||
534 | else if (i == rx_ring->next_to_clean) | ||
535 | printk(KERN_CONT " NTC\n"); | ||
536 | else | ||
537 | printk(KERN_CONT "\n"); | ||
538 | |||
539 | } | ||
540 | } | ||
541 | |||
542 | exit: | ||
543 | return; | ||
544 | } | ||
545 | |||
546 | |||
547 | /** | ||
548 | * igb_read_clock - read raw cycle counter (to be used by time counter) | ||
549 | */ | ||
550 | static cycle_t igb_read_clock(const struct cyclecounter *tc) | ||
551 | { | ||
552 | struct igb_adapter *adapter = | ||
553 | container_of(tc, struct igb_adapter, cycles); | ||
554 | struct e1000_hw *hw = &adapter->hw; | ||
555 | u64 stamp = 0; | ||
556 | int shift = 0; | ||
557 | |||
558 | /* | ||
559 | * The timestamp latches on lowest register read. For the 82580 | ||
560 | * the lowest register is SYSTIMR instead of SYSTIML. However we never | ||
561 | * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it. | ||
562 | */ | ||
563 | if (hw->mac.type == e1000_82580) { | ||
564 | stamp = rd32(E1000_SYSTIMR) >> 8; | ||
565 | shift = IGB_82580_TSYNC_SHIFT; | ||
566 | } | ||
567 | |||
568 | stamp |= (u64)rd32(E1000_SYSTIML) << shift; | ||
569 | stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32); | ||
570 | return stamp; | ||
571 | } | ||
572 | |||
573 | /** | ||
574 | * igb_get_hw_dev - return device | ||
575 | * used by hardware layer to print debugging information | ||
576 | **/ | ||
577 | struct net_device *igb_get_hw_dev(struct e1000_hw *hw) | ||
578 | { | ||
579 | struct igb_adapter *adapter = hw->back; | ||
580 | return adapter->netdev; | ||
581 | } | ||
582 | |||
583 | /** | ||
584 | * igb_init_module - Driver Registration Routine | ||
585 | * | ||
586 | * igb_init_module is the first routine called when the driver is | ||
587 | * loaded. All it does is register with the PCI subsystem. | ||
588 | **/ | ||
589 | static int __init igb_init_module(void) | ||
590 | { | ||
591 | int ret; | ||
592 | printk(KERN_INFO "%s - version %s\n", | ||
593 | igb_driver_string, igb_driver_version); | ||
594 | |||
595 | printk(KERN_INFO "%s\n", igb_copyright); | ||
596 | |||
597 | #ifdef CONFIG_IGB_DCA | ||
598 | dca_register_notify(&dca_notifier); | ||
599 | #endif | ||
600 | ret = pci_register_driver(&igb_driver); | ||
601 | return ret; | ||
602 | } | ||
603 | |||
604 | module_init(igb_init_module); | ||
605 | |||
606 | /** | ||
607 | * igb_exit_module - Driver Exit Cleanup Routine | ||
608 | * | ||
609 | * igb_exit_module is called just before the driver is removed | ||
610 | * from memory. | ||
611 | **/ | ||
612 | static void __exit igb_exit_module(void) | ||
613 | { | ||
614 | #ifdef CONFIG_IGB_DCA | ||
615 | dca_unregister_notify(&dca_notifier); | ||
616 | #endif | ||
617 | pci_unregister_driver(&igb_driver); | ||
618 | } | ||
619 | |||
620 | module_exit(igb_exit_module); | ||
621 | |||
622 | #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) | ||
623 | /** | ||
624 | * igb_cache_ring_register - Descriptor ring to register mapping | ||
625 | * @adapter: board private structure to initialize | ||
626 | * | ||
627 | * Once we know the feature-set enabled for the device, we'll cache | ||
628 | * the register offset the descriptor ring is assigned to. | ||
629 | **/ | ||
630 | static void igb_cache_ring_register(struct igb_adapter *adapter) | ||
631 | { | ||
632 | int i = 0, j = 0; | ||
633 | u32 rbase_offset = adapter->vfs_allocated_count; | ||
634 | |||
635 | switch (adapter->hw.mac.type) { | ||
636 | case e1000_82576: | ||
637 | /* The queues are allocated for virtualization such that VF 0 | ||
638 | * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. | ||
639 | * In order to avoid collision we start at the first free queue | ||
640 | * and continue consuming queues in the same sequence | ||
641 | */ | ||
642 | if (adapter->vfs_allocated_count) { | ||
643 | for (; i < adapter->rss_queues; i++) | ||
644 | adapter->rx_ring[i]->reg_idx = rbase_offset + | ||
645 | Q_IDX_82576(i); | ||
646 | } | ||
647 | case e1000_82575: | ||
648 | case e1000_82580: | ||
649 | case e1000_i350: | ||
650 | default: | ||
651 | for (; i < adapter->num_rx_queues; i++) | ||
652 | adapter->rx_ring[i]->reg_idx = rbase_offset + i; | ||
653 | for (; j < adapter->num_tx_queues; j++) | ||
654 | adapter->tx_ring[j]->reg_idx = rbase_offset + j; | ||
655 | break; | ||
656 | } | ||
657 | } | ||
658 | |||
659 | static void igb_free_queues(struct igb_adapter *adapter) | ||
660 | { | ||
661 | int i; | ||
662 | |||
663 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
664 | kfree(adapter->tx_ring[i]); | ||
665 | adapter->tx_ring[i] = NULL; | ||
666 | } | ||
667 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
668 | kfree(adapter->rx_ring[i]); | ||
669 | adapter->rx_ring[i] = NULL; | ||
670 | } | ||
671 | adapter->num_rx_queues = 0; | ||
672 | adapter->num_tx_queues = 0; | ||
673 | } | ||
674 | |||
675 | /** | ||
676 | * igb_alloc_queues - Allocate memory for all rings | ||
677 | * @adapter: board private structure to initialize | ||
678 | * | ||
679 | * We allocate one ring per queue at run-time since we don't know the | ||
680 | * number of queues at compile-time. | ||
681 | **/ | ||
682 | static int igb_alloc_queues(struct igb_adapter *adapter) | ||
683 | { | ||
684 | struct igb_ring *ring; | ||
685 | int i; | ||
686 | |||
687 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
688 | ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL); | ||
689 | if (!ring) | ||
690 | goto err; | ||
691 | ring->count = adapter->tx_ring_count; | ||
692 | ring->queue_index = i; | ||
693 | ring->dev = &adapter->pdev->dev; | ||
694 | ring->netdev = adapter->netdev; | ||
695 | /* For 82575, context index must be unique per ring. */ | ||
696 | if (adapter->hw.mac.type == e1000_82575) | ||
697 | ring->flags = IGB_RING_FLAG_TX_CTX_IDX; | ||
698 | adapter->tx_ring[i] = ring; | ||
699 | } | ||
700 | |||
701 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
702 | ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL); | ||
703 | if (!ring) | ||
704 | goto err; | ||
705 | ring->count = adapter->rx_ring_count; | ||
706 | ring->queue_index = i; | ||
707 | ring->dev = &adapter->pdev->dev; | ||
708 | ring->netdev = adapter->netdev; | ||
709 | ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
710 | ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */ | ||
711 | /* set flag indicating ring supports SCTP checksum offload */ | ||
712 | if (adapter->hw.mac.type >= e1000_82576) | ||
713 | ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM; | ||
714 | adapter->rx_ring[i] = ring; | ||
715 | } | ||
716 | |||
717 | igb_cache_ring_register(adapter); | ||
718 | |||
719 | return 0; | ||
720 | |||
721 | err: | ||
722 | igb_free_queues(adapter); | ||
723 | |||
724 | return -ENOMEM; | ||
725 | } | ||
726 | |||
727 | #define IGB_N0_QUEUE -1 | ||
728 | static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) | ||
729 | { | ||
730 | u32 msixbm = 0; | ||
731 | struct igb_adapter *adapter = q_vector->adapter; | ||
732 | struct e1000_hw *hw = &adapter->hw; | ||
733 | u32 ivar, index; | ||
734 | int rx_queue = IGB_N0_QUEUE; | ||
735 | int tx_queue = IGB_N0_QUEUE; | ||
736 | |||
737 | if (q_vector->rx_ring) | ||
738 | rx_queue = q_vector->rx_ring->reg_idx; | ||
739 | if (q_vector->tx_ring) | ||
740 | tx_queue = q_vector->tx_ring->reg_idx; | ||
741 | |||
742 | switch (hw->mac.type) { | ||
743 | case e1000_82575: | ||
744 | /* The 82575 assigns vectors using a bitmask, which matches the | ||
745 | bitmask for the EICR/EIMS/EIMC registers. To assign one | ||
746 | or more queues to a vector, we write the appropriate bits | ||
747 | into the MSIXBM register for that vector. */ | ||
748 | if (rx_queue > IGB_N0_QUEUE) | ||
749 | msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; | ||
750 | if (tx_queue > IGB_N0_QUEUE) | ||
751 | msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; | ||
752 | if (!adapter->msix_entries && msix_vector == 0) | ||
753 | msixbm |= E1000_EIMS_OTHER; | ||
754 | array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); | ||
755 | q_vector->eims_value = msixbm; | ||
756 | break; | ||
757 | case e1000_82576: | ||
758 | /* 82576 uses a table-based method for assigning vectors. | ||
759 | Each queue has a single entry in the table to which we write | ||
760 | a vector number along with a "valid" bit. Sadly, the layout | ||
761 | of the table is somewhat counterintuitive. */ | ||
762 | if (rx_queue > IGB_N0_QUEUE) { | ||
763 | index = (rx_queue & 0x7); | ||
764 | ivar = array_rd32(E1000_IVAR0, index); | ||
765 | if (rx_queue < 8) { | ||
766 | /* vector goes into low byte of register */ | ||
767 | ivar = ivar & 0xFFFFFF00; | ||
768 | ivar |= msix_vector | E1000_IVAR_VALID; | ||
769 | } else { | ||
770 | /* vector goes into third byte of register */ | ||
771 | ivar = ivar & 0xFF00FFFF; | ||
772 | ivar |= (msix_vector | E1000_IVAR_VALID) << 16; | ||
773 | } | ||
774 | array_wr32(E1000_IVAR0, index, ivar); | ||
775 | } | ||
776 | if (tx_queue > IGB_N0_QUEUE) { | ||
777 | index = (tx_queue & 0x7); | ||
778 | ivar = array_rd32(E1000_IVAR0, index); | ||
779 | if (tx_queue < 8) { | ||
780 | /* vector goes into second byte of register */ | ||
781 | ivar = ivar & 0xFFFF00FF; | ||
782 | ivar |= (msix_vector | E1000_IVAR_VALID) << 8; | ||
783 | } else { | ||
784 | /* vector goes into high byte of register */ | ||
785 | ivar = ivar & 0x00FFFFFF; | ||
786 | ivar |= (msix_vector | E1000_IVAR_VALID) << 24; | ||
787 | } | ||
788 | array_wr32(E1000_IVAR0, index, ivar); | ||
789 | } | ||
790 | q_vector->eims_value = 1 << msix_vector; | ||
791 | break; | ||
792 | case e1000_82580: | ||
793 | case e1000_i350: | ||
794 | /* 82580 uses the same table-based approach as 82576 but has fewer | ||
795 | entries as a result we carry over for queues greater than 4. */ | ||
796 | if (rx_queue > IGB_N0_QUEUE) { | ||
797 | index = (rx_queue >> 1); | ||
798 | ivar = array_rd32(E1000_IVAR0, index); | ||
799 | if (rx_queue & 0x1) { | ||
800 | /* vector goes into third byte of register */ | ||
801 | ivar = ivar & 0xFF00FFFF; | ||
802 | ivar |= (msix_vector | E1000_IVAR_VALID) << 16; | ||
803 | } else { | ||
804 | /* vector goes into low byte of register */ | ||
805 | ivar = ivar & 0xFFFFFF00; | ||
806 | ivar |= msix_vector | E1000_IVAR_VALID; | ||
807 | } | ||
808 | array_wr32(E1000_IVAR0, index, ivar); | ||
809 | } | ||
810 | if (tx_queue > IGB_N0_QUEUE) { | ||
811 | index = (tx_queue >> 1); | ||
812 | ivar = array_rd32(E1000_IVAR0, index); | ||
813 | if (tx_queue & 0x1) { | ||
814 | /* vector goes into high byte of register */ | ||
815 | ivar = ivar & 0x00FFFFFF; | ||
816 | ivar |= (msix_vector | E1000_IVAR_VALID) << 24; | ||
817 | } else { | ||
818 | /* vector goes into second byte of register */ | ||
819 | ivar = ivar & 0xFFFF00FF; | ||
820 | ivar |= (msix_vector | E1000_IVAR_VALID) << 8; | ||
821 | } | ||
822 | array_wr32(E1000_IVAR0, index, ivar); | ||
823 | } | ||
824 | q_vector->eims_value = 1 << msix_vector; | ||
825 | break; | ||
826 | default: | ||
827 | BUG(); | ||
828 | break; | ||
829 | } | ||
830 | |||
831 | /* add q_vector eims value to global eims_enable_mask */ | ||
832 | adapter->eims_enable_mask |= q_vector->eims_value; | ||
833 | |||
834 | /* configure q_vector to set itr on first interrupt */ | ||
835 | q_vector->set_itr = 1; | ||
836 | } | ||
837 | |||
838 | /** | ||
839 | * igb_configure_msix - Configure MSI-X hardware | ||
840 | * | ||
841 | * igb_configure_msix sets up the hardware to properly | ||
842 | * generate MSI-X interrupts. | ||
843 | **/ | ||
844 | static void igb_configure_msix(struct igb_adapter *adapter) | ||
845 | { | ||
846 | u32 tmp; | ||
847 | int i, vector = 0; | ||
848 | struct e1000_hw *hw = &adapter->hw; | ||
849 | |||
850 | adapter->eims_enable_mask = 0; | ||
851 | |||
852 | /* set vector for other causes, i.e. link changes */ | ||
853 | switch (hw->mac.type) { | ||
854 | case e1000_82575: | ||
855 | tmp = rd32(E1000_CTRL_EXT); | ||
856 | /* enable MSI-X PBA support*/ | ||
857 | tmp |= E1000_CTRL_EXT_PBA_CLR; | ||
858 | |||
859 | /* Auto-Mask interrupts upon ICR read. */ | ||
860 | tmp |= E1000_CTRL_EXT_EIAME; | ||
861 | tmp |= E1000_CTRL_EXT_IRCA; | ||
862 | |||
863 | wr32(E1000_CTRL_EXT, tmp); | ||
864 | |||
865 | /* enable msix_other interrupt */ | ||
866 | array_wr32(E1000_MSIXBM(0), vector++, | ||
867 | E1000_EIMS_OTHER); | ||
868 | adapter->eims_other = E1000_EIMS_OTHER; | ||
869 | |||
870 | break; | ||
871 | |||
872 | case e1000_82576: | ||
873 | case e1000_82580: | ||
874 | case e1000_i350: | ||
875 | /* Turn on MSI-X capability first, or our settings | ||
876 | * won't stick. And it will take days to debug. */ | ||
877 | wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | | ||
878 | E1000_GPIE_PBA | E1000_GPIE_EIAME | | ||
879 | E1000_GPIE_NSICR); | ||
880 | |||
881 | /* enable msix_other interrupt */ | ||
882 | adapter->eims_other = 1 << vector; | ||
883 | tmp = (vector++ | E1000_IVAR_VALID) << 8; | ||
884 | |||
885 | wr32(E1000_IVAR_MISC, tmp); | ||
886 | break; | ||
887 | default: | ||
888 | /* do nothing, since nothing else supports MSI-X */ | ||
889 | break; | ||
890 | } /* switch (hw->mac.type) */ | ||
891 | |||
892 | adapter->eims_enable_mask |= adapter->eims_other; | ||
893 | |||
894 | for (i = 0; i < adapter->num_q_vectors; i++) | ||
895 | igb_assign_vector(adapter->q_vector[i], vector++); | ||
896 | |||
897 | wrfl(); | ||
898 | } | ||
899 | |||
900 | /** | ||
901 | * igb_request_msix - Initialize MSI-X interrupts | ||
902 | * | ||
903 | * igb_request_msix allocates MSI-X vectors and requests interrupts from the | ||
904 | * kernel. | ||
905 | **/ | ||
906 | static int igb_request_msix(struct igb_adapter *adapter) | ||
907 | { | ||
908 | struct net_device *netdev = adapter->netdev; | ||
909 | struct e1000_hw *hw = &adapter->hw; | ||
910 | int i, err = 0, vector = 0; | ||
911 | |||
912 | err = request_irq(adapter->msix_entries[vector].vector, | ||
913 | igb_msix_other, 0, netdev->name, adapter); | ||
914 | if (err) | ||
915 | goto out; | ||
916 | vector++; | ||
917 | |||
918 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
919 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
920 | |||
921 | q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); | ||
922 | |||
923 | if (q_vector->rx_ring && q_vector->tx_ring) | ||
924 | sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, | ||
925 | q_vector->rx_ring->queue_index); | ||
926 | else if (q_vector->tx_ring) | ||
927 | sprintf(q_vector->name, "%s-tx-%u", netdev->name, | ||
928 | q_vector->tx_ring->queue_index); | ||
929 | else if (q_vector->rx_ring) | ||
930 | sprintf(q_vector->name, "%s-rx-%u", netdev->name, | ||
931 | q_vector->rx_ring->queue_index); | ||
932 | else | ||
933 | sprintf(q_vector->name, "%s-unused", netdev->name); | ||
934 | |||
935 | err = request_irq(adapter->msix_entries[vector].vector, | ||
936 | igb_msix_ring, 0, q_vector->name, | ||
937 | q_vector); | ||
938 | if (err) | ||
939 | goto out; | ||
940 | vector++; | ||
941 | } | ||
942 | |||
943 | igb_configure_msix(adapter); | ||
944 | return 0; | ||
945 | out: | ||
946 | return err; | ||
947 | } | ||
948 | |||
949 | static void igb_reset_interrupt_capability(struct igb_adapter *adapter) | ||
950 | { | ||
951 | if (adapter->msix_entries) { | ||
952 | pci_disable_msix(adapter->pdev); | ||
953 | kfree(adapter->msix_entries); | ||
954 | adapter->msix_entries = NULL; | ||
955 | } else if (adapter->flags & IGB_FLAG_HAS_MSI) { | ||
956 | pci_disable_msi(adapter->pdev); | ||
957 | } | ||
958 | } | ||
959 | |||
960 | /** | ||
961 | * igb_free_q_vectors - Free memory allocated for interrupt vectors | ||
962 | * @adapter: board private structure to initialize | ||
963 | * | ||
964 | * This function frees the memory allocated to the q_vectors. In addition if | ||
965 | * NAPI is enabled it will delete any references to the NAPI struct prior | ||
966 | * to freeing the q_vector. | ||
967 | **/ | ||
968 | static void igb_free_q_vectors(struct igb_adapter *adapter) | ||
969 | { | ||
970 | int v_idx; | ||
971 | |||
972 | for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) { | ||
973 | struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; | ||
974 | adapter->q_vector[v_idx] = NULL; | ||
975 | if (!q_vector) | ||
976 | continue; | ||
977 | netif_napi_del(&q_vector->napi); | ||
978 | kfree(q_vector); | ||
979 | } | ||
980 | adapter->num_q_vectors = 0; | ||
981 | } | ||
982 | |||
983 | /** | ||
984 | * igb_clear_interrupt_scheme - reset the device to a state of no interrupts | ||
985 | * | ||
986 | * This function resets the device so that it has 0 rx queues, tx queues, and | ||
987 | * MSI-X interrupts allocated. | ||
988 | */ | ||
989 | static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) | ||
990 | { | ||
991 | igb_free_queues(adapter); | ||
992 | igb_free_q_vectors(adapter); | ||
993 | igb_reset_interrupt_capability(adapter); | ||
994 | } | ||
995 | |||
996 | /** | ||
997 | * igb_set_interrupt_capability - set MSI or MSI-X if supported | ||
998 | * | ||
999 | * Attempt to configure interrupts using the best available | ||
1000 | * capabilities of the hardware and kernel. | ||
1001 | **/ | ||
1002 | static int igb_set_interrupt_capability(struct igb_adapter *adapter) | ||
1003 | { | ||
1004 | int err; | ||
1005 | int numvecs, i; | ||
1006 | |||
1007 | /* Number of supported queues. */ | ||
1008 | adapter->num_rx_queues = adapter->rss_queues; | ||
1009 | if (adapter->vfs_allocated_count) | ||
1010 | adapter->num_tx_queues = 1; | ||
1011 | else | ||
1012 | adapter->num_tx_queues = adapter->rss_queues; | ||
1013 | |||
1014 | /* start with one vector for every rx queue */ | ||
1015 | numvecs = adapter->num_rx_queues; | ||
1016 | |||
1017 | /* if tx handler is separate add 1 for every tx queue */ | ||
1018 | if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) | ||
1019 | numvecs += adapter->num_tx_queues; | ||
1020 | |||
1021 | /* store the number of vectors reserved for queues */ | ||
1022 | adapter->num_q_vectors = numvecs; | ||
1023 | |||
1024 | /* add 1 vector for link status interrupts */ | ||
1025 | numvecs++; | ||
1026 | adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), | ||
1027 | GFP_KERNEL); | ||
1028 | if (!adapter->msix_entries) | ||
1029 | goto msi_only; | ||
1030 | |||
1031 | for (i = 0; i < numvecs; i++) | ||
1032 | adapter->msix_entries[i].entry = i; | ||
1033 | |||
1034 | err = pci_enable_msix(adapter->pdev, | ||
1035 | adapter->msix_entries, | ||
1036 | numvecs); | ||
1037 | if (err == 0) | ||
1038 | goto out; | ||
1039 | |||
1040 | igb_reset_interrupt_capability(adapter); | ||
1041 | |||
1042 | /* If we can't do MSI-X, try MSI */ | ||
1043 | msi_only: | ||
1044 | #ifdef CONFIG_PCI_IOV | ||
1045 | /* disable SR-IOV for non MSI-X configurations */ | ||
1046 | if (adapter->vf_data) { | ||
1047 | struct e1000_hw *hw = &adapter->hw; | ||
1048 | /* disable iov and allow time for transactions to clear */ | ||
1049 | pci_disable_sriov(adapter->pdev); | ||
1050 | msleep(500); | ||
1051 | |||
1052 | kfree(adapter->vf_data); | ||
1053 | adapter->vf_data = NULL; | ||
1054 | wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); | ||
1055 | wrfl(); | ||
1056 | msleep(100); | ||
1057 | dev_info(&adapter->pdev->dev, "IOV Disabled\n"); | ||
1058 | } | ||
1059 | #endif | ||
1060 | adapter->vfs_allocated_count = 0; | ||
1061 | adapter->rss_queues = 1; | ||
1062 | adapter->flags |= IGB_FLAG_QUEUE_PAIRS; | ||
1063 | adapter->num_rx_queues = 1; | ||
1064 | adapter->num_tx_queues = 1; | ||
1065 | adapter->num_q_vectors = 1; | ||
1066 | if (!pci_enable_msi(adapter->pdev)) | ||
1067 | adapter->flags |= IGB_FLAG_HAS_MSI; | ||
1068 | out: | ||
1069 | /* Notify the stack of the (possibly) reduced queue counts. */ | ||
1070 | netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues); | ||
1071 | return netif_set_real_num_rx_queues(adapter->netdev, | ||
1072 | adapter->num_rx_queues); | ||
1073 | } | ||
1074 | |||
1075 | /** | ||
1076 | * igb_alloc_q_vectors - Allocate memory for interrupt vectors | ||
1077 | * @adapter: board private structure to initialize | ||
1078 | * | ||
1079 | * We allocate one q_vector per queue interrupt. If allocation fails we | ||
1080 | * return -ENOMEM. | ||
1081 | **/ | ||
1082 | static int igb_alloc_q_vectors(struct igb_adapter *adapter) | ||
1083 | { | ||
1084 | struct igb_q_vector *q_vector; | ||
1085 | struct e1000_hw *hw = &adapter->hw; | ||
1086 | int v_idx; | ||
1087 | |||
1088 | for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) { | ||
1089 | q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL); | ||
1090 | if (!q_vector) | ||
1091 | goto err_out; | ||
1092 | q_vector->adapter = adapter; | ||
1093 | q_vector->itr_register = hw->hw_addr + E1000_EITR(0); | ||
1094 | q_vector->itr_val = IGB_START_ITR; | ||
1095 | netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64); | ||
1096 | adapter->q_vector[v_idx] = q_vector; | ||
1097 | } | ||
1098 | return 0; | ||
1099 | |||
1100 | err_out: | ||
1101 | igb_free_q_vectors(adapter); | ||
1102 | return -ENOMEM; | ||
1103 | } | ||
1104 | |||
1105 | static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter, | ||
1106 | int ring_idx, int v_idx) | ||
1107 | { | ||
1108 | struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; | ||
1109 | |||
1110 | q_vector->rx_ring = adapter->rx_ring[ring_idx]; | ||
1111 | q_vector->rx_ring->q_vector = q_vector; | ||
1112 | q_vector->itr_val = adapter->rx_itr_setting; | ||
1113 | if (q_vector->itr_val && q_vector->itr_val <= 3) | ||
1114 | q_vector->itr_val = IGB_START_ITR; | ||
1115 | } | ||
1116 | |||
1117 | static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter, | ||
1118 | int ring_idx, int v_idx) | ||
1119 | { | ||
1120 | struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; | ||
1121 | |||
1122 | q_vector->tx_ring = adapter->tx_ring[ring_idx]; | ||
1123 | q_vector->tx_ring->q_vector = q_vector; | ||
1124 | q_vector->itr_val = adapter->tx_itr_setting; | ||
1125 | if (q_vector->itr_val && q_vector->itr_val <= 3) | ||
1126 | q_vector->itr_val = IGB_START_ITR; | ||
1127 | } | ||
1128 | |||
1129 | /** | ||
1130 | * igb_map_ring_to_vector - maps allocated queues to vectors | ||
1131 | * | ||
1132 | * This function maps the recently allocated queues to vectors. | ||
1133 | **/ | ||
1134 | static int igb_map_ring_to_vector(struct igb_adapter *adapter) | ||
1135 | { | ||
1136 | int i; | ||
1137 | int v_idx = 0; | ||
1138 | |||
1139 | if ((adapter->num_q_vectors < adapter->num_rx_queues) || | ||
1140 | (adapter->num_q_vectors < adapter->num_tx_queues)) | ||
1141 | return -ENOMEM; | ||
1142 | |||
1143 | if (adapter->num_q_vectors >= | ||
1144 | (adapter->num_rx_queues + adapter->num_tx_queues)) { | ||
1145 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
1146 | igb_map_rx_ring_to_vector(adapter, i, v_idx++); | ||
1147 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
1148 | igb_map_tx_ring_to_vector(adapter, i, v_idx++); | ||
1149 | } else { | ||
1150 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
1151 | if (i < adapter->num_tx_queues) | ||
1152 | igb_map_tx_ring_to_vector(adapter, i, v_idx); | ||
1153 | igb_map_rx_ring_to_vector(adapter, i, v_idx++); | ||
1154 | } | ||
1155 | for (; i < adapter->num_tx_queues; i++) | ||
1156 | igb_map_tx_ring_to_vector(adapter, i, v_idx++); | ||
1157 | } | ||
1158 | return 0; | ||
1159 | } | ||
1160 | |||
1161 | /** | ||
1162 | * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors | ||
1163 | * | ||
1164 | * This function initializes the interrupts and allocates all of the queues. | ||
1165 | **/ | ||
1166 | static int igb_init_interrupt_scheme(struct igb_adapter *adapter) | ||
1167 | { | ||
1168 | struct pci_dev *pdev = adapter->pdev; | ||
1169 | int err; | ||
1170 | |||
1171 | err = igb_set_interrupt_capability(adapter); | ||
1172 | if (err) | ||
1173 | return err; | ||
1174 | |||
1175 | err = igb_alloc_q_vectors(adapter); | ||
1176 | if (err) { | ||
1177 | dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); | ||
1178 | goto err_alloc_q_vectors; | ||
1179 | } | ||
1180 | |||
1181 | err = igb_alloc_queues(adapter); | ||
1182 | if (err) { | ||
1183 | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | ||
1184 | goto err_alloc_queues; | ||
1185 | } | ||
1186 | |||
1187 | err = igb_map_ring_to_vector(adapter); | ||
1188 | if (err) { | ||
1189 | dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n"); | ||
1190 | goto err_map_queues; | ||
1191 | } | ||
1192 | |||
1193 | |||
1194 | return 0; | ||
1195 | err_map_queues: | ||
1196 | igb_free_queues(adapter); | ||
1197 | err_alloc_queues: | ||
1198 | igb_free_q_vectors(adapter); | ||
1199 | err_alloc_q_vectors: | ||
1200 | igb_reset_interrupt_capability(adapter); | ||
1201 | return err; | ||
1202 | } | ||
1203 | |||
1204 | /** | ||
1205 | * igb_request_irq - initialize interrupts | ||
1206 | * | ||
1207 | * Attempts to configure interrupts using the best available | ||
1208 | * capabilities of the hardware and kernel. | ||
1209 | **/ | ||
1210 | static int igb_request_irq(struct igb_adapter *adapter) | ||
1211 | { | ||
1212 | struct net_device *netdev = adapter->netdev; | ||
1213 | struct pci_dev *pdev = adapter->pdev; | ||
1214 | int err = 0; | ||
1215 | |||
1216 | if (adapter->msix_entries) { | ||
1217 | err = igb_request_msix(adapter); | ||
1218 | if (!err) | ||
1219 | goto request_done; | ||
1220 | /* fall back to MSI */ | ||
1221 | igb_clear_interrupt_scheme(adapter); | ||
1222 | if (!pci_enable_msi(adapter->pdev)) | ||
1223 | adapter->flags |= IGB_FLAG_HAS_MSI; | ||
1224 | igb_free_all_tx_resources(adapter); | ||
1225 | igb_free_all_rx_resources(adapter); | ||
1226 | adapter->num_tx_queues = 1; | ||
1227 | adapter->num_rx_queues = 1; | ||
1228 | adapter->num_q_vectors = 1; | ||
1229 | err = igb_alloc_q_vectors(adapter); | ||
1230 | if (err) { | ||
1231 | dev_err(&pdev->dev, | ||
1232 | "Unable to allocate memory for vectors\n"); | ||
1233 | goto request_done; | ||
1234 | } | ||
1235 | err = igb_alloc_queues(adapter); | ||
1236 | if (err) { | ||
1237 | dev_err(&pdev->dev, | ||
1238 | "Unable to allocate memory for queues\n"); | ||
1239 | igb_free_q_vectors(adapter); | ||
1240 | goto request_done; | ||
1241 | } | ||
1242 | igb_setup_all_tx_resources(adapter); | ||
1243 | igb_setup_all_rx_resources(adapter); | ||
1244 | } else { | ||
1245 | igb_assign_vector(adapter->q_vector[0], 0); | ||
1246 | } | ||
1247 | |||
1248 | if (adapter->flags & IGB_FLAG_HAS_MSI) { | ||
1249 | err = request_irq(adapter->pdev->irq, igb_intr_msi, 0, | ||
1250 | netdev->name, adapter); | ||
1251 | if (!err) | ||
1252 | goto request_done; | ||
1253 | |||
1254 | /* fall back to legacy interrupts */ | ||
1255 | igb_reset_interrupt_capability(adapter); | ||
1256 | adapter->flags &= ~IGB_FLAG_HAS_MSI; | ||
1257 | } | ||
1258 | |||
1259 | err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED, | ||
1260 | netdev->name, adapter); | ||
1261 | |||
1262 | if (err) | ||
1263 | dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n", | ||
1264 | err); | ||
1265 | |||
1266 | request_done: | ||
1267 | return err; | ||
1268 | } | ||
1269 | |||
1270 | static void igb_free_irq(struct igb_adapter *adapter) | ||
1271 | { | ||
1272 | if (adapter->msix_entries) { | ||
1273 | int vector = 0, i; | ||
1274 | |||
1275 | free_irq(adapter->msix_entries[vector++].vector, adapter); | ||
1276 | |||
1277 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
1278 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
1279 | free_irq(adapter->msix_entries[vector++].vector, | ||
1280 | q_vector); | ||
1281 | } | ||
1282 | } else { | ||
1283 | free_irq(adapter->pdev->irq, adapter); | ||
1284 | } | ||
1285 | } | ||
1286 | |||
1287 | /** | ||
1288 | * igb_irq_disable - Mask off interrupt generation on the NIC | ||
1289 | * @adapter: board private structure | ||
1290 | **/ | ||
1291 | static void igb_irq_disable(struct igb_adapter *adapter) | ||
1292 | { | ||
1293 | struct e1000_hw *hw = &adapter->hw; | ||
1294 | |||
1295 | /* | ||
1296 | * we need to be careful when disabling interrupts. The VFs are also | ||
1297 | * mapped into these registers and so clearing the bits can cause | ||
1298 | * issues on the VF drivers so we only need to clear what we set | ||
1299 | */ | ||
1300 | if (adapter->msix_entries) { | ||
1301 | u32 regval = rd32(E1000_EIAM); | ||
1302 | wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); | ||
1303 | wr32(E1000_EIMC, adapter->eims_enable_mask); | ||
1304 | regval = rd32(E1000_EIAC); | ||
1305 | wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); | ||
1306 | } | ||
1307 | |||
1308 | wr32(E1000_IAM, 0); | ||
1309 | wr32(E1000_IMC, ~0); | ||
1310 | wrfl(); | ||
1311 | if (adapter->msix_entries) { | ||
1312 | int i; | ||
1313 | for (i = 0; i < adapter->num_q_vectors; i++) | ||
1314 | synchronize_irq(adapter->msix_entries[i].vector); | ||
1315 | } else { | ||
1316 | synchronize_irq(adapter->pdev->irq); | ||
1317 | } | ||
1318 | } | ||
1319 | |||
1320 | /** | ||
1321 | * igb_irq_enable - Enable default interrupt generation settings | ||
1322 | * @adapter: board private structure | ||
1323 | **/ | ||
1324 | static void igb_irq_enable(struct igb_adapter *adapter) | ||
1325 | { | ||
1326 | struct e1000_hw *hw = &adapter->hw; | ||
1327 | |||
1328 | if (adapter->msix_entries) { | ||
1329 | u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC; | ||
1330 | u32 regval = rd32(E1000_EIAC); | ||
1331 | wr32(E1000_EIAC, regval | adapter->eims_enable_mask); | ||
1332 | regval = rd32(E1000_EIAM); | ||
1333 | wr32(E1000_EIAM, regval | adapter->eims_enable_mask); | ||
1334 | wr32(E1000_EIMS, adapter->eims_enable_mask); | ||
1335 | if (adapter->vfs_allocated_count) { | ||
1336 | wr32(E1000_MBVFIMR, 0xFF); | ||
1337 | ims |= E1000_IMS_VMMB; | ||
1338 | } | ||
1339 | if (adapter->hw.mac.type == e1000_82580) | ||
1340 | ims |= E1000_IMS_DRSTA; | ||
1341 | |||
1342 | wr32(E1000_IMS, ims); | ||
1343 | } else { | ||
1344 | wr32(E1000_IMS, IMS_ENABLE_MASK | | ||
1345 | E1000_IMS_DRSTA); | ||
1346 | wr32(E1000_IAM, IMS_ENABLE_MASK | | ||
1347 | E1000_IMS_DRSTA); | ||
1348 | } | ||
1349 | } | ||
1350 | |||
1351 | static void igb_update_mng_vlan(struct igb_adapter *adapter) | ||
1352 | { | ||
1353 | struct e1000_hw *hw = &adapter->hw; | ||
1354 | u16 vid = adapter->hw.mng_cookie.vlan_id; | ||
1355 | u16 old_vid = adapter->mng_vlan_id; | ||
1356 | |||
1357 | if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | ||
1358 | /* add VID to filter table */ | ||
1359 | igb_vfta_set(hw, vid, true); | ||
1360 | adapter->mng_vlan_id = vid; | ||
1361 | } else { | ||
1362 | adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; | ||
1363 | } | ||
1364 | |||
1365 | if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && | ||
1366 | (vid != old_vid) && | ||
1367 | !test_bit(old_vid, adapter->active_vlans)) { | ||
1368 | /* remove VID from filter table */ | ||
1369 | igb_vfta_set(hw, old_vid, false); | ||
1370 | } | ||
1371 | } | ||
1372 | |||
1373 | /** | ||
1374 | * igb_release_hw_control - release control of the h/w to f/w | ||
1375 | * @adapter: address of board private structure | ||
1376 | * | ||
1377 | * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. | ||
1378 | * For ASF and Pass Through versions of f/w this means that the | ||
1379 | * driver is no longer loaded. | ||
1380 | * | ||
1381 | **/ | ||
1382 | static void igb_release_hw_control(struct igb_adapter *adapter) | ||
1383 | { | ||
1384 | struct e1000_hw *hw = &adapter->hw; | ||
1385 | u32 ctrl_ext; | ||
1386 | |||
1387 | /* Let firmware take over control of h/w */ | ||
1388 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
1389 | wr32(E1000_CTRL_EXT, | ||
1390 | ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | ||
1391 | } | ||
1392 | |||
1393 | /** | ||
1394 | * igb_get_hw_control - get control of the h/w from f/w | ||
1395 | * @adapter: address of board private structure | ||
1396 | * | ||
1397 | * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. | ||
1398 | * For ASF and Pass Through versions of f/w this means that | ||
1399 | * the driver is loaded. | ||
1400 | * | ||
1401 | **/ | ||
1402 | static void igb_get_hw_control(struct igb_adapter *adapter) | ||
1403 | { | ||
1404 | struct e1000_hw *hw = &adapter->hw; | ||
1405 | u32 ctrl_ext; | ||
1406 | |||
1407 | /* Let firmware know the driver has taken over */ | ||
1408 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
1409 | wr32(E1000_CTRL_EXT, | ||
1410 | ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | ||
1411 | } | ||
1412 | |||
1413 | /** | ||
1414 | * igb_configure - configure the hardware for RX and TX | ||
1415 | * @adapter: private board structure | ||
1416 | **/ | ||
1417 | static void igb_configure(struct igb_adapter *adapter) | ||
1418 | { | ||
1419 | struct net_device *netdev = adapter->netdev; | ||
1420 | int i; | ||
1421 | |||
1422 | igb_get_hw_control(adapter); | ||
1423 | igb_set_rx_mode(netdev); | ||
1424 | |||
1425 | igb_restore_vlan(adapter); | ||
1426 | |||
1427 | igb_setup_tctl(adapter); | ||
1428 | igb_setup_mrqc(adapter); | ||
1429 | igb_setup_rctl(adapter); | ||
1430 | |||
1431 | igb_configure_tx(adapter); | ||
1432 | igb_configure_rx(adapter); | ||
1433 | |||
1434 | igb_rx_fifo_flush_82575(&adapter->hw); | ||
1435 | |||
1436 | /* call igb_desc_unused which always leaves | ||
1437 | * at least 1 descriptor unused to make sure | ||
1438 | * next_to_use != next_to_clean */ | ||
1439 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
1440 | struct igb_ring *ring = adapter->rx_ring[i]; | ||
1441 | igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring)); | ||
1442 | } | ||
1443 | } | ||
1444 | |||
1445 | /** | ||
1446 | * igb_power_up_link - Power up the phy/serdes link | ||
1447 | * @adapter: address of board private structure | ||
1448 | **/ | ||
1449 | void igb_power_up_link(struct igb_adapter *adapter) | ||
1450 | { | ||
1451 | if (adapter->hw.phy.media_type == e1000_media_type_copper) | ||
1452 | igb_power_up_phy_copper(&adapter->hw); | ||
1453 | else | ||
1454 | igb_power_up_serdes_link_82575(&adapter->hw); | ||
1455 | } | ||
1456 | |||
1457 | /** | ||
1458 | * igb_power_down_link - Power down the phy/serdes link | ||
1459 | * @adapter: address of board private structure | ||
1460 | */ | ||
1461 | static void igb_power_down_link(struct igb_adapter *adapter) | ||
1462 | { | ||
1463 | if (adapter->hw.phy.media_type == e1000_media_type_copper) | ||
1464 | igb_power_down_phy_copper_82575(&adapter->hw); | ||
1465 | else | ||
1466 | igb_shutdown_serdes_link_82575(&adapter->hw); | ||
1467 | } | ||
1468 | |||
1469 | /** | ||
1470 | * igb_up - Open the interface and prepare it to handle traffic | ||
1471 | * @adapter: board private structure | ||
1472 | **/ | ||
1473 | int igb_up(struct igb_adapter *adapter) | ||
1474 | { | ||
1475 | struct e1000_hw *hw = &adapter->hw; | ||
1476 | int i; | ||
1477 | |||
1478 | /* hardware has been reset, we need to reload some things */ | ||
1479 | igb_configure(adapter); | ||
1480 | |||
1481 | clear_bit(__IGB_DOWN, &adapter->state); | ||
1482 | |||
1483 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
1484 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
1485 | napi_enable(&q_vector->napi); | ||
1486 | } | ||
1487 | if (adapter->msix_entries) | ||
1488 | igb_configure_msix(adapter); | ||
1489 | else | ||
1490 | igb_assign_vector(adapter->q_vector[0], 0); | ||
1491 | |||
1492 | /* Clear any pending interrupts. */ | ||
1493 | rd32(E1000_ICR); | ||
1494 | igb_irq_enable(adapter); | ||
1495 | |||
1496 | /* notify VFs that reset has been completed */ | ||
1497 | if (adapter->vfs_allocated_count) { | ||
1498 | u32 reg_data = rd32(E1000_CTRL_EXT); | ||
1499 | reg_data |= E1000_CTRL_EXT_PFRSTD; | ||
1500 | wr32(E1000_CTRL_EXT, reg_data); | ||
1501 | } | ||
1502 | |||
1503 | netif_tx_start_all_queues(adapter->netdev); | ||
1504 | |||
1505 | /* start the watchdog. */ | ||
1506 | hw->mac.get_link_status = 1; | ||
1507 | schedule_work(&adapter->watchdog_task); | ||
1508 | |||
1509 | return 0; | ||
1510 | } | ||
1511 | |||
1512 | void igb_down(struct igb_adapter *adapter) | ||
1513 | { | ||
1514 | struct net_device *netdev = adapter->netdev; | ||
1515 | struct e1000_hw *hw = &adapter->hw; | ||
1516 | u32 tctl, rctl; | ||
1517 | int i; | ||
1518 | |||
1519 | /* signal that we're down so the interrupt handler does not | ||
1520 | * reschedule our watchdog timer */ | ||
1521 | set_bit(__IGB_DOWN, &adapter->state); | ||
1522 | |||
1523 | /* disable receives in the hardware */ | ||
1524 | rctl = rd32(E1000_RCTL); | ||
1525 | wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); | ||
1526 | /* flush and sleep below */ | ||
1527 | |||
1528 | netif_tx_stop_all_queues(netdev); | ||
1529 | |||
1530 | /* disable transmits in the hardware */ | ||
1531 | tctl = rd32(E1000_TCTL); | ||
1532 | tctl &= ~E1000_TCTL_EN; | ||
1533 | wr32(E1000_TCTL, tctl); | ||
1534 | /* flush both disables and wait for them to finish */ | ||
1535 | wrfl(); | ||
1536 | msleep(10); | ||
1537 | |||
1538 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
1539 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
1540 | napi_disable(&q_vector->napi); | ||
1541 | } | ||
1542 | |||
1543 | igb_irq_disable(adapter); | ||
1544 | |||
1545 | del_timer_sync(&adapter->watchdog_timer); | ||
1546 | del_timer_sync(&adapter->phy_info_timer); | ||
1547 | |||
1548 | netif_carrier_off(netdev); | ||
1549 | |||
1550 | /* record the stats before reset*/ | ||
1551 | spin_lock(&adapter->stats64_lock); | ||
1552 | igb_update_stats(adapter, &adapter->stats64); | ||
1553 | spin_unlock(&adapter->stats64_lock); | ||
1554 | |||
1555 | adapter->link_speed = 0; | ||
1556 | adapter->link_duplex = 0; | ||
1557 | |||
1558 | if (!pci_channel_offline(adapter->pdev)) | ||
1559 | igb_reset(adapter); | ||
1560 | igb_clean_all_tx_rings(adapter); | ||
1561 | igb_clean_all_rx_rings(adapter); | ||
1562 | #ifdef CONFIG_IGB_DCA | ||
1563 | |||
1564 | /* since we reset the hardware DCA settings were cleared */ | ||
1565 | igb_setup_dca(adapter); | ||
1566 | #endif | ||
1567 | } | ||
1568 | |||
1569 | void igb_reinit_locked(struct igb_adapter *adapter) | ||
1570 | { | ||
1571 | WARN_ON(in_interrupt()); | ||
1572 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
1573 | msleep(1); | ||
1574 | igb_down(adapter); | ||
1575 | igb_up(adapter); | ||
1576 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
1577 | } | ||
1578 | |||
1579 | void igb_reset(struct igb_adapter *adapter) | ||
1580 | { | ||
1581 | struct pci_dev *pdev = adapter->pdev; | ||
1582 | struct e1000_hw *hw = &adapter->hw; | ||
1583 | struct e1000_mac_info *mac = &hw->mac; | ||
1584 | struct e1000_fc_info *fc = &hw->fc; | ||
1585 | u32 pba = 0, tx_space, min_tx_space, min_rx_space; | ||
1586 | u16 hwm; | ||
1587 | |||
1588 | /* Repartition Pba for greater than 9k mtu | ||
1589 | * To take effect CTRL.RST is required. | ||
1590 | */ | ||
1591 | switch (mac->type) { | ||
1592 | case e1000_i350: | ||
1593 | case e1000_82580: | ||
1594 | pba = rd32(E1000_RXPBS); | ||
1595 | pba = igb_rxpbs_adjust_82580(pba); | ||
1596 | break; | ||
1597 | case e1000_82576: | ||
1598 | pba = rd32(E1000_RXPBS); | ||
1599 | pba &= E1000_RXPBS_SIZE_MASK_82576; | ||
1600 | break; | ||
1601 | case e1000_82575: | ||
1602 | default: | ||
1603 | pba = E1000_PBA_34K; | ||
1604 | break; | ||
1605 | } | ||
1606 | |||
1607 | if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && | ||
1608 | (mac->type < e1000_82576)) { | ||
1609 | /* adjust PBA for jumbo frames */ | ||
1610 | wr32(E1000_PBA, pba); | ||
1611 | |||
1612 | /* To maintain wire speed transmits, the Tx FIFO should be | ||
1613 | * large enough to accommodate two full transmit packets, | ||
1614 | * rounded up to the next 1KB and expressed in KB. Likewise, | ||
1615 | * the Rx FIFO should be large enough to accommodate at least | ||
1616 | * one full receive packet and is similarly rounded up and | ||
1617 | * expressed in KB. */ | ||
1618 | pba = rd32(E1000_PBA); | ||
1619 | /* upper 16 bits has Tx packet buffer allocation size in KB */ | ||
1620 | tx_space = pba >> 16; | ||
1621 | /* lower 16 bits has Rx packet buffer allocation size in KB */ | ||
1622 | pba &= 0xffff; | ||
1623 | /* the tx fifo also stores 16 bytes of information about the tx | ||
1624 | * but don't include ethernet FCS because hardware appends it */ | ||
1625 | min_tx_space = (adapter->max_frame_size + | ||
1626 | sizeof(union e1000_adv_tx_desc) - | ||
1627 | ETH_FCS_LEN) * 2; | ||
1628 | min_tx_space = ALIGN(min_tx_space, 1024); | ||
1629 | min_tx_space >>= 10; | ||
1630 | /* software strips receive CRC, so leave room for it */ | ||
1631 | min_rx_space = adapter->max_frame_size; | ||
1632 | min_rx_space = ALIGN(min_rx_space, 1024); | ||
1633 | min_rx_space >>= 10; | ||
1634 | |||
1635 | /* If current Tx allocation is less than the min Tx FIFO size, | ||
1636 | * and the min Tx FIFO size is less than the current Rx FIFO | ||
1637 | * allocation, take space away from current Rx allocation */ | ||
1638 | if (tx_space < min_tx_space && | ||
1639 | ((min_tx_space - tx_space) < pba)) { | ||
1640 | pba = pba - (min_tx_space - tx_space); | ||
1641 | |||
1642 | /* if short on rx space, rx wins and must trump tx | ||
1643 | * adjustment */ | ||
1644 | if (pba < min_rx_space) | ||
1645 | pba = min_rx_space; | ||
1646 | } | ||
1647 | wr32(E1000_PBA, pba); | ||
1648 | } | ||
1649 | |||
1650 | /* flow control settings */ | ||
1651 | /* The high water mark must be low enough to fit one full frame | ||
1652 | * (or the size used for early receive) above it in the Rx FIFO. | ||
1653 | * Set it to the lower of: | ||
1654 | * - 90% of the Rx FIFO size, or | ||
1655 | * - the full Rx FIFO size minus one full frame */ | ||
1656 | hwm = min(((pba << 10) * 9 / 10), | ||
1657 | ((pba << 10) - 2 * adapter->max_frame_size)); | ||
1658 | |||
1659 | fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */ | ||
1660 | fc->low_water = fc->high_water - 16; | ||
1661 | fc->pause_time = 0xFFFF; | ||
1662 | fc->send_xon = 1; | ||
1663 | fc->current_mode = fc->requested_mode; | ||
1664 | |||
1665 | /* disable receive for all VFs and wait one second */ | ||
1666 | if (adapter->vfs_allocated_count) { | ||
1667 | int i; | ||
1668 | for (i = 0 ; i < adapter->vfs_allocated_count; i++) | ||
1669 | adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; | ||
1670 | |||
1671 | /* ping all the active vfs to let them know we are going down */ | ||
1672 | igb_ping_all_vfs(adapter); | ||
1673 | |||
1674 | /* disable transmits and receives */ | ||
1675 | wr32(E1000_VFRE, 0); | ||
1676 | wr32(E1000_VFTE, 0); | ||
1677 | } | ||
1678 | |||
1679 | /* Allow time for pending master requests to run */ | ||
1680 | hw->mac.ops.reset_hw(hw); | ||
1681 | wr32(E1000_WUC, 0); | ||
1682 | |||
1683 | if (hw->mac.ops.init_hw(hw)) | ||
1684 | dev_err(&pdev->dev, "Hardware Error\n"); | ||
1685 | if (hw->mac.type > e1000_82580) { | ||
1686 | if (adapter->flags & IGB_FLAG_DMAC) { | ||
1687 | u32 reg; | ||
1688 | |||
1689 | /* | ||
1690 | * DMA Coalescing high water mark needs to be higher | ||
1691 | * than * the * Rx threshold. The Rx threshold is | ||
1692 | * currently * pba - 6, so we * should use a high water | ||
1693 | * mark of pba * - 4. */ | ||
1694 | hwm = (pba - 4) << 10; | ||
1695 | |||
1696 | reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT) | ||
1697 | & E1000_DMACR_DMACTHR_MASK); | ||
1698 | |||
1699 | /* transition to L0x or L1 if available..*/ | ||
1700 | reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); | ||
1701 | |||
1702 | /* watchdog timer= +-1000 usec in 32usec intervals */ | ||
1703 | reg |= (1000 >> 5); | ||
1704 | wr32(E1000_DMACR, reg); | ||
1705 | |||
1706 | /* no lower threshold to disable coalescing(smart fifb) | ||
1707 | * -UTRESH=0*/ | ||
1708 | wr32(E1000_DMCRTRH, 0); | ||
1709 | |||
1710 | /* set hwm to PBA - 2 * max frame size */ | ||
1711 | wr32(E1000_FCRTC, hwm); | ||
1712 | |||
1713 | /* | ||
1714 | * This sets the time to wait before requesting tran- | ||
1715 | * sition to * low power state to number of usecs needed | ||
1716 | * to receive 1 512 * byte frame at gigabit line rate | ||
1717 | */ | ||
1718 | reg = rd32(E1000_DMCTLX); | ||
1719 | reg |= IGB_DMCTLX_DCFLUSH_DIS; | ||
1720 | |||
1721 | /* Delay 255 usec before entering Lx state. */ | ||
1722 | reg |= 0xFF; | ||
1723 | wr32(E1000_DMCTLX, reg); | ||
1724 | |||
1725 | /* free space in Tx packet buffer to wake from DMAC */ | ||
1726 | wr32(E1000_DMCTXTH, | ||
1727 | (IGB_MIN_TXPBSIZE - | ||
1728 | (IGB_TX_BUF_4096 + adapter->max_frame_size)) | ||
1729 | >> 6); | ||
1730 | |||
1731 | /* make low power state decision controlled by DMAC */ | ||
1732 | reg = rd32(E1000_PCIEMISC); | ||
1733 | reg |= E1000_PCIEMISC_LX_DECISION; | ||
1734 | wr32(E1000_PCIEMISC, reg); | ||
1735 | } /* end if IGB_FLAG_DMAC set */ | ||
1736 | } | ||
1737 | if (hw->mac.type == e1000_82580) { | ||
1738 | u32 reg = rd32(E1000_PCIEMISC); | ||
1739 | wr32(E1000_PCIEMISC, | ||
1740 | reg & ~E1000_PCIEMISC_LX_DECISION); | ||
1741 | } | ||
1742 | if (!netif_running(adapter->netdev)) | ||
1743 | igb_power_down_link(adapter); | ||
1744 | |||
1745 | igb_update_mng_vlan(adapter); | ||
1746 | |||
1747 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | ||
1748 | wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); | ||
1749 | |||
1750 | igb_get_phy_info(hw); | ||
1751 | } | ||
1752 | |||
1753 | static u32 igb_fix_features(struct net_device *netdev, u32 features) | ||
1754 | { | ||
1755 | /* | ||
1756 | * Since there is no support for separate rx/tx vlan accel | ||
1757 | * enable/disable make sure tx flag is always in same state as rx. | ||
1758 | */ | ||
1759 | if (features & NETIF_F_HW_VLAN_RX) | ||
1760 | features |= NETIF_F_HW_VLAN_TX; | ||
1761 | else | ||
1762 | features &= ~NETIF_F_HW_VLAN_TX; | ||
1763 | |||
1764 | return features; | ||
1765 | } | ||
1766 | |||
1767 | static int igb_set_features(struct net_device *netdev, u32 features) | ||
1768 | { | ||
1769 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1770 | int i; | ||
1771 | u32 changed = netdev->features ^ features; | ||
1772 | |||
1773 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
1774 | if (features & NETIF_F_RXCSUM) | ||
1775 | adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM; | ||
1776 | else | ||
1777 | adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM; | ||
1778 | } | ||
1779 | |||
1780 | if (changed & NETIF_F_HW_VLAN_RX) | ||
1781 | igb_vlan_mode(netdev, features); | ||
1782 | |||
1783 | return 0; | ||
1784 | } | ||
1785 | |||
1786 | static const struct net_device_ops igb_netdev_ops = { | ||
1787 | .ndo_open = igb_open, | ||
1788 | .ndo_stop = igb_close, | ||
1789 | .ndo_start_xmit = igb_xmit_frame_adv, | ||
1790 | .ndo_get_stats64 = igb_get_stats64, | ||
1791 | .ndo_set_rx_mode = igb_set_rx_mode, | ||
1792 | .ndo_set_multicast_list = igb_set_rx_mode, | ||
1793 | .ndo_set_mac_address = igb_set_mac, | ||
1794 | .ndo_change_mtu = igb_change_mtu, | ||
1795 | .ndo_do_ioctl = igb_ioctl, | ||
1796 | .ndo_tx_timeout = igb_tx_timeout, | ||
1797 | .ndo_validate_addr = eth_validate_addr, | ||
1798 | .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, | ||
1799 | .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, | ||
1800 | .ndo_set_vf_mac = igb_ndo_set_vf_mac, | ||
1801 | .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, | ||
1802 | .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw, | ||
1803 | .ndo_get_vf_config = igb_ndo_get_vf_config, | ||
1804 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
1805 | .ndo_poll_controller = igb_netpoll, | ||
1806 | #endif | ||
1807 | .ndo_fix_features = igb_fix_features, | ||
1808 | .ndo_set_features = igb_set_features, | ||
1809 | }; | ||
1810 | |||
1811 | /** | ||
1812 | * igb_probe - Device Initialization Routine | ||
1813 | * @pdev: PCI device information struct | ||
1814 | * @ent: entry in igb_pci_tbl | ||
1815 | * | ||
1816 | * Returns 0 on success, negative on failure | ||
1817 | * | ||
1818 | * igb_probe initializes an adapter identified by a pci_dev structure. | ||
1819 | * The OS initialization, configuring of the adapter private structure, | ||
1820 | * and a hardware reset occur. | ||
1821 | **/ | ||
1822 | static int __devinit igb_probe(struct pci_dev *pdev, | ||
1823 | const struct pci_device_id *ent) | ||
1824 | { | ||
1825 | struct net_device *netdev; | ||
1826 | struct igb_adapter *adapter; | ||
1827 | struct e1000_hw *hw; | ||
1828 | u16 eeprom_data = 0; | ||
1829 | s32 ret_val; | ||
1830 | static int global_quad_port_a; /* global quad port a indication */ | ||
1831 | const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; | ||
1832 | unsigned long mmio_start, mmio_len; | ||
1833 | int err, pci_using_dac; | ||
1834 | u16 eeprom_apme_mask = IGB_EEPROM_APME; | ||
1835 | u8 part_str[E1000_PBANUM_LENGTH]; | ||
1836 | |||
1837 | /* Catch broken hardware that put the wrong VF device ID in | ||
1838 | * the PCIe SR-IOV capability. | ||
1839 | */ | ||
1840 | if (pdev->is_virtfn) { | ||
1841 | WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", | ||
1842 | pci_name(pdev), pdev->vendor, pdev->device); | ||
1843 | return -EINVAL; | ||
1844 | } | ||
1845 | |||
1846 | err = pci_enable_device_mem(pdev); | ||
1847 | if (err) | ||
1848 | return err; | ||
1849 | |||
1850 | pci_using_dac = 0; | ||
1851 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
1852 | if (!err) { | ||
1853 | err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
1854 | if (!err) | ||
1855 | pci_using_dac = 1; | ||
1856 | } else { | ||
1857 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); | ||
1858 | if (err) { | ||
1859 | err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); | ||
1860 | if (err) { | ||
1861 | dev_err(&pdev->dev, "No usable DMA " | ||
1862 | "configuration, aborting\n"); | ||
1863 | goto err_dma; | ||
1864 | } | ||
1865 | } | ||
1866 | } | ||
1867 | |||
1868 | err = pci_request_selected_regions(pdev, pci_select_bars(pdev, | ||
1869 | IORESOURCE_MEM), | ||
1870 | igb_driver_name); | ||
1871 | if (err) | ||
1872 | goto err_pci_reg; | ||
1873 | |||
1874 | pci_enable_pcie_error_reporting(pdev); | ||
1875 | |||
1876 | pci_set_master(pdev); | ||
1877 | pci_save_state(pdev); | ||
1878 | |||
1879 | err = -ENOMEM; | ||
1880 | netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), | ||
1881 | IGB_ABS_MAX_TX_QUEUES); | ||
1882 | if (!netdev) | ||
1883 | goto err_alloc_etherdev; | ||
1884 | |||
1885 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
1886 | |||
1887 | pci_set_drvdata(pdev, netdev); | ||
1888 | adapter = netdev_priv(netdev); | ||
1889 | adapter->netdev = netdev; | ||
1890 | adapter->pdev = pdev; | ||
1891 | hw = &adapter->hw; | ||
1892 | hw->back = adapter; | ||
1893 | adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE; | ||
1894 | |||
1895 | mmio_start = pci_resource_start(pdev, 0); | ||
1896 | mmio_len = pci_resource_len(pdev, 0); | ||
1897 | |||
1898 | err = -EIO; | ||
1899 | hw->hw_addr = ioremap(mmio_start, mmio_len); | ||
1900 | if (!hw->hw_addr) | ||
1901 | goto err_ioremap; | ||
1902 | |||
1903 | netdev->netdev_ops = &igb_netdev_ops; | ||
1904 | igb_set_ethtool_ops(netdev); | ||
1905 | netdev->watchdog_timeo = 5 * HZ; | ||
1906 | |||
1907 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
1908 | |||
1909 | netdev->mem_start = mmio_start; | ||
1910 | netdev->mem_end = mmio_start + mmio_len; | ||
1911 | |||
1912 | /* PCI config space info */ | ||
1913 | hw->vendor_id = pdev->vendor; | ||
1914 | hw->device_id = pdev->device; | ||
1915 | hw->revision_id = pdev->revision; | ||
1916 | hw->subsystem_vendor_id = pdev->subsystem_vendor; | ||
1917 | hw->subsystem_device_id = pdev->subsystem_device; | ||
1918 | |||
1919 | /* Copy the default MAC, PHY and NVM function pointers */ | ||
1920 | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | ||
1921 | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | ||
1922 | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | ||
1923 | /* Initialize skew-specific constants */ | ||
1924 | err = ei->get_invariants(hw); | ||
1925 | if (err) | ||
1926 | goto err_sw_init; | ||
1927 | |||
1928 | /* setup the private structure */ | ||
1929 | err = igb_sw_init(adapter); | ||
1930 | if (err) | ||
1931 | goto err_sw_init; | ||
1932 | |||
1933 | igb_get_bus_info_pcie(hw); | ||
1934 | |||
1935 | hw->phy.autoneg_wait_to_complete = false; | ||
1936 | |||
1937 | /* Copper options */ | ||
1938 | if (hw->phy.media_type == e1000_media_type_copper) { | ||
1939 | hw->phy.mdix = AUTO_ALL_MODES; | ||
1940 | hw->phy.disable_polarity_correction = false; | ||
1941 | hw->phy.ms_type = e1000_ms_hw_default; | ||
1942 | } | ||
1943 | |||
1944 | if (igb_check_reset_block(hw)) | ||
1945 | dev_info(&pdev->dev, | ||
1946 | "PHY reset is blocked due to SOL/IDER session.\n"); | ||
1947 | |||
1948 | netdev->hw_features = NETIF_F_SG | | ||
1949 | NETIF_F_IP_CSUM | | ||
1950 | NETIF_F_IPV6_CSUM | | ||
1951 | NETIF_F_TSO | | ||
1952 | NETIF_F_TSO6 | | ||
1953 | NETIF_F_RXCSUM | | ||
1954 | NETIF_F_HW_VLAN_RX; | ||
1955 | |||
1956 | netdev->features = netdev->hw_features | | ||
1957 | NETIF_F_HW_VLAN_TX | | ||
1958 | NETIF_F_HW_VLAN_FILTER; | ||
1959 | |||
1960 | netdev->vlan_features |= NETIF_F_TSO; | ||
1961 | netdev->vlan_features |= NETIF_F_TSO6; | ||
1962 | netdev->vlan_features |= NETIF_F_IP_CSUM; | ||
1963 | netdev->vlan_features |= NETIF_F_IPV6_CSUM; | ||
1964 | netdev->vlan_features |= NETIF_F_SG; | ||
1965 | |||
1966 | if (pci_using_dac) { | ||
1967 | netdev->features |= NETIF_F_HIGHDMA; | ||
1968 | netdev->vlan_features |= NETIF_F_HIGHDMA; | ||
1969 | } | ||
1970 | |||
1971 | if (hw->mac.type >= e1000_82576) { | ||
1972 | netdev->hw_features |= NETIF_F_SCTP_CSUM; | ||
1973 | netdev->features |= NETIF_F_SCTP_CSUM; | ||
1974 | } | ||
1975 | |||
1976 | adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); | ||
1977 | |||
1978 | /* before reading the NVM, reset the controller to put the device in a | ||
1979 | * known good starting state */ | ||
1980 | hw->mac.ops.reset_hw(hw); | ||
1981 | |||
1982 | /* make sure the NVM is good */ | ||
1983 | if (hw->nvm.ops.validate(hw) < 0) { | ||
1984 | dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); | ||
1985 | err = -EIO; | ||
1986 | goto err_eeprom; | ||
1987 | } | ||
1988 | |||
1989 | /* copy the MAC address out of the NVM */ | ||
1990 | if (hw->mac.ops.read_mac_addr(hw)) | ||
1991 | dev_err(&pdev->dev, "NVM Read Error\n"); | ||
1992 | |||
1993 | memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); | ||
1994 | memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len); | ||
1995 | |||
1996 | if (!is_valid_ether_addr(netdev->perm_addr)) { | ||
1997 | dev_err(&pdev->dev, "Invalid MAC Address\n"); | ||
1998 | err = -EIO; | ||
1999 | goto err_eeprom; | ||
2000 | } | ||
2001 | |||
2002 | setup_timer(&adapter->watchdog_timer, igb_watchdog, | ||
2003 | (unsigned long) adapter); | ||
2004 | setup_timer(&adapter->phy_info_timer, igb_update_phy_info, | ||
2005 | (unsigned long) adapter); | ||
2006 | |||
2007 | INIT_WORK(&adapter->reset_task, igb_reset_task); | ||
2008 | INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); | ||
2009 | |||
2010 | /* Initialize link properties that are user-changeable */ | ||
2011 | adapter->fc_autoneg = true; | ||
2012 | hw->mac.autoneg = true; | ||
2013 | hw->phy.autoneg_advertised = 0x2f; | ||
2014 | |||
2015 | hw->fc.requested_mode = e1000_fc_default; | ||
2016 | hw->fc.current_mode = e1000_fc_default; | ||
2017 | |||
2018 | igb_validate_mdi_setting(hw); | ||
2019 | |||
2020 | /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM, | ||
2021 | * enable the ACPI Magic Packet filter | ||
2022 | */ | ||
2023 | |||
2024 | if (hw->bus.func == 0) | ||
2025 | hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | ||
2026 | else if (hw->mac.type >= e1000_82580) | ||
2027 | hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + | ||
2028 | NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, | ||
2029 | &eeprom_data); | ||
2030 | else if (hw->bus.func == 1) | ||
2031 | hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | ||
2032 | |||
2033 | if (eeprom_data & eeprom_apme_mask) | ||
2034 | adapter->eeprom_wol |= E1000_WUFC_MAG; | ||
2035 | |||
2036 | /* now that we have the eeprom settings, apply the special cases where | ||
2037 | * the eeprom may be wrong or the board simply won't support wake on | ||
2038 | * lan on a particular port */ | ||
2039 | switch (pdev->device) { | ||
2040 | case E1000_DEV_ID_82575GB_QUAD_COPPER: | ||
2041 | adapter->eeprom_wol = 0; | ||
2042 | break; | ||
2043 | case E1000_DEV_ID_82575EB_FIBER_SERDES: | ||
2044 | case E1000_DEV_ID_82576_FIBER: | ||
2045 | case E1000_DEV_ID_82576_SERDES: | ||
2046 | /* Wake events only supported on port A for dual fiber | ||
2047 | * regardless of eeprom setting */ | ||
2048 | if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) | ||
2049 | adapter->eeprom_wol = 0; | ||
2050 | break; | ||
2051 | case E1000_DEV_ID_82576_QUAD_COPPER: | ||
2052 | case E1000_DEV_ID_82576_QUAD_COPPER_ET2: | ||
2053 | /* if quad port adapter, disable WoL on all but port A */ | ||
2054 | if (global_quad_port_a != 0) | ||
2055 | adapter->eeprom_wol = 0; | ||
2056 | else | ||
2057 | adapter->flags |= IGB_FLAG_QUAD_PORT_A; | ||
2058 | /* Reset for multiple quad port adapters */ | ||
2059 | if (++global_quad_port_a == 4) | ||
2060 | global_quad_port_a = 0; | ||
2061 | break; | ||
2062 | } | ||
2063 | |||
2064 | /* initialize the wol settings based on the eeprom settings */ | ||
2065 | adapter->wol = adapter->eeprom_wol; | ||
2066 | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | ||
2067 | |||
2068 | /* reset the hardware with the new settings */ | ||
2069 | igb_reset(adapter); | ||
2070 | |||
2071 | /* let the f/w know that the h/w is now under the control of the | ||
2072 | * driver. */ | ||
2073 | igb_get_hw_control(adapter); | ||
2074 | |||
2075 | strcpy(netdev->name, "eth%d"); | ||
2076 | err = register_netdev(netdev); | ||
2077 | if (err) | ||
2078 | goto err_register; | ||
2079 | |||
2080 | igb_vlan_mode(netdev, netdev->features); | ||
2081 | |||
2082 | /* carrier off reporting is important to ethtool even BEFORE open */ | ||
2083 | netif_carrier_off(netdev); | ||
2084 | |||
2085 | #ifdef CONFIG_IGB_DCA | ||
2086 | if (dca_add_requester(&pdev->dev) == 0) { | ||
2087 | adapter->flags |= IGB_FLAG_DCA_ENABLED; | ||
2088 | dev_info(&pdev->dev, "DCA enabled\n"); | ||
2089 | igb_setup_dca(adapter); | ||
2090 | } | ||
2091 | |||
2092 | #endif | ||
2093 | /* do hw tstamp init after resetting */ | ||
2094 | igb_init_hw_timer(adapter); | ||
2095 | |||
2096 | dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); | ||
2097 | /* print bus type/speed/width info */ | ||
2098 | dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", | ||
2099 | netdev->name, | ||
2100 | ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : | ||
2101 | (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : | ||
2102 | "unknown"), | ||
2103 | ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : | ||
2104 | (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" : | ||
2105 | (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" : | ||
2106 | "unknown"), | ||
2107 | netdev->dev_addr); | ||
2108 | |||
2109 | ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH); | ||
2110 | if (ret_val) | ||
2111 | strcpy(part_str, "Unknown"); | ||
2112 | dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); | ||
2113 | dev_info(&pdev->dev, | ||
2114 | "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", | ||
2115 | adapter->msix_entries ? "MSI-X" : | ||
2116 | (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", | ||
2117 | adapter->num_rx_queues, adapter->num_tx_queues); | ||
2118 | switch (hw->mac.type) { | ||
2119 | case e1000_i350: | ||
2120 | igb_set_eee_i350(hw); | ||
2121 | break; | ||
2122 | default: | ||
2123 | break; | ||
2124 | } | ||
2125 | return 0; | ||
2126 | |||
2127 | err_register: | ||
2128 | igb_release_hw_control(adapter); | ||
2129 | err_eeprom: | ||
2130 | if (!igb_check_reset_block(hw)) | ||
2131 | igb_reset_phy(hw); | ||
2132 | |||
2133 | if (hw->flash_address) | ||
2134 | iounmap(hw->flash_address); | ||
2135 | err_sw_init: | ||
2136 | igb_clear_interrupt_scheme(adapter); | ||
2137 | iounmap(hw->hw_addr); | ||
2138 | err_ioremap: | ||
2139 | free_netdev(netdev); | ||
2140 | err_alloc_etherdev: | ||
2141 | pci_release_selected_regions(pdev, | ||
2142 | pci_select_bars(pdev, IORESOURCE_MEM)); | ||
2143 | err_pci_reg: | ||
2144 | err_dma: | ||
2145 | pci_disable_device(pdev); | ||
2146 | return err; | ||
2147 | } | ||
2148 | |||
2149 | /** | ||
2150 | * igb_remove - Device Removal Routine | ||
2151 | * @pdev: PCI device information struct | ||
2152 | * | ||
2153 | * igb_remove is called by the PCI subsystem to alert the driver | ||
2154 | * that it should release a PCI device. The could be caused by a | ||
2155 | * Hot-Plug event, or because the driver is going to be removed from | ||
2156 | * memory. | ||
2157 | **/ | ||
2158 | static void __devexit igb_remove(struct pci_dev *pdev) | ||
2159 | { | ||
2160 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2161 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2162 | struct e1000_hw *hw = &adapter->hw; | ||
2163 | |||
2164 | /* | ||
2165 | * The watchdog timer may be rescheduled, so explicitly | ||
2166 | * disable watchdog from being rescheduled. | ||
2167 | */ | ||
2168 | set_bit(__IGB_DOWN, &adapter->state); | ||
2169 | del_timer_sync(&adapter->watchdog_timer); | ||
2170 | del_timer_sync(&adapter->phy_info_timer); | ||
2171 | |||
2172 | cancel_work_sync(&adapter->reset_task); | ||
2173 | cancel_work_sync(&adapter->watchdog_task); | ||
2174 | |||
2175 | #ifdef CONFIG_IGB_DCA | ||
2176 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) { | ||
2177 | dev_info(&pdev->dev, "DCA disabled\n"); | ||
2178 | dca_remove_requester(&pdev->dev); | ||
2179 | adapter->flags &= ~IGB_FLAG_DCA_ENABLED; | ||
2180 | wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); | ||
2181 | } | ||
2182 | #endif | ||
2183 | |||
2184 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
2185 | * would have already happened in close and is redundant. */ | ||
2186 | igb_release_hw_control(adapter); | ||
2187 | |||
2188 | unregister_netdev(netdev); | ||
2189 | |||
2190 | igb_clear_interrupt_scheme(adapter); | ||
2191 | |||
2192 | #ifdef CONFIG_PCI_IOV | ||
2193 | /* reclaim resources allocated to VFs */ | ||
2194 | if (adapter->vf_data) { | ||
2195 | /* disable iov and allow time for transactions to clear */ | ||
2196 | pci_disable_sriov(pdev); | ||
2197 | msleep(500); | ||
2198 | |||
2199 | kfree(adapter->vf_data); | ||
2200 | adapter->vf_data = NULL; | ||
2201 | wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); | ||
2202 | wrfl(); | ||
2203 | msleep(100); | ||
2204 | dev_info(&pdev->dev, "IOV Disabled\n"); | ||
2205 | } | ||
2206 | #endif | ||
2207 | |||
2208 | iounmap(hw->hw_addr); | ||
2209 | if (hw->flash_address) | ||
2210 | iounmap(hw->flash_address); | ||
2211 | pci_release_selected_regions(pdev, | ||
2212 | pci_select_bars(pdev, IORESOURCE_MEM)); | ||
2213 | |||
2214 | free_netdev(netdev); | ||
2215 | |||
2216 | pci_disable_pcie_error_reporting(pdev); | ||
2217 | |||
2218 | pci_disable_device(pdev); | ||
2219 | } | ||
2220 | |||
2221 | /** | ||
2222 | * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space | ||
2223 | * @adapter: board private structure to initialize | ||
2224 | * | ||
2225 | * This function initializes the vf specific data storage and then attempts to | ||
2226 | * allocate the VFs. The reason for ordering it this way is because it is much | ||
2227 | * mor expensive time wise to disable SR-IOV than it is to allocate and free | ||
2228 | * the memory for the VFs. | ||
2229 | **/ | ||
2230 | static void __devinit igb_probe_vfs(struct igb_adapter * adapter) | ||
2231 | { | ||
2232 | #ifdef CONFIG_PCI_IOV | ||
2233 | struct pci_dev *pdev = adapter->pdev; | ||
2234 | |||
2235 | if (adapter->vfs_allocated_count) { | ||
2236 | adapter->vf_data = kcalloc(adapter->vfs_allocated_count, | ||
2237 | sizeof(struct vf_data_storage), | ||
2238 | GFP_KERNEL); | ||
2239 | /* if allocation failed then we do not support SR-IOV */ | ||
2240 | if (!adapter->vf_data) { | ||
2241 | adapter->vfs_allocated_count = 0; | ||
2242 | dev_err(&pdev->dev, "Unable to allocate memory for VF " | ||
2243 | "Data Storage\n"); | ||
2244 | } | ||
2245 | } | ||
2246 | |||
2247 | if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) { | ||
2248 | kfree(adapter->vf_data); | ||
2249 | adapter->vf_data = NULL; | ||
2250 | #endif /* CONFIG_PCI_IOV */ | ||
2251 | adapter->vfs_allocated_count = 0; | ||
2252 | #ifdef CONFIG_PCI_IOV | ||
2253 | } else { | ||
2254 | unsigned char mac_addr[ETH_ALEN]; | ||
2255 | int i; | ||
2256 | dev_info(&pdev->dev, "%d vfs allocated\n", | ||
2257 | adapter->vfs_allocated_count); | ||
2258 | for (i = 0; i < adapter->vfs_allocated_count; i++) { | ||
2259 | random_ether_addr(mac_addr); | ||
2260 | igb_set_vf_mac(adapter, i, mac_addr); | ||
2261 | } | ||
2262 | /* DMA Coalescing is not supported in IOV mode. */ | ||
2263 | if (adapter->flags & IGB_FLAG_DMAC) | ||
2264 | adapter->flags &= ~IGB_FLAG_DMAC; | ||
2265 | } | ||
2266 | #endif /* CONFIG_PCI_IOV */ | ||
2267 | } | ||
2268 | |||
2269 | |||
2270 | /** | ||
2271 | * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp | ||
2272 | * @adapter: board private structure to initialize | ||
2273 | * | ||
2274 | * igb_init_hw_timer initializes the function pointer and values for the hw | ||
2275 | * timer found in hardware. | ||
2276 | **/ | ||
2277 | static void igb_init_hw_timer(struct igb_adapter *adapter) | ||
2278 | { | ||
2279 | struct e1000_hw *hw = &adapter->hw; | ||
2280 | |||
2281 | switch (hw->mac.type) { | ||
2282 | case e1000_i350: | ||
2283 | case e1000_82580: | ||
2284 | memset(&adapter->cycles, 0, sizeof(adapter->cycles)); | ||
2285 | adapter->cycles.read = igb_read_clock; | ||
2286 | adapter->cycles.mask = CLOCKSOURCE_MASK(64); | ||
2287 | adapter->cycles.mult = 1; | ||
2288 | /* | ||
2289 | * The 82580 timesync updates the system timer every 8ns by 8ns | ||
2290 | * and the value cannot be shifted. Instead we need to shift | ||
2291 | * the registers to generate a 64bit timer value. As a result | ||
2292 | * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by | ||
2293 | * 24 in order to generate a larger value for synchronization. | ||
2294 | */ | ||
2295 | adapter->cycles.shift = IGB_82580_TSYNC_SHIFT; | ||
2296 | /* disable system timer temporarily by setting bit 31 */ | ||
2297 | wr32(E1000_TSAUXC, 0x80000000); | ||
2298 | wrfl(); | ||
2299 | |||
2300 | /* Set registers so that rollover occurs soon to test this. */ | ||
2301 | wr32(E1000_SYSTIMR, 0x00000000); | ||
2302 | wr32(E1000_SYSTIML, 0x80000000); | ||
2303 | wr32(E1000_SYSTIMH, 0x000000FF); | ||
2304 | wrfl(); | ||
2305 | |||
2306 | /* enable system timer by clearing bit 31 */ | ||
2307 | wr32(E1000_TSAUXC, 0x0); | ||
2308 | wrfl(); | ||
2309 | |||
2310 | timecounter_init(&adapter->clock, | ||
2311 | &adapter->cycles, | ||
2312 | ktime_to_ns(ktime_get_real())); | ||
2313 | /* | ||
2314 | * Synchronize our NIC clock against system wall clock. NIC | ||
2315 | * time stamp reading requires ~3us per sample, each sample | ||
2316 | * was pretty stable even under load => only require 10 | ||
2317 | * samples for each offset comparison. | ||
2318 | */ | ||
2319 | memset(&adapter->compare, 0, sizeof(adapter->compare)); | ||
2320 | adapter->compare.source = &adapter->clock; | ||
2321 | adapter->compare.target = ktime_get_real; | ||
2322 | adapter->compare.num_samples = 10; | ||
2323 | timecompare_update(&adapter->compare, 0); | ||
2324 | break; | ||
2325 | case e1000_82576: | ||
2326 | /* | ||
2327 | * Initialize hardware timer: we keep it running just in case | ||
2328 | * that some program needs it later on. | ||
2329 | */ | ||
2330 | memset(&adapter->cycles, 0, sizeof(adapter->cycles)); | ||
2331 | adapter->cycles.read = igb_read_clock; | ||
2332 | adapter->cycles.mask = CLOCKSOURCE_MASK(64); | ||
2333 | adapter->cycles.mult = 1; | ||
2334 | /** | ||
2335 | * Scale the NIC clock cycle by a large factor so that | ||
2336 | * relatively small clock corrections can be added or | ||
2337 | * subtracted at each clock tick. The drawbacks of a large | ||
2338 | * factor are a) that the clock register overflows more quickly | ||
2339 | * (not such a big deal) and b) that the increment per tick has | ||
2340 | * to fit into 24 bits. As a result we need to use a shift of | ||
2341 | * 19 so we can fit a value of 16 into the TIMINCA register. | ||
2342 | */ | ||
2343 | adapter->cycles.shift = IGB_82576_TSYNC_SHIFT; | ||
2344 | wr32(E1000_TIMINCA, | ||
2345 | (1 << E1000_TIMINCA_16NS_SHIFT) | | ||
2346 | (16 << IGB_82576_TSYNC_SHIFT)); | ||
2347 | |||
2348 | /* Set registers so that rollover occurs soon to test this. */ | ||
2349 | wr32(E1000_SYSTIML, 0x00000000); | ||
2350 | wr32(E1000_SYSTIMH, 0xFF800000); | ||
2351 | wrfl(); | ||
2352 | |||
2353 | timecounter_init(&adapter->clock, | ||
2354 | &adapter->cycles, | ||
2355 | ktime_to_ns(ktime_get_real())); | ||
2356 | /* | ||
2357 | * Synchronize our NIC clock against system wall clock. NIC | ||
2358 | * time stamp reading requires ~3us per sample, each sample | ||
2359 | * was pretty stable even under load => only require 10 | ||
2360 | * samples for each offset comparison. | ||
2361 | */ | ||
2362 | memset(&adapter->compare, 0, sizeof(adapter->compare)); | ||
2363 | adapter->compare.source = &adapter->clock; | ||
2364 | adapter->compare.target = ktime_get_real; | ||
2365 | adapter->compare.num_samples = 10; | ||
2366 | timecompare_update(&adapter->compare, 0); | ||
2367 | break; | ||
2368 | case e1000_82575: | ||
2369 | /* 82575 does not support timesync */ | ||
2370 | default: | ||
2371 | break; | ||
2372 | } | ||
2373 | |||
2374 | } | ||
2375 | |||
2376 | /** | ||
2377 | * igb_sw_init - Initialize general software structures (struct igb_adapter) | ||
2378 | * @adapter: board private structure to initialize | ||
2379 | * | ||
2380 | * igb_sw_init initializes the Adapter private data structure. | ||
2381 | * Fields are initialized based on PCI device information and | ||
2382 | * OS network device settings (MTU size). | ||
2383 | **/ | ||
2384 | static int __devinit igb_sw_init(struct igb_adapter *adapter) | ||
2385 | { | ||
2386 | struct e1000_hw *hw = &adapter->hw; | ||
2387 | struct net_device *netdev = adapter->netdev; | ||
2388 | struct pci_dev *pdev = adapter->pdev; | ||
2389 | |||
2390 | pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); | ||
2391 | |||
2392 | adapter->tx_ring_count = IGB_DEFAULT_TXD; | ||
2393 | adapter->rx_ring_count = IGB_DEFAULT_RXD; | ||
2394 | adapter->rx_itr_setting = IGB_DEFAULT_ITR; | ||
2395 | adapter->tx_itr_setting = IGB_DEFAULT_ITR; | ||
2396 | |||
2397 | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | ||
2398 | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | ||
2399 | |||
2400 | spin_lock_init(&adapter->stats64_lock); | ||
2401 | #ifdef CONFIG_PCI_IOV | ||
2402 | switch (hw->mac.type) { | ||
2403 | case e1000_82576: | ||
2404 | case e1000_i350: | ||
2405 | if (max_vfs > 7) { | ||
2406 | dev_warn(&pdev->dev, | ||
2407 | "Maximum of 7 VFs per PF, using max\n"); | ||
2408 | adapter->vfs_allocated_count = 7; | ||
2409 | } else | ||
2410 | adapter->vfs_allocated_count = max_vfs; | ||
2411 | break; | ||
2412 | default: | ||
2413 | break; | ||
2414 | } | ||
2415 | #endif /* CONFIG_PCI_IOV */ | ||
2416 | adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus()); | ||
2417 | /* i350 cannot do RSS and SR-IOV at the same time */ | ||
2418 | if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count) | ||
2419 | adapter->rss_queues = 1; | ||
2420 | |||
2421 | /* | ||
2422 | * if rss_queues > 4 or vfs are going to be allocated with rss_queues | ||
2423 | * then we should combine the queues into a queue pair in order to | ||
2424 | * conserve interrupts due to limited supply | ||
2425 | */ | ||
2426 | if ((adapter->rss_queues > 4) || | ||
2427 | ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6))) | ||
2428 | adapter->flags |= IGB_FLAG_QUEUE_PAIRS; | ||
2429 | |||
2430 | /* This call may decrease the number of queues */ | ||
2431 | if (igb_init_interrupt_scheme(adapter)) { | ||
2432 | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | ||
2433 | return -ENOMEM; | ||
2434 | } | ||
2435 | |||
2436 | igb_probe_vfs(adapter); | ||
2437 | |||
2438 | /* Explicitly disable IRQ since the NIC can be in any state. */ | ||
2439 | igb_irq_disable(adapter); | ||
2440 | |||
2441 | if (hw->mac.type == e1000_i350) | ||
2442 | adapter->flags &= ~IGB_FLAG_DMAC; | ||
2443 | |||
2444 | set_bit(__IGB_DOWN, &adapter->state); | ||
2445 | return 0; | ||
2446 | } | ||
2447 | |||
2448 | /** | ||
2449 | * igb_open - Called when a network interface is made active | ||
2450 | * @netdev: network interface device structure | ||
2451 | * | ||
2452 | * Returns 0 on success, negative value on failure | ||
2453 | * | ||
2454 | * The open entry point is called when a network interface is made | ||
2455 | * active by the system (IFF_UP). At this point all resources needed | ||
2456 | * for transmit and receive operations are allocated, the interrupt | ||
2457 | * handler is registered with the OS, the watchdog timer is started, | ||
2458 | * and the stack is notified that the interface is ready. | ||
2459 | **/ | ||
2460 | static int igb_open(struct net_device *netdev) | ||
2461 | { | ||
2462 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2463 | struct e1000_hw *hw = &adapter->hw; | ||
2464 | int err; | ||
2465 | int i; | ||
2466 | |||
2467 | /* disallow open during test */ | ||
2468 | if (test_bit(__IGB_TESTING, &adapter->state)) | ||
2469 | return -EBUSY; | ||
2470 | |||
2471 | netif_carrier_off(netdev); | ||
2472 | |||
2473 | /* allocate transmit descriptors */ | ||
2474 | err = igb_setup_all_tx_resources(adapter); | ||
2475 | if (err) | ||
2476 | goto err_setup_tx; | ||
2477 | |||
2478 | /* allocate receive descriptors */ | ||
2479 | err = igb_setup_all_rx_resources(adapter); | ||
2480 | if (err) | ||
2481 | goto err_setup_rx; | ||
2482 | |||
2483 | igb_power_up_link(adapter); | ||
2484 | |||
2485 | /* before we allocate an interrupt, we must be ready to handle it. | ||
2486 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | ||
2487 | * as soon as we call pci_request_irq, so we have to setup our | ||
2488 | * clean_rx handler before we do so. */ | ||
2489 | igb_configure(adapter); | ||
2490 | |||
2491 | err = igb_request_irq(adapter); | ||
2492 | if (err) | ||
2493 | goto err_req_irq; | ||
2494 | |||
2495 | /* From here on the code is the same as igb_up() */ | ||
2496 | clear_bit(__IGB_DOWN, &adapter->state); | ||
2497 | |||
2498 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
2499 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
2500 | napi_enable(&q_vector->napi); | ||
2501 | } | ||
2502 | |||
2503 | /* Clear any pending interrupts. */ | ||
2504 | rd32(E1000_ICR); | ||
2505 | |||
2506 | igb_irq_enable(adapter); | ||
2507 | |||
2508 | /* notify VFs that reset has been completed */ | ||
2509 | if (adapter->vfs_allocated_count) { | ||
2510 | u32 reg_data = rd32(E1000_CTRL_EXT); | ||
2511 | reg_data |= E1000_CTRL_EXT_PFRSTD; | ||
2512 | wr32(E1000_CTRL_EXT, reg_data); | ||
2513 | } | ||
2514 | |||
2515 | netif_tx_start_all_queues(netdev); | ||
2516 | |||
2517 | /* start the watchdog. */ | ||
2518 | hw->mac.get_link_status = 1; | ||
2519 | schedule_work(&adapter->watchdog_task); | ||
2520 | |||
2521 | return 0; | ||
2522 | |||
2523 | err_req_irq: | ||
2524 | igb_release_hw_control(adapter); | ||
2525 | igb_power_down_link(adapter); | ||
2526 | igb_free_all_rx_resources(adapter); | ||
2527 | err_setup_rx: | ||
2528 | igb_free_all_tx_resources(adapter); | ||
2529 | err_setup_tx: | ||
2530 | igb_reset(adapter); | ||
2531 | |||
2532 | return err; | ||
2533 | } | ||
2534 | |||
2535 | /** | ||
2536 | * igb_close - Disables a network interface | ||
2537 | * @netdev: network interface device structure | ||
2538 | * | ||
2539 | * Returns 0, this is not allowed to fail | ||
2540 | * | ||
2541 | * The close entry point is called when an interface is de-activated | ||
2542 | * by the OS. The hardware is still under the driver's control, but | ||
2543 | * needs to be disabled. A global MAC reset is issued to stop the | ||
2544 | * hardware, and all transmit and receive resources are freed. | ||
2545 | **/ | ||
2546 | static int igb_close(struct net_device *netdev) | ||
2547 | { | ||
2548 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2549 | |||
2550 | WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); | ||
2551 | igb_down(adapter); | ||
2552 | |||
2553 | igb_free_irq(adapter); | ||
2554 | |||
2555 | igb_free_all_tx_resources(adapter); | ||
2556 | igb_free_all_rx_resources(adapter); | ||
2557 | |||
2558 | return 0; | ||
2559 | } | ||
2560 | |||
2561 | /** | ||
2562 | * igb_setup_tx_resources - allocate Tx resources (Descriptors) | ||
2563 | * @tx_ring: tx descriptor ring (for a specific queue) to setup | ||
2564 | * | ||
2565 | * Return 0 on success, negative on failure | ||
2566 | **/ | ||
2567 | int igb_setup_tx_resources(struct igb_ring *tx_ring) | ||
2568 | { | ||
2569 | struct device *dev = tx_ring->dev; | ||
2570 | int size; | ||
2571 | |||
2572 | size = sizeof(struct igb_buffer) * tx_ring->count; | ||
2573 | tx_ring->buffer_info = vzalloc(size); | ||
2574 | if (!tx_ring->buffer_info) | ||
2575 | goto err; | ||
2576 | |||
2577 | /* round up to nearest 4K */ | ||
2578 | tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); | ||
2579 | tx_ring->size = ALIGN(tx_ring->size, 4096); | ||
2580 | |||
2581 | tx_ring->desc = dma_alloc_coherent(dev, | ||
2582 | tx_ring->size, | ||
2583 | &tx_ring->dma, | ||
2584 | GFP_KERNEL); | ||
2585 | |||
2586 | if (!tx_ring->desc) | ||
2587 | goto err; | ||
2588 | |||
2589 | tx_ring->next_to_use = 0; | ||
2590 | tx_ring->next_to_clean = 0; | ||
2591 | return 0; | ||
2592 | |||
2593 | err: | ||
2594 | vfree(tx_ring->buffer_info); | ||
2595 | dev_err(dev, | ||
2596 | "Unable to allocate memory for the transmit descriptor ring\n"); | ||
2597 | return -ENOMEM; | ||
2598 | } | ||
2599 | |||
2600 | /** | ||
2601 | * igb_setup_all_tx_resources - wrapper to allocate Tx resources | ||
2602 | * (Descriptors) for all queues | ||
2603 | * @adapter: board private structure | ||
2604 | * | ||
2605 | * Return 0 on success, negative on failure | ||
2606 | **/ | ||
2607 | static int igb_setup_all_tx_resources(struct igb_adapter *adapter) | ||
2608 | { | ||
2609 | struct pci_dev *pdev = adapter->pdev; | ||
2610 | int i, err = 0; | ||
2611 | |||
2612 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
2613 | err = igb_setup_tx_resources(adapter->tx_ring[i]); | ||
2614 | if (err) { | ||
2615 | dev_err(&pdev->dev, | ||
2616 | "Allocation for Tx Queue %u failed\n", i); | ||
2617 | for (i--; i >= 0; i--) | ||
2618 | igb_free_tx_resources(adapter->tx_ring[i]); | ||
2619 | break; | ||
2620 | } | ||
2621 | } | ||
2622 | |||
2623 | for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) { | ||
2624 | int r_idx = i % adapter->num_tx_queues; | ||
2625 | adapter->multi_tx_table[i] = adapter->tx_ring[r_idx]; | ||
2626 | } | ||
2627 | return err; | ||
2628 | } | ||
2629 | |||
2630 | /** | ||
2631 | * igb_setup_tctl - configure the transmit control registers | ||
2632 | * @adapter: Board private structure | ||
2633 | **/ | ||
2634 | void igb_setup_tctl(struct igb_adapter *adapter) | ||
2635 | { | ||
2636 | struct e1000_hw *hw = &adapter->hw; | ||
2637 | u32 tctl; | ||
2638 | |||
2639 | /* disable queue 0 which is enabled by default on 82575 and 82576 */ | ||
2640 | wr32(E1000_TXDCTL(0), 0); | ||
2641 | |||
2642 | /* Program the Transmit Control Register */ | ||
2643 | tctl = rd32(E1000_TCTL); | ||
2644 | tctl &= ~E1000_TCTL_CT; | ||
2645 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | ||
2646 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | ||
2647 | |||
2648 | igb_config_collision_dist(hw); | ||
2649 | |||
2650 | /* Enable transmits */ | ||
2651 | tctl |= E1000_TCTL_EN; | ||
2652 | |||
2653 | wr32(E1000_TCTL, tctl); | ||
2654 | } | ||
2655 | |||
2656 | /** | ||
2657 | * igb_configure_tx_ring - Configure transmit ring after Reset | ||
2658 | * @adapter: board private structure | ||
2659 | * @ring: tx ring to configure | ||
2660 | * | ||
2661 | * Configure a transmit ring after a reset. | ||
2662 | **/ | ||
2663 | void igb_configure_tx_ring(struct igb_adapter *adapter, | ||
2664 | struct igb_ring *ring) | ||
2665 | { | ||
2666 | struct e1000_hw *hw = &adapter->hw; | ||
2667 | u32 txdctl; | ||
2668 | u64 tdba = ring->dma; | ||
2669 | int reg_idx = ring->reg_idx; | ||
2670 | |||
2671 | /* disable the queue */ | ||
2672 | txdctl = rd32(E1000_TXDCTL(reg_idx)); | ||
2673 | wr32(E1000_TXDCTL(reg_idx), | ||
2674 | txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); | ||
2675 | wrfl(); | ||
2676 | mdelay(10); | ||
2677 | |||
2678 | wr32(E1000_TDLEN(reg_idx), | ||
2679 | ring->count * sizeof(union e1000_adv_tx_desc)); | ||
2680 | wr32(E1000_TDBAL(reg_idx), | ||
2681 | tdba & 0x00000000ffffffffULL); | ||
2682 | wr32(E1000_TDBAH(reg_idx), tdba >> 32); | ||
2683 | |||
2684 | ring->head = hw->hw_addr + E1000_TDH(reg_idx); | ||
2685 | ring->tail = hw->hw_addr + E1000_TDT(reg_idx); | ||
2686 | writel(0, ring->head); | ||
2687 | writel(0, ring->tail); | ||
2688 | |||
2689 | txdctl |= IGB_TX_PTHRESH; | ||
2690 | txdctl |= IGB_TX_HTHRESH << 8; | ||
2691 | txdctl |= IGB_TX_WTHRESH << 16; | ||
2692 | |||
2693 | txdctl |= E1000_TXDCTL_QUEUE_ENABLE; | ||
2694 | wr32(E1000_TXDCTL(reg_idx), txdctl); | ||
2695 | } | ||
2696 | |||
2697 | /** | ||
2698 | * igb_configure_tx - Configure transmit Unit after Reset | ||
2699 | * @adapter: board private structure | ||
2700 | * | ||
2701 | * Configure the Tx unit of the MAC after a reset. | ||
2702 | **/ | ||
2703 | static void igb_configure_tx(struct igb_adapter *adapter) | ||
2704 | { | ||
2705 | int i; | ||
2706 | |||
2707 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
2708 | igb_configure_tx_ring(adapter, adapter->tx_ring[i]); | ||
2709 | } | ||
2710 | |||
2711 | /** | ||
2712 | * igb_setup_rx_resources - allocate Rx resources (Descriptors) | ||
2713 | * @rx_ring: rx descriptor ring (for a specific queue) to setup | ||
2714 | * | ||
2715 | * Returns 0 on success, negative on failure | ||
2716 | **/ | ||
2717 | int igb_setup_rx_resources(struct igb_ring *rx_ring) | ||
2718 | { | ||
2719 | struct device *dev = rx_ring->dev; | ||
2720 | int size, desc_len; | ||
2721 | |||
2722 | size = sizeof(struct igb_buffer) * rx_ring->count; | ||
2723 | rx_ring->buffer_info = vzalloc(size); | ||
2724 | if (!rx_ring->buffer_info) | ||
2725 | goto err; | ||
2726 | |||
2727 | desc_len = sizeof(union e1000_adv_rx_desc); | ||
2728 | |||
2729 | /* Round up to nearest 4K */ | ||
2730 | rx_ring->size = rx_ring->count * desc_len; | ||
2731 | rx_ring->size = ALIGN(rx_ring->size, 4096); | ||
2732 | |||
2733 | rx_ring->desc = dma_alloc_coherent(dev, | ||
2734 | rx_ring->size, | ||
2735 | &rx_ring->dma, | ||
2736 | GFP_KERNEL); | ||
2737 | |||
2738 | if (!rx_ring->desc) | ||
2739 | goto err; | ||
2740 | |||
2741 | rx_ring->next_to_clean = 0; | ||
2742 | rx_ring->next_to_use = 0; | ||
2743 | |||
2744 | return 0; | ||
2745 | |||
2746 | err: | ||
2747 | vfree(rx_ring->buffer_info); | ||
2748 | rx_ring->buffer_info = NULL; | ||
2749 | dev_err(dev, "Unable to allocate memory for the receive descriptor" | ||
2750 | " ring\n"); | ||
2751 | return -ENOMEM; | ||
2752 | } | ||
2753 | |||
2754 | /** | ||
2755 | * igb_setup_all_rx_resources - wrapper to allocate Rx resources | ||
2756 | * (Descriptors) for all queues | ||
2757 | * @adapter: board private structure | ||
2758 | * | ||
2759 | * Return 0 on success, negative on failure | ||
2760 | **/ | ||
2761 | static int igb_setup_all_rx_resources(struct igb_adapter *adapter) | ||
2762 | { | ||
2763 | struct pci_dev *pdev = adapter->pdev; | ||
2764 | int i, err = 0; | ||
2765 | |||
2766 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
2767 | err = igb_setup_rx_resources(adapter->rx_ring[i]); | ||
2768 | if (err) { | ||
2769 | dev_err(&pdev->dev, | ||
2770 | "Allocation for Rx Queue %u failed\n", i); | ||
2771 | for (i--; i >= 0; i--) | ||
2772 | igb_free_rx_resources(adapter->rx_ring[i]); | ||
2773 | break; | ||
2774 | } | ||
2775 | } | ||
2776 | |||
2777 | return err; | ||
2778 | } | ||
2779 | |||
2780 | /** | ||
2781 | * igb_setup_mrqc - configure the multiple receive queue control registers | ||
2782 | * @adapter: Board private structure | ||
2783 | **/ | ||
2784 | static void igb_setup_mrqc(struct igb_adapter *adapter) | ||
2785 | { | ||
2786 | struct e1000_hw *hw = &adapter->hw; | ||
2787 | u32 mrqc, rxcsum; | ||
2788 | u32 j, num_rx_queues, shift = 0, shift2 = 0; | ||
2789 | union e1000_reta { | ||
2790 | u32 dword; | ||
2791 | u8 bytes[4]; | ||
2792 | } reta; | ||
2793 | static const u8 rsshash[40] = { | ||
2794 | 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67, | ||
2795 | 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb, | ||
2796 | 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, | ||
2797 | 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa }; | ||
2798 | |||
2799 | /* Fill out hash function seeds */ | ||
2800 | for (j = 0; j < 10; j++) { | ||
2801 | u32 rsskey = rsshash[(j * 4)]; | ||
2802 | rsskey |= rsshash[(j * 4) + 1] << 8; | ||
2803 | rsskey |= rsshash[(j * 4) + 2] << 16; | ||
2804 | rsskey |= rsshash[(j * 4) + 3] << 24; | ||
2805 | array_wr32(E1000_RSSRK(0), j, rsskey); | ||
2806 | } | ||
2807 | |||
2808 | num_rx_queues = adapter->rss_queues; | ||
2809 | |||
2810 | if (adapter->vfs_allocated_count) { | ||
2811 | /* 82575 and 82576 supports 2 RSS queues for VMDq */ | ||
2812 | switch (hw->mac.type) { | ||
2813 | case e1000_i350: | ||
2814 | case e1000_82580: | ||
2815 | num_rx_queues = 1; | ||
2816 | shift = 0; | ||
2817 | break; | ||
2818 | case e1000_82576: | ||
2819 | shift = 3; | ||
2820 | num_rx_queues = 2; | ||
2821 | break; | ||
2822 | case e1000_82575: | ||
2823 | shift = 2; | ||
2824 | shift2 = 6; | ||
2825 | default: | ||
2826 | break; | ||
2827 | } | ||
2828 | } else { | ||
2829 | if (hw->mac.type == e1000_82575) | ||
2830 | shift = 6; | ||
2831 | } | ||
2832 | |||
2833 | for (j = 0; j < (32 * 4); j++) { | ||
2834 | reta.bytes[j & 3] = (j % num_rx_queues) << shift; | ||
2835 | if (shift2) | ||
2836 | reta.bytes[j & 3] |= num_rx_queues << shift2; | ||
2837 | if ((j & 3) == 3) | ||
2838 | wr32(E1000_RETA(j >> 2), reta.dword); | ||
2839 | } | ||
2840 | |||
2841 | /* | ||
2842 | * Disable raw packet checksumming so that RSS hash is placed in | ||
2843 | * descriptor on writeback. No need to enable TCP/UDP/IP checksum | ||
2844 | * offloads as they are enabled by default | ||
2845 | */ | ||
2846 | rxcsum = rd32(E1000_RXCSUM); | ||
2847 | rxcsum |= E1000_RXCSUM_PCSD; | ||
2848 | |||
2849 | if (adapter->hw.mac.type >= e1000_82576) | ||
2850 | /* Enable Receive Checksum Offload for SCTP */ | ||
2851 | rxcsum |= E1000_RXCSUM_CRCOFL; | ||
2852 | |||
2853 | /* Don't need to set TUOFL or IPOFL, they default to 1 */ | ||
2854 | wr32(E1000_RXCSUM, rxcsum); | ||
2855 | |||
2856 | /* If VMDq is enabled then we set the appropriate mode for that, else | ||
2857 | * we default to RSS so that an RSS hash is calculated per packet even | ||
2858 | * if we are only using one queue */ | ||
2859 | if (adapter->vfs_allocated_count) { | ||
2860 | if (hw->mac.type > e1000_82575) { | ||
2861 | /* Set the default pool for the PF's first queue */ | ||
2862 | u32 vtctl = rd32(E1000_VT_CTL); | ||
2863 | vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | | ||
2864 | E1000_VT_CTL_DISABLE_DEF_POOL); | ||
2865 | vtctl |= adapter->vfs_allocated_count << | ||
2866 | E1000_VT_CTL_DEFAULT_POOL_SHIFT; | ||
2867 | wr32(E1000_VT_CTL, vtctl); | ||
2868 | } | ||
2869 | if (adapter->rss_queues > 1) | ||
2870 | mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q; | ||
2871 | else | ||
2872 | mrqc = E1000_MRQC_ENABLE_VMDQ; | ||
2873 | } else { | ||
2874 | mrqc = E1000_MRQC_ENABLE_RSS_4Q; | ||
2875 | } | ||
2876 | igb_vmm_control(adapter); | ||
2877 | |||
2878 | /* | ||
2879 | * Generate RSS hash based on TCP port numbers and/or | ||
2880 | * IPv4/v6 src and dst addresses since UDP cannot be | ||
2881 | * hashed reliably due to IP fragmentation | ||
2882 | */ | ||
2883 | mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | | ||
2884 | E1000_MRQC_RSS_FIELD_IPV4_TCP | | ||
2885 | E1000_MRQC_RSS_FIELD_IPV6 | | ||
2886 | E1000_MRQC_RSS_FIELD_IPV6_TCP | | ||
2887 | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; | ||
2888 | |||
2889 | wr32(E1000_MRQC, mrqc); | ||
2890 | } | ||
2891 | |||
2892 | /** | ||
2893 | * igb_setup_rctl - configure the receive control registers | ||
2894 | * @adapter: Board private structure | ||
2895 | **/ | ||
2896 | void igb_setup_rctl(struct igb_adapter *adapter) | ||
2897 | { | ||
2898 | struct e1000_hw *hw = &adapter->hw; | ||
2899 | u32 rctl; | ||
2900 | |||
2901 | rctl = rd32(E1000_RCTL); | ||
2902 | |||
2903 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | ||
2904 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | ||
2905 | |||
2906 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | | ||
2907 | (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
2908 | |||
2909 | /* | ||
2910 | * enable stripping of CRC. It's unlikely this will break BMC | ||
2911 | * redirection as it did with e1000. Newer features require | ||
2912 | * that the HW strips the CRC. | ||
2913 | */ | ||
2914 | rctl |= E1000_RCTL_SECRC; | ||
2915 | |||
2916 | /* disable store bad packets and clear size bits. */ | ||
2917 | rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); | ||
2918 | |||
2919 | /* enable LPE to prevent packets larger than max_frame_size */ | ||
2920 | rctl |= E1000_RCTL_LPE; | ||
2921 | |||
2922 | /* disable queue 0 to prevent tail write w/o re-config */ | ||
2923 | wr32(E1000_RXDCTL(0), 0); | ||
2924 | |||
2925 | /* Attention!!! For SR-IOV PF driver operations you must enable | ||
2926 | * queue drop for all VF and PF queues to prevent head of line blocking | ||
2927 | * if an un-trusted VF does not provide descriptors to hardware. | ||
2928 | */ | ||
2929 | if (adapter->vfs_allocated_count) { | ||
2930 | /* set all queue drop enable bits */ | ||
2931 | wr32(E1000_QDE, ALL_QUEUES); | ||
2932 | } | ||
2933 | |||
2934 | wr32(E1000_RCTL, rctl); | ||
2935 | } | ||
2936 | |||
2937 | static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, | ||
2938 | int vfn) | ||
2939 | { | ||
2940 | struct e1000_hw *hw = &adapter->hw; | ||
2941 | u32 vmolr; | ||
2942 | |||
2943 | /* if it isn't the PF check to see if VFs are enabled and | ||
2944 | * increase the size to support vlan tags */ | ||
2945 | if (vfn < adapter->vfs_allocated_count && | ||
2946 | adapter->vf_data[vfn].vlans_enabled) | ||
2947 | size += VLAN_TAG_SIZE; | ||
2948 | |||
2949 | vmolr = rd32(E1000_VMOLR(vfn)); | ||
2950 | vmolr &= ~E1000_VMOLR_RLPML_MASK; | ||
2951 | vmolr |= size | E1000_VMOLR_LPE; | ||
2952 | wr32(E1000_VMOLR(vfn), vmolr); | ||
2953 | |||
2954 | return 0; | ||
2955 | } | ||
2956 | |||
2957 | /** | ||
2958 | * igb_rlpml_set - set maximum receive packet size | ||
2959 | * @adapter: board private structure | ||
2960 | * | ||
2961 | * Configure maximum receivable packet size. | ||
2962 | **/ | ||
2963 | static void igb_rlpml_set(struct igb_adapter *adapter) | ||
2964 | { | ||
2965 | u32 max_frame_size; | ||
2966 | struct e1000_hw *hw = &adapter->hw; | ||
2967 | u16 pf_id = adapter->vfs_allocated_count; | ||
2968 | |||
2969 | max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE; | ||
2970 | |||
2971 | /* if vfs are enabled we set RLPML to the largest possible request | ||
2972 | * size and set the VMOLR RLPML to the size we need */ | ||
2973 | if (pf_id) { | ||
2974 | igb_set_vf_rlpml(adapter, max_frame_size, pf_id); | ||
2975 | max_frame_size = MAX_JUMBO_FRAME_SIZE; | ||
2976 | } | ||
2977 | |||
2978 | wr32(E1000_RLPML, max_frame_size); | ||
2979 | } | ||
2980 | |||
2981 | static inline void igb_set_vmolr(struct igb_adapter *adapter, | ||
2982 | int vfn, bool aupe) | ||
2983 | { | ||
2984 | struct e1000_hw *hw = &adapter->hw; | ||
2985 | u32 vmolr; | ||
2986 | |||
2987 | /* | ||
2988 | * This register exists only on 82576 and newer so if we are older then | ||
2989 | * we should exit and do nothing | ||
2990 | */ | ||
2991 | if (hw->mac.type < e1000_82576) | ||
2992 | return; | ||
2993 | |||
2994 | vmolr = rd32(E1000_VMOLR(vfn)); | ||
2995 | vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */ | ||
2996 | if (aupe) | ||
2997 | vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ | ||
2998 | else | ||
2999 | vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ | ||
3000 | |||
3001 | /* clear all bits that might not be set */ | ||
3002 | vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); | ||
3003 | |||
3004 | if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) | ||
3005 | vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ | ||
3006 | /* | ||
3007 | * for VMDq only allow the VFs and pool 0 to accept broadcast and | ||
3008 | * multicast packets | ||
3009 | */ | ||
3010 | if (vfn <= adapter->vfs_allocated_count) | ||
3011 | vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ | ||
3012 | |||
3013 | wr32(E1000_VMOLR(vfn), vmolr); | ||
3014 | } | ||
3015 | |||
3016 | /** | ||
3017 | * igb_configure_rx_ring - Configure a receive ring after Reset | ||
3018 | * @adapter: board private structure | ||
3019 | * @ring: receive ring to be configured | ||
3020 | * | ||
3021 | * Configure the Rx unit of the MAC after a reset. | ||
3022 | **/ | ||
3023 | void igb_configure_rx_ring(struct igb_adapter *adapter, | ||
3024 | struct igb_ring *ring) | ||
3025 | { | ||
3026 | struct e1000_hw *hw = &adapter->hw; | ||
3027 | u64 rdba = ring->dma; | ||
3028 | int reg_idx = ring->reg_idx; | ||
3029 | u32 srrctl, rxdctl; | ||
3030 | |||
3031 | /* disable the queue */ | ||
3032 | rxdctl = rd32(E1000_RXDCTL(reg_idx)); | ||
3033 | wr32(E1000_RXDCTL(reg_idx), | ||
3034 | rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); | ||
3035 | |||
3036 | /* Set DMA base address registers */ | ||
3037 | wr32(E1000_RDBAL(reg_idx), | ||
3038 | rdba & 0x00000000ffffffffULL); | ||
3039 | wr32(E1000_RDBAH(reg_idx), rdba >> 32); | ||
3040 | wr32(E1000_RDLEN(reg_idx), | ||
3041 | ring->count * sizeof(union e1000_adv_rx_desc)); | ||
3042 | |||
3043 | /* initialize head and tail */ | ||
3044 | ring->head = hw->hw_addr + E1000_RDH(reg_idx); | ||
3045 | ring->tail = hw->hw_addr + E1000_RDT(reg_idx); | ||
3046 | writel(0, ring->head); | ||
3047 | writel(0, ring->tail); | ||
3048 | |||
3049 | /* set descriptor configuration */ | ||
3050 | if (ring->rx_buffer_len < IGB_RXBUFFER_1024) { | ||
3051 | srrctl = ALIGN(ring->rx_buffer_len, 64) << | ||
3052 | E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; | ||
3053 | #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384 | ||
3054 | srrctl |= IGB_RXBUFFER_16384 >> | ||
3055 | E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
3056 | #else | ||
3057 | srrctl |= (PAGE_SIZE / 2) >> | ||
3058 | E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
3059 | #endif | ||
3060 | srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; | ||
3061 | } else { | ||
3062 | srrctl = ALIGN(ring->rx_buffer_len, 1024) >> | ||
3063 | E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
3064 | srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; | ||
3065 | } | ||
3066 | if (hw->mac.type == e1000_82580) | ||
3067 | srrctl |= E1000_SRRCTL_TIMESTAMP; | ||
3068 | /* Only set Drop Enable if we are supporting multiple queues */ | ||
3069 | if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) | ||
3070 | srrctl |= E1000_SRRCTL_DROP_EN; | ||
3071 | |||
3072 | wr32(E1000_SRRCTL(reg_idx), srrctl); | ||
3073 | |||
3074 | /* set filtering for VMDQ pools */ | ||
3075 | igb_set_vmolr(adapter, reg_idx & 0x7, true); | ||
3076 | |||
3077 | /* enable receive descriptor fetching */ | ||
3078 | rxdctl = rd32(E1000_RXDCTL(reg_idx)); | ||
3079 | rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; | ||
3080 | rxdctl &= 0xFFF00000; | ||
3081 | rxdctl |= IGB_RX_PTHRESH; | ||
3082 | rxdctl |= IGB_RX_HTHRESH << 8; | ||
3083 | rxdctl |= IGB_RX_WTHRESH << 16; | ||
3084 | wr32(E1000_RXDCTL(reg_idx), rxdctl); | ||
3085 | } | ||
3086 | |||
3087 | /** | ||
3088 | * igb_configure_rx - Configure receive Unit after Reset | ||
3089 | * @adapter: board private structure | ||
3090 | * | ||
3091 | * Configure the Rx unit of the MAC after a reset. | ||
3092 | **/ | ||
3093 | static void igb_configure_rx(struct igb_adapter *adapter) | ||
3094 | { | ||
3095 | int i; | ||
3096 | |||
3097 | /* set UTA to appropriate mode */ | ||
3098 | igb_set_uta(adapter); | ||
3099 | |||
3100 | /* set the correct pool for the PF default MAC address in entry 0 */ | ||
3101 | igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, | ||
3102 | adapter->vfs_allocated_count); | ||
3103 | |||
3104 | /* Setup the HW Rx Head and Tail Descriptor Pointers and | ||
3105 | * the Base and Length of the Rx Descriptor Ring */ | ||
3106 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
3107 | igb_configure_rx_ring(adapter, adapter->rx_ring[i]); | ||
3108 | } | ||
3109 | |||
3110 | /** | ||
3111 | * igb_free_tx_resources - Free Tx Resources per Queue | ||
3112 | * @tx_ring: Tx descriptor ring for a specific queue | ||
3113 | * | ||
3114 | * Free all transmit software resources | ||
3115 | **/ | ||
3116 | void igb_free_tx_resources(struct igb_ring *tx_ring) | ||
3117 | { | ||
3118 | igb_clean_tx_ring(tx_ring); | ||
3119 | |||
3120 | vfree(tx_ring->buffer_info); | ||
3121 | tx_ring->buffer_info = NULL; | ||
3122 | |||
3123 | /* if not set, then don't free */ | ||
3124 | if (!tx_ring->desc) | ||
3125 | return; | ||
3126 | |||
3127 | dma_free_coherent(tx_ring->dev, tx_ring->size, | ||
3128 | tx_ring->desc, tx_ring->dma); | ||
3129 | |||
3130 | tx_ring->desc = NULL; | ||
3131 | } | ||
3132 | |||
3133 | /** | ||
3134 | * igb_free_all_tx_resources - Free Tx Resources for All Queues | ||
3135 | * @adapter: board private structure | ||
3136 | * | ||
3137 | * Free all transmit software resources | ||
3138 | **/ | ||
3139 | static void igb_free_all_tx_resources(struct igb_adapter *adapter) | ||
3140 | { | ||
3141 | int i; | ||
3142 | |||
3143 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
3144 | igb_free_tx_resources(adapter->tx_ring[i]); | ||
3145 | } | ||
3146 | |||
3147 | void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring, | ||
3148 | struct igb_buffer *buffer_info) | ||
3149 | { | ||
3150 | if (buffer_info->dma) { | ||
3151 | if (buffer_info->mapped_as_page) | ||
3152 | dma_unmap_page(tx_ring->dev, | ||
3153 | buffer_info->dma, | ||
3154 | buffer_info->length, | ||
3155 | DMA_TO_DEVICE); | ||
3156 | else | ||
3157 | dma_unmap_single(tx_ring->dev, | ||
3158 | buffer_info->dma, | ||
3159 | buffer_info->length, | ||
3160 | DMA_TO_DEVICE); | ||
3161 | buffer_info->dma = 0; | ||
3162 | } | ||
3163 | if (buffer_info->skb) { | ||
3164 | dev_kfree_skb_any(buffer_info->skb); | ||
3165 | buffer_info->skb = NULL; | ||
3166 | } | ||
3167 | buffer_info->time_stamp = 0; | ||
3168 | buffer_info->length = 0; | ||
3169 | buffer_info->next_to_watch = 0; | ||
3170 | buffer_info->mapped_as_page = false; | ||
3171 | } | ||
3172 | |||
3173 | /** | ||
3174 | * igb_clean_tx_ring - Free Tx Buffers | ||
3175 | * @tx_ring: ring to be cleaned | ||
3176 | **/ | ||
3177 | static void igb_clean_tx_ring(struct igb_ring *tx_ring) | ||
3178 | { | ||
3179 | struct igb_buffer *buffer_info; | ||
3180 | unsigned long size; | ||
3181 | unsigned int i; | ||
3182 | |||
3183 | if (!tx_ring->buffer_info) | ||
3184 | return; | ||
3185 | /* Free all the Tx ring sk_buffs */ | ||
3186 | |||
3187 | for (i = 0; i < tx_ring->count; i++) { | ||
3188 | buffer_info = &tx_ring->buffer_info[i]; | ||
3189 | igb_unmap_and_free_tx_resource(tx_ring, buffer_info); | ||
3190 | } | ||
3191 | |||
3192 | size = sizeof(struct igb_buffer) * tx_ring->count; | ||
3193 | memset(tx_ring->buffer_info, 0, size); | ||
3194 | |||
3195 | /* Zero out the descriptor ring */ | ||
3196 | memset(tx_ring->desc, 0, tx_ring->size); | ||
3197 | |||
3198 | tx_ring->next_to_use = 0; | ||
3199 | tx_ring->next_to_clean = 0; | ||
3200 | } | ||
3201 | |||
3202 | /** | ||
3203 | * igb_clean_all_tx_rings - Free Tx Buffers for all queues | ||
3204 | * @adapter: board private structure | ||
3205 | **/ | ||
3206 | static void igb_clean_all_tx_rings(struct igb_adapter *adapter) | ||
3207 | { | ||
3208 | int i; | ||
3209 | |||
3210 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
3211 | igb_clean_tx_ring(adapter->tx_ring[i]); | ||
3212 | } | ||
3213 | |||
3214 | /** | ||
3215 | * igb_free_rx_resources - Free Rx Resources | ||
3216 | * @rx_ring: ring to clean the resources from | ||
3217 | * | ||
3218 | * Free all receive software resources | ||
3219 | **/ | ||
3220 | void igb_free_rx_resources(struct igb_ring *rx_ring) | ||
3221 | { | ||
3222 | igb_clean_rx_ring(rx_ring); | ||
3223 | |||
3224 | vfree(rx_ring->buffer_info); | ||
3225 | rx_ring->buffer_info = NULL; | ||
3226 | |||
3227 | /* if not set, then don't free */ | ||
3228 | if (!rx_ring->desc) | ||
3229 | return; | ||
3230 | |||
3231 | dma_free_coherent(rx_ring->dev, rx_ring->size, | ||
3232 | rx_ring->desc, rx_ring->dma); | ||
3233 | |||
3234 | rx_ring->desc = NULL; | ||
3235 | } | ||
3236 | |||
3237 | /** | ||
3238 | * igb_free_all_rx_resources - Free Rx Resources for All Queues | ||
3239 | * @adapter: board private structure | ||
3240 | * | ||
3241 | * Free all receive software resources | ||
3242 | **/ | ||
3243 | static void igb_free_all_rx_resources(struct igb_adapter *adapter) | ||
3244 | { | ||
3245 | int i; | ||
3246 | |||
3247 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
3248 | igb_free_rx_resources(adapter->rx_ring[i]); | ||
3249 | } | ||
3250 | |||
3251 | /** | ||
3252 | * igb_clean_rx_ring - Free Rx Buffers per Queue | ||
3253 | * @rx_ring: ring to free buffers from | ||
3254 | **/ | ||
3255 | static void igb_clean_rx_ring(struct igb_ring *rx_ring) | ||
3256 | { | ||
3257 | struct igb_buffer *buffer_info; | ||
3258 | unsigned long size; | ||
3259 | unsigned int i; | ||
3260 | |||
3261 | if (!rx_ring->buffer_info) | ||
3262 | return; | ||
3263 | |||
3264 | /* Free all the Rx ring sk_buffs */ | ||
3265 | for (i = 0; i < rx_ring->count; i++) { | ||
3266 | buffer_info = &rx_ring->buffer_info[i]; | ||
3267 | if (buffer_info->dma) { | ||
3268 | dma_unmap_single(rx_ring->dev, | ||
3269 | buffer_info->dma, | ||
3270 | rx_ring->rx_buffer_len, | ||
3271 | DMA_FROM_DEVICE); | ||
3272 | buffer_info->dma = 0; | ||
3273 | } | ||
3274 | |||
3275 | if (buffer_info->skb) { | ||
3276 | dev_kfree_skb(buffer_info->skb); | ||
3277 | buffer_info->skb = NULL; | ||
3278 | } | ||
3279 | if (buffer_info->page_dma) { | ||
3280 | dma_unmap_page(rx_ring->dev, | ||
3281 | buffer_info->page_dma, | ||
3282 | PAGE_SIZE / 2, | ||
3283 | DMA_FROM_DEVICE); | ||
3284 | buffer_info->page_dma = 0; | ||
3285 | } | ||
3286 | if (buffer_info->page) { | ||
3287 | put_page(buffer_info->page); | ||
3288 | buffer_info->page = NULL; | ||
3289 | buffer_info->page_offset = 0; | ||
3290 | } | ||
3291 | } | ||
3292 | |||
3293 | size = sizeof(struct igb_buffer) * rx_ring->count; | ||
3294 | memset(rx_ring->buffer_info, 0, size); | ||
3295 | |||
3296 | /* Zero out the descriptor ring */ | ||
3297 | memset(rx_ring->desc, 0, rx_ring->size); | ||
3298 | |||
3299 | rx_ring->next_to_clean = 0; | ||
3300 | rx_ring->next_to_use = 0; | ||
3301 | } | ||
3302 | |||
3303 | /** | ||
3304 | * igb_clean_all_rx_rings - Free Rx Buffers for all queues | ||
3305 | * @adapter: board private structure | ||
3306 | **/ | ||
3307 | static void igb_clean_all_rx_rings(struct igb_adapter *adapter) | ||
3308 | { | ||
3309 | int i; | ||
3310 | |||
3311 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
3312 | igb_clean_rx_ring(adapter->rx_ring[i]); | ||
3313 | } | ||
3314 | |||
3315 | /** | ||
3316 | * igb_set_mac - Change the Ethernet Address of the NIC | ||
3317 | * @netdev: network interface device structure | ||
3318 | * @p: pointer to an address structure | ||
3319 | * | ||
3320 | * Returns 0 on success, negative on failure | ||
3321 | **/ | ||
3322 | static int igb_set_mac(struct net_device *netdev, void *p) | ||
3323 | { | ||
3324 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3325 | struct e1000_hw *hw = &adapter->hw; | ||
3326 | struct sockaddr *addr = p; | ||
3327 | |||
3328 | if (!is_valid_ether_addr(addr->sa_data)) | ||
3329 | return -EADDRNOTAVAIL; | ||
3330 | |||
3331 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
3332 | memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); | ||
3333 | |||
3334 | /* set the correct pool for the new PF MAC address in entry 0 */ | ||
3335 | igb_rar_set_qsel(adapter, hw->mac.addr, 0, | ||
3336 | adapter->vfs_allocated_count); | ||
3337 | |||
3338 | return 0; | ||
3339 | } | ||
3340 | |||
3341 | /** | ||
3342 | * igb_write_mc_addr_list - write multicast addresses to MTA | ||
3343 | * @netdev: network interface device structure | ||
3344 | * | ||
3345 | * Writes multicast address list to the MTA hash table. | ||
3346 | * Returns: -ENOMEM on failure | ||
3347 | * 0 on no addresses written | ||
3348 | * X on writing X addresses to MTA | ||
3349 | **/ | ||
3350 | static int igb_write_mc_addr_list(struct net_device *netdev) | ||
3351 | { | ||
3352 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3353 | struct e1000_hw *hw = &adapter->hw; | ||
3354 | struct netdev_hw_addr *ha; | ||
3355 | u8 *mta_list; | ||
3356 | int i; | ||
3357 | |||
3358 | if (netdev_mc_empty(netdev)) { | ||
3359 | /* nothing to program, so clear mc list */ | ||
3360 | igb_update_mc_addr_list(hw, NULL, 0); | ||
3361 | igb_restore_vf_multicasts(adapter); | ||
3362 | return 0; | ||
3363 | } | ||
3364 | |||
3365 | mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); | ||
3366 | if (!mta_list) | ||
3367 | return -ENOMEM; | ||
3368 | |||
3369 | /* The shared function expects a packed array of only addresses. */ | ||
3370 | i = 0; | ||
3371 | netdev_for_each_mc_addr(ha, netdev) | ||
3372 | memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); | ||
3373 | |||
3374 | igb_update_mc_addr_list(hw, mta_list, i); | ||
3375 | kfree(mta_list); | ||
3376 | |||
3377 | return netdev_mc_count(netdev); | ||
3378 | } | ||
3379 | |||
3380 | /** | ||
3381 | * igb_write_uc_addr_list - write unicast addresses to RAR table | ||
3382 | * @netdev: network interface device structure | ||
3383 | * | ||
3384 | * Writes unicast address list to the RAR table. | ||
3385 | * Returns: -ENOMEM on failure/insufficient address space | ||
3386 | * 0 on no addresses written | ||
3387 | * X on writing X addresses to the RAR table | ||
3388 | **/ | ||
3389 | static int igb_write_uc_addr_list(struct net_device *netdev) | ||
3390 | { | ||
3391 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3392 | struct e1000_hw *hw = &adapter->hw; | ||
3393 | unsigned int vfn = adapter->vfs_allocated_count; | ||
3394 | unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); | ||
3395 | int count = 0; | ||
3396 | |||
3397 | /* return ENOMEM indicating insufficient memory for addresses */ | ||
3398 | if (netdev_uc_count(netdev) > rar_entries) | ||
3399 | return -ENOMEM; | ||
3400 | |||
3401 | if (!netdev_uc_empty(netdev) && rar_entries) { | ||
3402 | struct netdev_hw_addr *ha; | ||
3403 | |||
3404 | netdev_for_each_uc_addr(ha, netdev) { | ||
3405 | if (!rar_entries) | ||
3406 | break; | ||
3407 | igb_rar_set_qsel(adapter, ha->addr, | ||
3408 | rar_entries--, | ||
3409 | vfn); | ||
3410 | count++; | ||
3411 | } | ||
3412 | } | ||
3413 | /* write the addresses in reverse order to avoid write combining */ | ||
3414 | for (; rar_entries > 0 ; rar_entries--) { | ||
3415 | wr32(E1000_RAH(rar_entries), 0); | ||
3416 | wr32(E1000_RAL(rar_entries), 0); | ||
3417 | } | ||
3418 | wrfl(); | ||
3419 | |||
3420 | return count; | ||
3421 | } | ||
3422 | |||
3423 | /** | ||
3424 | * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set | ||
3425 | * @netdev: network interface device structure | ||
3426 | * | ||
3427 | * The set_rx_mode entry point is called whenever the unicast or multicast | ||
3428 | * address lists or the network interface flags are updated. This routine is | ||
3429 | * responsible for configuring the hardware for proper unicast, multicast, | ||
3430 | * promiscuous mode, and all-multi behavior. | ||
3431 | **/ | ||
3432 | static void igb_set_rx_mode(struct net_device *netdev) | ||
3433 | { | ||
3434 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3435 | struct e1000_hw *hw = &adapter->hw; | ||
3436 | unsigned int vfn = adapter->vfs_allocated_count; | ||
3437 | u32 rctl, vmolr = 0; | ||
3438 | int count; | ||
3439 | |||
3440 | /* Check for Promiscuous and All Multicast modes */ | ||
3441 | rctl = rd32(E1000_RCTL); | ||
3442 | |||
3443 | /* clear the effected bits */ | ||
3444 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); | ||
3445 | |||
3446 | if (netdev->flags & IFF_PROMISC) { | ||
3447 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
3448 | vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); | ||
3449 | } else { | ||
3450 | if (netdev->flags & IFF_ALLMULTI) { | ||
3451 | rctl |= E1000_RCTL_MPE; | ||
3452 | vmolr |= E1000_VMOLR_MPME; | ||
3453 | } else { | ||
3454 | /* | ||
3455 | * Write addresses to the MTA, if the attempt fails | ||
3456 | * then we should just turn on promiscuous mode so | ||
3457 | * that we can at least receive multicast traffic | ||
3458 | */ | ||
3459 | count = igb_write_mc_addr_list(netdev); | ||
3460 | if (count < 0) { | ||
3461 | rctl |= E1000_RCTL_MPE; | ||
3462 | vmolr |= E1000_VMOLR_MPME; | ||
3463 | } else if (count) { | ||
3464 | vmolr |= E1000_VMOLR_ROMPE; | ||
3465 | } | ||
3466 | } | ||
3467 | /* | ||
3468 | * Write addresses to available RAR registers, if there is not | ||
3469 | * sufficient space to store all the addresses then enable | ||
3470 | * unicast promiscuous mode | ||
3471 | */ | ||
3472 | count = igb_write_uc_addr_list(netdev); | ||
3473 | if (count < 0) { | ||
3474 | rctl |= E1000_RCTL_UPE; | ||
3475 | vmolr |= E1000_VMOLR_ROPE; | ||
3476 | } | ||
3477 | rctl |= E1000_RCTL_VFE; | ||
3478 | } | ||
3479 | wr32(E1000_RCTL, rctl); | ||
3480 | |||
3481 | /* | ||
3482 | * In order to support SR-IOV and eventually VMDq it is necessary to set | ||
3483 | * the VMOLR to enable the appropriate modes. Without this workaround | ||
3484 | * we will have issues with VLAN tag stripping not being done for frames | ||
3485 | * that are only arriving because we are the default pool | ||
3486 | */ | ||
3487 | if (hw->mac.type < e1000_82576) | ||
3488 | return; | ||
3489 | |||
3490 | vmolr |= rd32(E1000_VMOLR(vfn)) & | ||
3491 | ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); | ||
3492 | wr32(E1000_VMOLR(vfn), vmolr); | ||
3493 | igb_restore_vf_multicasts(adapter); | ||
3494 | } | ||
3495 | |||
3496 | static void igb_check_wvbr(struct igb_adapter *adapter) | ||
3497 | { | ||
3498 | struct e1000_hw *hw = &adapter->hw; | ||
3499 | u32 wvbr = 0; | ||
3500 | |||
3501 | switch (hw->mac.type) { | ||
3502 | case e1000_82576: | ||
3503 | case e1000_i350: | ||
3504 | if (!(wvbr = rd32(E1000_WVBR))) | ||
3505 | return; | ||
3506 | break; | ||
3507 | default: | ||
3508 | break; | ||
3509 | } | ||
3510 | |||
3511 | adapter->wvbr |= wvbr; | ||
3512 | } | ||
3513 | |||
3514 | #define IGB_STAGGERED_QUEUE_OFFSET 8 | ||
3515 | |||
3516 | static void igb_spoof_check(struct igb_adapter *adapter) | ||
3517 | { | ||
3518 | int j; | ||
3519 | |||
3520 | if (!adapter->wvbr) | ||
3521 | return; | ||
3522 | |||
3523 | for(j = 0; j < adapter->vfs_allocated_count; j++) { | ||
3524 | if (adapter->wvbr & (1 << j) || | ||
3525 | adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { | ||
3526 | dev_warn(&adapter->pdev->dev, | ||
3527 | "Spoof event(s) detected on VF %d\n", j); | ||
3528 | adapter->wvbr &= | ||
3529 | ~((1 << j) | | ||
3530 | (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); | ||
3531 | } | ||
3532 | } | ||
3533 | } | ||
3534 | |||
3535 | /* Need to wait a few seconds after link up to get diagnostic information from | ||
3536 | * the phy */ | ||
3537 | static void igb_update_phy_info(unsigned long data) | ||
3538 | { | ||
3539 | struct igb_adapter *adapter = (struct igb_adapter *) data; | ||
3540 | igb_get_phy_info(&adapter->hw); | ||
3541 | } | ||
3542 | |||
3543 | /** | ||
3544 | * igb_has_link - check shared code for link and determine up/down | ||
3545 | * @adapter: pointer to driver private info | ||
3546 | **/ | ||
3547 | bool igb_has_link(struct igb_adapter *adapter) | ||
3548 | { | ||
3549 | struct e1000_hw *hw = &adapter->hw; | ||
3550 | bool link_active = false; | ||
3551 | s32 ret_val = 0; | ||
3552 | |||
3553 | /* get_link_status is set on LSC (link status) interrupt or | ||
3554 | * rx sequence error interrupt. get_link_status will stay | ||
3555 | * false until the e1000_check_for_link establishes link | ||
3556 | * for copper adapters ONLY | ||
3557 | */ | ||
3558 | switch (hw->phy.media_type) { | ||
3559 | case e1000_media_type_copper: | ||
3560 | if (hw->mac.get_link_status) { | ||
3561 | ret_val = hw->mac.ops.check_for_link(hw); | ||
3562 | link_active = !hw->mac.get_link_status; | ||
3563 | } else { | ||
3564 | link_active = true; | ||
3565 | } | ||
3566 | break; | ||
3567 | case e1000_media_type_internal_serdes: | ||
3568 | ret_val = hw->mac.ops.check_for_link(hw); | ||
3569 | link_active = hw->mac.serdes_has_link; | ||
3570 | break; | ||
3571 | default: | ||
3572 | case e1000_media_type_unknown: | ||
3573 | break; | ||
3574 | } | ||
3575 | |||
3576 | return link_active; | ||
3577 | } | ||
3578 | |||
3579 | static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) | ||
3580 | { | ||
3581 | bool ret = false; | ||
3582 | u32 ctrl_ext, thstat; | ||
3583 | |||
3584 | /* check for thermal sensor event on i350, copper only */ | ||
3585 | if (hw->mac.type == e1000_i350) { | ||
3586 | thstat = rd32(E1000_THSTAT); | ||
3587 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
3588 | |||
3589 | if ((hw->phy.media_type == e1000_media_type_copper) && | ||
3590 | !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) { | ||
3591 | ret = !!(thstat & event); | ||
3592 | } | ||
3593 | } | ||
3594 | |||
3595 | return ret; | ||
3596 | } | ||
3597 | |||
3598 | /** | ||
3599 | * igb_watchdog - Timer Call-back | ||
3600 | * @data: pointer to adapter cast into an unsigned long | ||
3601 | **/ | ||
3602 | static void igb_watchdog(unsigned long data) | ||
3603 | { | ||
3604 | struct igb_adapter *adapter = (struct igb_adapter *)data; | ||
3605 | /* Do the rest outside of interrupt context */ | ||
3606 | schedule_work(&adapter->watchdog_task); | ||
3607 | } | ||
3608 | |||
3609 | static void igb_watchdog_task(struct work_struct *work) | ||
3610 | { | ||
3611 | struct igb_adapter *adapter = container_of(work, | ||
3612 | struct igb_adapter, | ||
3613 | watchdog_task); | ||
3614 | struct e1000_hw *hw = &adapter->hw; | ||
3615 | struct net_device *netdev = adapter->netdev; | ||
3616 | u32 link; | ||
3617 | int i; | ||
3618 | |||
3619 | link = igb_has_link(adapter); | ||
3620 | if (link) { | ||
3621 | if (!netif_carrier_ok(netdev)) { | ||
3622 | u32 ctrl; | ||
3623 | hw->mac.ops.get_speed_and_duplex(hw, | ||
3624 | &adapter->link_speed, | ||
3625 | &adapter->link_duplex); | ||
3626 | |||
3627 | ctrl = rd32(E1000_CTRL); | ||
3628 | /* Links status message must follow this format */ | ||
3629 | printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, " | ||
3630 | "Flow Control: %s\n", | ||
3631 | netdev->name, | ||
3632 | adapter->link_speed, | ||
3633 | adapter->link_duplex == FULL_DUPLEX ? | ||
3634 | "Full Duplex" : "Half Duplex", | ||
3635 | ((ctrl & E1000_CTRL_TFCE) && | ||
3636 | (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" : | ||
3637 | ((ctrl & E1000_CTRL_RFCE) ? "RX" : | ||
3638 | ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None"))); | ||
3639 | |||
3640 | /* check for thermal sensor event */ | ||
3641 | if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) { | ||
3642 | printk(KERN_INFO "igb: %s The network adapter " | ||
3643 | "link speed was downshifted " | ||
3644 | "because it overheated.\n", | ||
3645 | netdev->name); | ||
3646 | } | ||
3647 | |||
3648 | /* adjust timeout factor according to speed/duplex */ | ||
3649 | adapter->tx_timeout_factor = 1; | ||
3650 | switch (adapter->link_speed) { | ||
3651 | case SPEED_10: | ||
3652 | adapter->tx_timeout_factor = 14; | ||
3653 | break; | ||
3654 | case SPEED_100: | ||
3655 | /* maybe add some timeout factor ? */ | ||
3656 | break; | ||
3657 | } | ||
3658 | |||
3659 | netif_carrier_on(netdev); | ||
3660 | |||
3661 | igb_ping_all_vfs(adapter); | ||
3662 | igb_check_vf_rate_limit(adapter); | ||
3663 | |||
3664 | /* link state has changed, schedule phy info update */ | ||
3665 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3666 | mod_timer(&adapter->phy_info_timer, | ||
3667 | round_jiffies(jiffies + 2 * HZ)); | ||
3668 | } | ||
3669 | } else { | ||
3670 | if (netif_carrier_ok(netdev)) { | ||
3671 | adapter->link_speed = 0; | ||
3672 | adapter->link_duplex = 0; | ||
3673 | |||
3674 | /* check for thermal sensor event */ | ||
3675 | if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) { | ||
3676 | printk(KERN_ERR "igb: %s The network adapter " | ||
3677 | "was stopped because it " | ||
3678 | "overheated.\n", | ||
3679 | netdev->name); | ||
3680 | } | ||
3681 | |||
3682 | /* Links status message must follow this format */ | ||
3683 | printk(KERN_INFO "igb: %s NIC Link is Down\n", | ||
3684 | netdev->name); | ||
3685 | netif_carrier_off(netdev); | ||
3686 | |||
3687 | igb_ping_all_vfs(adapter); | ||
3688 | |||
3689 | /* link state has changed, schedule phy info update */ | ||
3690 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3691 | mod_timer(&adapter->phy_info_timer, | ||
3692 | round_jiffies(jiffies + 2 * HZ)); | ||
3693 | } | ||
3694 | } | ||
3695 | |||
3696 | spin_lock(&adapter->stats64_lock); | ||
3697 | igb_update_stats(adapter, &adapter->stats64); | ||
3698 | spin_unlock(&adapter->stats64_lock); | ||
3699 | |||
3700 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
3701 | struct igb_ring *tx_ring = adapter->tx_ring[i]; | ||
3702 | if (!netif_carrier_ok(netdev)) { | ||
3703 | /* We've lost link, so the controller stops DMA, | ||
3704 | * but we've got queued Tx work that's never going | ||
3705 | * to get done, so reset controller to flush Tx. | ||
3706 | * (Do the reset outside of interrupt context). */ | ||
3707 | if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { | ||
3708 | adapter->tx_timeout_count++; | ||
3709 | schedule_work(&adapter->reset_task); | ||
3710 | /* return immediately since reset is imminent */ | ||
3711 | return; | ||
3712 | } | ||
3713 | } | ||
3714 | |||
3715 | /* Force detection of hung controller every watchdog period */ | ||
3716 | tx_ring->detect_tx_hung = true; | ||
3717 | } | ||
3718 | |||
3719 | /* Cause software interrupt to ensure rx ring is cleaned */ | ||
3720 | if (adapter->msix_entries) { | ||
3721 | u32 eics = 0; | ||
3722 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
3723 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
3724 | eics |= q_vector->eims_value; | ||
3725 | } | ||
3726 | wr32(E1000_EICS, eics); | ||
3727 | } else { | ||
3728 | wr32(E1000_ICS, E1000_ICS_RXDMT0); | ||
3729 | } | ||
3730 | |||
3731 | igb_spoof_check(adapter); | ||
3732 | |||
3733 | /* Reset the timer */ | ||
3734 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3735 | mod_timer(&adapter->watchdog_timer, | ||
3736 | round_jiffies(jiffies + 2 * HZ)); | ||
3737 | } | ||
3738 | |||
3739 | enum latency_range { | ||
3740 | lowest_latency = 0, | ||
3741 | low_latency = 1, | ||
3742 | bulk_latency = 2, | ||
3743 | latency_invalid = 255 | ||
3744 | }; | ||
3745 | |||
3746 | /** | ||
3747 | * igb_update_ring_itr - update the dynamic ITR value based on packet size | ||
3748 | * | ||
3749 | * Stores a new ITR value based on strictly on packet size. This | ||
3750 | * algorithm is less sophisticated than that used in igb_update_itr, | ||
3751 | * due to the difficulty of synchronizing statistics across multiple | ||
3752 | * receive rings. The divisors and thresholds used by this function | ||
3753 | * were determined based on theoretical maximum wire speed and testing | ||
3754 | * data, in order to minimize response time while increasing bulk | ||
3755 | * throughput. | ||
3756 | * This functionality is controlled by the InterruptThrottleRate module | ||
3757 | * parameter (see igb_param.c) | ||
3758 | * NOTE: This function is called only when operating in a multiqueue | ||
3759 | * receive environment. | ||
3760 | * @q_vector: pointer to q_vector | ||
3761 | **/ | ||
3762 | static void igb_update_ring_itr(struct igb_q_vector *q_vector) | ||
3763 | { | ||
3764 | int new_val = q_vector->itr_val; | ||
3765 | int avg_wire_size = 0; | ||
3766 | struct igb_adapter *adapter = q_vector->adapter; | ||
3767 | struct igb_ring *ring; | ||
3768 | unsigned int packets; | ||
3769 | |||
3770 | /* For non-gigabit speeds, just fix the interrupt rate at 4000 | ||
3771 | * ints/sec - ITR timer value of 120 ticks. | ||
3772 | */ | ||
3773 | if (adapter->link_speed != SPEED_1000) { | ||
3774 | new_val = 976; | ||
3775 | goto set_itr_val; | ||
3776 | } | ||
3777 | |||
3778 | ring = q_vector->rx_ring; | ||
3779 | if (ring) { | ||
3780 | packets = ACCESS_ONCE(ring->total_packets); | ||
3781 | |||
3782 | if (packets) | ||
3783 | avg_wire_size = ring->total_bytes / packets; | ||
3784 | } | ||
3785 | |||
3786 | ring = q_vector->tx_ring; | ||
3787 | if (ring) { | ||
3788 | packets = ACCESS_ONCE(ring->total_packets); | ||
3789 | |||
3790 | if (packets) | ||
3791 | avg_wire_size = max_t(u32, avg_wire_size, | ||
3792 | ring->total_bytes / packets); | ||
3793 | } | ||
3794 | |||
3795 | /* if avg_wire_size isn't set no work was done */ | ||
3796 | if (!avg_wire_size) | ||
3797 | goto clear_counts; | ||
3798 | |||
3799 | /* Add 24 bytes to size to account for CRC, preamble, and gap */ | ||
3800 | avg_wire_size += 24; | ||
3801 | |||
3802 | /* Don't starve jumbo frames */ | ||
3803 | avg_wire_size = min(avg_wire_size, 3000); | ||
3804 | |||
3805 | /* Give a little boost to mid-size frames */ | ||
3806 | if ((avg_wire_size > 300) && (avg_wire_size < 1200)) | ||
3807 | new_val = avg_wire_size / 3; | ||
3808 | else | ||
3809 | new_val = avg_wire_size / 2; | ||
3810 | |||
3811 | /* when in itr mode 3 do not exceed 20K ints/sec */ | ||
3812 | if (adapter->rx_itr_setting == 3 && new_val < 196) | ||
3813 | new_val = 196; | ||
3814 | |||
3815 | set_itr_val: | ||
3816 | if (new_val != q_vector->itr_val) { | ||
3817 | q_vector->itr_val = new_val; | ||
3818 | q_vector->set_itr = 1; | ||
3819 | } | ||
3820 | clear_counts: | ||
3821 | if (q_vector->rx_ring) { | ||
3822 | q_vector->rx_ring->total_bytes = 0; | ||
3823 | q_vector->rx_ring->total_packets = 0; | ||
3824 | } | ||
3825 | if (q_vector->tx_ring) { | ||
3826 | q_vector->tx_ring->total_bytes = 0; | ||
3827 | q_vector->tx_ring->total_packets = 0; | ||
3828 | } | ||
3829 | } | ||
3830 | |||
3831 | /** | ||
3832 | * igb_update_itr - update the dynamic ITR value based on statistics | ||
3833 | * Stores a new ITR value based on packets and byte | ||
3834 | * counts during the last interrupt. The advantage of per interrupt | ||
3835 | * computation is faster updates and more accurate ITR for the current | ||
3836 | * traffic pattern. Constants in this function were computed | ||
3837 | * based on theoretical maximum wire speed and thresholds were set based | ||
3838 | * on testing data as well as attempting to minimize response time | ||
3839 | * while increasing bulk throughput. | ||
3840 | * this functionality is controlled by the InterruptThrottleRate module | ||
3841 | * parameter (see igb_param.c) | ||
3842 | * NOTE: These calculations are only valid when operating in a single- | ||
3843 | * queue environment. | ||
3844 | * @adapter: pointer to adapter | ||
3845 | * @itr_setting: current q_vector->itr_val | ||
3846 | * @packets: the number of packets during this measurement interval | ||
3847 | * @bytes: the number of bytes during this measurement interval | ||
3848 | **/ | ||
3849 | static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting, | ||
3850 | int packets, int bytes) | ||
3851 | { | ||
3852 | unsigned int retval = itr_setting; | ||
3853 | |||
3854 | if (packets == 0) | ||
3855 | goto update_itr_done; | ||
3856 | |||
3857 | switch (itr_setting) { | ||
3858 | case lowest_latency: | ||
3859 | /* handle TSO and jumbo frames */ | ||
3860 | if (bytes/packets > 8000) | ||
3861 | retval = bulk_latency; | ||
3862 | else if ((packets < 5) && (bytes > 512)) | ||
3863 | retval = low_latency; | ||
3864 | break; | ||
3865 | case low_latency: /* 50 usec aka 20000 ints/s */ | ||
3866 | if (bytes > 10000) { | ||
3867 | /* this if handles the TSO accounting */ | ||
3868 | if (bytes/packets > 8000) { | ||
3869 | retval = bulk_latency; | ||
3870 | } else if ((packets < 10) || ((bytes/packets) > 1200)) { | ||
3871 | retval = bulk_latency; | ||
3872 | } else if ((packets > 35)) { | ||
3873 | retval = lowest_latency; | ||
3874 | } | ||
3875 | } else if (bytes/packets > 2000) { | ||
3876 | retval = bulk_latency; | ||
3877 | } else if (packets <= 2 && bytes < 512) { | ||
3878 | retval = lowest_latency; | ||
3879 | } | ||
3880 | break; | ||
3881 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | ||
3882 | if (bytes > 25000) { | ||
3883 | if (packets > 35) | ||
3884 | retval = low_latency; | ||
3885 | } else if (bytes < 1500) { | ||
3886 | retval = low_latency; | ||
3887 | } | ||
3888 | break; | ||
3889 | } | ||
3890 | |||
3891 | update_itr_done: | ||
3892 | return retval; | ||
3893 | } | ||
3894 | |||
3895 | static void igb_set_itr(struct igb_adapter *adapter) | ||
3896 | { | ||
3897 | struct igb_q_vector *q_vector = adapter->q_vector[0]; | ||
3898 | u16 current_itr; | ||
3899 | u32 new_itr = q_vector->itr_val; | ||
3900 | |||
3901 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | ||
3902 | if (adapter->link_speed != SPEED_1000) { | ||
3903 | current_itr = 0; | ||
3904 | new_itr = 4000; | ||
3905 | goto set_itr_now; | ||
3906 | } | ||
3907 | |||
3908 | adapter->rx_itr = igb_update_itr(adapter, | ||
3909 | adapter->rx_itr, | ||
3910 | q_vector->rx_ring->total_packets, | ||
3911 | q_vector->rx_ring->total_bytes); | ||
3912 | |||
3913 | adapter->tx_itr = igb_update_itr(adapter, | ||
3914 | adapter->tx_itr, | ||
3915 | q_vector->tx_ring->total_packets, | ||
3916 | q_vector->tx_ring->total_bytes); | ||
3917 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | ||
3918 | |||
3919 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
3920 | if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency) | ||
3921 | current_itr = low_latency; | ||
3922 | |||
3923 | switch (current_itr) { | ||
3924 | /* counts and packets in update_itr are dependent on these numbers */ | ||
3925 | case lowest_latency: | ||
3926 | new_itr = 56; /* aka 70,000 ints/sec */ | ||
3927 | break; | ||
3928 | case low_latency: | ||
3929 | new_itr = 196; /* aka 20,000 ints/sec */ | ||
3930 | break; | ||
3931 | case bulk_latency: | ||
3932 | new_itr = 980; /* aka 4,000 ints/sec */ | ||
3933 | break; | ||
3934 | default: | ||
3935 | break; | ||
3936 | } | ||
3937 | |||
3938 | set_itr_now: | ||
3939 | q_vector->rx_ring->total_bytes = 0; | ||
3940 | q_vector->rx_ring->total_packets = 0; | ||
3941 | q_vector->tx_ring->total_bytes = 0; | ||
3942 | q_vector->tx_ring->total_packets = 0; | ||
3943 | |||
3944 | if (new_itr != q_vector->itr_val) { | ||
3945 | /* this attempts to bias the interrupt rate towards Bulk | ||
3946 | * by adding intermediate steps when interrupt rate is | ||
3947 | * increasing */ | ||
3948 | new_itr = new_itr > q_vector->itr_val ? | ||
3949 | max((new_itr * q_vector->itr_val) / | ||
3950 | (new_itr + (q_vector->itr_val >> 2)), | ||
3951 | new_itr) : | ||
3952 | new_itr; | ||
3953 | /* Don't write the value here; it resets the adapter's | ||
3954 | * internal timer, and causes us to delay far longer than | ||
3955 | * we should between interrupts. Instead, we write the ITR | ||
3956 | * value at the beginning of the next interrupt so the timing | ||
3957 | * ends up being correct. | ||
3958 | */ | ||
3959 | q_vector->itr_val = new_itr; | ||
3960 | q_vector->set_itr = 1; | ||
3961 | } | ||
3962 | } | ||
3963 | |||
3964 | #define IGB_TX_FLAGS_CSUM 0x00000001 | ||
3965 | #define IGB_TX_FLAGS_VLAN 0x00000002 | ||
3966 | #define IGB_TX_FLAGS_TSO 0x00000004 | ||
3967 | #define IGB_TX_FLAGS_IPV4 0x00000008 | ||
3968 | #define IGB_TX_FLAGS_TSTAMP 0x00000010 | ||
3969 | #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
3970 | #define IGB_TX_FLAGS_VLAN_SHIFT 16 | ||
3971 | |||
3972 | static inline int igb_tso_adv(struct igb_ring *tx_ring, | ||
3973 | struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) | ||
3974 | { | ||
3975 | struct e1000_adv_tx_context_desc *context_desc; | ||
3976 | unsigned int i; | ||
3977 | int err; | ||
3978 | struct igb_buffer *buffer_info; | ||
3979 | u32 info = 0, tu_cmd = 0; | ||
3980 | u32 mss_l4len_idx; | ||
3981 | u8 l4len; | ||
3982 | |||
3983 | if (skb_header_cloned(skb)) { | ||
3984 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
3985 | if (err) | ||
3986 | return err; | ||
3987 | } | ||
3988 | |||
3989 | l4len = tcp_hdrlen(skb); | ||
3990 | *hdr_len += l4len; | ||
3991 | |||
3992 | if (skb->protocol == htons(ETH_P_IP)) { | ||
3993 | struct iphdr *iph = ip_hdr(skb); | ||
3994 | iph->tot_len = 0; | ||
3995 | iph->check = 0; | ||
3996 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | ||
3997 | iph->daddr, 0, | ||
3998 | IPPROTO_TCP, | ||
3999 | 0); | ||
4000 | } else if (skb_is_gso_v6(skb)) { | ||
4001 | ipv6_hdr(skb)->payload_len = 0; | ||
4002 | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
4003 | &ipv6_hdr(skb)->daddr, | ||
4004 | 0, IPPROTO_TCP, 0); | ||
4005 | } | ||
4006 | |||
4007 | i = tx_ring->next_to_use; | ||
4008 | |||
4009 | buffer_info = &tx_ring->buffer_info[i]; | ||
4010 | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); | ||
4011 | /* VLAN MACLEN IPLEN */ | ||
4012 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
4013 | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); | ||
4014 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
4015 | *hdr_len += skb_network_offset(skb); | ||
4016 | info |= skb_network_header_len(skb); | ||
4017 | *hdr_len += skb_network_header_len(skb); | ||
4018 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
4019 | |||
4020 | /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ | ||
4021 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
4022 | |||
4023 | if (skb->protocol == htons(ETH_P_IP)) | ||
4024 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
4025 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
4026 | |||
4027 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
4028 | |||
4029 | /* MSS L4LEN IDX */ | ||
4030 | mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); | ||
4031 | mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); | ||
4032 | |||
4033 | /* For 82575, context index must be unique per ring. */ | ||
4034 | if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) | ||
4035 | mss_l4len_idx |= tx_ring->reg_idx << 4; | ||
4036 | |||
4037 | context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); | ||
4038 | context_desc->seqnum_seed = 0; | ||
4039 | |||
4040 | buffer_info->time_stamp = jiffies; | ||
4041 | buffer_info->next_to_watch = i; | ||
4042 | buffer_info->dma = 0; | ||
4043 | i++; | ||
4044 | if (i == tx_ring->count) | ||
4045 | i = 0; | ||
4046 | |||
4047 | tx_ring->next_to_use = i; | ||
4048 | |||
4049 | return true; | ||
4050 | } | ||
4051 | |||
4052 | static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring, | ||
4053 | struct sk_buff *skb, u32 tx_flags) | ||
4054 | { | ||
4055 | struct e1000_adv_tx_context_desc *context_desc; | ||
4056 | struct device *dev = tx_ring->dev; | ||
4057 | struct igb_buffer *buffer_info; | ||
4058 | u32 info = 0, tu_cmd = 0; | ||
4059 | unsigned int i; | ||
4060 | |||
4061 | if ((skb->ip_summed == CHECKSUM_PARTIAL) || | ||
4062 | (tx_flags & IGB_TX_FLAGS_VLAN)) { | ||
4063 | i = tx_ring->next_to_use; | ||
4064 | buffer_info = &tx_ring->buffer_info[i]; | ||
4065 | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); | ||
4066 | |||
4067 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
4068 | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); | ||
4069 | |||
4070 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
4071 | if (skb->ip_summed == CHECKSUM_PARTIAL) | ||
4072 | info |= skb_network_header_len(skb); | ||
4073 | |||
4074 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
4075 | |||
4076 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
4077 | |||
4078 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
4079 | __be16 protocol; | ||
4080 | |||
4081 | if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { | ||
4082 | const struct vlan_ethhdr *vhdr = | ||
4083 | (const struct vlan_ethhdr*)skb->data; | ||
4084 | |||
4085 | protocol = vhdr->h_vlan_encapsulated_proto; | ||
4086 | } else { | ||
4087 | protocol = skb->protocol; | ||
4088 | } | ||
4089 | |||
4090 | switch (protocol) { | ||
4091 | case cpu_to_be16(ETH_P_IP): | ||
4092 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
4093 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | ||
4094 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
4095 | else if (ip_hdr(skb)->protocol == IPPROTO_SCTP) | ||
4096 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; | ||
4097 | break; | ||
4098 | case cpu_to_be16(ETH_P_IPV6): | ||
4099 | /* XXX what about other V6 headers?? */ | ||
4100 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | ||
4101 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
4102 | else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP) | ||
4103 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; | ||
4104 | break; | ||
4105 | default: | ||
4106 | if (unlikely(net_ratelimit())) | ||
4107 | dev_warn(dev, | ||
4108 | "partial checksum but proto=%x!\n", | ||
4109 | skb->protocol); | ||
4110 | break; | ||
4111 | } | ||
4112 | } | ||
4113 | |||
4114 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
4115 | context_desc->seqnum_seed = 0; | ||
4116 | if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) | ||
4117 | context_desc->mss_l4len_idx = | ||
4118 | cpu_to_le32(tx_ring->reg_idx << 4); | ||
4119 | |||
4120 | buffer_info->time_stamp = jiffies; | ||
4121 | buffer_info->next_to_watch = i; | ||
4122 | buffer_info->dma = 0; | ||
4123 | |||
4124 | i++; | ||
4125 | if (i == tx_ring->count) | ||
4126 | i = 0; | ||
4127 | tx_ring->next_to_use = i; | ||
4128 | |||
4129 | return true; | ||
4130 | } | ||
4131 | return false; | ||
4132 | } | ||
4133 | |||
4134 | #define IGB_MAX_TXD_PWR 16 | ||
4135 | #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR) | ||
4136 | |||
4137 | static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb, | ||
4138 | unsigned int first) | ||
4139 | { | ||
4140 | struct igb_buffer *buffer_info; | ||
4141 | struct device *dev = tx_ring->dev; | ||
4142 | unsigned int hlen = skb_headlen(skb); | ||
4143 | unsigned int count = 0, i; | ||
4144 | unsigned int f; | ||
4145 | u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1; | ||
4146 | |||
4147 | i = tx_ring->next_to_use; | ||
4148 | |||
4149 | buffer_info = &tx_ring->buffer_info[i]; | ||
4150 | BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD); | ||
4151 | buffer_info->length = hlen; | ||
4152 | /* set time_stamp *before* dma to help avoid a possible race */ | ||
4153 | buffer_info->time_stamp = jiffies; | ||
4154 | buffer_info->next_to_watch = i; | ||
4155 | buffer_info->dma = dma_map_single(dev, skb->data, hlen, | ||
4156 | DMA_TO_DEVICE); | ||
4157 | if (dma_mapping_error(dev, buffer_info->dma)) | ||
4158 | goto dma_error; | ||
4159 | |||
4160 | for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { | ||
4161 | struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f]; | ||
4162 | unsigned int len = frag->size; | ||
4163 | |||
4164 | count++; | ||
4165 | i++; | ||
4166 | if (i == tx_ring->count) | ||
4167 | i = 0; | ||
4168 | |||
4169 | buffer_info = &tx_ring->buffer_info[i]; | ||
4170 | BUG_ON(len >= IGB_MAX_DATA_PER_TXD); | ||
4171 | buffer_info->length = len; | ||
4172 | buffer_info->time_stamp = jiffies; | ||
4173 | buffer_info->next_to_watch = i; | ||
4174 | buffer_info->mapped_as_page = true; | ||
4175 | buffer_info->dma = dma_map_page(dev, | ||
4176 | frag->page, | ||
4177 | frag->page_offset, | ||
4178 | len, | ||
4179 | DMA_TO_DEVICE); | ||
4180 | if (dma_mapping_error(dev, buffer_info->dma)) | ||
4181 | goto dma_error; | ||
4182 | |||
4183 | } | ||
4184 | |||
4185 | tx_ring->buffer_info[i].skb = skb; | ||
4186 | tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags; | ||
4187 | /* multiply data chunks by size of headers */ | ||
4188 | tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len; | ||
4189 | tx_ring->buffer_info[i].gso_segs = gso_segs; | ||
4190 | tx_ring->buffer_info[first].next_to_watch = i; | ||
4191 | |||
4192 | return ++count; | ||
4193 | |||
4194 | dma_error: | ||
4195 | dev_err(dev, "TX DMA map failed\n"); | ||
4196 | |||
4197 | /* clear timestamp and dma mappings for failed buffer_info mapping */ | ||
4198 | buffer_info->dma = 0; | ||
4199 | buffer_info->time_stamp = 0; | ||
4200 | buffer_info->length = 0; | ||
4201 | buffer_info->next_to_watch = 0; | ||
4202 | buffer_info->mapped_as_page = false; | ||
4203 | |||
4204 | /* clear timestamp and dma mappings for remaining portion of packet */ | ||
4205 | while (count--) { | ||
4206 | if (i == 0) | ||
4207 | i = tx_ring->count; | ||
4208 | i--; | ||
4209 | buffer_info = &tx_ring->buffer_info[i]; | ||
4210 | igb_unmap_and_free_tx_resource(tx_ring, buffer_info); | ||
4211 | } | ||
4212 | |||
4213 | return 0; | ||
4214 | } | ||
4215 | |||
4216 | static inline void igb_tx_queue_adv(struct igb_ring *tx_ring, | ||
4217 | u32 tx_flags, int count, u32 paylen, | ||
4218 | u8 hdr_len) | ||
4219 | { | ||
4220 | union e1000_adv_tx_desc *tx_desc; | ||
4221 | struct igb_buffer *buffer_info; | ||
4222 | u32 olinfo_status = 0, cmd_type_len; | ||
4223 | unsigned int i = tx_ring->next_to_use; | ||
4224 | |||
4225 | cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | | ||
4226 | E1000_ADVTXD_DCMD_DEXT); | ||
4227 | |||
4228 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
4229 | cmd_type_len |= E1000_ADVTXD_DCMD_VLE; | ||
4230 | |||
4231 | if (tx_flags & IGB_TX_FLAGS_TSTAMP) | ||
4232 | cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP; | ||
4233 | |||
4234 | if (tx_flags & IGB_TX_FLAGS_TSO) { | ||
4235 | cmd_type_len |= E1000_ADVTXD_DCMD_TSE; | ||
4236 | |||
4237 | /* insert tcp checksum */ | ||
4238 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
4239 | |||
4240 | /* insert ip checksum */ | ||
4241 | if (tx_flags & IGB_TX_FLAGS_IPV4) | ||
4242 | olinfo_status |= E1000_TXD_POPTS_IXSM << 8; | ||
4243 | |||
4244 | } else if (tx_flags & IGB_TX_FLAGS_CSUM) { | ||
4245 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
4246 | } | ||
4247 | |||
4248 | if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) && | ||
4249 | (tx_flags & (IGB_TX_FLAGS_CSUM | | ||
4250 | IGB_TX_FLAGS_TSO | | ||
4251 | IGB_TX_FLAGS_VLAN))) | ||
4252 | olinfo_status |= tx_ring->reg_idx << 4; | ||
4253 | |||
4254 | olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); | ||
4255 | |||
4256 | do { | ||
4257 | buffer_info = &tx_ring->buffer_info[i]; | ||
4258 | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | ||
4259 | tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); | ||
4260 | tx_desc->read.cmd_type_len = | ||
4261 | cpu_to_le32(cmd_type_len | buffer_info->length); | ||
4262 | tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); | ||
4263 | count--; | ||
4264 | i++; | ||
4265 | if (i == tx_ring->count) | ||
4266 | i = 0; | ||
4267 | } while (count > 0); | ||
4268 | |||
4269 | tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD); | ||
4270 | /* Force memory writes to complete before letting h/w | ||
4271 | * know there are new descriptors to fetch. (Only | ||
4272 | * applicable for weak-ordered memory model archs, | ||
4273 | * such as IA-64). */ | ||
4274 | wmb(); | ||
4275 | |||
4276 | tx_ring->next_to_use = i; | ||
4277 | writel(i, tx_ring->tail); | ||
4278 | /* we need this if more than one processor can write to our tail | ||
4279 | * at a time, it syncronizes IO on IA64/Altix systems */ | ||
4280 | mmiowb(); | ||
4281 | } | ||
4282 | |||
4283 | static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size) | ||
4284 | { | ||
4285 | struct net_device *netdev = tx_ring->netdev; | ||
4286 | |||
4287 | netif_stop_subqueue(netdev, tx_ring->queue_index); | ||
4288 | |||
4289 | /* Herbert's original patch had: | ||
4290 | * smp_mb__after_netif_stop_queue(); | ||
4291 | * but since that doesn't exist yet, just open code it. */ | ||
4292 | smp_mb(); | ||
4293 | |||
4294 | /* We need to check again in a case another CPU has just | ||
4295 | * made room available. */ | ||
4296 | if (igb_desc_unused(tx_ring) < size) | ||
4297 | return -EBUSY; | ||
4298 | |||
4299 | /* A reprieve! */ | ||
4300 | netif_wake_subqueue(netdev, tx_ring->queue_index); | ||
4301 | |||
4302 | u64_stats_update_begin(&tx_ring->tx_syncp2); | ||
4303 | tx_ring->tx_stats.restart_queue2++; | ||
4304 | u64_stats_update_end(&tx_ring->tx_syncp2); | ||
4305 | |||
4306 | return 0; | ||
4307 | } | ||
4308 | |||
4309 | static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size) | ||
4310 | { | ||
4311 | if (igb_desc_unused(tx_ring) >= size) | ||
4312 | return 0; | ||
4313 | return __igb_maybe_stop_tx(tx_ring, size); | ||
4314 | } | ||
4315 | |||
4316 | netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb, | ||
4317 | struct igb_ring *tx_ring) | ||
4318 | { | ||
4319 | int tso = 0, count; | ||
4320 | u32 tx_flags = 0; | ||
4321 | u16 first; | ||
4322 | u8 hdr_len = 0; | ||
4323 | |||
4324 | /* need: 1 descriptor per page, | ||
4325 | * + 2 desc gap to keep tail from touching head, | ||
4326 | * + 1 desc for skb->data, | ||
4327 | * + 1 desc for context descriptor, | ||
4328 | * otherwise try next time */ | ||
4329 | if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) { | ||
4330 | /* this is a hard error */ | ||
4331 | return NETDEV_TX_BUSY; | ||
4332 | } | ||
4333 | |||
4334 | if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { | ||
4335 | skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; | ||
4336 | tx_flags |= IGB_TX_FLAGS_TSTAMP; | ||
4337 | } | ||
4338 | |||
4339 | if (vlan_tx_tag_present(skb)) { | ||
4340 | tx_flags |= IGB_TX_FLAGS_VLAN; | ||
4341 | tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); | ||
4342 | } | ||
4343 | |||
4344 | if (skb->protocol == htons(ETH_P_IP)) | ||
4345 | tx_flags |= IGB_TX_FLAGS_IPV4; | ||
4346 | |||
4347 | first = tx_ring->next_to_use; | ||
4348 | if (skb_is_gso(skb)) { | ||
4349 | tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len); | ||
4350 | |||
4351 | if (tso < 0) { | ||
4352 | dev_kfree_skb_any(skb); | ||
4353 | return NETDEV_TX_OK; | ||
4354 | } | ||
4355 | } | ||
4356 | |||
4357 | if (tso) | ||
4358 | tx_flags |= IGB_TX_FLAGS_TSO; | ||
4359 | else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) && | ||
4360 | (skb->ip_summed == CHECKSUM_PARTIAL)) | ||
4361 | tx_flags |= IGB_TX_FLAGS_CSUM; | ||
4362 | |||
4363 | /* | ||
4364 | * count reflects descriptors mapped, if 0 or less then mapping error | ||
4365 | * has occurred and we need to rewind the descriptor queue | ||
4366 | */ | ||
4367 | count = igb_tx_map_adv(tx_ring, skb, first); | ||
4368 | if (!count) { | ||
4369 | dev_kfree_skb_any(skb); | ||
4370 | tx_ring->buffer_info[first].time_stamp = 0; | ||
4371 | tx_ring->next_to_use = first; | ||
4372 | return NETDEV_TX_OK; | ||
4373 | } | ||
4374 | |||
4375 | igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len); | ||
4376 | |||
4377 | /* Make sure there is space in the ring for the next send. */ | ||
4378 | igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4); | ||
4379 | |||
4380 | return NETDEV_TX_OK; | ||
4381 | } | ||
4382 | |||
4383 | static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, | ||
4384 | struct net_device *netdev) | ||
4385 | { | ||
4386 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4387 | struct igb_ring *tx_ring; | ||
4388 | int r_idx = 0; | ||
4389 | |||
4390 | if (test_bit(__IGB_DOWN, &adapter->state)) { | ||
4391 | dev_kfree_skb_any(skb); | ||
4392 | return NETDEV_TX_OK; | ||
4393 | } | ||
4394 | |||
4395 | if (skb->len <= 0) { | ||
4396 | dev_kfree_skb_any(skb); | ||
4397 | return NETDEV_TX_OK; | ||
4398 | } | ||
4399 | |||
4400 | r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1); | ||
4401 | tx_ring = adapter->multi_tx_table[r_idx]; | ||
4402 | |||
4403 | /* This goes back to the question of how to logically map a tx queue | ||
4404 | * to a flow. Right now, performance is impacted slightly negatively | ||
4405 | * if using multiple tx queues. If the stack breaks away from a | ||
4406 | * single qdisc implementation, we can look at this again. */ | ||
4407 | return igb_xmit_frame_ring_adv(skb, tx_ring); | ||
4408 | } | ||
4409 | |||
4410 | /** | ||
4411 | * igb_tx_timeout - Respond to a Tx Hang | ||
4412 | * @netdev: network interface device structure | ||
4413 | **/ | ||
4414 | static void igb_tx_timeout(struct net_device *netdev) | ||
4415 | { | ||
4416 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4417 | struct e1000_hw *hw = &adapter->hw; | ||
4418 | |||
4419 | /* Do the reset outside of interrupt context */ | ||
4420 | adapter->tx_timeout_count++; | ||
4421 | |||
4422 | if (hw->mac.type == e1000_82580) | ||
4423 | hw->dev_spec._82575.global_device_reset = true; | ||
4424 | |||
4425 | schedule_work(&adapter->reset_task); | ||
4426 | wr32(E1000_EICS, | ||
4427 | (adapter->eims_enable_mask & ~adapter->eims_other)); | ||
4428 | } | ||
4429 | |||
4430 | static void igb_reset_task(struct work_struct *work) | ||
4431 | { | ||
4432 | struct igb_adapter *adapter; | ||
4433 | adapter = container_of(work, struct igb_adapter, reset_task); | ||
4434 | |||
4435 | igb_dump(adapter); | ||
4436 | netdev_err(adapter->netdev, "Reset adapter\n"); | ||
4437 | igb_reinit_locked(adapter); | ||
4438 | } | ||
4439 | |||
4440 | /** | ||
4441 | * igb_get_stats64 - Get System Network Statistics | ||
4442 | * @netdev: network interface device structure | ||
4443 | * @stats: rtnl_link_stats64 pointer | ||
4444 | * | ||
4445 | **/ | ||
4446 | static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, | ||
4447 | struct rtnl_link_stats64 *stats) | ||
4448 | { | ||
4449 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4450 | |||
4451 | spin_lock(&adapter->stats64_lock); | ||
4452 | igb_update_stats(adapter, &adapter->stats64); | ||
4453 | memcpy(stats, &adapter->stats64, sizeof(*stats)); | ||
4454 | spin_unlock(&adapter->stats64_lock); | ||
4455 | |||
4456 | return stats; | ||
4457 | } | ||
4458 | |||
4459 | /** | ||
4460 | * igb_change_mtu - Change the Maximum Transfer Unit | ||
4461 | * @netdev: network interface device structure | ||
4462 | * @new_mtu: new value for maximum frame size | ||
4463 | * | ||
4464 | * Returns 0 on success, negative on failure | ||
4465 | **/ | ||
4466 | static int igb_change_mtu(struct net_device *netdev, int new_mtu) | ||
4467 | { | ||
4468 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4469 | struct pci_dev *pdev = adapter->pdev; | ||
4470 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | ||
4471 | u32 rx_buffer_len, i; | ||
4472 | |||
4473 | if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { | ||
4474 | dev_err(&pdev->dev, "Invalid MTU setting\n"); | ||
4475 | return -EINVAL; | ||
4476 | } | ||
4477 | |||
4478 | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | ||
4479 | dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); | ||
4480 | return -EINVAL; | ||
4481 | } | ||
4482 | |||
4483 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
4484 | msleep(1); | ||
4485 | |||
4486 | /* igb_down has a dependency on max_frame_size */ | ||
4487 | adapter->max_frame_size = max_frame; | ||
4488 | |||
4489 | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | ||
4490 | * means we reserve 2 more, this pushes us to allocate from the next | ||
4491 | * larger slab size. | ||
4492 | * i.e. RXBUFFER_2048 --> size-4096 slab | ||
4493 | */ | ||
4494 | |||
4495 | if (adapter->hw.mac.type == e1000_82580) | ||
4496 | max_frame += IGB_TS_HDR_LEN; | ||
4497 | |||
4498 | if (max_frame <= IGB_RXBUFFER_1024) | ||
4499 | rx_buffer_len = IGB_RXBUFFER_1024; | ||
4500 | else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE) | ||
4501 | rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
4502 | else | ||
4503 | rx_buffer_len = IGB_RXBUFFER_128; | ||
4504 | |||
4505 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) || | ||
4506 | (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN)) | ||
4507 | rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN; | ||
4508 | |||
4509 | if ((adapter->hw.mac.type == e1000_82580) && | ||
4510 | (rx_buffer_len == IGB_RXBUFFER_128)) | ||
4511 | rx_buffer_len += IGB_RXBUFFER_64; | ||
4512 | |||
4513 | if (netif_running(netdev)) | ||
4514 | igb_down(adapter); | ||
4515 | |||
4516 | dev_info(&pdev->dev, "changing MTU from %d to %d\n", | ||
4517 | netdev->mtu, new_mtu); | ||
4518 | netdev->mtu = new_mtu; | ||
4519 | |||
4520 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
4521 | adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len; | ||
4522 | |||
4523 | if (netif_running(netdev)) | ||
4524 | igb_up(adapter); | ||
4525 | else | ||
4526 | igb_reset(adapter); | ||
4527 | |||
4528 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
4529 | |||
4530 | return 0; | ||
4531 | } | ||
4532 | |||
4533 | /** | ||
4534 | * igb_update_stats - Update the board statistics counters | ||
4535 | * @adapter: board private structure | ||
4536 | **/ | ||
4537 | |||
4538 | void igb_update_stats(struct igb_adapter *adapter, | ||
4539 | struct rtnl_link_stats64 *net_stats) | ||
4540 | { | ||
4541 | struct e1000_hw *hw = &adapter->hw; | ||
4542 | struct pci_dev *pdev = adapter->pdev; | ||
4543 | u32 reg, mpc; | ||
4544 | u16 phy_tmp; | ||
4545 | int i; | ||
4546 | u64 bytes, packets; | ||
4547 | unsigned int start; | ||
4548 | u64 _bytes, _packets; | ||
4549 | |||
4550 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | ||
4551 | |||
4552 | /* | ||
4553 | * Prevent stats update while adapter is being reset, or if the pci | ||
4554 | * connection is down. | ||
4555 | */ | ||
4556 | if (adapter->link_speed == 0) | ||
4557 | return; | ||
4558 | if (pci_channel_offline(pdev)) | ||
4559 | return; | ||
4560 | |||
4561 | bytes = 0; | ||
4562 | packets = 0; | ||
4563 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
4564 | u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF; | ||
4565 | struct igb_ring *ring = adapter->rx_ring[i]; | ||
4566 | |||
4567 | ring->rx_stats.drops += rqdpc_tmp; | ||
4568 | net_stats->rx_fifo_errors += rqdpc_tmp; | ||
4569 | |||
4570 | do { | ||
4571 | start = u64_stats_fetch_begin_bh(&ring->rx_syncp); | ||
4572 | _bytes = ring->rx_stats.bytes; | ||
4573 | _packets = ring->rx_stats.packets; | ||
4574 | } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); | ||
4575 | bytes += _bytes; | ||
4576 | packets += _packets; | ||
4577 | } | ||
4578 | |||
4579 | net_stats->rx_bytes = bytes; | ||
4580 | net_stats->rx_packets = packets; | ||
4581 | |||
4582 | bytes = 0; | ||
4583 | packets = 0; | ||
4584 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
4585 | struct igb_ring *ring = adapter->tx_ring[i]; | ||
4586 | do { | ||
4587 | start = u64_stats_fetch_begin_bh(&ring->tx_syncp); | ||
4588 | _bytes = ring->tx_stats.bytes; | ||
4589 | _packets = ring->tx_stats.packets; | ||
4590 | } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); | ||
4591 | bytes += _bytes; | ||
4592 | packets += _packets; | ||
4593 | } | ||
4594 | net_stats->tx_bytes = bytes; | ||
4595 | net_stats->tx_packets = packets; | ||
4596 | |||
4597 | /* read stats registers */ | ||
4598 | adapter->stats.crcerrs += rd32(E1000_CRCERRS); | ||
4599 | adapter->stats.gprc += rd32(E1000_GPRC); | ||
4600 | adapter->stats.gorc += rd32(E1000_GORCL); | ||
4601 | rd32(E1000_GORCH); /* clear GORCL */ | ||
4602 | adapter->stats.bprc += rd32(E1000_BPRC); | ||
4603 | adapter->stats.mprc += rd32(E1000_MPRC); | ||
4604 | adapter->stats.roc += rd32(E1000_ROC); | ||
4605 | |||
4606 | adapter->stats.prc64 += rd32(E1000_PRC64); | ||
4607 | adapter->stats.prc127 += rd32(E1000_PRC127); | ||
4608 | adapter->stats.prc255 += rd32(E1000_PRC255); | ||
4609 | adapter->stats.prc511 += rd32(E1000_PRC511); | ||
4610 | adapter->stats.prc1023 += rd32(E1000_PRC1023); | ||
4611 | adapter->stats.prc1522 += rd32(E1000_PRC1522); | ||
4612 | adapter->stats.symerrs += rd32(E1000_SYMERRS); | ||
4613 | adapter->stats.sec += rd32(E1000_SEC); | ||
4614 | |||
4615 | mpc = rd32(E1000_MPC); | ||
4616 | adapter->stats.mpc += mpc; | ||
4617 | net_stats->rx_fifo_errors += mpc; | ||
4618 | adapter->stats.scc += rd32(E1000_SCC); | ||
4619 | adapter->stats.ecol += rd32(E1000_ECOL); | ||
4620 | adapter->stats.mcc += rd32(E1000_MCC); | ||
4621 | adapter->stats.latecol += rd32(E1000_LATECOL); | ||
4622 | adapter->stats.dc += rd32(E1000_DC); | ||
4623 | adapter->stats.rlec += rd32(E1000_RLEC); | ||
4624 | adapter->stats.xonrxc += rd32(E1000_XONRXC); | ||
4625 | adapter->stats.xontxc += rd32(E1000_XONTXC); | ||
4626 | adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); | ||
4627 | adapter->stats.xofftxc += rd32(E1000_XOFFTXC); | ||
4628 | adapter->stats.fcruc += rd32(E1000_FCRUC); | ||
4629 | adapter->stats.gptc += rd32(E1000_GPTC); | ||
4630 | adapter->stats.gotc += rd32(E1000_GOTCL); | ||
4631 | rd32(E1000_GOTCH); /* clear GOTCL */ | ||
4632 | adapter->stats.rnbc += rd32(E1000_RNBC); | ||
4633 | adapter->stats.ruc += rd32(E1000_RUC); | ||
4634 | adapter->stats.rfc += rd32(E1000_RFC); | ||
4635 | adapter->stats.rjc += rd32(E1000_RJC); | ||
4636 | adapter->stats.tor += rd32(E1000_TORH); | ||
4637 | adapter->stats.tot += rd32(E1000_TOTH); | ||
4638 | adapter->stats.tpr += rd32(E1000_TPR); | ||
4639 | |||
4640 | adapter->stats.ptc64 += rd32(E1000_PTC64); | ||
4641 | adapter->stats.ptc127 += rd32(E1000_PTC127); | ||
4642 | adapter->stats.ptc255 += rd32(E1000_PTC255); | ||
4643 | adapter->stats.ptc511 += rd32(E1000_PTC511); | ||
4644 | adapter->stats.ptc1023 += rd32(E1000_PTC1023); | ||
4645 | adapter->stats.ptc1522 += rd32(E1000_PTC1522); | ||
4646 | |||
4647 | adapter->stats.mptc += rd32(E1000_MPTC); | ||
4648 | adapter->stats.bptc += rd32(E1000_BPTC); | ||
4649 | |||
4650 | adapter->stats.tpt += rd32(E1000_TPT); | ||
4651 | adapter->stats.colc += rd32(E1000_COLC); | ||
4652 | |||
4653 | adapter->stats.algnerrc += rd32(E1000_ALGNERRC); | ||
4654 | /* read internal phy specific stats */ | ||
4655 | reg = rd32(E1000_CTRL_EXT); | ||
4656 | if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { | ||
4657 | adapter->stats.rxerrc += rd32(E1000_RXERRC); | ||
4658 | adapter->stats.tncrs += rd32(E1000_TNCRS); | ||
4659 | } | ||
4660 | |||
4661 | adapter->stats.tsctc += rd32(E1000_TSCTC); | ||
4662 | adapter->stats.tsctfc += rd32(E1000_TSCTFC); | ||
4663 | |||
4664 | adapter->stats.iac += rd32(E1000_IAC); | ||
4665 | adapter->stats.icrxoc += rd32(E1000_ICRXOC); | ||
4666 | adapter->stats.icrxptc += rd32(E1000_ICRXPTC); | ||
4667 | adapter->stats.icrxatc += rd32(E1000_ICRXATC); | ||
4668 | adapter->stats.ictxptc += rd32(E1000_ICTXPTC); | ||
4669 | adapter->stats.ictxatc += rd32(E1000_ICTXATC); | ||
4670 | adapter->stats.ictxqec += rd32(E1000_ICTXQEC); | ||
4671 | adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); | ||
4672 | adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); | ||
4673 | |||
4674 | /* Fill out the OS statistics structure */ | ||
4675 | net_stats->multicast = adapter->stats.mprc; | ||
4676 | net_stats->collisions = adapter->stats.colc; | ||
4677 | |||
4678 | /* Rx Errors */ | ||
4679 | |||
4680 | /* RLEC on some newer hardware can be incorrect so build | ||
4681 | * our own version based on RUC and ROC */ | ||
4682 | net_stats->rx_errors = adapter->stats.rxerrc + | ||
4683 | adapter->stats.crcerrs + adapter->stats.algnerrc + | ||
4684 | adapter->stats.ruc + adapter->stats.roc + | ||
4685 | adapter->stats.cexterr; | ||
4686 | net_stats->rx_length_errors = adapter->stats.ruc + | ||
4687 | adapter->stats.roc; | ||
4688 | net_stats->rx_crc_errors = adapter->stats.crcerrs; | ||
4689 | net_stats->rx_frame_errors = adapter->stats.algnerrc; | ||
4690 | net_stats->rx_missed_errors = adapter->stats.mpc; | ||
4691 | |||
4692 | /* Tx Errors */ | ||
4693 | net_stats->tx_errors = adapter->stats.ecol + | ||
4694 | adapter->stats.latecol; | ||
4695 | net_stats->tx_aborted_errors = adapter->stats.ecol; | ||
4696 | net_stats->tx_window_errors = adapter->stats.latecol; | ||
4697 | net_stats->tx_carrier_errors = adapter->stats.tncrs; | ||
4698 | |||
4699 | /* Tx Dropped needs to be maintained elsewhere */ | ||
4700 | |||
4701 | /* Phy Stats */ | ||
4702 | if (hw->phy.media_type == e1000_media_type_copper) { | ||
4703 | if ((adapter->link_speed == SPEED_1000) && | ||
4704 | (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { | ||
4705 | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | ||
4706 | adapter->phy_stats.idle_errors += phy_tmp; | ||
4707 | } | ||
4708 | } | ||
4709 | |||
4710 | /* Management Stats */ | ||
4711 | adapter->stats.mgptc += rd32(E1000_MGTPTC); | ||
4712 | adapter->stats.mgprc += rd32(E1000_MGTPRC); | ||
4713 | adapter->stats.mgpdc += rd32(E1000_MGTPDC); | ||
4714 | |||
4715 | /* OS2BMC Stats */ | ||
4716 | reg = rd32(E1000_MANC); | ||
4717 | if (reg & E1000_MANC_EN_BMC2OS) { | ||
4718 | adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); | ||
4719 | adapter->stats.o2bspc += rd32(E1000_O2BSPC); | ||
4720 | adapter->stats.b2ospc += rd32(E1000_B2OSPC); | ||
4721 | adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); | ||
4722 | } | ||
4723 | } | ||
4724 | |||
4725 | static irqreturn_t igb_msix_other(int irq, void *data) | ||
4726 | { | ||
4727 | struct igb_adapter *adapter = data; | ||
4728 | struct e1000_hw *hw = &adapter->hw; | ||
4729 | u32 icr = rd32(E1000_ICR); | ||
4730 | /* reading ICR causes bit 31 of EICR to be cleared */ | ||
4731 | |||
4732 | if (icr & E1000_ICR_DRSTA) | ||
4733 | schedule_work(&adapter->reset_task); | ||
4734 | |||
4735 | if (icr & E1000_ICR_DOUTSYNC) { | ||
4736 | /* HW is reporting DMA is out of sync */ | ||
4737 | adapter->stats.doosync++; | ||
4738 | /* The DMA Out of Sync is also indication of a spoof event | ||
4739 | * in IOV mode. Check the Wrong VM Behavior register to | ||
4740 | * see if it is really a spoof event. */ | ||
4741 | igb_check_wvbr(adapter); | ||
4742 | } | ||
4743 | |||
4744 | /* Check for a mailbox event */ | ||
4745 | if (icr & E1000_ICR_VMMB) | ||
4746 | igb_msg_task(adapter); | ||
4747 | |||
4748 | if (icr & E1000_ICR_LSC) { | ||
4749 | hw->mac.get_link_status = 1; | ||
4750 | /* guard against interrupt when we're going down */ | ||
4751 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
4752 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
4753 | } | ||
4754 | |||
4755 | if (adapter->vfs_allocated_count) | ||
4756 | wr32(E1000_IMS, E1000_IMS_LSC | | ||
4757 | E1000_IMS_VMMB | | ||
4758 | E1000_IMS_DOUTSYNC); | ||
4759 | else | ||
4760 | wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC); | ||
4761 | wr32(E1000_EIMS, adapter->eims_other); | ||
4762 | |||
4763 | return IRQ_HANDLED; | ||
4764 | } | ||
4765 | |||
4766 | static void igb_write_itr(struct igb_q_vector *q_vector) | ||
4767 | { | ||
4768 | struct igb_adapter *adapter = q_vector->adapter; | ||
4769 | u32 itr_val = q_vector->itr_val & 0x7FFC; | ||
4770 | |||
4771 | if (!q_vector->set_itr) | ||
4772 | return; | ||
4773 | |||
4774 | if (!itr_val) | ||
4775 | itr_val = 0x4; | ||
4776 | |||
4777 | if (adapter->hw.mac.type == e1000_82575) | ||
4778 | itr_val |= itr_val << 16; | ||
4779 | else | ||
4780 | itr_val |= 0x8000000; | ||
4781 | |||
4782 | writel(itr_val, q_vector->itr_register); | ||
4783 | q_vector->set_itr = 0; | ||
4784 | } | ||
4785 | |||
4786 | static irqreturn_t igb_msix_ring(int irq, void *data) | ||
4787 | { | ||
4788 | struct igb_q_vector *q_vector = data; | ||
4789 | |||
4790 | /* Write the ITR value calculated from the previous interrupt. */ | ||
4791 | igb_write_itr(q_vector); | ||
4792 | |||
4793 | napi_schedule(&q_vector->napi); | ||
4794 | |||
4795 | return IRQ_HANDLED; | ||
4796 | } | ||
4797 | |||
4798 | #ifdef CONFIG_IGB_DCA | ||
4799 | static void igb_update_dca(struct igb_q_vector *q_vector) | ||
4800 | { | ||
4801 | struct igb_adapter *adapter = q_vector->adapter; | ||
4802 | struct e1000_hw *hw = &adapter->hw; | ||
4803 | int cpu = get_cpu(); | ||
4804 | |||
4805 | if (q_vector->cpu == cpu) | ||
4806 | goto out_no_update; | ||
4807 | |||
4808 | if (q_vector->tx_ring) { | ||
4809 | int q = q_vector->tx_ring->reg_idx; | ||
4810 | u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q)); | ||
4811 | if (hw->mac.type == e1000_82575) { | ||
4812 | dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK; | ||
4813 | dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu); | ||
4814 | } else { | ||
4815 | dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576; | ||
4816 | dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) << | ||
4817 | E1000_DCA_TXCTRL_CPUID_SHIFT; | ||
4818 | } | ||
4819 | dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN; | ||
4820 | wr32(E1000_DCA_TXCTRL(q), dca_txctrl); | ||
4821 | } | ||
4822 | if (q_vector->rx_ring) { | ||
4823 | int q = q_vector->rx_ring->reg_idx; | ||
4824 | u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q)); | ||
4825 | if (hw->mac.type == e1000_82575) { | ||
4826 | dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK; | ||
4827 | dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu); | ||
4828 | } else { | ||
4829 | dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576; | ||
4830 | dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) << | ||
4831 | E1000_DCA_RXCTRL_CPUID_SHIFT; | ||
4832 | } | ||
4833 | dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN; | ||
4834 | dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN; | ||
4835 | dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN; | ||
4836 | wr32(E1000_DCA_RXCTRL(q), dca_rxctrl); | ||
4837 | } | ||
4838 | q_vector->cpu = cpu; | ||
4839 | out_no_update: | ||
4840 | put_cpu(); | ||
4841 | } | ||
4842 | |||
4843 | static void igb_setup_dca(struct igb_adapter *adapter) | ||
4844 | { | ||
4845 | struct e1000_hw *hw = &adapter->hw; | ||
4846 | int i; | ||
4847 | |||
4848 | if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) | ||
4849 | return; | ||
4850 | |||
4851 | /* Always use CB2 mode, difference is masked in the CB driver. */ | ||
4852 | wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); | ||
4853 | |||
4854 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
4855 | adapter->q_vector[i]->cpu = -1; | ||
4856 | igb_update_dca(adapter->q_vector[i]); | ||
4857 | } | ||
4858 | } | ||
4859 | |||
4860 | static int __igb_notify_dca(struct device *dev, void *data) | ||
4861 | { | ||
4862 | struct net_device *netdev = dev_get_drvdata(dev); | ||
4863 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4864 | struct pci_dev *pdev = adapter->pdev; | ||
4865 | struct e1000_hw *hw = &adapter->hw; | ||
4866 | unsigned long event = *(unsigned long *)data; | ||
4867 | |||
4868 | switch (event) { | ||
4869 | case DCA_PROVIDER_ADD: | ||
4870 | /* if already enabled, don't do it again */ | ||
4871 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) | ||
4872 | break; | ||
4873 | if (dca_add_requester(dev) == 0) { | ||
4874 | adapter->flags |= IGB_FLAG_DCA_ENABLED; | ||
4875 | dev_info(&pdev->dev, "DCA enabled\n"); | ||
4876 | igb_setup_dca(adapter); | ||
4877 | break; | ||
4878 | } | ||
4879 | /* Fall Through since DCA is disabled. */ | ||
4880 | case DCA_PROVIDER_REMOVE: | ||
4881 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) { | ||
4882 | /* without this a class_device is left | ||
4883 | * hanging around in the sysfs model */ | ||
4884 | dca_remove_requester(dev); | ||
4885 | dev_info(&pdev->dev, "DCA disabled\n"); | ||
4886 | adapter->flags &= ~IGB_FLAG_DCA_ENABLED; | ||
4887 | wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); | ||
4888 | } | ||
4889 | break; | ||
4890 | } | ||
4891 | |||
4892 | return 0; | ||
4893 | } | ||
4894 | |||
4895 | static int igb_notify_dca(struct notifier_block *nb, unsigned long event, | ||
4896 | void *p) | ||
4897 | { | ||
4898 | int ret_val; | ||
4899 | |||
4900 | ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, | ||
4901 | __igb_notify_dca); | ||
4902 | |||
4903 | return ret_val ? NOTIFY_BAD : NOTIFY_DONE; | ||
4904 | } | ||
4905 | #endif /* CONFIG_IGB_DCA */ | ||
4906 | |||
4907 | static void igb_ping_all_vfs(struct igb_adapter *adapter) | ||
4908 | { | ||
4909 | struct e1000_hw *hw = &adapter->hw; | ||
4910 | u32 ping; | ||
4911 | int i; | ||
4912 | |||
4913 | for (i = 0 ; i < adapter->vfs_allocated_count; i++) { | ||
4914 | ping = E1000_PF_CONTROL_MSG; | ||
4915 | if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) | ||
4916 | ping |= E1000_VT_MSGTYPE_CTS; | ||
4917 | igb_write_mbx(hw, &ping, 1, i); | ||
4918 | } | ||
4919 | } | ||
4920 | |||
4921 | static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) | ||
4922 | { | ||
4923 | struct e1000_hw *hw = &adapter->hw; | ||
4924 | u32 vmolr = rd32(E1000_VMOLR(vf)); | ||
4925 | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | ||
4926 | |||
4927 | vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | | ||
4928 | IGB_VF_FLAG_MULTI_PROMISC); | ||
4929 | vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); | ||
4930 | |||
4931 | if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { | ||
4932 | vmolr |= E1000_VMOLR_MPME; | ||
4933 | vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; | ||
4934 | *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; | ||
4935 | } else { | ||
4936 | /* | ||
4937 | * if we have hashes and we are clearing a multicast promisc | ||
4938 | * flag we need to write the hashes to the MTA as this step | ||
4939 | * was previously skipped | ||
4940 | */ | ||
4941 | if (vf_data->num_vf_mc_hashes > 30) { | ||
4942 | vmolr |= E1000_VMOLR_MPME; | ||
4943 | } else if (vf_data->num_vf_mc_hashes) { | ||
4944 | int j; | ||
4945 | vmolr |= E1000_VMOLR_ROMPE; | ||
4946 | for (j = 0; j < vf_data->num_vf_mc_hashes; j++) | ||
4947 | igb_mta_set(hw, vf_data->vf_mc_hashes[j]); | ||
4948 | } | ||
4949 | } | ||
4950 | |||
4951 | wr32(E1000_VMOLR(vf), vmolr); | ||
4952 | |||
4953 | /* there are flags left unprocessed, likely not supported */ | ||
4954 | if (*msgbuf & E1000_VT_MSGINFO_MASK) | ||
4955 | return -EINVAL; | ||
4956 | |||
4957 | return 0; | ||
4958 | |||
4959 | } | ||
4960 | |||
4961 | static int igb_set_vf_multicasts(struct igb_adapter *adapter, | ||
4962 | u32 *msgbuf, u32 vf) | ||
4963 | { | ||
4964 | int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; | ||
4965 | u16 *hash_list = (u16 *)&msgbuf[1]; | ||
4966 | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | ||
4967 | int i; | ||
4968 | |||
4969 | /* salt away the number of multicast addresses assigned | ||
4970 | * to this VF for later use to restore when the PF multi cast | ||
4971 | * list changes | ||
4972 | */ | ||
4973 | vf_data->num_vf_mc_hashes = n; | ||
4974 | |||
4975 | /* only up to 30 hash values supported */ | ||
4976 | if (n > 30) | ||
4977 | n = 30; | ||
4978 | |||
4979 | /* store the hashes for later use */ | ||
4980 | for (i = 0; i < n; i++) | ||
4981 | vf_data->vf_mc_hashes[i] = hash_list[i]; | ||
4982 | |||
4983 | /* Flush and reset the mta with the new values */ | ||
4984 | igb_set_rx_mode(adapter->netdev); | ||
4985 | |||
4986 | return 0; | ||
4987 | } | ||
4988 | |||
4989 | static void igb_restore_vf_multicasts(struct igb_adapter *adapter) | ||
4990 | { | ||
4991 | struct e1000_hw *hw = &adapter->hw; | ||
4992 | struct vf_data_storage *vf_data; | ||
4993 | int i, j; | ||
4994 | |||
4995 | for (i = 0; i < adapter->vfs_allocated_count; i++) { | ||
4996 | u32 vmolr = rd32(E1000_VMOLR(i)); | ||
4997 | vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); | ||
4998 | |||
4999 | vf_data = &adapter->vf_data[i]; | ||
5000 | |||
5001 | if ((vf_data->num_vf_mc_hashes > 30) || | ||
5002 | (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { | ||
5003 | vmolr |= E1000_VMOLR_MPME; | ||
5004 | } else if (vf_data->num_vf_mc_hashes) { | ||
5005 | vmolr |= E1000_VMOLR_ROMPE; | ||
5006 | for (j = 0; j < vf_data->num_vf_mc_hashes; j++) | ||
5007 | igb_mta_set(hw, vf_data->vf_mc_hashes[j]); | ||
5008 | } | ||
5009 | wr32(E1000_VMOLR(i), vmolr); | ||
5010 | } | ||
5011 | } | ||
5012 | |||
5013 | static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) | ||
5014 | { | ||
5015 | struct e1000_hw *hw = &adapter->hw; | ||
5016 | u32 pool_mask, reg, vid; | ||
5017 | int i; | ||
5018 | |||
5019 | pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); | ||
5020 | |||
5021 | /* Find the vlan filter for this id */ | ||
5022 | for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { | ||
5023 | reg = rd32(E1000_VLVF(i)); | ||
5024 | |||
5025 | /* remove the vf from the pool */ | ||
5026 | reg &= ~pool_mask; | ||
5027 | |||
5028 | /* if pool is empty then remove entry from vfta */ | ||
5029 | if (!(reg & E1000_VLVF_POOLSEL_MASK) && | ||
5030 | (reg & E1000_VLVF_VLANID_ENABLE)) { | ||
5031 | reg = 0; | ||
5032 | vid = reg & E1000_VLVF_VLANID_MASK; | ||
5033 | igb_vfta_set(hw, vid, false); | ||
5034 | } | ||
5035 | |||
5036 | wr32(E1000_VLVF(i), reg); | ||
5037 | } | ||
5038 | |||
5039 | adapter->vf_data[vf].vlans_enabled = 0; | ||
5040 | } | ||
5041 | |||
5042 | static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) | ||
5043 | { | ||
5044 | struct e1000_hw *hw = &adapter->hw; | ||
5045 | u32 reg, i; | ||
5046 | |||
5047 | /* The vlvf table only exists on 82576 hardware and newer */ | ||
5048 | if (hw->mac.type < e1000_82576) | ||
5049 | return -1; | ||
5050 | |||
5051 | /* we only need to do this if VMDq is enabled */ | ||
5052 | if (!adapter->vfs_allocated_count) | ||
5053 | return -1; | ||
5054 | |||
5055 | /* Find the vlan filter for this id */ | ||
5056 | for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { | ||
5057 | reg = rd32(E1000_VLVF(i)); | ||
5058 | if ((reg & E1000_VLVF_VLANID_ENABLE) && | ||
5059 | vid == (reg & E1000_VLVF_VLANID_MASK)) | ||
5060 | break; | ||
5061 | } | ||
5062 | |||
5063 | if (add) { | ||
5064 | if (i == E1000_VLVF_ARRAY_SIZE) { | ||
5065 | /* Did not find a matching VLAN ID entry that was | ||
5066 | * enabled. Search for a free filter entry, i.e. | ||
5067 | * one without the enable bit set | ||
5068 | */ | ||
5069 | for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { | ||
5070 | reg = rd32(E1000_VLVF(i)); | ||
5071 | if (!(reg & E1000_VLVF_VLANID_ENABLE)) | ||
5072 | break; | ||
5073 | } | ||
5074 | } | ||
5075 | if (i < E1000_VLVF_ARRAY_SIZE) { | ||
5076 | /* Found an enabled/available entry */ | ||
5077 | reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); | ||
5078 | |||
5079 | /* if !enabled we need to set this up in vfta */ | ||
5080 | if (!(reg & E1000_VLVF_VLANID_ENABLE)) { | ||
5081 | /* add VID to filter table */ | ||
5082 | igb_vfta_set(hw, vid, true); | ||
5083 | reg |= E1000_VLVF_VLANID_ENABLE; | ||
5084 | } | ||
5085 | reg &= ~E1000_VLVF_VLANID_MASK; | ||
5086 | reg |= vid; | ||
5087 | wr32(E1000_VLVF(i), reg); | ||
5088 | |||
5089 | /* do not modify RLPML for PF devices */ | ||
5090 | if (vf >= adapter->vfs_allocated_count) | ||
5091 | return 0; | ||
5092 | |||
5093 | if (!adapter->vf_data[vf].vlans_enabled) { | ||
5094 | u32 size; | ||
5095 | reg = rd32(E1000_VMOLR(vf)); | ||
5096 | size = reg & E1000_VMOLR_RLPML_MASK; | ||
5097 | size += 4; | ||
5098 | reg &= ~E1000_VMOLR_RLPML_MASK; | ||
5099 | reg |= size; | ||
5100 | wr32(E1000_VMOLR(vf), reg); | ||
5101 | } | ||
5102 | |||
5103 | adapter->vf_data[vf].vlans_enabled++; | ||
5104 | return 0; | ||
5105 | } | ||
5106 | } else { | ||
5107 | if (i < E1000_VLVF_ARRAY_SIZE) { | ||
5108 | /* remove vf from the pool */ | ||
5109 | reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); | ||
5110 | /* if pool is empty then remove entry from vfta */ | ||
5111 | if (!(reg & E1000_VLVF_POOLSEL_MASK)) { | ||
5112 | reg = 0; | ||
5113 | igb_vfta_set(hw, vid, false); | ||
5114 | } | ||
5115 | wr32(E1000_VLVF(i), reg); | ||
5116 | |||
5117 | /* do not modify RLPML for PF devices */ | ||
5118 | if (vf >= adapter->vfs_allocated_count) | ||
5119 | return 0; | ||
5120 | |||
5121 | adapter->vf_data[vf].vlans_enabled--; | ||
5122 | if (!adapter->vf_data[vf].vlans_enabled) { | ||
5123 | u32 size; | ||
5124 | reg = rd32(E1000_VMOLR(vf)); | ||
5125 | size = reg & E1000_VMOLR_RLPML_MASK; | ||
5126 | size -= 4; | ||
5127 | reg &= ~E1000_VMOLR_RLPML_MASK; | ||
5128 | reg |= size; | ||
5129 | wr32(E1000_VMOLR(vf), reg); | ||
5130 | } | ||
5131 | } | ||
5132 | } | ||
5133 | return 0; | ||
5134 | } | ||
5135 | |||
5136 | static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) | ||
5137 | { | ||
5138 | struct e1000_hw *hw = &adapter->hw; | ||
5139 | |||
5140 | if (vid) | ||
5141 | wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); | ||
5142 | else | ||
5143 | wr32(E1000_VMVIR(vf), 0); | ||
5144 | } | ||
5145 | |||
5146 | static int igb_ndo_set_vf_vlan(struct net_device *netdev, | ||
5147 | int vf, u16 vlan, u8 qos) | ||
5148 | { | ||
5149 | int err = 0; | ||
5150 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
5151 | |||
5152 | if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) | ||
5153 | return -EINVAL; | ||
5154 | if (vlan || qos) { | ||
5155 | err = igb_vlvf_set(adapter, vlan, !!vlan, vf); | ||
5156 | if (err) | ||
5157 | goto out; | ||
5158 | igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); | ||
5159 | igb_set_vmolr(adapter, vf, !vlan); | ||
5160 | adapter->vf_data[vf].pf_vlan = vlan; | ||
5161 | adapter->vf_data[vf].pf_qos = qos; | ||
5162 | dev_info(&adapter->pdev->dev, | ||
5163 | "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); | ||
5164 | if (test_bit(__IGB_DOWN, &adapter->state)) { | ||
5165 | dev_warn(&adapter->pdev->dev, | ||
5166 | "The VF VLAN has been set," | ||
5167 | " but the PF device is not up.\n"); | ||
5168 | dev_warn(&adapter->pdev->dev, | ||
5169 | "Bring the PF device up before" | ||
5170 | " attempting to use the VF device.\n"); | ||
5171 | } | ||
5172 | } else { | ||
5173 | igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, | ||
5174 | false, vf); | ||
5175 | igb_set_vmvir(adapter, vlan, vf); | ||
5176 | igb_set_vmolr(adapter, vf, true); | ||
5177 | adapter->vf_data[vf].pf_vlan = 0; | ||
5178 | adapter->vf_data[vf].pf_qos = 0; | ||
5179 | } | ||
5180 | out: | ||
5181 | return err; | ||
5182 | } | ||
5183 | |||
5184 | static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) | ||
5185 | { | ||
5186 | int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; | ||
5187 | int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); | ||
5188 | |||
5189 | return igb_vlvf_set(adapter, vid, add, vf); | ||
5190 | } | ||
5191 | |||
5192 | static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) | ||
5193 | { | ||
5194 | /* clear flags - except flag that indicates PF has set the MAC */ | ||
5195 | adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; | ||
5196 | adapter->vf_data[vf].last_nack = jiffies; | ||
5197 | |||
5198 | /* reset offloads to defaults */ | ||
5199 | igb_set_vmolr(adapter, vf, true); | ||
5200 | |||
5201 | /* reset vlans for device */ | ||
5202 | igb_clear_vf_vfta(adapter, vf); | ||
5203 | if (adapter->vf_data[vf].pf_vlan) | ||
5204 | igb_ndo_set_vf_vlan(adapter->netdev, vf, | ||
5205 | adapter->vf_data[vf].pf_vlan, | ||
5206 | adapter->vf_data[vf].pf_qos); | ||
5207 | else | ||
5208 | igb_clear_vf_vfta(adapter, vf); | ||
5209 | |||
5210 | /* reset multicast table array for vf */ | ||
5211 | adapter->vf_data[vf].num_vf_mc_hashes = 0; | ||
5212 | |||
5213 | /* Flush and reset the mta with the new values */ | ||
5214 | igb_set_rx_mode(adapter->netdev); | ||
5215 | } | ||
5216 | |||
5217 | static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) | ||
5218 | { | ||
5219 | unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; | ||
5220 | |||
5221 | /* generate a new mac address as we were hotplug removed/added */ | ||
5222 | if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) | ||
5223 | random_ether_addr(vf_mac); | ||
5224 | |||
5225 | /* process remaining reset events */ | ||
5226 | igb_vf_reset(adapter, vf); | ||
5227 | } | ||
5228 | |||
5229 | static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) | ||
5230 | { | ||
5231 | struct e1000_hw *hw = &adapter->hw; | ||
5232 | unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; | ||
5233 | int rar_entry = hw->mac.rar_entry_count - (vf + 1); | ||
5234 | u32 reg, msgbuf[3]; | ||
5235 | u8 *addr = (u8 *)(&msgbuf[1]); | ||
5236 | |||
5237 | /* process all the same items cleared in a function level reset */ | ||
5238 | igb_vf_reset(adapter, vf); | ||
5239 | |||
5240 | /* set vf mac address */ | ||
5241 | igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); | ||
5242 | |||
5243 | /* enable transmit and receive for vf */ | ||
5244 | reg = rd32(E1000_VFTE); | ||
5245 | wr32(E1000_VFTE, reg | (1 << vf)); | ||
5246 | reg = rd32(E1000_VFRE); | ||
5247 | wr32(E1000_VFRE, reg | (1 << vf)); | ||
5248 | |||
5249 | adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; | ||
5250 | |||
5251 | /* reply to reset with ack and vf mac address */ | ||
5252 | msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; | ||
5253 | memcpy(addr, vf_mac, 6); | ||
5254 | igb_write_mbx(hw, msgbuf, 3, vf); | ||
5255 | } | ||
5256 | |||
5257 | static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) | ||
5258 | { | ||
5259 | /* | ||
5260 | * The VF MAC Address is stored in a packed array of bytes | ||
5261 | * starting at the second 32 bit word of the msg array | ||
5262 | */ | ||
5263 | unsigned char *addr = (char *)&msg[1]; | ||
5264 | int err = -1; | ||
5265 | |||
5266 | if (is_valid_ether_addr(addr)) | ||
5267 | err = igb_set_vf_mac(adapter, vf, addr); | ||
5268 | |||
5269 | return err; | ||
5270 | } | ||
5271 | |||
5272 | static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) | ||
5273 | { | ||
5274 | struct e1000_hw *hw = &adapter->hw; | ||
5275 | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | ||
5276 | u32 msg = E1000_VT_MSGTYPE_NACK; | ||
5277 | |||
5278 | /* if device isn't clear to send it shouldn't be reading either */ | ||
5279 | if (!(vf_data->flags & IGB_VF_FLAG_CTS) && | ||
5280 | time_after(jiffies, vf_data->last_nack + (2 * HZ))) { | ||
5281 | igb_write_mbx(hw, &msg, 1, vf); | ||
5282 | vf_data->last_nack = jiffies; | ||
5283 | } | ||
5284 | } | ||
5285 | |||
5286 | static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) | ||
5287 | { | ||
5288 | struct pci_dev *pdev = adapter->pdev; | ||
5289 | u32 msgbuf[E1000_VFMAILBOX_SIZE]; | ||
5290 | struct e1000_hw *hw = &adapter->hw; | ||
5291 | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | ||
5292 | s32 retval; | ||
5293 | |||
5294 | retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); | ||
5295 | |||
5296 | if (retval) { | ||
5297 | /* if receive failed revoke VF CTS stats and restart init */ | ||
5298 | dev_err(&pdev->dev, "Error receiving message from VF\n"); | ||
5299 | vf_data->flags &= ~IGB_VF_FLAG_CTS; | ||
5300 | if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) | ||
5301 | return; | ||
5302 | goto out; | ||
5303 | } | ||
5304 | |||
5305 | /* this is a message we already processed, do nothing */ | ||
5306 | if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) | ||
5307 | return; | ||
5308 | |||
5309 | /* | ||
5310 | * until the vf completes a reset it should not be | ||
5311 | * allowed to start any configuration. | ||
5312 | */ | ||
5313 | |||
5314 | if (msgbuf[0] == E1000_VF_RESET) { | ||
5315 | igb_vf_reset_msg(adapter, vf); | ||
5316 | return; | ||
5317 | } | ||
5318 | |||
5319 | if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { | ||
5320 | if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) | ||
5321 | return; | ||
5322 | retval = -1; | ||
5323 | goto out; | ||
5324 | } | ||
5325 | |||
5326 | switch ((msgbuf[0] & 0xFFFF)) { | ||
5327 | case E1000_VF_SET_MAC_ADDR: | ||
5328 | retval = -EINVAL; | ||
5329 | if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) | ||
5330 | retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); | ||
5331 | else | ||
5332 | dev_warn(&pdev->dev, | ||
5333 | "VF %d attempted to override administratively " | ||
5334 | "set MAC address\nReload the VF driver to " | ||
5335 | "resume operations\n", vf); | ||
5336 | break; | ||
5337 | case E1000_VF_SET_PROMISC: | ||
5338 | retval = igb_set_vf_promisc(adapter, msgbuf, vf); | ||
5339 | break; | ||
5340 | case E1000_VF_SET_MULTICAST: | ||
5341 | retval = igb_set_vf_multicasts(adapter, msgbuf, vf); | ||
5342 | break; | ||
5343 | case E1000_VF_SET_LPE: | ||
5344 | retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); | ||
5345 | break; | ||
5346 | case E1000_VF_SET_VLAN: | ||
5347 | retval = -1; | ||
5348 | if (vf_data->pf_vlan) | ||
5349 | dev_warn(&pdev->dev, | ||
5350 | "VF %d attempted to override administratively " | ||
5351 | "set VLAN tag\nReload the VF driver to " | ||
5352 | "resume operations\n", vf); | ||
5353 | else | ||
5354 | retval = igb_set_vf_vlan(adapter, msgbuf, vf); | ||
5355 | break; | ||
5356 | default: | ||
5357 | dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); | ||
5358 | retval = -1; | ||
5359 | break; | ||
5360 | } | ||
5361 | |||
5362 | msgbuf[0] |= E1000_VT_MSGTYPE_CTS; | ||
5363 | out: | ||
5364 | /* notify the VF of the results of what it sent us */ | ||
5365 | if (retval) | ||
5366 | msgbuf[0] |= E1000_VT_MSGTYPE_NACK; | ||
5367 | else | ||
5368 | msgbuf[0] |= E1000_VT_MSGTYPE_ACK; | ||
5369 | |||
5370 | igb_write_mbx(hw, msgbuf, 1, vf); | ||
5371 | } | ||
5372 | |||
5373 | static void igb_msg_task(struct igb_adapter *adapter) | ||
5374 | { | ||
5375 | struct e1000_hw *hw = &adapter->hw; | ||
5376 | u32 vf; | ||
5377 | |||
5378 | for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { | ||
5379 | /* process any reset requests */ | ||
5380 | if (!igb_check_for_rst(hw, vf)) | ||
5381 | igb_vf_reset_event(adapter, vf); | ||
5382 | |||
5383 | /* process any messages pending */ | ||
5384 | if (!igb_check_for_msg(hw, vf)) | ||
5385 | igb_rcv_msg_from_vf(adapter, vf); | ||
5386 | |||
5387 | /* process any acks */ | ||
5388 | if (!igb_check_for_ack(hw, vf)) | ||
5389 | igb_rcv_ack_from_vf(adapter, vf); | ||
5390 | } | ||
5391 | } | ||
5392 | |||
5393 | /** | ||
5394 | * igb_set_uta - Set unicast filter table address | ||
5395 | * @adapter: board private structure | ||
5396 | * | ||
5397 | * The unicast table address is a register array of 32-bit registers. | ||
5398 | * The table is meant to be used in a way similar to how the MTA is used | ||
5399 | * however due to certain limitations in the hardware it is necessary to | ||
5400 | * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous | ||
5401 | * enable bit to allow vlan tag stripping when promiscuous mode is enabled | ||
5402 | **/ | ||
5403 | static void igb_set_uta(struct igb_adapter *adapter) | ||
5404 | { | ||
5405 | struct e1000_hw *hw = &adapter->hw; | ||
5406 | int i; | ||
5407 | |||
5408 | /* The UTA table only exists on 82576 hardware and newer */ | ||
5409 | if (hw->mac.type < e1000_82576) | ||
5410 | return; | ||
5411 | |||
5412 | /* we only need to do this if VMDq is enabled */ | ||
5413 | if (!adapter->vfs_allocated_count) | ||
5414 | return; | ||
5415 | |||
5416 | for (i = 0; i < hw->mac.uta_reg_count; i++) | ||
5417 | array_wr32(E1000_UTA, i, ~0); | ||
5418 | } | ||
5419 | |||
5420 | /** | ||
5421 | * igb_intr_msi - Interrupt Handler | ||
5422 | * @irq: interrupt number | ||
5423 | * @data: pointer to a network interface device structure | ||
5424 | **/ | ||
5425 | static irqreturn_t igb_intr_msi(int irq, void *data) | ||
5426 | { | ||
5427 | struct igb_adapter *adapter = data; | ||
5428 | struct igb_q_vector *q_vector = adapter->q_vector[0]; | ||
5429 | struct e1000_hw *hw = &adapter->hw; | ||
5430 | /* read ICR disables interrupts using IAM */ | ||
5431 | u32 icr = rd32(E1000_ICR); | ||
5432 | |||
5433 | igb_write_itr(q_vector); | ||
5434 | |||
5435 | if (icr & E1000_ICR_DRSTA) | ||
5436 | schedule_work(&adapter->reset_task); | ||
5437 | |||
5438 | if (icr & E1000_ICR_DOUTSYNC) { | ||
5439 | /* HW is reporting DMA is out of sync */ | ||
5440 | adapter->stats.doosync++; | ||
5441 | } | ||
5442 | |||
5443 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
5444 | hw->mac.get_link_status = 1; | ||
5445 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
5446 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
5447 | } | ||
5448 | |||
5449 | napi_schedule(&q_vector->napi); | ||
5450 | |||
5451 | return IRQ_HANDLED; | ||
5452 | } | ||
5453 | |||
5454 | /** | ||
5455 | * igb_intr - Legacy Interrupt Handler | ||
5456 | * @irq: interrupt number | ||
5457 | * @data: pointer to a network interface device structure | ||
5458 | **/ | ||
5459 | static irqreturn_t igb_intr(int irq, void *data) | ||
5460 | { | ||
5461 | struct igb_adapter *adapter = data; | ||
5462 | struct igb_q_vector *q_vector = adapter->q_vector[0]; | ||
5463 | struct e1000_hw *hw = &adapter->hw; | ||
5464 | /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No | ||
5465 | * need for the IMC write */ | ||
5466 | u32 icr = rd32(E1000_ICR); | ||
5467 | if (!icr) | ||
5468 | return IRQ_NONE; /* Not our interrupt */ | ||
5469 | |||
5470 | igb_write_itr(q_vector); | ||
5471 | |||
5472 | /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is | ||
5473 | * not set, then the adapter didn't send an interrupt */ | ||
5474 | if (!(icr & E1000_ICR_INT_ASSERTED)) | ||
5475 | return IRQ_NONE; | ||
5476 | |||
5477 | if (icr & E1000_ICR_DRSTA) | ||
5478 | schedule_work(&adapter->reset_task); | ||
5479 | |||
5480 | if (icr & E1000_ICR_DOUTSYNC) { | ||
5481 | /* HW is reporting DMA is out of sync */ | ||
5482 | adapter->stats.doosync++; | ||
5483 | } | ||
5484 | |||
5485 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
5486 | hw->mac.get_link_status = 1; | ||
5487 | /* guard against interrupt when we're going down */ | ||
5488 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
5489 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
5490 | } | ||
5491 | |||
5492 | napi_schedule(&q_vector->napi); | ||
5493 | |||
5494 | return IRQ_HANDLED; | ||
5495 | } | ||
5496 | |||
5497 | static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector) | ||
5498 | { | ||
5499 | struct igb_adapter *adapter = q_vector->adapter; | ||
5500 | struct e1000_hw *hw = &adapter->hw; | ||
5501 | |||
5502 | if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) || | ||
5503 | (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) { | ||
5504 | if (!adapter->msix_entries) | ||
5505 | igb_set_itr(adapter); | ||
5506 | else | ||
5507 | igb_update_ring_itr(q_vector); | ||
5508 | } | ||
5509 | |||
5510 | if (!test_bit(__IGB_DOWN, &adapter->state)) { | ||
5511 | if (adapter->msix_entries) | ||
5512 | wr32(E1000_EIMS, q_vector->eims_value); | ||
5513 | else | ||
5514 | igb_irq_enable(adapter); | ||
5515 | } | ||
5516 | } | ||
5517 | |||
5518 | /** | ||
5519 | * igb_poll - NAPI Rx polling callback | ||
5520 | * @napi: napi polling structure | ||
5521 | * @budget: count of how many packets we should handle | ||
5522 | **/ | ||
5523 | static int igb_poll(struct napi_struct *napi, int budget) | ||
5524 | { | ||
5525 | struct igb_q_vector *q_vector = container_of(napi, | ||
5526 | struct igb_q_vector, | ||
5527 | napi); | ||
5528 | int tx_clean_complete = 1, work_done = 0; | ||
5529 | |||
5530 | #ifdef CONFIG_IGB_DCA | ||
5531 | if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) | ||
5532 | igb_update_dca(q_vector); | ||
5533 | #endif | ||
5534 | if (q_vector->tx_ring) | ||
5535 | tx_clean_complete = igb_clean_tx_irq(q_vector); | ||
5536 | |||
5537 | if (q_vector->rx_ring) | ||
5538 | igb_clean_rx_irq_adv(q_vector, &work_done, budget); | ||
5539 | |||
5540 | if (!tx_clean_complete) | ||
5541 | work_done = budget; | ||
5542 | |||
5543 | /* If not enough Rx work done, exit the polling mode */ | ||
5544 | if (work_done < budget) { | ||
5545 | napi_complete(napi); | ||
5546 | igb_ring_irq_enable(q_vector); | ||
5547 | } | ||
5548 | |||
5549 | return work_done; | ||
5550 | } | ||
5551 | |||
5552 | /** | ||
5553 | * igb_systim_to_hwtstamp - convert system time value to hw timestamp | ||
5554 | * @adapter: board private structure | ||
5555 | * @shhwtstamps: timestamp structure to update | ||
5556 | * @regval: unsigned 64bit system time value. | ||
5557 | * | ||
5558 | * We need to convert the system time value stored in the RX/TXSTMP registers | ||
5559 | * into a hwtstamp which can be used by the upper level timestamping functions | ||
5560 | */ | ||
5561 | static void igb_systim_to_hwtstamp(struct igb_adapter *adapter, | ||
5562 | struct skb_shared_hwtstamps *shhwtstamps, | ||
5563 | u64 regval) | ||
5564 | { | ||
5565 | u64 ns; | ||
5566 | |||
5567 | /* | ||
5568 | * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to | ||
5569 | * 24 to match clock shift we setup earlier. | ||
5570 | */ | ||
5571 | if (adapter->hw.mac.type == e1000_82580) | ||
5572 | regval <<= IGB_82580_TSYNC_SHIFT; | ||
5573 | |||
5574 | ns = timecounter_cyc2time(&adapter->clock, regval); | ||
5575 | timecompare_update(&adapter->compare, ns); | ||
5576 | memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps)); | ||
5577 | shhwtstamps->hwtstamp = ns_to_ktime(ns); | ||
5578 | shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns); | ||
5579 | } | ||
5580 | |||
5581 | /** | ||
5582 | * igb_tx_hwtstamp - utility function which checks for TX time stamp | ||
5583 | * @q_vector: pointer to q_vector containing needed info | ||
5584 | * @buffer: pointer to igb_buffer structure | ||
5585 | * | ||
5586 | * If we were asked to do hardware stamping and such a time stamp is | ||
5587 | * available, then it must have been for this skb here because we only | ||
5588 | * allow only one such packet into the queue. | ||
5589 | */ | ||
5590 | static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info) | ||
5591 | { | ||
5592 | struct igb_adapter *adapter = q_vector->adapter; | ||
5593 | struct e1000_hw *hw = &adapter->hw; | ||
5594 | struct skb_shared_hwtstamps shhwtstamps; | ||
5595 | u64 regval; | ||
5596 | |||
5597 | /* if skb does not support hw timestamp or TX stamp not valid exit */ | ||
5598 | if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) || | ||
5599 | !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID)) | ||
5600 | return; | ||
5601 | |||
5602 | regval = rd32(E1000_TXSTMPL); | ||
5603 | regval |= (u64)rd32(E1000_TXSTMPH) << 32; | ||
5604 | |||
5605 | igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval); | ||
5606 | skb_tstamp_tx(buffer_info->skb, &shhwtstamps); | ||
5607 | } | ||
5608 | |||
5609 | /** | ||
5610 | * igb_clean_tx_irq - Reclaim resources after transmit completes | ||
5611 | * @q_vector: pointer to q_vector containing needed info | ||
5612 | * returns true if ring is completely cleaned | ||
5613 | **/ | ||
5614 | static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) | ||
5615 | { | ||
5616 | struct igb_adapter *adapter = q_vector->adapter; | ||
5617 | struct igb_ring *tx_ring = q_vector->tx_ring; | ||
5618 | struct net_device *netdev = tx_ring->netdev; | ||
5619 | struct e1000_hw *hw = &adapter->hw; | ||
5620 | struct igb_buffer *buffer_info; | ||
5621 | union e1000_adv_tx_desc *tx_desc, *eop_desc; | ||
5622 | unsigned int total_bytes = 0, total_packets = 0; | ||
5623 | unsigned int i, eop, count = 0; | ||
5624 | bool cleaned = false; | ||
5625 | |||
5626 | i = tx_ring->next_to_clean; | ||
5627 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
5628 | eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop); | ||
5629 | |||
5630 | while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) && | ||
5631 | (count < tx_ring->count)) { | ||
5632 | rmb(); /* read buffer_info after eop_desc status */ | ||
5633 | for (cleaned = false; !cleaned; count++) { | ||
5634 | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | ||
5635 | buffer_info = &tx_ring->buffer_info[i]; | ||
5636 | cleaned = (i == eop); | ||
5637 | |||
5638 | if (buffer_info->skb) { | ||
5639 | total_bytes += buffer_info->bytecount; | ||
5640 | /* gso_segs is currently only valid for tcp */ | ||
5641 | total_packets += buffer_info->gso_segs; | ||
5642 | igb_tx_hwtstamp(q_vector, buffer_info); | ||
5643 | } | ||
5644 | |||
5645 | igb_unmap_and_free_tx_resource(tx_ring, buffer_info); | ||
5646 | tx_desc->wb.status = 0; | ||
5647 | |||
5648 | i++; | ||
5649 | if (i == tx_ring->count) | ||
5650 | i = 0; | ||
5651 | } | ||
5652 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
5653 | eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop); | ||
5654 | } | ||
5655 | |||
5656 | tx_ring->next_to_clean = i; | ||
5657 | |||
5658 | if (unlikely(count && | ||
5659 | netif_carrier_ok(netdev) && | ||
5660 | igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) { | ||
5661 | /* Make sure that anybody stopping the queue after this | ||
5662 | * sees the new next_to_clean. | ||
5663 | */ | ||
5664 | smp_mb(); | ||
5665 | if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) && | ||
5666 | !(test_bit(__IGB_DOWN, &adapter->state))) { | ||
5667 | netif_wake_subqueue(netdev, tx_ring->queue_index); | ||
5668 | |||
5669 | u64_stats_update_begin(&tx_ring->tx_syncp); | ||
5670 | tx_ring->tx_stats.restart_queue++; | ||
5671 | u64_stats_update_end(&tx_ring->tx_syncp); | ||
5672 | } | ||
5673 | } | ||
5674 | |||
5675 | if (tx_ring->detect_tx_hung) { | ||
5676 | /* Detect a transmit hang in hardware, this serializes the | ||
5677 | * check with the clearing of time_stamp and movement of i */ | ||
5678 | tx_ring->detect_tx_hung = false; | ||
5679 | if (tx_ring->buffer_info[i].time_stamp && | ||
5680 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp + | ||
5681 | (adapter->tx_timeout_factor * HZ)) && | ||
5682 | !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { | ||
5683 | |||
5684 | /* detected Tx unit hang */ | ||
5685 | dev_err(tx_ring->dev, | ||
5686 | "Detected Tx Unit Hang\n" | ||
5687 | " Tx Queue <%d>\n" | ||
5688 | " TDH <%x>\n" | ||
5689 | " TDT <%x>\n" | ||
5690 | " next_to_use <%x>\n" | ||
5691 | " next_to_clean <%x>\n" | ||
5692 | "buffer_info[next_to_clean]\n" | ||
5693 | " time_stamp <%lx>\n" | ||
5694 | " next_to_watch <%x>\n" | ||
5695 | " jiffies <%lx>\n" | ||
5696 | " desc.status <%x>\n", | ||
5697 | tx_ring->queue_index, | ||
5698 | readl(tx_ring->head), | ||
5699 | readl(tx_ring->tail), | ||
5700 | tx_ring->next_to_use, | ||
5701 | tx_ring->next_to_clean, | ||
5702 | tx_ring->buffer_info[eop].time_stamp, | ||
5703 | eop, | ||
5704 | jiffies, | ||
5705 | eop_desc->wb.status); | ||
5706 | netif_stop_subqueue(netdev, tx_ring->queue_index); | ||
5707 | } | ||
5708 | } | ||
5709 | tx_ring->total_bytes += total_bytes; | ||
5710 | tx_ring->total_packets += total_packets; | ||
5711 | u64_stats_update_begin(&tx_ring->tx_syncp); | ||
5712 | tx_ring->tx_stats.bytes += total_bytes; | ||
5713 | tx_ring->tx_stats.packets += total_packets; | ||
5714 | u64_stats_update_end(&tx_ring->tx_syncp); | ||
5715 | return count < tx_ring->count; | ||
5716 | } | ||
5717 | |||
5718 | static inline void igb_rx_checksum_adv(struct igb_ring *ring, | ||
5719 | u32 status_err, struct sk_buff *skb) | ||
5720 | { | ||
5721 | skb_checksum_none_assert(skb); | ||
5722 | |||
5723 | /* Ignore Checksum bit is set or checksum is disabled through ethtool */ | ||
5724 | if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) || | ||
5725 | (status_err & E1000_RXD_STAT_IXSM)) | ||
5726 | return; | ||
5727 | |||
5728 | /* TCP/UDP checksum error bit is set */ | ||
5729 | if (status_err & | ||
5730 | (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { | ||
5731 | /* | ||
5732 | * work around errata with sctp packets where the TCPE aka | ||
5733 | * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) | ||
5734 | * packets, (aka let the stack check the crc32c) | ||
5735 | */ | ||
5736 | if ((skb->len == 60) && | ||
5737 | (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) { | ||
5738 | u64_stats_update_begin(&ring->rx_syncp); | ||
5739 | ring->rx_stats.csum_err++; | ||
5740 | u64_stats_update_end(&ring->rx_syncp); | ||
5741 | } | ||
5742 | /* let the stack verify checksum errors */ | ||
5743 | return; | ||
5744 | } | ||
5745 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
5746 | if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) | ||
5747 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
5748 | |||
5749 | dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err); | ||
5750 | } | ||
5751 | |||
5752 | static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr, | ||
5753 | struct sk_buff *skb) | ||
5754 | { | ||
5755 | struct igb_adapter *adapter = q_vector->adapter; | ||
5756 | struct e1000_hw *hw = &adapter->hw; | ||
5757 | u64 regval; | ||
5758 | |||
5759 | /* | ||
5760 | * If this bit is set, then the RX registers contain the time stamp. No | ||
5761 | * other packet will be time stamped until we read these registers, so | ||
5762 | * read the registers to make them available again. Because only one | ||
5763 | * packet can be time stamped at a time, we know that the register | ||
5764 | * values must belong to this one here and therefore we don't need to | ||
5765 | * compare any of the additional attributes stored for it. | ||
5766 | * | ||
5767 | * If nothing went wrong, then it should have a shared tx_flags that we | ||
5768 | * can turn into a skb_shared_hwtstamps. | ||
5769 | */ | ||
5770 | if (staterr & E1000_RXDADV_STAT_TSIP) { | ||
5771 | u32 *stamp = (u32 *)skb->data; | ||
5772 | regval = le32_to_cpu(*(stamp + 2)); | ||
5773 | regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32; | ||
5774 | skb_pull(skb, IGB_TS_HDR_LEN); | ||
5775 | } else { | ||
5776 | if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) | ||
5777 | return; | ||
5778 | |||
5779 | regval = rd32(E1000_RXSTMPL); | ||
5780 | regval |= (u64)rd32(E1000_RXSTMPH) << 32; | ||
5781 | } | ||
5782 | |||
5783 | igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); | ||
5784 | } | ||
5785 | static inline u16 igb_get_hlen(struct igb_ring *rx_ring, | ||
5786 | union e1000_adv_rx_desc *rx_desc) | ||
5787 | { | ||
5788 | /* HW will not DMA in data larger than the given buffer, even if it | ||
5789 | * parses the (NFS, of course) header to be larger. In that case, it | ||
5790 | * fills the header buffer and spills the rest into the page. | ||
5791 | */ | ||
5792 | u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) & | ||
5793 | E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT; | ||
5794 | if (hlen > rx_ring->rx_buffer_len) | ||
5795 | hlen = rx_ring->rx_buffer_len; | ||
5796 | return hlen; | ||
5797 | } | ||
5798 | |||
5799 | static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector, | ||
5800 | int *work_done, int budget) | ||
5801 | { | ||
5802 | struct igb_ring *rx_ring = q_vector->rx_ring; | ||
5803 | struct net_device *netdev = rx_ring->netdev; | ||
5804 | struct device *dev = rx_ring->dev; | ||
5805 | union e1000_adv_rx_desc *rx_desc , *next_rxd; | ||
5806 | struct igb_buffer *buffer_info , *next_buffer; | ||
5807 | struct sk_buff *skb; | ||
5808 | bool cleaned = false; | ||
5809 | int cleaned_count = 0; | ||
5810 | int current_node = numa_node_id(); | ||
5811 | unsigned int total_bytes = 0, total_packets = 0; | ||
5812 | unsigned int i; | ||
5813 | u32 staterr; | ||
5814 | u16 length; | ||
5815 | |||
5816 | i = rx_ring->next_to_clean; | ||
5817 | buffer_info = &rx_ring->buffer_info[i]; | ||
5818 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
5819 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
5820 | |||
5821 | while (staterr & E1000_RXD_STAT_DD) { | ||
5822 | if (*work_done >= budget) | ||
5823 | break; | ||
5824 | (*work_done)++; | ||
5825 | rmb(); /* read descriptor and rx_buffer_info after status DD */ | ||
5826 | |||
5827 | skb = buffer_info->skb; | ||
5828 | prefetch(skb->data - NET_IP_ALIGN); | ||
5829 | buffer_info->skb = NULL; | ||
5830 | |||
5831 | i++; | ||
5832 | if (i == rx_ring->count) | ||
5833 | i = 0; | ||
5834 | |||
5835 | next_rxd = E1000_RX_DESC_ADV(*rx_ring, i); | ||
5836 | prefetch(next_rxd); | ||
5837 | next_buffer = &rx_ring->buffer_info[i]; | ||
5838 | |||
5839 | length = le16_to_cpu(rx_desc->wb.upper.length); | ||
5840 | cleaned = true; | ||
5841 | cleaned_count++; | ||
5842 | |||
5843 | if (buffer_info->dma) { | ||
5844 | dma_unmap_single(dev, buffer_info->dma, | ||
5845 | rx_ring->rx_buffer_len, | ||
5846 | DMA_FROM_DEVICE); | ||
5847 | buffer_info->dma = 0; | ||
5848 | if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) { | ||
5849 | skb_put(skb, length); | ||
5850 | goto send_up; | ||
5851 | } | ||
5852 | skb_put(skb, igb_get_hlen(rx_ring, rx_desc)); | ||
5853 | } | ||
5854 | |||
5855 | if (length) { | ||
5856 | dma_unmap_page(dev, buffer_info->page_dma, | ||
5857 | PAGE_SIZE / 2, DMA_FROM_DEVICE); | ||
5858 | buffer_info->page_dma = 0; | ||
5859 | |||
5860 | skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, | ||
5861 | buffer_info->page, | ||
5862 | buffer_info->page_offset, | ||
5863 | length); | ||
5864 | |||
5865 | if ((page_count(buffer_info->page) != 1) || | ||
5866 | (page_to_nid(buffer_info->page) != current_node)) | ||
5867 | buffer_info->page = NULL; | ||
5868 | else | ||
5869 | get_page(buffer_info->page); | ||
5870 | |||
5871 | skb->len += length; | ||
5872 | skb->data_len += length; | ||
5873 | skb->truesize += length; | ||
5874 | } | ||
5875 | |||
5876 | if (!(staterr & E1000_RXD_STAT_EOP)) { | ||
5877 | buffer_info->skb = next_buffer->skb; | ||
5878 | buffer_info->dma = next_buffer->dma; | ||
5879 | next_buffer->skb = skb; | ||
5880 | next_buffer->dma = 0; | ||
5881 | goto next_desc; | ||
5882 | } | ||
5883 | send_up: | ||
5884 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | ||
5885 | dev_kfree_skb_irq(skb); | ||
5886 | goto next_desc; | ||
5887 | } | ||
5888 | |||
5889 | if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS)) | ||
5890 | igb_rx_hwtstamp(q_vector, staterr, skb); | ||
5891 | total_bytes += skb->len; | ||
5892 | total_packets++; | ||
5893 | |||
5894 | igb_rx_checksum_adv(rx_ring, staterr, skb); | ||
5895 | |||
5896 | skb->protocol = eth_type_trans(skb, netdev); | ||
5897 | skb_record_rx_queue(skb, rx_ring->queue_index); | ||
5898 | |||
5899 | if (staterr & E1000_RXD_STAT_VP) { | ||
5900 | u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); | ||
5901 | |||
5902 | __vlan_hwaccel_put_tag(skb, vid); | ||
5903 | } | ||
5904 | napi_gro_receive(&q_vector->napi, skb); | ||
5905 | |||
5906 | next_desc: | ||
5907 | rx_desc->wb.upper.status_error = 0; | ||
5908 | |||
5909 | /* return some buffers to hardware, one at a time is too slow */ | ||
5910 | if (cleaned_count >= IGB_RX_BUFFER_WRITE) { | ||
5911 | igb_alloc_rx_buffers_adv(rx_ring, cleaned_count); | ||
5912 | cleaned_count = 0; | ||
5913 | } | ||
5914 | |||
5915 | /* use prefetched values */ | ||
5916 | rx_desc = next_rxd; | ||
5917 | buffer_info = next_buffer; | ||
5918 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
5919 | } | ||
5920 | |||
5921 | rx_ring->next_to_clean = i; | ||
5922 | cleaned_count = igb_desc_unused(rx_ring); | ||
5923 | |||
5924 | if (cleaned_count) | ||
5925 | igb_alloc_rx_buffers_adv(rx_ring, cleaned_count); | ||
5926 | |||
5927 | rx_ring->total_packets += total_packets; | ||
5928 | rx_ring->total_bytes += total_bytes; | ||
5929 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
5930 | rx_ring->rx_stats.packets += total_packets; | ||
5931 | rx_ring->rx_stats.bytes += total_bytes; | ||
5932 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
5933 | return cleaned; | ||
5934 | } | ||
5935 | |||
5936 | /** | ||
5937 | * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split | ||
5938 | * @adapter: address of board private structure | ||
5939 | **/ | ||
5940 | void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count) | ||
5941 | { | ||
5942 | struct net_device *netdev = rx_ring->netdev; | ||
5943 | union e1000_adv_rx_desc *rx_desc; | ||
5944 | struct igb_buffer *buffer_info; | ||
5945 | struct sk_buff *skb; | ||
5946 | unsigned int i; | ||
5947 | int bufsz; | ||
5948 | |||
5949 | i = rx_ring->next_to_use; | ||
5950 | buffer_info = &rx_ring->buffer_info[i]; | ||
5951 | |||
5952 | bufsz = rx_ring->rx_buffer_len; | ||
5953 | |||
5954 | while (cleaned_count--) { | ||
5955 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
5956 | |||
5957 | if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) { | ||
5958 | if (!buffer_info->page) { | ||
5959 | buffer_info->page = netdev_alloc_page(netdev); | ||
5960 | if (unlikely(!buffer_info->page)) { | ||
5961 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
5962 | rx_ring->rx_stats.alloc_failed++; | ||
5963 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
5964 | goto no_buffers; | ||
5965 | } | ||
5966 | buffer_info->page_offset = 0; | ||
5967 | } else { | ||
5968 | buffer_info->page_offset ^= PAGE_SIZE / 2; | ||
5969 | } | ||
5970 | buffer_info->page_dma = | ||
5971 | dma_map_page(rx_ring->dev, buffer_info->page, | ||
5972 | buffer_info->page_offset, | ||
5973 | PAGE_SIZE / 2, | ||
5974 | DMA_FROM_DEVICE); | ||
5975 | if (dma_mapping_error(rx_ring->dev, | ||
5976 | buffer_info->page_dma)) { | ||
5977 | buffer_info->page_dma = 0; | ||
5978 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
5979 | rx_ring->rx_stats.alloc_failed++; | ||
5980 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
5981 | goto no_buffers; | ||
5982 | } | ||
5983 | } | ||
5984 | |||
5985 | skb = buffer_info->skb; | ||
5986 | if (!skb) { | ||
5987 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); | ||
5988 | if (unlikely(!skb)) { | ||
5989 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
5990 | rx_ring->rx_stats.alloc_failed++; | ||
5991 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
5992 | goto no_buffers; | ||
5993 | } | ||
5994 | |||
5995 | buffer_info->skb = skb; | ||
5996 | } | ||
5997 | if (!buffer_info->dma) { | ||
5998 | buffer_info->dma = dma_map_single(rx_ring->dev, | ||
5999 | skb->data, | ||
6000 | bufsz, | ||
6001 | DMA_FROM_DEVICE); | ||
6002 | if (dma_mapping_error(rx_ring->dev, | ||
6003 | buffer_info->dma)) { | ||
6004 | buffer_info->dma = 0; | ||
6005 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
6006 | rx_ring->rx_stats.alloc_failed++; | ||
6007 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
6008 | goto no_buffers; | ||
6009 | } | ||
6010 | } | ||
6011 | /* Refresh the desc even if buffer_addrs didn't change because | ||
6012 | * each write-back erases this info. */ | ||
6013 | if (bufsz < IGB_RXBUFFER_1024) { | ||
6014 | rx_desc->read.pkt_addr = | ||
6015 | cpu_to_le64(buffer_info->page_dma); | ||
6016 | rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); | ||
6017 | } else { | ||
6018 | rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma); | ||
6019 | rx_desc->read.hdr_addr = 0; | ||
6020 | } | ||
6021 | |||
6022 | i++; | ||
6023 | if (i == rx_ring->count) | ||
6024 | i = 0; | ||
6025 | buffer_info = &rx_ring->buffer_info[i]; | ||
6026 | } | ||
6027 | |||
6028 | no_buffers: | ||
6029 | if (rx_ring->next_to_use != i) { | ||
6030 | rx_ring->next_to_use = i; | ||
6031 | if (i == 0) | ||
6032 | i = (rx_ring->count - 1); | ||
6033 | else | ||
6034 | i--; | ||
6035 | |||
6036 | /* Force memory writes to complete before letting h/w | ||
6037 | * know there are new descriptors to fetch. (Only | ||
6038 | * applicable for weak-ordered memory model archs, | ||
6039 | * such as IA-64). */ | ||
6040 | wmb(); | ||
6041 | writel(i, rx_ring->tail); | ||
6042 | } | ||
6043 | } | ||
6044 | |||
6045 | /** | ||
6046 | * igb_mii_ioctl - | ||
6047 | * @netdev: | ||
6048 | * @ifreq: | ||
6049 | * @cmd: | ||
6050 | **/ | ||
6051 | static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
6052 | { | ||
6053 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6054 | struct mii_ioctl_data *data = if_mii(ifr); | ||
6055 | |||
6056 | if (adapter->hw.phy.media_type != e1000_media_type_copper) | ||
6057 | return -EOPNOTSUPP; | ||
6058 | |||
6059 | switch (cmd) { | ||
6060 | case SIOCGMIIPHY: | ||
6061 | data->phy_id = adapter->hw.phy.addr; | ||
6062 | break; | ||
6063 | case SIOCGMIIREG: | ||
6064 | if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, | ||
6065 | &data->val_out)) | ||
6066 | return -EIO; | ||
6067 | break; | ||
6068 | case SIOCSMIIREG: | ||
6069 | default: | ||
6070 | return -EOPNOTSUPP; | ||
6071 | } | ||
6072 | return 0; | ||
6073 | } | ||
6074 | |||
6075 | /** | ||
6076 | * igb_hwtstamp_ioctl - control hardware time stamping | ||
6077 | * @netdev: | ||
6078 | * @ifreq: | ||
6079 | * @cmd: | ||
6080 | * | ||
6081 | * Outgoing time stamping can be enabled and disabled. Play nice and | ||
6082 | * disable it when requested, although it shouldn't case any overhead | ||
6083 | * when no packet needs it. At most one packet in the queue may be | ||
6084 | * marked for time stamping, otherwise it would be impossible to tell | ||
6085 | * for sure to which packet the hardware time stamp belongs. | ||
6086 | * | ||
6087 | * Incoming time stamping has to be configured via the hardware | ||
6088 | * filters. Not all combinations are supported, in particular event | ||
6089 | * type has to be specified. Matching the kind of event packet is | ||
6090 | * not supported, with the exception of "all V2 events regardless of | ||
6091 | * level 2 or 4". | ||
6092 | * | ||
6093 | **/ | ||
6094 | static int igb_hwtstamp_ioctl(struct net_device *netdev, | ||
6095 | struct ifreq *ifr, int cmd) | ||
6096 | { | ||
6097 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6098 | struct e1000_hw *hw = &adapter->hw; | ||
6099 | struct hwtstamp_config config; | ||
6100 | u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; | ||
6101 | u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; | ||
6102 | u32 tsync_rx_cfg = 0; | ||
6103 | bool is_l4 = false; | ||
6104 | bool is_l2 = false; | ||
6105 | u32 regval; | ||
6106 | |||
6107 | if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) | ||
6108 | return -EFAULT; | ||
6109 | |||
6110 | /* reserved for future extensions */ | ||
6111 | if (config.flags) | ||
6112 | return -EINVAL; | ||
6113 | |||
6114 | switch (config.tx_type) { | ||
6115 | case HWTSTAMP_TX_OFF: | ||
6116 | tsync_tx_ctl = 0; | ||
6117 | case HWTSTAMP_TX_ON: | ||
6118 | break; | ||
6119 | default: | ||
6120 | return -ERANGE; | ||
6121 | } | ||
6122 | |||
6123 | switch (config.rx_filter) { | ||
6124 | case HWTSTAMP_FILTER_NONE: | ||
6125 | tsync_rx_ctl = 0; | ||
6126 | break; | ||
6127 | case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: | ||
6128 | case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: | ||
6129 | case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: | ||
6130 | case HWTSTAMP_FILTER_ALL: | ||
6131 | /* | ||
6132 | * register TSYNCRXCFG must be set, therefore it is not | ||
6133 | * possible to time stamp both Sync and Delay_Req messages | ||
6134 | * => fall back to time stamping all packets | ||
6135 | */ | ||
6136 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; | ||
6137 | config.rx_filter = HWTSTAMP_FILTER_ALL; | ||
6138 | break; | ||
6139 | case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: | ||
6140 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; | ||
6141 | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; | ||
6142 | is_l4 = true; | ||
6143 | break; | ||
6144 | case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: | ||
6145 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; | ||
6146 | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; | ||
6147 | is_l4 = true; | ||
6148 | break; | ||
6149 | case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: | ||
6150 | case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: | ||
6151 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; | ||
6152 | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE; | ||
6153 | is_l2 = true; | ||
6154 | is_l4 = true; | ||
6155 | config.rx_filter = HWTSTAMP_FILTER_SOME; | ||
6156 | break; | ||
6157 | case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: | ||
6158 | case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: | ||
6159 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; | ||
6160 | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE; | ||
6161 | is_l2 = true; | ||
6162 | is_l4 = true; | ||
6163 | config.rx_filter = HWTSTAMP_FILTER_SOME; | ||
6164 | break; | ||
6165 | case HWTSTAMP_FILTER_PTP_V2_EVENT: | ||
6166 | case HWTSTAMP_FILTER_PTP_V2_SYNC: | ||
6167 | case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: | ||
6168 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; | ||
6169 | config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; | ||
6170 | is_l2 = true; | ||
6171 | break; | ||
6172 | default: | ||
6173 | return -ERANGE; | ||
6174 | } | ||
6175 | |||
6176 | if (hw->mac.type == e1000_82575) { | ||
6177 | if (tsync_rx_ctl | tsync_tx_ctl) | ||
6178 | return -EINVAL; | ||
6179 | return 0; | ||
6180 | } | ||
6181 | |||
6182 | /* | ||
6183 | * Per-packet timestamping only works if all packets are | ||
6184 | * timestamped, so enable timestamping in all packets as | ||
6185 | * long as one rx filter was configured. | ||
6186 | */ | ||
6187 | if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) { | ||
6188 | tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; | ||
6189 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; | ||
6190 | } | ||
6191 | |||
6192 | /* enable/disable TX */ | ||
6193 | regval = rd32(E1000_TSYNCTXCTL); | ||
6194 | regval &= ~E1000_TSYNCTXCTL_ENABLED; | ||
6195 | regval |= tsync_tx_ctl; | ||
6196 | wr32(E1000_TSYNCTXCTL, regval); | ||
6197 | |||
6198 | /* enable/disable RX */ | ||
6199 | regval = rd32(E1000_TSYNCRXCTL); | ||
6200 | regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); | ||
6201 | regval |= tsync_rx_ctl; | ||
6202 | wr32(E1000_TSYNCRXCTL, regval); | ||
6203 | |||
6204 | /* define which PTP packets are time stamped */ | ||
6205 | wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); | ||
6206 | |||
6207 | /* define ethertype filter for timestamped packets */ | ||
6208 | if (is_l2) | ||
6209 | wr32(E1000_ETQF(3), | ||
6210 | (E1000_ETQF_FILTER_ENABLE | /* enable filter */ | ||
6211 | E1000_ETQF_1588 | /* enable timestamping */ | ||
6212 | ETH_P_1588)); /* 1588 eth protocol type */ | ||
6213 | else | ||
6214 | wr32(E1000_ETQF(3), 0); | ||
6215 | |||
6216 | #define PTP_PORT 319 | ||
6217 | /* L4 Queue Filter[3]: filter by destination port and protocol */ | ||
6218 | if (is_l4) { | ||
6219 | u32 ftqf = (IPPROTO_UDP /* UDP */ | ||
6220 | | E1000_FTQF_VF_BP /* VF not compared */ | ||
6221 | | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ | ||
6222 | | E1000_FTQF_MASK); /* mask all inputs */ | ||
6223 | ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ | ||
6224 | |||
6225 | wr32(E1000_IMIR(3), htons(PTP_PORT)); | ||
6226 | wr32(E1000_IMIREXT(3), | ||
6227 | (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); | ||
6228 | if (hw->mac.type == e1000_82576) { | ||
6229 | /* enable source port check */ | ||
6230 | wr32(E1000_SPQF(3), htons(PTP_PORT)); | ||
6231 | ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; | ||
6232 | } | ||
6233 | wr32(E1000_FTQF(3), ftqf); | ||
6234 | } else { | ||
6235 | wr32(E1000_FTQF(3), E1000_FTQF_MASK); | ||
6236 | } | ||
6237 | wrfl(); | ||
6238 | |||
6239 | adapter->hwtstamp_config = config; | ||
6240 | |||
6241 | /* clear TX/RX time stamp registers, just to be sure */ | ||
6242 | regval = rd32(E1000_TXSTMPH); | ||
6243 | regval = rd32(E1000_RXSTMPH); | ||
6244 | |||
6245 | return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? | ||
6246 | -EFAULT : 0; | ||
6247 | } | ||
6248 | |||
6249 | /** | ||
6250 | * igb_ioctl - | ||
6251 | * @netdev: | ||
6252 | * @ifreq: | ||
6253 | * @cmd: | ||
6254 | **/ | ||
6255 | static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
6256 | { | ||
6257 | switch (cmd) { | ||
6258 | case SIOCGMIIPHY: | ||
6259 | case SIOCGMIIREG: | ||
6260 | case SIOCSMIIREG: | ||
6261 | return igb_mii_ioctl(netdev, ifr, cmd); | ||
6262 | case SIOCSHWTSTAMP: | ||
6263 | return igb_hwtstamp_ioctl(netdev, ifr, cmd); | ||
6264 | default: | ||
6265 | return -EOPNOTSUPP; | ||
6266 | } | ||
6267 | } | ||
6268 | |||
6269 | s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) | ||
6270 | { | ||
6271 | struct igb_adapter *adapter = hw->back; | ||
6272 | u16 cap_offset; | ||
6273 | |||
6274 | cap_offset = adapter->pdev->pcie_cap; | ||
6275 | if (!cap_offset) | ||
6276 | return -E1000_ERR_CONFIG; | ||
6277 | |||
6278 | pci_read_config_word(adapter->pdev, cap_offset + reg, value); | ||
6279 | |||
6280 | return 0; | ||
6281 | } | ||
6282 | |||
6283 | s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) | ||
6284 | { | ||
6285 | struct igb_adapter *adapter = hw->back; | ||
6286 | u16 cap_offset; | ||
6287 | |||
6288 | cap_offset = adapter->pdev->pcie_cap; | ||
6289 | if (!cap_offset) | ||
6290 | return -E1000_ERR_CONFIG; | ||
6291 | |||
6292 | pci_write_config_word(adapter->pdev, cap_offset + reg, *value); | ||
6293 | |||
6294 | return 0; | ||
6295 | } | ||
6296 | |||
6297 | static void igb_vlan_mode(struct net_device *netdev, u32 features) | ||
6298 | { | ||
6299 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6300 | struct e1000_hw *hw = &adapter->hw; | ||
6301 | u32 ctrl, rctl; | ||
6302 | |||
6303 | igb_irq_disable(adapter); | ||
6304 | |||
6305 | if (features & NETIF_F_HW_VLAN_RX) { | ||
6306 | /* enable VLAN tag insert/strip */ | ||
6307 | ctrl = rd32(E1000_CTRL); | ||
6308 | ctrl |= E1000_CTRL_VME; | ||
6309 | wr32(E1000_CTRL, ctrl); | ||
6310 | |||
6311 | /* Disable CFI check */ | ||
6312 | rctl = rd32(E1000_RCTL); | ||
6313 | rctl &= ~E1000_RCTL_CFIEN; | ||
6314 | wr32(E1000_RCTL, rctl); | ||
6315 | } else { | ||
6316 | /* disable VLAN tag insert/strip */ | ||
6317 | ctrl = rd32(E1000_CTRL); | ||
6318 | ctrl &= ~E1000_CTRL_VME; | ||
6319 | wr32(E1000_CTRL, ctrl); | ||
6320 | } | ||
6321 | |||
6322 | igb_rlpml_set(adapter); | ||
6323 | |||
6324 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
6325 | igb_irq_enable(adapter); | ||
6326 | } | ||
6327 | |||
6328 | static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | ||
6329 | { | ||
6330 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6331 | struct e1000_hw *hw = &adapter->hw; | ||
6332 | int pf_id = adapter->vfs_allocated_count; | ||
6333 | |||
6334 | /* attempt to add filter to vlvf array */ | ||
6335 | igb_vlvf_set(adapter, vid, true, pf_id); | ||
6336 | |||
6337 | /* add the filter since PF can receive vlans w/o entry in vlvf */ | ||
6338 | igb_vfta_set(hw, vid, true); | ||
6339 | |||
6340 | set_bit(vid, adapter->active_vlans); | ||
6341 | } | ||
6342 | |||
6343 | static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | ||
6344 | { | ||
6345 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6346 | struct e1000_hw *hw = &adapter->hw; | ||
6347 | int pf_id = adapter->vfs_allocated_count; | ||
6348 | s32 err; | ||
6349 | |||
6350 | igb_irq_disable(adapter); | ||
6351 | |||
6352 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
6353 | igb_irq_enable(adapter); | ||
6354 | |||
6355 | /* remove vlan from VLVF table array */ | ||
6356 | err = igb_vlvf_set(adapter, vid, false, pf_id); | ||
6357 | |||
6358 | /* if vid was not present in VLVF just remove it from table */ | ||
6359 | if (err) | ||
6360 | igb_vfta_set(hw, vid, false); | ||
6361 | |||
6362 | clear_bit(vid, adapter->active_vlans); | ||
6363 | } | ||
6364 | |||
6365 | static void igb_restore_vlan(struct igb_adapter *adapter) | ||
6366 | { | ||
6367 | u16 vid; | ||
6368 | |||
6369 | for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) | ||
6370 | igb_vlan_rx_add_vid(adapter->netdev, vid); | ||
6371 | } | ||
6372 | |||
6373 | int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) | ||
6374 | { | ||
6375 | struct pci_dev *pdev = adapter->pdev; | ||
6376 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
6377 | |||
6378 | mac->autoneg = 0; | ||
6379 | |||
6380 | /* Make sure dplx is at most 1 bit and lsb of speed is not set | ||
6381 | * for the switch() below to work */ | ||
6382 | if ((spd & 1) || (dplx & ~1)) | ||
6383 | goto err_inval; | ||
6384 | |||
6385 | /* Fiber NIC's only allow 1000 Gbps Full duplex */ | ||
6386 | if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) && | ||
6387 | spd != SPEED_1000 && | ||
6388 | dplx != DUPLEX_FULL) | ||
6389 | goto err_inval; | ||
6390 | |||
6391 | switch (spd + dplx) { | ||
6392 | case SPEED_10 + DUPLEX_HALF: | ||
6393 | mac->forced_speed_duplex = ADVERTISE_10_HALF; | ||
6394 | break; | ||
6395 | case SPEED_10 + DUPLEX_FULL: | ||
6396 | mac->forced_speed_duplex = ADVERTISE_10_FULL; | ||
6397 | break; | ||
6398 | case SPEED_100 + DUPLEX_HALF: | ||
6399 | mac->forced_speed_duplex = ADVERTISE_100_HALF; | ||
6400 | break; | ||
6401 | case SPEED_100 + DUPLEX_FULL: | ||
6402 | mac->forced_speed_duplex = ADVERTISE_100_FULL; | ||
6403 | break; | ||
6404 | case SPEED_1000 + DUPLEX_FULL: | ||
6405 | mac->autoneg = 1; | ||
6406 | adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; | ||
6407 | break; | ||
6408 | case SPEED_1000 + DUPLEX_HALF: /* not supported */ | ||
6409 | default: | ||
6410 | goto err_inval; | ||
6411 | } | ||
6412 | return 0; | ||
6413 | |||
6414 | err_inval: | ||
6415 | dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); | ||
6416 | return -EINVAL; | ||
6417 | } | ||
6418 | |||
6419 | static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake) | ||
6420 | { | ||
6421 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
6422 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6423 | struct e1000_hw *hw = &adapter->hw; | ||
6424 | u32 ctrl, rctl, status; | ||
6425 | u32 wufc = adapter->wol; | ||
6426 | #ifdef CONFIG_PM | ||
6427 | int retval = 0; | ||
6428 | #endif | ||
6429 | |||
6430 | netif_device_detach(netdev); | ||
6431 | |||
6432 | if (netif_running(netdev)) | ||
6433 | igb_close(netdev); | ||
6434 | |||
6435 | igb_clear_interrupt_scheme(adapter); | ||
6436 | |||
6437 | #ifdef CONFIG_PM | ||
6438 | retval = pci_save_state(pdev); | ||
6439 | if (retval) | ||
6440 | return retval; | ||
6441 | #endif | ||
6442 | |||
6443 | status = rd32(E1000_STATUS); | ||
6444 | if (status & E1000_STATUS_LU) | ||
6445 | wufc &= ~E1000_WUFC_LNKC; | ||
6446 | |||
6447 | if (wufc) { | ||
6448 | igb_setup_rctl(adapter); | ||
6449 | igb_set_rx_mode(netdev); | ||
6450 | |||
6451 | /* turn on all-multi mode if wake on multicast is enabled */ | ||
6452 | if (wufc & E1000_WUFC_MC) { | ||
6453 | rctl = rd32(E1000_RCTL); | ||
6454 | rctl |= E1000_RCTL_MPE; | ||
6455 | wr32(E1000_RCTL, rctl); | ||
6456 | } | ||
6457 | |||
6458 | ctrl = rd32(E1000_CTRL); | ||
6459 | /* advertise wake from D3Cold */ | ||
6460 | #define E1000_CTRL_ADVD3WUC 0x00100000 | ||
6461 | /* phy power management enable */ | ||
6462 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | ||
6463 | ctrl |= E1000_CTRL_ADVD3WUC; | ||
6464 | wr32(E1000_CTRL, ctrl); | ||
6465 | |||
6466 | /* Allow time for pending master requests to run */ | ||
6467 | igb_disable_pcie_master(hw); | ||
6468 | |||
6469 | wr32(E1000_WUC, E1000_WUC_PME_EN); | ||
6470 | wr32(E1000_WUFC, wufc); | ||
6471 | } else { | ||
6472 | wr32(E1000_WUC, 0); | ||
6473 | wr32(E1000_WUFC, 0); | ||
6474 | } | ||
6475 | |||
6476 | *enable_wake = wufc || adapter->en_mng_pt; | ||
6477 | if (!*enable_wake) | ||
6478 | igb_power_down_link(adapter); | ||
6479 | else | ||
6480 | igb_power_up_link(adapter); | ||
6481 | |||
6482 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
6483 | * would have already happened in close and is redundant. */ | ||
6484 | igb_release_hw_control(adapter); | ||
6485 | |||
6486 | pci_disable_device(pdev); | ||
6487 | |||
6488 | return 0; | ||
6489 | } | ||
6490 | |||
6491 | #ifdef CONFIG_PM | ||
6492 | static int igb_suspend(struct pci_dev *pdev, pm_message_t state) | ||
6493 | { | ||
6494 | int retval; | ||
6495 | bool wake; | ||
6496 | |||
6497 | retval = __igb_shutdown(pdev, &wake); | ||
6498 | if (retval) | ||
6499 | return retval; | ||
6500 | |||
6501 | if (wake) { | ||
6502 | pci_prepare_to_sleep(pdev); | ||
6503 | } else { | ||
6504 | pci_wake_from_d3(pdev, false); | ||
6505 | pci_set_power_state(pdev, PCI_D3hot); | ||
6506 | } | ||
6507 | |||
6508 | return 0; | ||
6509 | } | ||
6510 | |||
6511 | static int igb_resume(struct pci_dev *pdev) | ||
6512 | { | ||
6513 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
6514 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6515 | struct e1000_hw *hw = &adapter->hw; | ||
6516 | u32 err; | ||
6517 | |||
6518 | pci_set_power_state(pdev, PCI_D0); | ||
6519 | pci_restore_state(pdev); | ||
6520 | pci_save_state(pdev); | ||
6521 | |||
6522 | err = pci_enable_device_mem(pdev); | ||
6523 | if (err) { | ||
6524 | dev_err(&pdev->dev, | ||
6525 | "igb: Cannot enable PCI device from suspend\n"); | ||
6526 | return err; | ||
6527 | } | ||
6528 | pci_set_master(pdev); | ||
6529 | |||
6530 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
6531 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
6532 | |||
6533 | if (igb_init_interrupt_scheme(adapter)) { | ||
6534 | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | ||
6535 | return -ENOMEM; | ||
6536 | } | ||
6537 | |||
6538 | igb_reset(adapter); | ||
6539 | |||
6540 | /* let the f/w know that the h/w is now under the control of the | ||
6541 | * driver. */ | ||
6542 | igb_get_hw_control(adapter); | ||
6543 | |||
6544 | wr32(E1000_WUS, ~0); | ||
6545 | |||
6546 | if (netif_running(netdev)) { | ||
6547 | err = igb_open(netdev); | ||
6548 | if (err) | ||
6549 | return err; | ||
6550 | } | ||
6551 | |||
6552 | netif_device_attach(netdev); | ||
6553 | |||
6554 | return 0; | ||
6555 | } | ||
6556 | #endif | ||
6557 | |||
6558 | static void igb_shutdown(struct pci_dev *pdev) | ||
6559 | { | ||
6560 | bool wake; | ||
6561 | |||
6562 | __igb_shutdown(pdev, &wake); | ||
6563 | |||
6564 | if (system_state == SYSTEM_POWER_OFF) { | ||
6565 | pci_wake_from_d3(pdev, wake); | ||
6566 | pci_set_power_state(pdev, PCI_D3hot); | ||
6567 | } | ||
6568 | } | ||
6569 | |||
6570 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
6571 | /* | ||
6572 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
6573 | * without having to re-enable interrupts. It's not called while | ||
6574 | * the interrupt routine is executing. | ||
6575 | */ | ||
6576 | static void igb_netpoll(struct net_device *netdev) | ||
6577 | { | ||
6578 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6579 | struct e1000_hw *hw = &adapter->hw; | ||
6580 | int i; | ||
6581 | |||
6582 | if (!adapter->msix_entries) { | ||
6583 | struct igb_q_vector *q_vector = adapter->q_vector[0]; | ||
6584 | igb_irq_disable(adapter); | ||
6585 | napi_schedule(&q_vector->napi); | ||
6586 | return; | ||
6587 | } | ||
6588 | |||
6589 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
6590 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
6591 | wr32(E1000_EIMC, q_vector->eims_value); | ||
6592 | napi_schedule(&q_vector->napi); | ||
6593 | } | ||
6594 | } | ||
6595 | #endif /* CONFIG_NET_POLL_CONTROLLER */ | ||
6596 | |||
6597 | /** | ||
6598 | * igb_io_error_detected - called when PCI error is detected | ||
6599 | * @pdev: Pointer to PCI device | ||
6600 | * @state: The current pci connection state | ||
6601 | * | ||
6602 | * This function is called after a PCI bus error affecting | ||
6603 | * this device has been detected. | ||
6604 | */ | ||
6605 | static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, | ||
6606 | pci_channel_state_t state) | ||
6607 | { | ||
6608 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
6609 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6610 | |||
6611 | netif_device_detach(netdev); | ||
6612 | |||
6613 | if (state == pci_channel_io_perm_failure) | ||
6614 | return PCI_ERS_RESULT_DISCONNECT; | ||
6615 | |||
6616 | if (netif_running(netdev)) | ||
6617 | igb_down(adapter); | ||
6618 | pci_disable_device(pdev); | ||
6619 | |||
6620 | /* Request a slot slot reset. */ | ||
6621 | return PCI_ERS_RESULT_NEED_RESET; | ||
6622 | } | ||
6623 | |||
6624 | /** | ||
6625 | * igb_io_slot_reset - called after the pci bus has been reset. | ||
6626 | * @pdev: Pointer to PCI device | ||
6627 | * | ||
6628 | * Restart the card from scratch, as if from a cold-boot. Implementation | ||
6629 | * resembles the first-half of the igb_resume routine. | ||
6630 | */ | ||
6631 | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) | ||
6632 | { | ||
6633 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
6634 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6635 | struct e1000_hw *hw = &adapter->hw; | ||
6636 | pci_ers_result_t result; | ||
6637 | int err; | ||
6638 | |||
6639 | if (pci_enable_device_mem(pdev)) { | ||
6640 | dev_err(&pdev->dev, | ||
6641 | "Cannot re-enable PCI device after reset.\n"); | ||
6642 | result = PCI_ERS_RESULT_DISCONNECT; | ||
6643 | } else { | ||
6644 | pci_set_master(pdev); | ||
6645 | pci_restore_state(pdev); | ||
6646 | pci_save_state(pdev); | ||
6647 | |||
6648 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
6649 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
6650 | |||
6651 | igb_reset(adapter); | ||
6652 | wr32(E1000_WUS, ~0); | ||
6653 | result = PCI_ERS_RESULT_RECOVERED; | ||
6654 | } | ||
6655 | |||
6656 | err = pci_cleanup_aer_uncorrect_error_status(pdev); | ||
6657 | if (err) { | ||
6658 | dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status " | ||
6659 | "failed 0x%0x\n", err); | ||
6660 | /* non-fatal, continue */ | ||
6661 | } | ||
6662 | |||
6663 | return result; | ||
6664 | } | ||
6665 | |||
6666 | /** | ||
6667 | * igb_io_resume - called when traffic can start flowing again. | ||
6668 | * @pdev: Pointer to PCI device | ||
6669 | * | ||
6670 | * This callback is called when the error recovery driver tells us that | ||
6671 | * its OK to resume normal operation. Implementation resembles the | ||
6672 | * second-half of the igb_resume routine. | ||
6673 | */ | ||
6674 | static void igb_io_resume(struct pci_dev *pdev) | ||
6675 | { | ||
6676 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
6677 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6678 | |||
6679 | if (netif_running(netdev)) { | ||
6680 | if (igb_up(adapter)) { | ||
6681 | dev_err(&pdev->dev, "igb_up failed after reset\n"); | ||
6682 | return; | ||
6683 | } | ||
6684 | } | ||
6685 | |||
6686 | netif_device_attach(netdev); | ||
6687 | |||
6688 | /* let the f/w know that the h/w is now under the control of the | ||
6689 | * driver. */ | ||
6690 | igb_get_hw_control(adapter); | ||
6691 | } | ||
6692 | |||
6693 | static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, | ||
6694 | u8 qsel) | ||
6695 | { | ||
6696 | u32 rar_low, rar_high; | ||
6697 | struct e1000_hw *hw = &adapter->hw; | ||
6698 | |||
6699 | /* HW expects these in little endian so we reverse the byte order | ||
6700 | * from network order (big endian) to little endian | ||
6701 | */ | ||
6702 | rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | | ||
6703 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | ||
6704 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | ||
6705 | |||
6706 | /* Indicate to hardware the Address is Valid. */ | ||
6707 | rar_high |= E1000_RAH_AV; | ||
6708 | |||
6709 | if (hw->mac.type == e1000_82575) | ||
6710 | rar_high |= E1000_RAH_POOL_1 * qsel; | ||
6711 | else | ||
6712 | rar_high |= E1000_RAH_POOL_1 << qsel; | ||
6713 | |||
6714 | wr32(E1000_RAL(index), rar_low); | ||
6715 | wrfl(); | ||
6716 | wr32(E1000_RAH(index), rar_high); | ||
6717 | wrfl(); | ||
6718 | } | ||
6719 | |||
6720 | static int igb_set_vf_mac(struct igb_adapter *adapter, | ||
6721 | int vf, unsigned char *mac_addr) | ||
6722 | { | ||
6723 | struct e1000_hw *hw = &adapter->hw; | ||
6724 | /* VF MAC addresses start at end of receive addresses and moves | ||
6725 | * torwards the first, as a result a collision should not be possible */ | ||
6726 | int rar_entry = hw->mac.rar_entry_count - (vf + 1); | ||
6727 | |||
6728 | memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); | ||
6729 | |||
6730 | igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); | ||
6731 | |||
6732 | return 0; | ||
6733 | } | ||
6734 | |||
6735 | static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) | ||
6736 | { | ||
6737 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6738 | if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) | ||
6739 | return -EINVAL; | ||
6740 | adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; | ||
6741 | dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); | ||
6742 | dev_info(&adapter->pdev->dev, "Reload the VF driver to make this" | ||
6743 | " change effective."); | ||
6744 | if (test_bit(__IGB_DOWN, &adapter->state)) { | ||
6745 | dev_warn(&adapter->pdev->dev, "The VF MAC address has been set," | ||
6746 | " but the PF device is not up.\n"); | ||
6747 | dev_warn(&adapter->pdev->dev, "Bring the PF device up before" | ||
6748 | " attempting to use the VF device.\n"); | ||
6749 | } | ||
6750 | return igb_set_vf_mac(adapter, vf, mac); | ||
6751 | } | ||
6752 | |||
6753 | static int igb_link_mbps(int internal_link_speed) | ||
6754 | { | ||
6755 | switch (internal_link_speed) { | ||
6756 | case SPEED_100: | ||
6757 | return 100; | ||
6758 | case SPEED_1000: | ||
6759 | return 1000; | ||
6760 | default: | ||
6761 | return 0; | ||
6762 | } | ||
6763 | } | ||
6764 | |||
6765 | static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, | ||
6766 | int link_speed) | ||
6767 | { | ||
6768 | int rf_dec, rf_int; | ||
6769 | u32 bcnrc_val; | ||
6770 | |||
6771 | if (tx_rate != 0) { | ||
6772 | /* Calculate the rate factor values to set */ | ||
6773 | rf_int = link_speed / tx_rate; | ||
6774 | rf_dec = (link_speed - (rf_int * tx_rate)); | ||
6775 | rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate; | ||
6776 | |||
6777 | bcnrc_val = E1000_RTTBCNRC_RS_ENA; | ||
6778 | bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) & | ||
6779 | E1000_RTTBCNRC_RF_INT_MASK); | ||
6780 | bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); | ||
6781 | } else { | ||
6782 | bcnrc_val = 0; | ||
6783 | } | ||
6784 | |||
6785 | wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ | ||
6786 | wr32(E1000_RTTBCNRC, bcnrc_val); | ||
6787 | } | ||
6788 | |||
6789 | static void igb_check_vf_rate_limit(struct igb_adapter *adapter) | ||
6790 | { | ||
6791 | int actual_link_speed, i; | ||
6792 | bool reset_rate = false; | ||
6793 | |||
6794 | /* VF TX rate limit was not set or not supported */ | ||
6795 | if ((adapter->vf_rate_link_speed == 0) || | ||
6796 | (adapter->hw.mac.type != e1000_82576)) | ||
6797 | return; | ||
6798 | |||
6799 | actual_link_speed = igb_link_mbps(adapter->link_speed); | ||
6800 | if (actual_link_speed != adapter->vf_rate_link_speed) { | ||
6801 | reset_rate = true; | ||
6802 | adapter->vf_rate_link_speed = 0; | ||
6803 | dev_info(&adapter->pdev->dev, | ||
6804 | "Link speed has been changed. VF Transmit " | ||
6805 | "rate is disabled\n"); | ||
6806 | } | ||
6807 | |||
6808 | for (i = 0; i < adapter->vfs_allocated_count; i++) { | ||
6809 | if (reset_rate) | ||
6810 | adapter->vf_data[i].tx_rate = 0; | ||
6811 | |||
6812 | igb_set_vf_rate_limit(&adapter->hw, i, | ||
6813 | adapter->vf_data[i].tx_rate, | ||
6814 | actual_link_speed); | ||
6815 | } | ||
6816 | } | ||
6817 | |||
6818 | static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate) | ||
6819 | { | ||
6820 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6821 | struct e1000_hw *hw = &adapter->hw; | ||
6822 | int actual_link_speed; | ||
6823 | |||
6824 | if (hw->mac.type != e1000_82576) | ||
6825 | return -EOPNOTSUPP; | ||
6826 | |||
6827 | actual_link_speed = igb_link_mbps(adapter->link_speed); | ||
6828 | if ((vf >= adapter->vfs_allocated_count) || | ||
6829 | (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || | ||
6830 | (tx_rate < 0) || (tx_rate > actual_link_speed)) | ||
6831 | return -EINVAL; | ||
6832 | |||
6833 | adapter->vf_rate_link_speed = actual_link_speed; | ||
6834 | adapter->vf_data[vf].tx_rate = (u16)tx_rate; | ||
6835 | igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed); | ||
6836 | |||
6837 | return 0; | ||
6838 | } | ||
6839 | |||
6840 | static int igb_ndo_get_vf_config(struct net_device *netdev, | ||
6841 | int vf, struct ifla_vf_info *ivi) | ||
6842 | { | ||
6843 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6844 | if (vf >= adapter->vfs_allocated_count) | ||
6845 | return -EINVAL; | ||
6846 | ivi->vf = vf; | ||
6847 | memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); | ||
6848 | ivi->tx_rate = adapter->vf_data[vf].tx_rate; | ||
6849 | ivi->vlan = adapter->vf_data[vf].pf_vlan; | ||
6850 | ivi->qos = adapter->vf_data[vf].pf_qos; | ||
6851 | return 0; | ||
6852 | } | ||
6853 | |||
6854 | static void igb_vmm_control(struct igb_adapter *adapter) | ||
6855 | { | ||
6856 | struct e1000_hw *hw = &adapter->hw; | ||
6857 | u32 reg; | ||
6858 | |||
6859 | switch (hw->mac.type) { | ||
6860 | case e1000_82575: | ||
6861 | default: | ||
6862 | /* replication is not supported for 82575 */ | ||
6863 | return; | ||
6864 | case e1000_82576: | ||
6865 | /* notify HW that the MAC is adding vlan tags */ | ||
6866 | reg = rd32(E1000_DTXCTL); | ||
6867 | reg |= E1000_DTXCTL_VLAN_ADDED; | ||
6868 | wr32(E1000_DTXCTL, reg); | ||
6869 | case e1000_82580: | ||
6870 | /* enable replication vlan tag stripping */ | ||
6871 | reg = rd32(E1000_RPLOLR); | ||
6872 | reg |= E1000_RPLOLR_STRVLAN; | ||
6873 | wr32(E1000_RPLOLR, reg); | ||
6874 | case e1000_i350: | ||
6875 | /* none of the above registers are supported by i350 */ | ||
6876 | break; | ||
6877 | } | ||
6878 | |||
6879 | if (adapter->vfs_allocated_count) { | ||
6880 | igb_vmdq_set_loopback_pf(hw, true); | ||
6881 | igb_vmdq_set_replication_pf(hw, true); | ||
6882 | igb_vmdq_set_anti_spoofing_pf(hw, true, | ||
6883 | adapter->vfs_allocated_count); | ||
6884 | } else { | ||
6885 | igb_vmdq_set_loopback_pf(hw, false); | ||
6886 | igb_vmdq_set_replication_pf(hw, false); | ||
6887 | } | ||
6888 | } | ||
6889 | |||
6890 | /* igb_main.c */ | ||