diff options
Diffstat (limited to 'drivers/net/igb/igb_main.c')
-rw-r--r-- | drivers/net/igb/igb_main.c | 6890 |
1 files changed, 6890 insertions, 0 deletions
diff --git a/drivers/net/igb/igb_main.c b/drivers/net/igb/igb_main.c new file mode 100644 index 00000000000..40d4c405fd7 --- /dev/null +++ b/drivers/net/igb/igb_main.c | |||
@@ -0,0 +1,6890 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/module.h> | ||
29 | #include <linux/types.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/bitops.h> | ||
32 | #include <linux/vmalloc.h> | ||
33 | #include <linux/pagemap.h> | ||
34 | #include <linux/netdevice.h> | ||
35 | #include <linux/ipv6.h> | ||
36 | #include <linux/slab.h> | ||
37 | #include <net/checksum.h> | ||
38 | #include <net/ip6_checksum.h> | ||
39 | #include <linux/net_tstamp.h> | ||
40 | #include <linux/mii.h> | ||
41 | #include <linux/ethtool.h> | ||
42 | #include <linux/if_vlan.h> | ||
43 | #include <linux/pci.h> | ||
44 | #include <linux/pci-aspm.h> | ||
45 | #include <linux/delay.h> | ||
46 | #include <linux/interrupt.h> | ||
47 | #include <linux/if_ether.h> | ||
48 | #include <linux/aer.h> | ||
49 | #include <linux/prefetch.h> | ||
50 | #ifdef CONFIG_IGB_DCA | ||
51 | #include <linux/dca.h> | ||
52 | #endif | ||
53 | #include "igb.h" | ||
54 | |||
55 | #define MAJ 3 | ||
56 | #define MIN 0 | ||
57 | #define BUILD 6 | ||
58 | #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ | ||
59 | __stringify(BUILD) "-k" | ||
60 | char igb_driver_name[] = "igb"; | ||
61 | char igb_driver_version[] = DRV_VERSION; | ||
62 | static const char igb_driver_string[] = | ||
63 | "Intel(R) Gigabit Ethernet Network Driver"; | ||
64 | static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation."; | ||
65 | |||
66 | static const struct e1000_info *igb_info_tbl[] = { | ||
67 | [board_82575] = &e1000_82575_info, | ||
68 | }; | ||
69 | |||
70 | static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = { | ||
71 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, | ||
72 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, | ||
73 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, | ||
74 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, | ||
75 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, | ||
76 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, | ||
77 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, | ||
78 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, | ||
79 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, | ||
80 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, | ||
81 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, | ||
82 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, | ||
83 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, | ||
84 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, | ||
85 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, | ||
86 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, | ||
87 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, | ||
88 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, | ||
89 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, | ||
90 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, | ||
91 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, | ||
92 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, | ||
93 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, | ||
94 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, | ||
95 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, | ||
96 | /* required last entry */ | ||
97 | {0, } | ||
98 | }; | ||
99 | |||
100 | MODULE_DEVICE_TABLE(pci, igb_pci_tbl); | ||
101 | |||
102 | void igb_reset(struct igb_adapter *); | ||
103 | static int igb_setup_all_tx_resources(struct igb_adapter *); | ||
104 | static int igb_setup_all_rx_resources(struct igb_adapter *); | ||
105 | static void igb_free_all_tx_resources(struct igb_adapter *); | ||
106 | static void igb_free_all_rx_resources(struct igb_adapter *); | ||
107 | static void igb_setup_mrqc(struct igb_adapter *); | ||
108 | static int igb_probe(struct pci_dev *, const struct pci_device_id *); | ||
109 | static void __devexit igb_remove(struct pci_dev *pdev); | ||
110 | static void igb_init_hw_timer(struct igb_adapter *adapter); | ||
111 | static int igb_sw_init(struct igb_adapter *); | ||
112 | static int igb_open(struct net_device *); | ||
113 | static int igb_close(struct net_device *); | ||
114 | static void igb_configure_tx(struct igb_adapter *); | ||
115 | static void igb_configure_rx(struct igb_adapter *); | ||
116 | static void igb_clean_all_tx_rings(struct igb_adapter *); | ||
117 | static void igb_clean_all_rx_rings(struct igb_adapter *); | ||
118 | static void igb_clean_tx_ring(struct igb_ring *); | ||
119 | static void igb_clean_rx_ring(struct igb_ring *); | ||
120 | static void igb_set_rx_mode(struct net_device *); | ||
121 | static void igb_update_phy_info(unsigned long); | ||
122 | static void igb_watchdog(unsigned long); | ||
123 | static void igb_watchdog_task(struct work_struct *); | ||
124 | static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *); | ||
125 | static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, | ||
126 | struct rtnl_link_stats64 *stats); | ||
127 | static int igb_change_mtu(struct net_device *, int); | ||
128 | static int igb_set_mac(struct net_device *, void *); | ||
129 | static void igb_set_uta(struct igb_adapter *adapter); | ||
130 | static irqreturn_t igb_intr(int irq, void *); | ||
131 | static irqreturn_t igb_intr_msi(int irq, void *); | ||
132 | static irqreturn_t igb_msix_other(int irq, void *); | ||
133 | static irqreturn_t igb_msix_ring(int irq, void *); | ||
134 | #ifdef CONFIG_IGB_DCA | ||
135 | static void igb_update_dca(struct igb_q_vector *); | ||
136 | static void igb_setup_dca(struct igb_adapter *); | ||
137 | #endif /* CONFIG_IGB_DCA */ | ||
138 | static bool igb_clean_tx_irq(struct igb_q_vector *); | ||
139 | static int igb_poll(struct napi_struct *, int); | ||
140 | static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int); | ||
141 | static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); | ||
142 | static void igb_tx_timeout(struct net_device *); | ||
143 | static void igb_reset_task(struct work_struct *); | ||
144 | static void igb_vlan_mode(struct net_device *netdev, u32 features); | ||
145 | static void igb_vlan_rx_add_vid(struct net_device *, u16); | ||
146 | static void igb_vlan_rx_kill_vid(struct net_device *, u16); | ||
147 | static void igb_restore_vlan(struct igb_adapter *); | ||
148 | static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); | ||
149 | static void igb_ping_all_vfs(struct igb_adapter *); | ||
150 | static void igb_msg_task(struct igb_adapter *); | ||
151 | static void igb_vmm_control(struct igb_adapter *); | ||
152 | static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); | ||
153 | static void igb_restore_vf_multicasts(struct igb_adapter *adapter); | ||
154 | static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); | ||
155 | static int igb_ndo_set_vf_vlan(struct net_device *netdev, | ||
156 | int vf, u16 vlan, u8 qos); | ||
157 | static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate); | ||
158 | static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, | ||
159 | struct ifla_vf_info *ivi); | ||
160 | static void igb_check_vf_rate_limit(struct igb_adapter *); | ||
161 | |||
162 | #ifdef CONFIG_PM | ||
163 | static int igb_suspend(struct pci_dev *, pm_message_t); | ||
164 | static int igb_resume(struct pci_dev *); | ||
165 | #endif | ||
166 | static void igb_shutdown(struct pci_dev *); | ||
167 | #ifdef CONFIG_IGB_DCA | ||
168 | static int igb_notify_dca(struct notifier_block *, unsigned long, void *); | ||
169 | static struct notifier_block dca_notifier = { | ||
170 | .notifier_call = igb_notify_dca, | ||
171 | .next = NULL, | ||
172 | .priority = 0 | ||
173 | }; | ||
174 | #endif | ||
175 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
176 | /* for netdump / net console */ | ||
177 | static void igb_netpoll(struct net_device *); | ||
178 | #endif | ||
179 | #ifdef CONFIG_PCI_IOV | ||
180 | static unsigned int max_vfs = 0; | ||
181 | module_param(max_vfs, uint, 0); | ||
182 | MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate " | ||
183 | "per physical function"); | ||
184 | #endif /* CONFIG_PCI_IOV */ | ||
185 | |||
186 | static pci_ers_result_t igb_io_error_detected(struct pci_dev *, | ||
187 | pci_channel_state_t); | ||
188 | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); | ||
189 | static void igb_io_resume(struct pci_dev *); | ||
190 | |||
191 | static struct pci_error_handlers igb_err_handler = { | ||
192 | .error_detected = igb_io_error_detected, | ||
193 | .slot_reset = igb_io_slot_reset, | ||
194 | .resume = igb_io_resume, | ||
195 | }; | ||
196 | |||
197 | |||
198 | static struct pci_driver igb_driver = { | ||
199 | .name = igb_driver_name, | ||
200 | .id_table = igb_pci_tbl, | ||
201 | .probe = igb_probe, | ||
202 | .remove = __devexit_p(igb_remove), | ||
203 | #ifdef CONFIG_PM | ||
204 | /* Power Management Hooks */ | ||
205 | .suspend = igb_suspend, | ||
206 | .resume = igb_resume, | ||
207 | #endif | ||
208 | .shutdown = igb_shutdown, | ||
209 | .err_handler = &igb_err_handler | ||
210 | }; | ||
211 | |||
212 | MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); | ||
213 | MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); | ||
214 | MODULE_LICENSE("GPL"); | ||
215 | MODULE_VERSION(DRV_VERSION); | ||
216 | |||
217 | struct igb_reg_info { | ||
218 | u32 ofs; | ||
219 | char *name; | ||
220 | }; | ||
221 | |||
222 | static const struct igb_reg_info igb_reg_info_tbl[] = { | ||
223 | |||
224 | /* General Registers */ | ||
225 | {E1000_CTRL, "CTRL"}, | ||
226 | {E1000_STATUS, "STATUS"}, | ||
227 | {E1000_CTRL_EXT, "CTRL_EXT"}, | ||
228 | |||
229 | /* Interrupt Registers */ | ||
230 | {E1000_ICR, "ICR"}, | ||
231 | |||
232 | /* RX Registers */ | ||
233 | {E1000_RCTL, "RCTL"}, | ||
234 | {E1000_RDLEN(0), "RDLEN"}, | ||
235 | {E1000_RDH(0), "RDH"}, | ||
236 | {E1000_RDT(0), "RDT"}, | ||
237 | {E1000_RXDCTL(0), "RXDCTL"}, | ||
238 | {E1000_RDBAL(0), "RDBAL"}, | ||
239 | {E1000_RDBAH(0), "RDBAH"}, | ||
240 | |||
241 | /* TX Registers */ | ||
242 | {E1000_TCTL, "TCTL"}, | ||
243 | {E1000_TDBAL(0), "TDBAL"}, | ||
244 | {E1000_TDBAH(0), "TDBAH"}, | ||
245 | {E1000_TDLEN(0), "TDLEN"}, | ||
246 | {E1000_TDH(0), "TDH"}, | ||
247 | {E1000_TDT(0), "TDT"}, | ||
248 | {E1000_TXDCTL(0), "TXDCTL"}, | ||
249 | {E1000_TDFH, "TDFH"}, | ||
250 | {E1000_TDFT, "TDFT"}, | ||
251 | {E1000_TDFHS, "TDFHS"}, | ||
252 | {E1000_TDFPC, "TDFPC"}, | ||
253 | |||
254 | /* List Terminator */ | ||
255 | {} | ||
256 | }; | ||
257 | |||
258 | /* | ||
259 | * igb_regdump - register printout routine | ||
260 | */ | ||
261 | static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) | ||
262 | { | ||
263 | int n = 0; | ||
264 | char rname[16]; | ||
265 | u32 regs[8]; | ||
266 | |||
267 | switch (reginfo->ofs) { | ||
268 | case E1000_RDLEN(0): | ||
269 | for (n = 0; n < 4; n++) | ||
270 | regs[n] = rd32(E1000_RDLEN(n)); | ||
271 | break; | ||
272 | case E1000_RDH(0): | ||
273 | for (n = 0; n < 4; n++) | ||
274 | regs[n] = rd32(E1000_RDH(n)); | ||
275 | break; | ||
276 | case E1000_RDT(0): | ||
277 | for (n = 0; n < 4; n++) | ||
278 | regs[n] = rd32(E1000_RDT(n)); | ||
279 | break; | ||
280 | case E1000_RXDCTL(0): | ||
281 | for (n = 0; n < 4; n++) | ||
282 | regs[n] = rd32(E1000_RXDCTL(n)); | ||
283 | break; | ||
284 | case E1000_RDBAL(0): | ||
285 | for (n = 0; n < 4; n++) | ||
286 | regs[n] = rd32(E1000_RDBAL(n)); | ||
287 | break; | ||
288 | case E1000_RDBAH(0): | ||
289 | for (n = 0; n < 4; n++) | ||
290 | regs[n] = rd32(E1000_RDBAH(n)); | ||
291 | break; | ||
292 | case E1000_TDBAL(0): | ||
293 | for (n = 0; n < 4; n++) | ||
294 | regs[n] = rd32(E1000_RDBAL(n)); | ||
295 | break; | ||
296 | case E1000_TDBAH(0): | ||
297 | for (n = 0; n < 4; n++) | ||
298 | regs[n] = rd32(E1000_TDBAH(n)); | ||
299 | break; | ||
300 | case E1000_TDLEN(0): | ||
301 | for (n = 0; n < 4; n++) | ||
302 | regs[n] = rd32(E1000_TDLEN(n)); | ||
303 | break; | ||
304 | case E1000_TDH(0): | ||
305 | for (n = 0; n < 4; n++) | ||
306 | regs[n] = rd32(E1000_TDH(n)); | ||
307 | break; | ||
308 | case E1000_TDT(0): | ||
309 | for (n = 0; n < 4; n++) | ||
310 | regs[n] = rd32(E1000_TDT(n)); | ||
311 | break; | ||
312 | case E1000_TXDCTL(0): | ||
313 | for (n = 0; n < 4; n++) | ||
314 | regs[n] = rd32(E1000_TXDCTL(n)); | ||
315 | break; | ||
316 | default: | ||
317 | printk(KERN_INFO "%-15s %08x\n", | ||
318 | reginfo->name, rd32(reginfo->ofs)); | ||
319 | return; | ||
320 | } | ||
321 | |||
322 | snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); | ||
323 | printk(KERN_INFO "%-15s ", rname); | ||
324 | for (n = 0; n < 4; n++) | ||
325 | printk(KERN_CONT "%08x ", regs[n]); | ||
326 | printk(KERN_CONT "\n"); | ||
327 | } | ||
328 | |||
329 | /* | ||
330 | * igb_dump - Print registers, tx-rings and rx-rings | ||
331 | */ | ||
332 | static void igb_dump(struct igb_adapter *adapter) | ||
333 | { | ||
334 | struct net_device *netdev = adapter->netdev; | ||
335 | struct e1000_hw *hw = &adapter->hw; | ||
336 | struct igb_reg_info *reginfo; | ||
337 | int n = 0; | ||
338 | struct igb_ring *tx_ring; | ||
339 | union e1000_adv_tx_desc *tx_desc; | ||
340 | struct my_u0 { u64 a; u64 b; } *u0; | ||
341 | struct igb_buffer *buffer_info; | ||
342 | struct igb_ring *rx_ring; | ||
343 | union e1000_adv_rx_desc *rx_desc; | ||
344 | u32 staterr; | ||
345 | int i = 0; | ||
346 | |||
347 | if (!netif_msg_hw(adapter)) | ||
348 | return; | ||
349 | |||
350 | /* Print netdevice Info */ | ||
351 | if (netdev) { | ||
352 | dev_info(&adapter->pdev->dev, "Net device Info\n"); | ||
353 | printk(KERN_INFO "Device Name state " | ||
354 | "trans_start last_rx\n"); | ||
355 | printk(KERN_INFO "%-15s %016lX %016lX %016lX\n", | ||
356 | netdev->name, | ||
357 | netdev->state, | ||
358 | netdev->trans_start, | ||
359 | netdev->last_rx); | ||
360 | } | ||
361 | |||
362 | /* Print Registers */ | ||
363 | dev_info(&adapter->pdev->dev, "Register Dump\n"); | ||
364 | printk(KERN_INFO " Register Name Value\n"); | ||
365 | for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; | ||
366 | reginfo->name; reginfo++) { | ||
367 | igb_regdump(hw, reginfo); | ||
368 | } | ||
369 | |||
370 | /* Print TX Ring Summary */ | ||
371 | if (!netdev || !netif_running(netdev)) | ||
372 | goto exit; | ||
373 | |||
374 | dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); | ||
375 | printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]" | ||
376 | " leng ntw timestamp\n"); | ||
377 | for (n = 0; n < adapter->num_tx_queues; n++) { | ||
378 | tx_ring = adapter->tx_ring[n]; | ||
379 | buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; | ||
380 | printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n", | ||
381 | n, tx_ring->next_to_use, tx_ring->next_to_clean, | ||
382 | (u64)buffer_info->dma, | ||
383 | buffer_info->length, | ||
384 | buffer_info->next_to_watch, | ||
385 | (u64)buffer_info->time_stamp); | ||
386 | } | ||
387 | |||
388 | /* Print TX Rings */ | ||
389 | if (!netif_msg_tx_done(adapter)) | ||
390 | goto rx_ring_summary; | ||
391 | |||
392 | dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); | ||
393 | |||
394 | /* Transmit Descriptor Formats | ||
395 | * | ||
396 | * Advanced Transmit Descriptor | ||
397 | * +--------------------------------------------------------------+ | ||
398 | * 0 | Buffer Address [63:0] | | ||
399 | * +--------------------------------------------------------------+ | ||
400 | * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | | ||
401 | * +--------------------------------------------------------------+ | ||
402 | * 63 46 45 40 39 38 36 35 32 31 24 15 0 | ||
403 | */ | ||
404 | |||
405 | for (n = 0; n < adapter->num_tx_queues; n++) { | ||
406 | tx_ring = adapter->tx_ring[n]; | ||
407 | printk(KERN_INFO "------------------------------------\n"); | ||
408 | printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index); | ||
409 | printk(KERN_INFO "------------------------------------\n"); | ||
410 | printk(KERN_INFO "T [desc] [address 63:0 ] " | ||
411 | "[PlPOCIStDDM Ln] [bi->dma ] " | ||
412 | "leng ntw timestamp bi->skb\n"); | ||
413 | |||
414 | for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { | ||
415 | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | ||
416 | buffer_info = &tx_ring->buffer_info[i]; | ||
417 | u0 = (struct my_u0 *)tx_desc; | ||
418 | printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX" | ||
419 | " %04X %3X %016llX %p", i, | ||
420 | le64_to_cpu(u0->a), | ||
421 | le64_to_cpu(u0->b), | ||
422 | (u64)buffer_info->dma, | ||
423 | buffer_info->length, | ||
424 | buffer_info->next_to_watch, | ||
425 | (u64)buffer_info->time_stamp, | ||
426 | buffer_info->skb); | ||
427 | if (i == tx_ring->next_to_use && | ||
428 | i == tx_ring->next_to_clean) | ||
429 | printk(KERN_CONT " NTC/U\n"); | ||
430 | else if (i == tx_ring->next_to_use) | ||
431 | printk(KERN_CONT " NTU\n"); | ||
432 | else if (i == tx_ring->next_to_clean) | ||
433 | printk(KERN_CONT " NTC\n"); | ||
434 | else | ||
435 | printk(KERN_CONT "\n"); | ||
436 | |||
437 | if (netif_msg_pktdata(adapter) && buffer_info->dma != 0) | ||
438 | print_hex_dump(KERN_INFO, "", | ||
439 | DUMP_PREFIX_ADDRESS, | ||
440 | 16, 1, phys_to_virt(buffer_info->dma), | ||
441 | buffer_info->length, true); | ||
442 | } | ||
443 | } | ||
444 | |||
445 | /* Print RX Rings Summary */ | ||
446 | rx_ring_summary: | ||
447 | dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); | ||
448 | printk(KERN_INFO "Queue [NTU] [NTC]\n"); | ||
449 | for (n = 0; n < adapter->num_rx_queues; n++) { | ||
450 | rx_ring = adapter->rx_ring[n]; | ||
451 | printk(KERN_INFO " %5d %5X %5X\n", n, | ||
452 | rx_ring->next_to_use, rx_ring->next_to_clean); | ||
453 | } | ||
454 | |||
455 | /* Print RX Rings */ | ||
456 | if (!netif_msg_rx_status(adapter)) | ||
457 | goto exit; | ||
458 | |||
459 | dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); | ||
460 | |||
461 | /* Advanced Receive Descriptor (Read) Format | ||
462 | * 63 1 0 | ||
463 | * +-----------------------------------------------------+ | ||
464 | * 0 | Packet Buffer Address [63:1] |A0/NSE| | ||
465 | * +----------------------------------------------+------+ | ||
466 | * 8 | Header Buffer Address [63:1] | DD | | ||
467 | * +-----------------------------------------------------+ | ||
468 | * | ||
469 | * | ||
470 | * Advanced Receive Descriptor (Write-Back) Format | ||
471 | * | ||
472 | * 63 48 47 32 31 30 21 20 17 16 4 3 0 | ||
473 | * +------------------------------------------------------+ | ||
474 | * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | | ||
475 | * | Checksum Ident | | | | Type | Type | | ||
476 | * +------------------------------------------------------+ | ||
477 | * 8 | VLAN Tag | Length | Extended Error | Extended Status | | ||
478 | * +------------------------------------------------------+ | ||
479 | * 63 48 47 32 31 20 19 0 | ||
480 | */ | ||
481 | |||
482 | for (n = 0; n < adapter->num_rx_queues; n++) { | ||
483 | rx_ring = adapter->rx_ring[n]; | ||
484 | printk(KERN_INFO "------------------------------------\n"); | ||
485 | printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index); | ||
486 | printk(KERN_INFO "------------------------------------\n"); | ||
487 | printk(KERN_INFO "R [desc] [ PktBuf A0] " | ||
488 | "[ HeadBuf DD] [bi->dma ] [bi->skb] " | ||
489 | "<-- Adv Rx Read format\n"); | ||
490 | printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] " | ||
491 | "[vl er S cks ln] ---------------- [bi->skb] " | ||
492 | "<-- Adv Rx Write-Back format\n"); | ||
493 | |||
494 | for (i = 0; i < rx_ring->count; i++) { | ||
495 | buffer_info = &rx_ring->buffer_info[i]; | ||
496 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
497 | u0 = (struct my_u0 *)rx_desc; | ||
498 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
499 | if (staterr & E1000_RXD_STAT_DD) { | ||
500 | /* Descriptor Done */ | ||
501 | printk(KERN_INFO "RWB[0x%03X] %016llX " | ||
502 | "%016llX ---------------- %p", i, | ||
503 | le64_to_cpu(u0->a), | ||
504 | le64_to_cpu(u0->b), | ||
505 | buffer_info->skb); | ||
506 | } else { | ||
507 | printk(KERN_INFO "R [0x%03X] %016llX " | ||
508 | "%016llX %016llX %p", i, | ||
509 | le64_to_cpu(u0->a), | ||
510 | le64_to_cpu(u0->b), | ||
511 | (u64)buffer_info->dma, | ||
512 | buffer_info->skb); | ||
513 | |||
514 | if (netif_msg_pktdata(adapter)) { | ||
515 | print_hex_dump(KERN_INFO, "", | ||
516 | DUMP_PREFIX_ADDRESS, | ||
517 | 16, 1, | ||
518 | phys_to_virt(buffer_info->dma), | ||
519 | rx_ring->rx_buffer_len, true); | ||
520 | if (rx_ring->rx_buffer_len | ||
521 | < IGB_RXBUFFER_1024) | ||
522 | print_hex_dump(KERN_INFO, "", | ||
523 | DUMP_PREFIX_ADDRESS, | ||
524 | 16, 1, | ||
525 | phys_to_virt( | ||
526 | buffer_info->page_dma + | ||
527 | buffer_info->page_offset), | ||
528 | PAGE_SIZE/2, true); | ||
529 | } | ||
530 | } | ||
531 | |||
532 | if (i == rx_ring->next_to_use) | ||
533 | printk(KERN_CONT " NTU\n"); | ||
534 | else if (i == rx_ring->next_to_clean) | ||
535 | printk(KERN_CONT " NTC\n"); | ||
536 | else | ||
537 | printk(KERN_CONT "\n"); | ||
538 | |||
539 | } | ||
540 | } | ||
541 | |||
542 | exit: | ||
543 | return; | ||
544 | } | ||
545 | |||
546 | |||
547 | /** | ||
548 | * igb_read_clock - read raw cycle counter (to be used by time counter) | ||
549 | */ | ||
550 | static cycle_t igb_read_clock(const struct cyclecounter *tc) | ||
551 | { | ||
552 | struct igb_adapter *adapter = | ||
553 | container_of(tc, struct igb_adapter, cycles); | ||
554 | struct e1000_hw *hw = &adapter->hw; | ||
555 | u64 stamp = 0; | ||
556 | int shift = 0; | ||
557 | |||
558 | /* | ||
559 | * The timestamp latches on lowest register read. For the 82580 | ||
560 | * the lowest register is SYSTIMR instead of SYSTIML. However we never | ||
561 | * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it. | ||
562 | */ | ||
563 | if (hw->mac.type == e1000_82580) { | ||
564 | stamp = rd32(E1000_SYSTIMR) >> 8; | ||
565 | shift = IGB_82580_TSYNC_SHIFT; | ||
566 | } | ||
567 | |||
568 | stamp |= (u64)rd32(E1000_SYSTIML) << shift; | ||
569 | stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32); | ||
570 | return stamp; | ||
571 | } | ||
572 | |||
573 | /** | ||
574 | * igb_get_hw_dev - return device | ||
575 | * used by hardware layer to print debugging information | ||
576 | **/ | ||
577 | struct net_device *igb_get_hw_dev(struct e1000_hw *hw) | ||
578 | { | ||
579 | struct igb_adapter *adapter = hw->back; | ||
580 | return adapter->netdev; | ||
581 | } | ||
582 | |||
583 | /** | ||
584 | * igb_init_module - Driver Registration Routine | ||
585 | * | ||
586 | * igb_init_module is the first routine called when the driver is | ||
587 | * loaded. All it does is register with the PCI subsystem. | ||
588 | **/ | ||
589 | static int __init igb_init_module(void) | ||
590 | { | ||
591 | int ret; | ||
592 | printk(KERN_INFO "%s - version %s\n", | ||
593 | igb_driver_string, igb_driver_version); | ||
594 | |||
595 | printk(KERN_INFO "%s\n", igb_copyright); | ||
596 | |||
597 | #ifdef CONFIG_IGB_DCA | ||
598 | dca_register_notify(&dca_notifier); | ||
599 | #endif | ||
600 | ret = pci_register_driver(&igb_driver); | ||
601 | return ret; | ||
602 | } | ||
603 | |||
604 | module_init(igb_init_module); | ||
605 | |||
606 | /** | ||
607 | * igb_exit_module - Driver Exit Cleanup Routine | ||
608 | * | ||
609 | * igb_exit_module is called just before the driver is removed | ||
610 | * from memory. | ||
611 | **/ | ||
612 | static void __exit igb_exit_module(void) | ||
613 | { | ||
614 | #ifdef CONFIG_IGB_DCA | ||
615 | dca_unregister_notify(&dca_notifier); | ||
616 | #endif | ||
617 | pci_unregister_driver(&igb_driver); | ||
618 | } | ||
619 | |||
620 | module_exit(igb_exit_module); | ||
621 | |||
622 | #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) | ||
623 | /** | ||
624 | * igb_cache_ring_register - Descriptor ring to register mapping | ||
625 | * @adapter: board private structure to initialize | ||
626 | * | ||
627 | * Once we know the feature-set enabled for the device, we'll cache | ||
628 | * the register offset the descriptor ring is assigned to. | ||
629 | **/ | ||
630 | static void igb_cache_ring_register(struct igb_adapter *adapter) | ||
631 | { | ||
632 | int i = 0, j = 0; | ||
633 | u32 rbase_offset = adapter->vfs_allocated_count; | ||
634 | |||
635 | switch (adapter->hw.mac.type) { | ||
636 | case e1000_82576: | ||
637 | /* The queues are allocated for virtualization such that VF 0 | ||
638 | * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. | ||
639 | * In order to avoid collision we start at the first free queue | ||
640 | * and continue consuming queues in the same sequence | ||
641 | */ | ||
642 | if (adapter->vfs_allocated_count) { | ||
643 | for (; i < adapter->rss_queues; i++) | ||
644 | adapter->rx_ring[i]->reg_idx = rbase_offset + | ||
645 | Q_IDX_82576(i); | ||
646 | } | ||
647 | case e1000_82575: | ||
648 | case e1000_82580: | ||
649 | case e1000_i350: | ||
650 | default: | ||
651 | for (; i < adapter->num_rx_queues; i++) | ||
652 | adapter->rx_ring[i]->reg_idx = rbase_offset + i; | ||
653 | for (; j < adapter->num_tx_queues; j++) | ||
654 | adapter->tx_ring[j]->reg_idx = rbase_offset + j; | ||
655 | break; | ||
656 | } | ||
657 | } | ||
658 | |||
659 | static void igb_free_queues(struct igb_adapter *adapter) | ||
660 | { | ||
661 | int i; | ||
662 | |||
663 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
664 | kfree(adapter->tx_ring[i]); | ||
665 | adapter->tx_ring[i] = NULL; | ||
666 | } | ||
667 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
668 | kfree(adapter->rx_ring[i]); | ||
669 | adapter->rx_ring[i] = NULL; | ||
670 | } | ||
671 | adapter->num_rx_queues = 0; | ||
672 | adapter->num_tx_queues = 0; | ||
673 | } | ||
674 | |||
675 | /** | ||
676 | * igb_alloc_queues - Allocate memory for all rings | ||
677 | * @adapter: board private structure to initialize | ||
678 | * | ||
679 | * We allocate one ring per queue at run-time since we don't know the | ||
680 | * number of queues at compile-time. | ||
681 | **/ | ||
682 | static int igb_alloc_queues(struct igb_adapter *adapter) | ||
683 | { | ||
684 | struct igb_ring *ring; | ||
685 | int i; | ||
686 | |||
687 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
688 | ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL); | ||
689 | if (!ring) | ||
690 | goto err; | ||
691 | ring->count = adapter->tx_ring_count; | ||
692 | ring->queue_index = i; | ||
693 | ring->dev = &adapter->pdev->dev; | ||
694 | ring->netdev = adapter->netdev; | ||
695 | /* For 82575, context index must be unique per ring. */ | ||
696 | if (adapter->hw.mac.type == e1000_82575) | ||
697 | ring->flags = IGB_RING_FLAG_TX_CTX_IDX; | ||
698 | adapter->tx_ring[i] = ring; | ||
699 | } | ||
700 | |||
701 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
702 | ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL); | ||
703 | if (!ring) | ||
704 | goto err; | ||
705 | ring->count = adapter->rx_ring_count; | ||
706 | ring->queue_index = i; | ||
707 | ring->dev = &adapter->pdev->dev; | ||
708 | ring->netdev = adapter->netdev; | ||
709 | ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
710 | ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */ | ||
711 | /* set flag indicating ring supports SCTP checksum offload */ | ||
712 | if (adapter->hw.mac.type >= e1000_82576) | ||
713 | ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM; | ||
714 | adapter->rx_ring[i] = ring; | ||
715 | } | ||
716 | |||
717 | igb_cache_ring_register(adapter); | ||
718 | |||
719 | return 0; | ||
720 | |||
721 | err: | ||
722 | igb_free_queues(adapter); | ||
723 | |||
724 | return -ENOMEM; | ||
725 | } | ||
726 | |||
727 | #define IGB_N0_QUEUE -1 | ||
728 | static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) | ||
729 | { | ||
730 | u32 msixbm = 0; | ||
731 | struct igb_adapter *adapter = q_vector->adapter; | ||
732 | struct e1000_hw *hw = &adapter->hw; | ||
733 | u32 ivar, index; | ||
734 | int rx_queue = IGB_N0_QUEUE; | ||
735 | int tx_queue = IGB_N0_QUEUE; | ||
736 | |||
737 | if (q_vector->rx_ring) | ||
738 | rx_queue = q_vector->rx_ring->reg_idx; | ||
739 | if (q_vector->tx_ring) | ||
740 | tx_queue = q_vector->tx_ring->reg_idx; | ||
741 | |||
742 | switch (hw->mac.type) { | ||
743 | case e1000_82575: | ||
744 | /* The 82575 assigns vectors using a bitmask, which matches the | ||
745 | bitmask for the EICR/EIMS/EIMC registers. To assign one | ||
746 | or more queues to a vector, we write the appropriate bits | ||
747 | into the MSIXBM register for that vector. */ | ||
748 | if (rx_queue > IGB_N0_QUEUE) | ||
749 | msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; | ||
750 | if (tx_queue > IGB_N0_QUEUE) | ||
751 | msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; | ||
752 | if (!adapter->msix_entries && msix_vector == 0) | ||
753 | msixbm |= E1000_EIMS_OTHER; | ||
754 | array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); | ||
755 | q_vector->eims_value = msixbm; | ||
756 | break; | ||
757 | case e1000_82576: | ||
758 | /* 82576 uses a table-based method for assigning vectors. | ||
759 | Each queue has a single entry in the table to which we write | ||
760 | a vector number along with a "valid" bit. Sadly, the layout | ||
761 | of the table is somewhat counterintuitive. */ | ||
762 | if (rx_queue > IGB_N0_QUEUE) { | ||
763 | index = (rx_queue & 0x7); | ||
764 | ivar = array_rd32(E1000_IVAR0, index); | ||
765 | if (rx_queue < 8) { | ||
766 | /* vector goes into low byte of register */ | ||
767 | ivar = ivar & 0xFFFFFF00; | ||
768 | ivar |= msix_vector | E1000_IVAR_VALID; | ||
769 | } else { | ||
770 | /* vector goes into third byte of register */ | ||
771 | ivar = ivar & 0xFF00FFFF; | ||
772 | ivar |= (msix_vector | E1000_IVAR_VALID) << 16; | ||
773 | } | ||
774 | array_wr32(E1000_IVAR0, index, ivar); | ||
775 | } | ||
776 | if (tx_queue > IGB_N0_QUEUE) { | ||
777 | index = (tx_queue & 0x7); | ||
778 | ivar = array_rd32(E1000_IVAR0, index); | ||
779 | if (tx_queue < 8) { | ||
780 | /* vector goes into second byte of register */ | ||
781 | ivar = ivar & 0xFFFF00FF; | ||
782 | ivar |= (msix_vector | E1000_IVAR_VALID) << 8; | ||
783 | } else { | ||
784 | /* vector goes into high byte of register */ | ||
785 | ivar = ivar & 0x00FFFFFF; | ||
786 | ivar |= (msix_vector | E1000_IVAR_VALID) << 24; | ||
787 | } | ||
788 | array_wr32(E1000_IVAR0, index, ivar); | ||
789 | } | ||
790 | q_vector->eims_value = 1 << msix_vector; | ||
791 | break; | ||
792 | case e1000_82580: | ||
793 | case e1000_i350: | ||
794 | /* 82580 uses the same table-based approach as 82576 but has fewer | ||
795 | entries as a result we carry over for queues greater than 4. */ | ||
796 | if (rx_queue > IGB_N0_QUEUE) { | ||
797 | index = (rx_queue >> 1); | ||
798 | ivar = array_rd32(E1000_IVAR0, index); | ||
799 | if (rx_queue & 0x1) { | ||
800 | /* vector goes into third byte of register */ | ||
801 | ivar = ivar & 0xFF00FFFF; | ||
802 | ivar |= (msix_vector | E1000_IVAR_VALID) << 16; | ||
803 | } else { | ||
804 | /* vector goes into low byte of register */ | ||
805 | ivar = ivar & 0xFFFFFF00; | ||
806 | ivar |= msix_vector | E1000_IVAR_VALID; | ||
807 | } | ||
808 | array_wr32(E1000_IVAR0, index, ivar); | ||
809 | } | ||
810 | if (tx_queue > IGB_N0_QUEUE) { | ||
811 | index = (tx_queue >> 1); | ||
812 | ivar = array_rd32(E1000_IVAR0, index); | ||
813 | if (tx_queue & 0x1) { | ||
814 | /* vector goes into high byte of register */ | ||
815 | ivar = ivar & 0x00FFFFFF; | ||
816 | ivar |= (msix_vector | E1000_IVAR_VALID) << 24; | ||
817 | } else { | ||
818 | /* vector goes into second byte of register */ | ||
819 | ivar = ivar & 0xFFFF00FF; | ||
820 | ivar |= (msix_vector | E1000_IVAR_VALID) << 8; | ||
821 | } | ||
822 | array_wr32(E1000_IVAR0, index, ivar); | ||
823 | } | ||
824 | q_vector->eims_value = 1 << msix_vector; | ||
825 | break; | ||
826 | default: | ||
827 | BUG(); | ||
828 | break; | ||
829 | } | ||
830 | |||
831 | /* add q_vector eims value to global eims_enable_mask */ | ||
832 | adapter->eims_enable_mask |= q_vector->eims_value; | ||
833 | |||
834 | /* configure q_vector to set itr on first interrupt */ | ||
835 | q_vector->set_itr = 1; | ||
836 | } | ||
837 | |||
838 | /** | ||
839 | * igb_configure_msix - Configure MSI-X hardware | ||
840 | * | ||
841 | * igb_configure_msix sets up the hardware to properly | ||
842 | * generate MSI-X interrupts. | ||
843 | **/ | ||
844 | static void igb_configure_msix(struct igb_adapter *adapter) | ||
845 | { | ||
846 | u32 tmp; | ||
847 | int i, vector = 0; | ||
848 | struct e1000_hw *hw = &adapter->hw; | ||
849 | |||
850 | adapter->eims_enable_mask = 0; | ||
851 | |||
852 | /* set vector for other causes, i.e. link changes */ | ||
853 | switch (hw->mac.type) { | ||
854 | case e1000_82575: | ||
855 | tmp = rd32(E1000_CTRL_EXT); | ||
856 | /* enable MSI-X PBA support*/ | ||
857 | tmp |= E1000_CTRL_EXT_PBA_CLR; | ||
858 | |||
859 | /* Auto-Mask interrupts upon ICR read. */ | ||
860 | tmp |= E1000_CTRL_EXT_EIAME; | ||
861 | tmp |= E1000_CTRL_EXT_IRCA; | ||
862 | |||
863 | wr32(E1000_CTRL_EXT, tmp); | ||
864 | |||
865 | /* enable msix_other interrupt */ | ||
866 | array_wr32(E1000_MSIXBM(0), vector++, | ||
867 | E1000_EIMS_OTHER); | ||
868 | adapter->eims_other = E1000_EIMS_OTHER; | ||
869 | |||
870 | break; | ||
871 | |||
872 | case e1000_82576: | ||
873 | case e1000_82580: | ||
874 | case e1000_i350: | ||
875 | /* Turn on MSI-X capability first, or our settings | ||
876 | * won't stick. And it will take days to debug. */ | ||
877 | wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | | ||
878 | E1000_GPIE_PBA | E1000_GPIE_EIAME | | ||
879 | E1000_GPIE_NSICR); | ||
880 | |||
881 | /* enable msix_other interrupt */ | ||
882 | adapter->eims_other = 1 << vector; | ||
883 | tmp = (vector++ | E1000_IVAR_VALID) << 8; | ||
884 | |||
885 | wr32(E1000_IVAR_MISC, tmp); | ||
886 | break; | ||
887 | default: | ||
888 | /* do nothing, since nothing else supports MSI-X */ | ||
889 | break; | ||
890 | } /* switch (hw->mac.type) */ | ||
891 | |||
892 | adapter->eims_enable_mask |= adapter->eims_other; | ||
893 | |||
894 | for (i = 0; i < adapter->num_q_vectors; i++) | ||
895 | igb_assign_vector(adapter->q_vector[i], vector++); | ||
896 | |||
897 | wrfl(); | ||
898 | } | ||
899 | |||
900 | /** | ||
901 | * igb_request_msix - Initialize MSI-X interrupts | ||
902 | * | ||
903 | * igb_request_msix allocates MSI-X vectors and requests interrupts from the | ||
904 | * kernel. | ||
905 | **/ | ||
906 | static int igb_request_msix(struct igb_adapter *adapter) | ||
907 | { | ||
908 | struct net_device *netdev = adapter->netdev; | ||
909 | struct e1000_hw *hw = &adapter->hw; | ||
910 | int i, err = 0, vector = 0; | ||
911 | |||
912 | err = request_irq(adapter->msix_entries[vector].vector, | ||
913 | igb_msix_other, 0, netdev->name, adapter); | ||
914 | if (err) | ||
915 | goto out; | ||
916 | vector++; | ||
917 | |||
918 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
919 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
920 | |||
921 | q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); | ||
922 | |||
923 | if (q_vector->rx_ring && q_vector->tx_ring) | ||
924 | sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, | ||
925 | q_vector->rx_ring->queue_index); | ||
926 | else if (q_vector->tx_ring) | ||
927 | sprintf(q_vector->name, "%s-tx-%u", netdev->name, | ||
928 | q_vector->tx_ring->queue_index); | ||
929 | else if (q_vector->rx_ring) | ||
930 | sprintf(q_vector->name, "%s-rx-%u", netdev->name, | ||
931 | q_vector->rx_ring->queue_index); | ||
932 | else | ||
933 | sprintf(q_vector->name, "%s-unused", netdev->name); | ||
934 | |||
935 | err = request_irq(adapter->msix_entries[vector].vector, | ||
936 | igb_msix_ring, 0, q_vector->name, | ||
937 | q_vector); | ||
938 | if (err) | ||
939 | goto out; | ||
940 | vector++; | ||
941 | } | ||
942 | |||
943 | igb_configure_msix(adapter); | ||
944 | return 0; | ||
945 | out: | ||
946 | return err; | ||
947 | } | ||
948 | |||
949 | static void igb_reset_interrupt_capability(struct igb_adapter *adapter) | ||
950 | { | ||
951 | if (adapter->msix_entries) { | ||
952 | pci_disable_msix(adapter->pdev); | ||
953 | kfree(adapter->msix_entries); | ||
954 | adapter->msix_entries = NULL; | ||
955 | } else if (adapter->flags & IGB_FLAG_HAS_MSI) { | ||
956 | pci_disable_msi(adapter->pdev); | ||
957 | } | ||
958 | } | ||
959 | |||
960 | /** | ||
961 | * igb_free_q_vectors - Free memory allocated for interrupt vectors | ||
962 | * @adapter: board private structure to initialize | ||
963 | * | ||
964 | * This function frees the memory allocated to the q_vectors. In addition if | ||
965 | * NAPI is enabled it will delete any references to the NAPI struct prior | ||
966 | * to freeing the q_vector. | ||
967 | **/ | ||
968 | static void igb_free_q_vectors(struct igb_adapter *adapter) | ||
969 | { | ||
970 | int v_idx; | ||
971 | |||
972 | for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) { | ||
973 | struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; | ||
974 | adapter->q_vector[v_idx] = NULL; | ||
975 | if (!q_vector) | ||
976 | continue; | ||
977 | netif_napi_del(&q_vector->napi); | ||
978 | kfree(q_vector); | ||
979 | } | ||
980 | adapter->num_q_vectors = 0; | ||
981 | } | ||
982 | |||
983 | /** | ||
984 | * igb_clear_interrupt_scheme - reset the device to a state of no interrupts | ||
985 | * | ||
986 | * This function resets the device so that it has 0 rx queues, tx queues, and | ||
987 | * MSI-X interrupts allocated. | ||
988 | */ | ||
989 | static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) | ||
990 | { | ||
991 | igb_free_queues(adapter); | ||
992 | igb_free_q_vectors(adapter); | ||
993 | igb_reset_interrupt_capability(adapter); | ||
994 | } | ||
995 | |||
996 | /** | ||
997 | * igb_set_interrupt_capability - set MSI or MSI-X if supported | ||
998 | * | ||
999 | * Attempt to configure interrupts using the best available | ||
1000 | * capabilities of the hardware and kernel. | ||
1001 | **/ | ||
1002 | static int igb_set_interrupt_capability(struct igb_adapter *adapter) | ||
1003 | { | ||
1004 | int err; | ||
1005 | int numvecs, i; | ||
1006 | |||
1007 | /* Number of supported queues. */ | ||
1008 | adapter->num_rx_queues = adapter->rss_queues; | ||
1009 | if (adapter->vfs_allocated_count) | ||
1010 | adapter->num_tx_queues = 1; | ||
1011 | else | ||
1012 | adapter->num_tx_queues = adapter->rss_queues; | ||
1013 | |||
1014 | /* start with one vector for every rx queue */ | ||
1015 | numvecs = adapter->num_rx_queues; | ||
1016 | |||
1017 | /* if tx handler is separate add 1 for every tx queue */ | ||
1018 | if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) | ||
1019 | numvecs += adapter->num_tx_queues; | ||
1020 | |||
1021 | /* store the number of vectors reserved for queues */ | ||
1022 | adapter->num_q_vectors = numvecs; | ||
1023 | |||
1024 | /* add 1 vector for link status interrupts */ | ||
1025 | numvecs++; | ||
1026 | adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), | ||
1027 | GFP_KERNEL); | ||
1028 | if (!adapter->msix_entries) | ||
1029 | goto msi_only; | ||
1030 | |||
1031 | for (i = 0; i < numvecs; i++) | ||
1032 | adapter->msix_entries[i].entry = i; | ||
1033 | |||
1034 | err = pci_enable_msix(adapter->pdev, | ||
1035 | adapter->msix_entries, | ||
1036 | numvecs); | ||
1037 | if (err == 0) | ||
1038 | goto out; | ||
1039 | |||
1040 | igb_reset_interrupt_capability(adapter); | ||
1041 | |||
1042 | /* If we can't do MSI-X, try MSI */ | ||
1043 | msi_only: | ||
1044 | #ifdef CONFIG_PCI_IOV | ||
1045 | /* disable SR-IOV for non MSI-X configurations */ | ||
1046 | if (adapter->vf_data) { | ||
1047 | struct e1000_hw *hw = &adapter->hw; | ||
1048 | /* disable iov and allow time for transactions to clear */ | ||
1049 | pci_disable_sriov(adapter->pdev); | ||
1050 | msleep(500); | ||
1051 | |||
1052 | kfree(adapter->vf_data); | ||
1053 | adapter->vf_data = NULL; | ||
1054 | wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); | ||
1055 | wrfl(); | ||
1056 | msleep(100); | ||
1057 | dev_info(&adapter->pdev->dev, "IOV Disabled\n"); | ||
1058 | } | ||
1059 | #endif | ||
1060 | adapter->vfs_allocated_count = 0; | ||
1061 | adapter->rss_queues = 1; | ||
1062 | adapter->flags |= IGB_FLAG_QUEUE_PAIRS; | ||
1063 | adapter->num_rx_queues = 1; | ||
1064 | adapter->num_tx_queues = 1; | ||
1065 | adapter->num_q_vectors = 1; | ||
1066 | if (!pci_enable_msi(adapter->pdev)) | ||
1067 | adapter->flags |= IGB_FLAG_HAS_MSI; | ||
1068 | out: | ||
1069 | /* Notify the stack of the (possibly) reduced queue counts. */ | ||
1070 | netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues); | ||
1071 | return netif_set_real_num_rx_queues(adapter->netdev, | ||
1072 | adapter->num_rx_queues); | ||
1073 | } | ||
1074 | |||
1075 | /** | ||
1076 | * igb_alloc_q_vectors - Allocate memory for interrupt vectors | ||
1077 | * @adapter: board private structure to initialize | ||
1078 | * | ||
1079 | * We allocate one q_vector per queue interrupt. If allocation fails we | ||
1080 | * return -ENOMEM. | ||
1081 | **/ | ||
1082 | static int igb_alloc_q_vectors(struct igb_adapter *adapter) | ||
1083 | { | ||
1084 | struct igb_q_vector *q_vector; | ||
1085 | struct e1000_hw *hw = &adapter->hw; | ||
1086 | int v_idx; | ||
1087 | |||
1088 | for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) { | ||
1089 | q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL); | ||
1090 | if (!q_vector) | ||
1091 | goto err_out; | ||
1092 | q_vector->adapter = adapter; | ||
1093 | q_vector->itr_register = hw->hw_addr + E1000_EITR(0); | ||
1094 | q_vector->itr_val = IGB_START_ITR; | ||
1095 | netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64); | ||
1096 | adapter->q_vector[v_idx] = q_vector; | ||
1097 | } | ||
1098 | return 0; | ||
1099 | |||
1100 | err_out: | ||
1101 | igb_free_q_vectors(adapter); | ||
1102 | return -ENOMEM; | ||
1103 | } | ||
1104 | |||
1105 | static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter, | ||
1106 | int ring_idx, int v_idx) | ||
1107 | { | ||
1108 | struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; | ||
1109 | |||
1110 | q_vector->rx_ring = adapter->rx_ring[ring_idx]; | ||
1111 | q_vector->rx_ring->q_vector = q_vector; | ||
1112 | q_vector->itr_val = adapter->rx_itr_setting; | ||
1113 | if (q_vector->itr_val && q_vector->itr_val <= 3) | ||
1114 | q_vector->itr_val = IGB_START_ITR; | ||
1115 | } | ||
1116 | |||
1117 | static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter, | ||
1118 | int ring_idx, int v_idx) | ||
1119 | { | ||
1120 | struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; | ||
1121 | |||
1122 | q_vector->tx_ring = adapter->tx_ring[ring_idx]; | ||
1123 | q_vector->tx_ring->q_vector = q_vector; | ||
1124 | q_vector->itr_val = adapter->tx_itr_setting; | ||
1125 | if (q_vector->itr_val && q_vector->itr_val <= 3) | ||
1126 | q_vector->itr_val = IGB_START_ITR; | ||
1127 | } | ||
1128 | |||
1129 | /** | ||
1130 | * igb_map_ring_to_vector - maps allocated queues to vectors | ||
1131 | * | ||
1132 | * This function maps the recently allocated queues to vectors. | ||
1133 | **/ | ||
1134 | static int igb_map_ring_to_vector(struct igb_adapter *adapter) | ||
1135 | { | ||
1136 | int i; | ||
1137 | int v_idx = 0; | ||
1138 | |||
1139 | if ((adapter->num_q_vectors < adapter->num_rx_queues) || | ||
1140 | (adapter->num_q_vectors < adapter->num_tx_queues)) | ||
1141 | return -ENOMEM; | ||
1142 | |||
1143 | if (adapter->num_q_vectors >= | ||
1144 | (adapter->num_rx_queues + adapter->num_tx_queues)) { | ||
1145 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
1146 | igb_map_rx_ring_to_vector(adapter, i, v_idx++); | ||
1147 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
1148 | igb_map_tx_ring_to_vector(adapter, i, v_idx++); | ||
1149 | } else { | ||
1150 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
1151 | if (i < adapter->num_tx_queues) | ||
1152 | igb_map_tx_ring_to_vector(adapter, i, v_idx); | ||
1153 | igb_map_rx_ring_to_vector(adapter, i, v_idx++); | ||
1154 | } | ||
1155 | for (; i < adapter->num_tx_queues; i++) | ||
1156 | igb_map_tx_ring_to_vector(adapter, i, v_idx++); | ||
1157 | } | ||
1158 | return 0; | ||
1159 | } | ||
1160 | |||
1161 | /** | ||
1162 | * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors | ||
1163 | * | ||
1164 | * This function initializes the interrupts and allocates all of the queues. | ||
1165 | **/ | ||
1166 | static int igb_init_interrupt_scheme(struct igb_adapter *adapter) | ||
1167 | { | ||
1168 | struct pci_dev *pdev = adapter->pdev; | ||
1169 | int err; | ||
1170 | |||
1171 | err = igb_set_interrupt_capability(adapter); | ||
1172 | if (err) | ||
1173 | return err; | ||
1174 | |||
1175 | err = igb_alloc_q_vectors(adapter); | ||
1176 | if (err) { | ||
1177 | dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); | ||
1178 | goto err_alloc_q_vectors; | ||
1179 | } | ||
1180 | |||
1181 | err = igb_alloc_queues(adapter); | ||
1182 | if (err) { | ||
1183 | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | ||
1184 | goto err_alloc_queues; | ||
1185 | } | ||
1186 | |||
1187 | err = igb_map_ring_to_vector(adapter); | ||
1188 | if (err) { | ||
1189 | dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n"); | ||
1190 | goto err_map_queues; | ||
1191 | } | ||
1192 | |||
1193 | |||
1194 | return 0; | ||
1195 | err_map_queues: | ||
1196 | igb_free_queues(adapter); | ||
1197 | err_alloc_queues: | ||
1198 | igb_free_q_vectors(adapter); | ||
1199 | err_alloc_q_vectors: | ||
1200 | igb_reset_interrupt_capability(adapter); | ||
1201 | return err; | ||
1202 | } | ||
1203 | |||
1204 | /** | ||
1205 | * igb_request_irq - initialize interrupts | ||
1206 | * | ||
1207 | * Attempts to configure interrupts using the best available | ||
1208 | * capabilities of the hardware and kernel. | ||
1209 | **/ | ||
1210 | static int igb_request_irq(struct igb_adapter *adapter) | ||
1211 | { | ||
1212 | struct net_device *netdev = adapter->netdev; | ||
1213 | struct pci_dev *pdev = adapter->pdev; | ||
1214 | int err = 0; | ||
1215 | |||
1216 | if (adapter->msix_entries) { | ||
1217 | err = igb_request_msix(adapter); | ||
1218 | if (!err) | ||
1219 | goto request_done; | ||
1220 | /* fall back to MSI */ | ||
1221 | igb_clear_interrupt_scheme(adapter); | ||
1222 | if (!pci_enable_msi(adapter->pdev)) | ||
1223 | adapter->flags |= IGB_FLAG_HAS_MSI; | ||
1224 | igb_free_all_tx_resources(adapter); | ||
1225 | igb_free_all_rx_resources(adapter); | ||
1226 | adapter->num_tx_queues = 1; | ||
1227 | adapter->num_rx_queues = 1; | ||
1228 | adapter->num_q_vectors = 1; | ||
1229 | err = igb_alloc_q_vectors(adapter); | ||
1230 | if (err) { | ||
1231 | dev_err(&pdev->dev, | ||
1232 | "Unable to allocate memory for vectors\n"); | ||
1233 | goto request_done; | ||
1234 | } | ||
1235 | err = igb_alloc_queues(adapter); | ||
1236 | if (err) { | ||
1237 | dev_err(&pdev->dev, | ||
1238 | "Unable to allocate memory for queues\n"); | ||
1239 | igb_free_q_vectors(adapter); | ||
1240 | goto request_done; | ||
1241 | } | ||
1242 | igb_setup_all_tx_resources(adapter); | ||
1243 | igb_setup_all_rx_resources(adapter); | ||
1244 | } else { | ||
1245 | igb_assign_vector(adapter->q_vector[0], 0); | ||
1246 | } | ||
1247 | |||
1248 | if (adapter->flags & IGB_FLAG_HAS_MSI) { | ||
1249 | err = request_irq(adapter->pdev->irq, igb_intr_msi, 0, | ||
1250 | netdev->name, adapter); | ||
1251 | if (!err) | ||
1252 | goto request_done; | ||
1253 | |||
1254 | /* fall back to legacy interrupts */ | ||
1255 | igb_reset_interrupt_capability(adapter); | ||
1256 | adapter->flags &= ~IGB_FLAG_HAS_MSI; | ||
1257 | } | ||
1258 | |||
1259 | err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED, | ||
1260 | netdev->name, adapter); | ||
1261 | |||
1262 | if (err) | ||
1263 | dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n", | ||
1264 | err); | ||
1265 | |||
1266 | request_done: | ||
1267 | return err; | ||
1268 | } | ||
1269 | |||
1270 | static void igb_free_irq(struct igb_adapter *adapter) | ||
1271 | { | ||
1272 | if (adapter->msix_entries) { | ||
1273 | int vector = 0, i; | ||
1274 | |||
1275 | free_irq(adapter->msix_entries[vector++].vector, adapter); | ||
1276 | |||
1277 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
1278 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
1279 | free_irq(adapter->msix_entries[vector++].vector, | ||
1280 | q_vector); | ||
1281 | } | ||
1282 | } else { | ||
1283 | free_irq(adapter->pdev->irq, adapter); | ||
1284 | } | ||
1285 | } | ||
1286 | |||
1287 | /** | ||
1288 | * igb_irq_disable - Mask off interrupt generation on the NIC | ||
1289 | * @adapter: board private structure | ||
1290 | **/ | ||
1291 | static void igb_irq_disable(struct igb_adapter *adapter) | ||
1292 | { | ||
1293 | struct e1000_hw *hw = &adapter->hw; | ||
1294 | |||
1295 | /* | ||
1296 | * we need to be careful when disabling interrupts. The VFs are also | ||
1297 | * mapped into these registers and so clearing the bits can cause | ||
1298 | * issues on the VF drivers so we only need to clear what we set | ||
1299 | */ | ||
1300 | if (adapter->msix_entries) { | ||
1301 | u32 regval = rd32(E1000_EIAM); | ||
1302 | wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); | ||
1303 | wr32(E1000_EIMC, adapter->eims_enable_mask); | ||
1304 | regval = rd32(E1000_EIAC); | ||
1305 | wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); | ||
1306 | } | ||
1307 | |||
1308 | wr32(E1000_IAM, 0); | ||
1309 | wr32(E1000_IMC, ~0); | ||
1310 | wrfl(); | ||
1311 | if (adapter->msix_entries) { | ||
1312 | int i; | ||
1313 | for (i = 0; i < adapter->num_q_vectors; i++) | ||
1314 | synchronize_irq(adapter->msix_entries[i].vector); | ||
1315 | } else { | ||
1316 | synchronize_irq(adapter->pdev->irq); | ||
1317 | } | ||
1318 | } | ||
1319 | |||
1320 | /** | ||
1321 | * igb_irq_enable - Enable default interrupt generation settings | ||
1322 | * @adapter: board private structure | ||
1323 | **/ | ||
1324 | static void igb_irq_enable(struct igb_adapter *adapter) | ||
1325 | { | ||
1326 | struct e1000_hw *hw = &adapter->hw; | ||
1327 | |||
1328 | if (adapter->msix_entries) { | ||
1329 | u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC; | ||
1330 | u32 regval = rd32(E1000_EIAC); | ||
1331 | wr32(E1000_EIAC, regval | adapter->eims_enable_mask); | ||
1332 | regval = rd32(E1000_EIAM); | ||
1333 | wr32(E1000_EIAM, regval | adapter->eims_enable_mask); | ||
1334 | wr32(E1000_EIMS, adapter->eims_enable_mask); | ||
1335 | if (adapter->vfs_allocated_count) { | ||
1336 | wr32(E1000_MBVFIMR, 0xFF); | ||
1337 | ims |= E1000_IMS_VMMB; | ||
1338 | } | ||
1339 | if (adapter->hw.mac.type == e1000_82580) | ||
1340 | ims |= E1000_IMS_DRSTA; | ||
1341 | |||
1342 | wr32(E1000_IMS, ims); | ||
1343 | } else { | ||
1344 | wr32(E1000_IMS, IMS_ENABLE_MASK | | ||
1345 | E1000_IMS_DRSTA); | ||
1346 | wr32(E1000_IAM, IMS_ENABLE_MASK | | ||
1347 | E1000_IMS_DRSTA); | ||
1348 | } | ||
1349 | } | ||
1350 | |||
1351 | static void igb_update_mng_vlan(struct igb_adapter *adapter) | ||
1352 | { | ||
1353 | struct e1000_hw *hw = &adapter->hw; | ||
1354 | u16 vid = adapter->hw.mng_cookie.vlan_id; | ||
1355 | u16 old_vid = adapter->mng_vlan_id; | ||
1356 | |||
1357 | if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | ||
1358 | /* add VID to filter table */ | ||
1359 | igb_vfta_set(hw, vid, true); | ||
1360 | adapter->mng_vlan_id = vid; | ||
1361 | } else { | ||
1362 | adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; | ||
1363 | } | ||
1364 | |||
1365 | if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && | ||
1366 | (vid != old_vid) && | ||
1367 | !test_bit(old_vid, adapter->active_vlans)) { | ||
1368 | /* remove VID from filter table */ | ||
1369 | igb_vfta_set(hw, old_vid, false); | ||
1370 | } | ||
1371 | } | ||
1372 | |||
1373 | /** | ||
1374 | * igb_release_hw_control - release control of the h/w to f/w | ||
1375 | * @adapter: address of board private structure | ||
1376 | * | ||
1377 | * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. | ||
1378 | * For ASF and Pass Through versions of f/w this means that the | ||
1379 | * driver is no longer loaded. | ||
1380 | * | ||
1381 | **/ | ||
1382 | static void igb_release_hw_control(struct igb_adapter *adapter) | ||
1383 | { | ||
1384 | struct e1000_hw *hw = &adapter->hw; | ||
1385 | u32 ctrl_ext; | ||
1386 | |||
1387 | /* Let firmware take over control of h/w */ | ||
1388 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
1389 | wr32(E1000_CTRL_EXT, | ||
1390 | ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | ||
1391 | } | ||
1392 | |||
1393 | /** | ||
1394 | * igb_get_hw_control - get control of the h/w from f/w | ||
1395 | * @adapter: address of board private structure | ||
1396 | * | ||
1397 | * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. | ||
1398 | * For ASF and Pass Through versions of f/w this means that | ||
1399 | * the driver is loaded. | ||
1400 | * | ||
1401 | **/ | ||
1402 | static void igb_get_hw_control(struct igb_adapter *adapter) | ||
1403 | { | ||
1404 | struct e1000_hw *hw = &adapter->hw; | ||
1405 | u32 ctrl_ext; | ||
1406 | |||
1407 | /* Let firmware know the driver has taken over */ | ||
1408 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
1409 | wr32(E1000_CTRL_EXT, | ||
1410 | ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | ||
1411 | } | ||
1412 | |||
1413 | /** | ||
1414 | * igb_configure - configure the hardware for RX and TX | ||
1415 | * @adapter: private board structure | ||
1416 | **/ | ||
1417 | static void igb_configure(struct igb_adapter *adapter) | ||
1418 | { | ||
1419 | struct net_device *netdev = adapter->netdev; | ||
1420 | int i; | ||
1421 | |||
1422 | igb_get_hw_control(adapter); | ||
1423 | igb_set_rx_mode(netdev); | ||
1424 | |||
1425 | igb_restore_vlan(adapter); | ||
1426 | |||
1427 | igb_setup_tctl(adapter); | ||
1428 | igb_setup_mrqc(adapter); | ||
1429 | igb_setup_rctl(adapter); | ||
1430 | |||
1431 | igb_configure_tx(adapter); | ||
1432 | igb_configure_rx(adapter); | ||
1433 | |||
1434 | igb_rx_fifo_flush_82575(&adapter->hw); | ||
1435 | |||
1436 | /* call igb_desc_unused which always leaves | ||
1437 | * at least 1 descriptor unused to make sure | ||
1438 | * next_to_use != next_to_clean */ | ||
1439 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
1440 | struct igb_ring *ring = adapter->rx_ring[i]; | ||
1441 | igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring)); | ||
1442 | } | ||
1443 | } | ||
1444 | |||
1445 | /** | ||
1446 | * igb_power_up_link - Power up the phy/serdes link | ||
1447 | * @adapter: address of board private structure | ||
1448 | **/ | ||
1449 | void igb_power_up_link(struct igb_adapter *adapter) | ||
1450 | { | ||
1451 | if (adapter->hw.phy.media_type == e1000_media_type_copper) | ||
1452 | igb_power_up_phy_copper(&adapter->hw); | ||
1453 | else | ||
1454 | igb_power_up_serdes_link_82575(&adapter->hw); | ||
1455 | } | ||
1456 | |||
1457 | /** | ||
1458 | * igb_power_down_link - Power down the phy/serdes link | ||
1459 | * @adapter: address of board private structure | ||
1460 | */ | ||
1461 | static void igb_power_down_link(struct igb_adapter *adapter) | ||
1462 | { | ||
1463 | if (adapter->hw.phy.media_type == e1000_media_type_copper) | ||
1464 | igb_power_down_phy_copper_82575(&adapter->hw); | ||
1465 | else | ||
1466 | igb_shutdown_serdes_link_82575(&adapter->hw); | ||
1467 | } | ||
1468 | |||
1469 | /** | ||
1470 | * igb_up - Open the interface and prepare it to handle traffic | ||
1471 | * @adapter: board private structure | ||
1472 | **/ | ||
1473 | int igb_up(struct igb_adapter *adapter) | ||
1474 | { | ||
1475 | struct e1000_hw *hw = &adapter->hw; | ||
1476 | int i; | ||
1477 | |||
1478 | /* hardware has been reset, we need to reload some things */ | ||
1479 | igb_configure(adapter); | ||
1480 | |||
1481 | clear_bit(__IGB_DOWN, &adapter->state); | ||
1482 | |||
1483 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
1484 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
1485 | napi_enable(&q_vector->napi); | ||
1486 | } | ||
1487 | if (adapter->msix_entries) | ||
1488 | igb_configure_msix(adapter); | ||
1489 | else | ||
1490 | igb_assign_vector(adapter->q_vector[0], 0); | ||
1491 | |||
1492 | /* Clear any pending interrupts. */ | ||
1493 | rd32(E1000_ICR); | ||
1494 | igb_irq_enable(adapter); | ||
1495 | |||
1496 | /* notify VFs that reset has been completed */ | ||
1497 | if (adapter->vfs_allocated_count) { | ||
1498 | u32 reg_data = rd32(E1000_CTRL_EXT); | ||
1499 | reg_data |= E1000_CTRL_EXT_PFRSTD; | ||
1500 | wr32(E1000_CTRL_EXT, reg_data); | ||
1501 | } | ||
1502 | |||
1503 | netif_tx_start_all_queues(adapter->netdev); | ||
1504 | |||
1505 | /* start the watchdog. */ | ||
1506 | hw->mac.get_link_status = 1; | ||
1507 | schedule_work(&adapter->watchdog_task); | ||
1508 | |||
1509 | return 0; | ||
1510 | } | ||
1511 | |||
1512 | void igb_down(struct igb_adapter *adapter) | ||
1513 | { | ||
1514 | struct net_device *netdev = adapter->netdev; | ||
1515 | struct e1000_hw *hw = &adapter->hw; | ||
1516 | u32 tctl, rctl; | ||
1517 | int i; | ||
1518 | |||
1519 | /* signal that we're down so the interrupt handler does not | ||
1520 | * reschedule our watchdog timer */ | ||
1521 | set_bit(__IGB_DOWN, &adapter->state); | ||
1522 | |||
1523 | /* disable receives in the hardware */ | ||
1524 | rctl = rd32(E1000_RCTL); | ||
1525 | wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); | ||
1526 | /* flush and sleep below */ | ||
1527 | |||
1528 | netif_tx_stop_all_queues(netdev); | ||
1529 | |||
1530 | /* disable transmits in the hardware */ | ||
1531 | tctl = rd32(E1000_TCTL); | ||
1532 | tctl &= ~E1000_TCTL_EN; | ||
1533 | wr32(E1000_TCTL, tctl); | ||
1534 | /* flush both disables and wait for them to finish */ | ||
1535 | wrfl(); | ||
1536 | msleep(10); | ||
1537 | |||
1538 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
1539 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
1540 | napi_disable(&q_vector->napi); | ||
1541 | } | ||
1542 | |||
1543 | igb_irq_disable(adapter); | ||
1544 | |||
1545 | del_timer_sync(&adapter->watchdog_timer); | ||
1546 | del_timer_sync(&adapter->phy_info_timer); | ||
1547 | |||
1548 | netif_carrier_off(netdev); | ||
1549 | |||
1550 | /* record the stats before reset*/ | ||
1551 | spin_lock(&adapter->stats64_lock); | ||
1552 | igb_update_stats(adapter, &adapter->stats64); | ||
1553 | spin_unlock(&adapter->stats64_lock); | ||
1554 | |||
1555 | adapter->link_speed = 0; | ||
1556 | adapter->link_duplex = 0; | ||
1557 | |||
1558 | if (!pci_channel_offline(adapter->pdev)) | ||
1559 | igb_reset(adapter); | ||
1560 | igb_clean_all_tx_rings(adapter); | ||
1561 | igb_clean_all_rx_rings(adapter); | ||
1562 | #ifdef CONFIG_IGB_DCA | ||
1563 | |||
1564 | /* since we reset the hardware DCA settings were cleared */ | ||
1565 | igb_setup_dca(adapter); | ||
1566 | #endif | ||
1567 | } | ||
1568 | |||
1569 | void igb_reinit_locked(struct igb_adapter *adapter) | ||
1570 | { | ||
1571 | WARN_ON(in_interrupt()); | ||
1572 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
1573 | msleep(1); | ||
1574 | igb_down(adapter); | ||
1575 | igb_up(adapter); | ||
1576 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
1577 | } | ||
1578 | |||
1579 | void igb_reset(struct igb_adapter *adapter) | ||
1580 | { | ||
1581 | struct pci_dev *pdev = adapter->pdev; | ||
1582 | struct e1000_hw *hw = &adapter->hw; | ||
1583 | struct e1000_mac_info *mac = &hw->mac; | ||
1584 | struct e1000_fc_info *fc = &hw->fc; | ||
1585 | u32 pba = 0, tx_space, min_tx_space, min_rx_space; | ||
1586 | u16 hwm; | ||
1587 | |||
1588 | /* Repartition Pba for greater than 9k mtu | ||
1589 | * To take effect CTRL.RST is required. | ||
1590 | */ | ||
1591 | switch (mac->type) { | ||
1592 | case e1000_i350: | ||
1593 | case e1000_82580: | ||
1594 | pba = rd32(E1000_RXPBS); | ||
1595 | pba = igb_rxpbs_adjust_82580(pba); | ||
1596 | break; | ||
1597 | case e1000_82576: | ||
1598 | pba = rd32(E1000_RXPBS); | ||
1599 | pba &= E1000_RXPBS_SIZE_MASK_82576; | ||
1600 | break; | ||
1601 | case e1000_82575: | ||
1602 | default: | ||
1603 | pba = E1000_PBA_34K; | ||
1604 | break; | ||
1605 | } | ||
1606 | |||
1607 | if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && | ||
1608 | (mac->type < e1000_82576)) { | ||
1609 | /* adjust PBA for jumbo frames */ | ||
1610 | wr32(E1000_PBA, pba); | ||
1611 | |||
1612 | /* To maintain wire speed transmits, the Tx FIFO should be | ||
1613 | * large enough to accommodate two full transmit packets, | ||
1614 | * rounded up to the next 1KB and expressed in KB. Likewise, | ||
1615 | * the Rx FIFO should be large enough to accommodate at least | ||
1616 | * one full receive packet and is similarly rounded up and | ||
1617 | * expressed in KB. */ | ||
1618 | pba = rd32(E1000_PBA); | ||
1619 | /* upper 16 bits has Tx packet buffer allocation size in KB */ | ||
1620 | tx_space = pba >> 16; | ||
1621 | /* lower 16 bits has Rx packet buffer allocation size in KB */ | ||
1622 | pba &= 0xffff; | ||
1623 | /* the tx fifo also stores 16 bytes of information about the tx | ||
1624 | * but don't include ethernet FCS because hardware appends it */ | ||
1625 | min_tx_space = (adapter->max_frame_size + | ||
1626 | sizeof(union e1000_adv_tx_desc) - | ||
1627 | ETH_FCS_LEN) * 2; | ||
1628 | min_tx_space = ALIGN(min_tx_space, 1024); | ||
1629 | min_tx_space >>= 10; | ||
1630 | /* software strips receive CRC, so leave room for it */ | ||
1631 | min_rx_space = adapter->max_frame_size; | ||
1632 | min_rx_space = ALIGN(min_rx_space, 1024); | ||
1633 | min_rx_space >>= 10; | ||
1634 | |||
1635 | /* If current Tx allocation is less than the min Tx FIFO size, | ||
1636 | * and the min Tx FIFO size is less than the current Rx FIFO | ||
1637 | * allocation, take space away from current Rx allocation */ | ||
1638 | if (tx_space < min_tx_space && | ||
1639 | ((min_tx_space - tx_space) < pba)) { | ||
1640 | pba = pba - (min_tx_space - tx_space); | ||
1641 | |||
1642 | /* if short on rx space, rx wins and must trump tx | ||
1643 | * adjustment */ | ||
1644 | if (pba < min_rx_space) | ||
1645 | pba = min_rx_space; | ||
1646 | } | ||
1647 | wr32(E1000_PBA, pba); | ||
1648 | } | ||
1649 | |||
1650 | /* flow control settings */ | ||
1651 | /* The high water mark must be low enough to fit one full frame | ||
1652 | * (or the size used for early receive) above it in the Rx FIFO. | ||
1653 | * Set it to the lower of: | ||
1654 | * - 90% of the Rx FIFO size, or | ||
1655 | * - the full Rx FIFO size minus one full frame */ | ||
1656 | hwm = min(((pba << 10) * 9 / 10), | ||
1657 | ((pba << 10) - 2 * adapter->max_frame_size)); | ||
1658 | |||
1659 | fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */ | ||
1660 | fc->low_water = fc->high_water - 16; | ||
1661 | fc->pause_time = 0xFFFF; | ||
1662 | fc->send_xon = 1; | ||
1663 | fc->current_mode = fc->requested_mode; | ||
1664 | |||
1665 | /* disable receive for all VFs and wait one second */ | ||
1666 | if (adapter->vfs_allocated_count) { | ||
1667 | int i; | ||
1668 | for (i = 0 ; i < adapter->vfs_allocated_count; i++) | ||
1669 | adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; | ||
1670 | |||
1671 | /* ping all the active vfs to let them know we are going down */ | ||
1672 | igb_ping_all_vfs(adapter); | ||
1673 | |||
1674 | /* disable transmits and receives */ | ||
1675 | wr32(E1000_VFRE, 0); | ||
1676 | wr32(E1000_VFTE, 0); | ||
1677 | } | ||
1678 | |||
1679 | /* Allow time for pending master requests to run */ | ||
1680 | hw->mac.ops.reset_hw(hw); | ||
1681 | wr32(E1000_WUC, 0); | ||
1682 | |||
1683 | if (hw->mac.ops.init_hw(hw)) | ||
1684 | dev_err(&pdev->dev, "Hardware Error\n"); | ||
1685 | if (hw->mac.type > e1000_82580) { | ||
1686 | if (adapter->flags & IGB_FLAG_DMAC) { | ||
1687 | u32 reg; | ||
1688 | |||
1689 | /* | ||
1690 | * DMA Coalescing high water mark needs to be higher | ||
1691 | * than * the * Rx threshold. The Rx threshold is | ||
1692 | * currently * pba - 6, so we * should use a high water | ||
1693 | * mark of pba * - 4. */ | ||
1694 | hwm = (pba - 4) << 10; | ||
1695 | |||
1696 | reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT) | ||
1697 | & E1000_DMACR_DMACTHR_MASK); | ||
1698 | |||
1699 | /* transition to L0x or L1 if available..*/ | ||
1700 | reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); | ||
1701 | |||
1702 | /* watchdog timer= +-1000 usec in 32usec intervals */ | ||
1703 | reg |= (1000 >> 5); | ||
1704 | wr32(E1000_DMACR, reg); | ||
1705 | |||
1706 | /* no lower threshold to disable coalescing(smart fifb) | ||
1707 | * -UTRESH=0*/ | ||
1708 | wr32(E1000_DMCRTRH, 0); | ||
1709 | |||
1710 | /* set hwm to PBA - 2 * max frame size */ | ||
1711 | wr32(E1000_FCRTC, hwm); | ||
1712 | |||
1713 | /* | ||
1714 | * This sets the time to wait before requesting tran- | ||
1715 | * sition to * low power state to number of usecs needed | ||
1716 | * to receive 1 512 * byte frame at gigabit line rate | ||
1717 | */ | ||
1718 | reg = rd32(E1000_DMCTLX); | ||
1719 | reg |= IGB_DMCTLX_DCFLUSH_DIS; | ||
1720 | |||
1721 | /* Delay 255 usec before entering Lx state. */ | ||
1722 | reg |= 0xFF; | ||
1723 | wr32(E1000_DMCTLX, reg); | ||
1724 | |||
1725 | /* free space in Tx packet buffer to wake from DMAC */ | ||
1726 | wr32(E1000_DMCTXTH, | ||
1727 | (IGB_MIN_TXPBSIZE - | ||
1728 | (IGB_TX_BUF_4096 + adapter->max_frame_size)) | ||
1729 | >> 6); | ||
1730 | |||
1731 | /* make low power state decision controlled by DMAC */ | ||
1732 | reg = rd32(E1000_PCIEMISC); | ||
1733 | reg |= E1000_PCIEMISC_LX_DECISION; | ||
1734 | wr32(E1000_PCIEMISC, reg); | ||
1735 | } /* end if IGB_FLAG_DMAC set */ | ||
1736 | } | ||
1737 | if (hw->mac.type == e1000_82580) { | ||
1738 | u32 reg = rd32(E1000_PCIEMISC); | ||
1739 | wr32(E1000_PCIEMISC, | ||
1740 | reg & ~E1000_PCIEMISC_LX_DECISION); | ||
1741 | } | ||
1742 | if (!netif_running(adapter->netdev)) | ||
1743 | igb_power_down_link(adapter); | ||
1744 | |||
1745 | igb_update_mng_vlan(adapter); | ||
1746 | |||
1747 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | ||
1748 | wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); | ||
1749 | |||
1750 | igb_get_phy_info(hw); | ||
1751 | } | ||
1752 | |||
1753 | static u32 igb_fix_features(struct net_device *netdev, u32 features) | ||
1754 | { | ||
1755 | /* | ||
1756 | * Since there is no support for separate rx/tx vlan accel | ||
1757 | * enable/disable make sure tx flag is always in same state as rx. | ||
1758 | */ | ||
1759 | if (features & NETIF_F_HW_VLAN_RX) | ||
1760 | features |= NETIF_F_HW_VLAN_TX; | ||
1761 | else | ||
1762 | features &= ~NETIF_F_HW_VLAN_TX; | ||
1763 | |||
1764 | return features; | ||
1765 | } | ||
1766 | |||
1767 | static int igb_set_features(struct net_device *netdev, u32 features) | ||
1768 | { | ||
1769 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1770 | int i; | ||
1771 | u32 changed = netdev->features ^ features; | ||
1772 | |||
1773 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
1774 | if (features & NETIF_F_RXCSUM) | ||
1775 | adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM; | ||
1776 | else | ||
1777 | adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM; | ||
1778 | } | ||
1779 | |||
1780 | if (changed & NETIF_F_HW_VLAN_RX) | ||
1781 | igb_vlan_mode(netdev, features); | ||
1782 | |||
1783 | return 0; | ||
1784 | } | ||
1785 | |||
1786 | static const struct net_device_ops igb_netdev_ops = { | ||
1787 | .ndo_open = igb_open, | ||
1788 | .ndo_stop = igb_close, | ||
1789 | .ndo_start_xmit = igb_xmit_frame_adv, | ||
1790 | .ndo_get_stats64 = igb_get_stats64, | ||
1791 | .ndo_set_rx_mode = igb_set_rx_mode, | ||
1792 | .ndo_set_multicast_list = igb_set_rx_mode, | ||
1793 | .ndo_set_mac_address = igb_set_mac, | ||
1794 | .ndo_change_mtu = igb_change_mtu, | ||
1795 | .ndo_do_ioctl = igb_ioctl, | ||
1796 | .ndo_tx_timeout = igb_tx_timeout, | ||
1797 | .ndo_validate_addr = eth_validate_addr, | ||
1798 | .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, | ||
1799 | .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, | ||
1800 | .ndo_set_vf_mac = igb_ndo_set_vf_mac, | ||
1801 | .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, | ||
1802 | .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw, | ||
1803 | .ndo_get_vf_config = igb_ndo_get_vf_config, | ||
1804 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
1805 | .ndo_poll_controller = igb_netpoll, | ||
1806 | #endif | ||
1807 | .ndo_fix_features = igb_fix_features, | ||
1808 | .ndo_set_features = igb_set_features, | ||
1809 | }; | ||
1810 | |||
1811 | /** | ||
1812 | * igb_probe - Device Initialization Routine | ||
1813 | * @pdev: PCI device information struct | ||
1814 | * @ent: entry in igb_pci_tbl | ||
1815 | * | ||
1816 | * Returns 0 on success, negative on failure | ||
1817 | * | ||
1818 | * igb_probe initializes an adapter identified by a pci_dev structure. | ||
1819 | * The OS initialization, configuring of the adapter private structure, | ||
1820 | * and a hardware reset occur. | ||
1821 | **/ | ||
1822 | static int __devinit igb_probe(struct pci_dev *pdev, | ||
1823 | const struct pci_device_id *ent) | ||
1824 | { | ||
1825 | struct net_device *netdev; | ||
1826 | struct igb_adapter *adapter; | ||
1827 | struct e1000_hw *hw; | ||
1828 | u16 eeprom_data = 0; | ||
1829 | s32 ret_val; | ||
1830 | static int global_quad_port_a; /* global quad port a indication */ | ||
1831 | const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; | ||
1832 | unsigned long mmio_start, mmio_len; | ||
1833 | int err, pci_using_dac; | ||
1834 | u16 eeprom_apme_mask = IGB_EEPROM_APME; | ||
1835 | u8 part_str[E1000_PBANUM_LENGTH]; | ||
1836 | |||
1837 | /* Catch broken hardware that put the wrong VF device ID in | ||
1838 | * the PCIe SR-IOV capability. | ||
1839 | */ | ||
1840 | if (pdev->is_virtfn) { | ||
1841 | WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", | ||
1842 | pci_name(pdev), pdev->vendor, pdev->device); | ||
1843 | return -EINVAL; | ||
1844 | } | ||
1845 | |||
1846 | err = pci_enable_device_mem(pdev); | ||
1847 | if (err) | ||
1848 | return err; | ||
1849 | |||
1850 | pci_using_dac = 0; | ||
1851 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
1852 | if (!err) { | ||
1853 | err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
1854 | if (!err) | ||
1855 | pci_using_dac = 1; | ||
1856 | } else { | ||
1857 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); | ||
1858 | if (err) { | ||
1859 | err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); | ||
1860 | if (err) { | ||
1861 | dev_err(&pdev->dev, "No usable DMA " | ||
1862 | "configuration, aborting\n"); | ||
1863 | goto err_dma; | ||
1864 | } | ||
1865 | } | ||
1866 | } | ||
1867 | |||
1868 | err = pci_request_selected_regions(pdev, pci_select_bars(pdev, | ||
1869 | IORESOURCE_MEM), | ||
1870 | igb_driver_name); | ||
1871 | if (err) | ||
1872 | goto err_pci_reg; | ||
1873 | |||
1874 | pci_enable_pcie_error_reporting(pdev); | ||
1875 | |||
1876 | pci_set_master(pdev); | ||
1877 | pci_save_state(pdev); | ||
1878 | |||
1879 | err = -ENOMEM; | ||
1880 | netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), | ||
1881 | IGB_ABS_MAX_TX_QUEUES); | ||
1882 | if (!netdev) | ||
1883 | goto err_alloc_etherdev; | ||
1884 | |||
1885 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
1886 | |||
1887 | pci_set_drvdata(pdev, netdev); | ||
1888 | adapter = netdev_priv(netdev); | ||
1889 | adapter->netdev = netdev; | ||
1890 | adapter->pdev = pdev; | ||
1891 | hw = &adapter->hw; | ||
1892 | hw->back = adapter; | ||
1893 | adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE; | ||
1894 | |||
1895 | mmio_start = pci_resource_start(pdev, 0); | ||
1896 | mmio_len = pci_resource_len(pdev, 0); | ||
1897 | |||
1898 | err = -EIO; | ||
1899 | hw->hw_addr = ioremap(mmio_start, mmio_len); | ||
1900 | if (!hw->hw_addr) | ||
1901 | goto err_ioremap; | ||
1902 | |||
1903 | netdev->netdev_ops = &igb_netdev_ops; | ||
1904 | igb_set_ethtool_ops(netdev); | ||
1905 | netdev->watchdog_timeo = 5 * HZ; | ||
1906 | |||
1907 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
1908 | |||
1909 | netdev->mem_start = mmio_start; | ||
1910 | netdev->mem_end = mmio_start + mmio_len; | ||
1911 | |||
1912 | /* PCI config space info */ | ||
1913 | hw->vendor_id = pdev->vendor; | ||
1914 | hw->device_id = pdev->device; | ||
1915 | hw->revision_id = pdev->revision; | ||
1916 | hw->subsystem_vendor_id = pdev->subsystem_vendor; | ||
1917 | hw->subsystem_device_id = pdev->subsystem_device; | ||
1918 | |||
1919 | /* Copy the default MAC, PHY and NVM function pointers */ | ||
1920 | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | ||
1921 | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | ||
1922 | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | ||
1923 | /* Initialize skew-specific constants */ | ||
1924 | err = ei->get_invariants(hw); | ||
1925 | if (err) | ||
1926 | goto err_sw_init; | ||
1927 | |||
1928 | /* setup the private structure */ | ||
1929 | err = igb_sw_init(adapter); | ||
1930 | if (err) | ||
1931 | goto err_sw_init; | ||
1932 | |||
1933 | igb_get_bus_info_pcie(hw); | ||
1934 | |||
1935 | hw->phy.autoneg_wait_to_complete = false; | ||
1936 | |||
1937 | /* Copper options */ | ||
1938 | if (hw->phy.media_type == e1000_media_type_copper) { | ||
1939 | hw->phy.mdix = AUTO_ALL_MODES; | ||
1940 | hw->phy.disable_polarity_correction = false; | ||
1941 | hw->phy.ms_type = e1000_ms_hw_default; | ||
1942 | } | ||
1943 | |||
1944 | if (igb_check_reset_block(hw)) | ||
1945 | dev_info(&pdev->dev, | ||
1946 | "PHY reset is blocked due to SOL/IDER session.\n"); | ||
1947 | |||
1948 | netdev->hw_features = NETIF_F_SG | | ||
1949 | NETIF_F_IP_CSUM | | ||
1950 | NETIF_F_IPV6_CSUM | | ||
1951 | NETIF_F_TSO | | ||
1952 | NETIF_F_TSO6 | | ||
1953 | NETIF_F_RXCSUM | | ||
1954 | NETIF_F_HW_VLAN_RX; | ||
1955 | |||
1956 | netdev->features = netdev->hw_features | | ||
1957 | NETIF_F_HW_VLAN_TX | | ||
1958 | NETIF_F_HW_VLAN_FILTER; | ||
1959 | |||
1960 | netdev->vlan_features |= NETIF_F_TSO; | ||
1961 | netdev->vlan_features |= NETIF_F_TSO6; | ||
1962 | netdev->vlan_features |= NETIF_F_IP_CSUM; | ||
1963 | netdev->vlan_features |= NETIF_F_IPV6_CSUM; | ||
1964 | netdev->vlan_features |= NETIF_F_SG; | ||
1965 | |||
1966 | if (pci_using_dac) { | ||
1967 | netdev->features |= NETIF_F_HIGHDMA; | ||
1968 | netdev->vlan_features |= NETIF_F_HIGHDMA; | ||
1969 | } | ||
1970 | |||
1971 | if (hw->mac.type >= e1000_82576) { | ||
1972 | netdev->hw_features |= NETIF_F_SCTP_CSUM; | ||
1973 | netdev->features |= NETIF_F_SCTP_CSUM; | ||
1974 | } | ||
1975 | |||
1976 | adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); | ||
1977 | |||
1978 | /* before reading the NVM, reset the controller to put the device in a | ||
1979 | * known good starting state */ | ||
1980 | hw->mac.ops.reset_hw(hw); | ||
1981 | |||
1982 | /* make sure the NVM is good */ | ||
1983 | if (hw->nvm.ops.validate(hw) < 0) { | ||
1984 | dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); | ||
1985 | err = -EIO; | ||
1986 | goto err_eeprom; | ||
1987 | } | ||
1988 | |||
1989 | /* copy the MAC address out of the NVM */ | ||
1990 | if (hw->mac.ops.read_mac_addr(hw)) | ||
1991 | dev_err(&pdev->dev, "NVM Read Error\n"); | ||
1992 | |||
1993 | memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); | ||
1994 | memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len); | ||
1995 | |||
1996 | if (!is_valid_ether_addr(netdev->perm_addr)) { | ||
1997 | dev_err(&pdev->dev, "Invalid MAC Address\n"); | ||
1998 | err = -EIO; | ||
1999 | goto err_eeprom; | ||
2000 | } | ||
2001 | |||
2002 | setup_timer(&adapter->watchdog_timer, igb_watchdog, | ||
2003 | (unsigned long) adapter); | ||
2004 | setup_timer(&adapter->phy_info_timer, igb_update_phy_info, | ||
2005 | (unsigned long) adapter); | ||
2006 | |||
2007 | INIT_WORK(&adapter->reset_task, igb_reset_task); | ||
2008 | INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); | ||
2009 | |||
2010 | /* Initialize link properties that are user-changeable */ | ||
2011 | adapter->fc_autoneg = true; | ||
2012 | hw->mac.autoneg = true; | ||
2013 | hw->phy.autoneg_advertised = 0x2f; | ||
2014 | |||
2015 | hw->fc.requested_mode = e1000_fc_default; | ||
2016 | hw->fc.current_mode = e1000_fc_default; | ||
2017 | |||
2018 | igb_validate_mdi_setting(hw); | ||
2019 | |||
2020 | /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM, | ||
2021 | * enable the ACPI Magic Packet filter | ||
2022 | */ | ||
2023 | |||
2024 | if (hw->bus.func == 0) | ||
2025 | hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | ||
2026 | else if (hw->mac.type >= e1000_82580) | ||
2027 | hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + | ||
2028 | NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, | ||
2029 | &eeprom_data); | ||
2030 | else if (hw->bus.func == 1) | ||
2031 | hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | ||
2032 | |||
2033 | if (eeprom_data & eeprom_apme_mask) | ||
2034 | adapter->eeprom_wol |= E1000_WUFC_MAG; | ||
2035 | |||
2036 | /* now that we have the eeprom settings, apply the special cases where | ||
2037 | * the eeprom may be wrong or the board simply won't support wake on | ||
2038 | * lan on a particular port */ | ||
2039 | switch (pdev->device) { | ||
2040 | case E1000_DEV_ID_82575GB_QUAD_COPPER: | ||
2041 | adapter->eeprom_wol = 0; | ||
2042 | break; | ||
2043 | case E1000_DEV_ID_82575EB_FIBER_SERDES: | ||
2044 | case E1000_DEV_ID_82576_FIBER: | ||
2045 | case E1000_DEV_ID_82576_SERDES: | ||
2046 | /* Wake events only supported on port A for dual fiber | ||
2047 | * regardless of eeprom setting */ | ||
2048 | if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) | ||
2049 | adapter->eeprom_wol = 0; | ||
2050 | break; | ||
2051 | case E1000_DEV_ID_82576_QUAD_COPPER: | ||
2052 | case E1000_DEV_ID_82576_QUAD_COPPER_ET2: | ||
2053 | /* if quad port adapter, disable WoL on all but port A */ | ||
2054 | if (global_quad_port_a != 0) | ||
2055 | adapter->eeprom_wol = 0; | ||
2056 | else | ||
2057 | adapter->flags |= IGB_FLAG_QUAD_PORT_A; | ||
2058 | /* Reset for multiple quad port adapters */ | ||
2059 | if (++global_quad_port_a == 4) | ||
2060 | global_quad_port_a = 0; | ||
2061 | break; | ||
2062 | } | ||
2063 | |||
2064 | /* initialize the wol settings based on the eeprom settings */ | ||
2065 | adapter->wol = adapter->eeprom_wol; | ||
2066 | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | ||
2067 | |||
2068 | /* reset the hardware with the new settings */ | ||
2069 | igb_reset(adapter); | ||
2070 | |||
2071 | /* let the f/w know that the h/w is now under the control of the | ||
2072 | * driver. */ | ||
2073 | igb_get_hw_control(adapter); | ||
2074 | |||
2075 | strcpy(netdev->name, "eth%d"); | ||
2076 | err = register_netdev(netdev); | ||
2077 | if (err) | ||
2078 | goto err_register; | ||
2079 | |||
2080 | igb_vlan_mode(netdev, netdev->features); | ||
2081 | |||
2082 | /* carrier off reporting is important to ethtool even BEFORE open */ | ||
2083 | netif_carrier_off(netdev); | ||
2084 | |||
2085 | #ifdef CONFIG_IGB_DCA | ||
2086 | if (dca_add_requester(&pdev->dev) == 0) { | ||
2087 | adapter->flags |= IGB_FLAG_DCA_ENABLED; | ||
2088 | dev_info(&pdev->dev, "DCA enabled\n"); | ||
2089 | igb_setup_dca(adapter); | ||
2090 | } | ||
2091 | |||
2092 | #endif | ||
2093 | /* do hw tstamp init after resetting */ | ||
2094 | igb_init_hw_timer(adapter); | ||
2095 | |||
2096 | dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); | ||
2097 | /* print bus type/speed/width info */ | ||
2098 | dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", | ||
2099 | netdev->name, | ||
2100 | ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : | ||
2101 | (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : | ||
2102 | "unknown"), | ||
2103 | ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : | ||
2104 | (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" : | ||
2105 | (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" : | ||
2106 | "unknown"), | ||
2107 | netdev->dev_addr); | ||
2108 | |||
2109 | ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH); | ||
2110 | if (ret_val) | ||
2111 | strcpy(part_str, "Unknown"); | ||
2112 | dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); | ||
2113 | dev_info(&pdev->dev, | ||
2114 | "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", | ||
2115 | adapter->msix_entries ? "MSI-X" : | ||
2116 | (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", | ||
2117 | adapter->num_rx_queues, adapter->num_tx_queues); | ||
2118 | switch (hw->mac.type) { | ||
2119 | case e1000_i350: | ||
2120 | igb_set_eee_i350(hw); | ||
2121 | break; | ||
2122 | default: | ||
2123 | break; | ||
2124 | } | ||
2125 | return 0; | ||
2126 | |||
2127 | err_register: | ||
2128 | igb_release_hw_control(adapter); | ||
2129 | err_eeprom: | ||
2130 | if (!igb_check_reset_block(hw)) | ||
2131 | igb_reset_phy(hw); | ||
2132 | |||
2133 | if (hw->flash_address) | ||
2134 | iounmap(hw->flash_address); | ||
2135 | err_sw_init: | ||
2136 | igb_clear_interrupt_scheme(adapter); | ||
2137 | iounmap(hw->hw_addr); | ||
2138 | err_ioremap: | ||
2139 | free_netdev(netdev); | ||
2140 | err_alloc_etherdev: | ||
2141 | pci_release_selected_regions(pdev, | ||
2142 | pci_select_bars(pdev, IORESOURCE_MEM)); | ||
2143 | err_pci_reg: | ||
2144 | err_dma: | ||
2145 | pci_disable_device(pdev); | ||
2146 | return err; | ||
2147 | } | ||
2148 | |||
2149 | /** | ||
2150 | * igb_remove - Device Removal Routine | ||
2151 | * @pdev: PCI device information struct | ||
2152 | * | ||
2153 | * igb_remove is called by the PCI subsystem to alert the driver | ||
2154 | * that it should release a PCI device. The could be caused by a | ||
2155 | * Hot-Plug event, or because the driver is going to be removed from | ||
2156 | * memory. | ||
2157 | **/ | ||
2158 | static void __devexit igb_remove(struct pci_dev *pdev) | ||
2159 | { | ||
2160 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2161 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2162 | struct e1000_hw *hw = &adapter->hw; | ||
2163 | |||
2164 | /* | ||
2165 | * The watchdog timer may be rescheduled, so explicitly | ||
2166 | * disable watchdog from being rescheduled. | ||
2167 | */ | ||
2168 | set_bit(__IGB_DOWN, &adapter->state); | ||
2169 | del_timer_sync(&adapter->watchdog_timer); | ||
2170 | del_timer_sync(&adapter->phy_info_timer); | ||
2171 | |||
2172 | cancel_work_sync(&adapter->reset_task); | ||
2173 | cancel_work_sync(&adapter->watchdog_task); | ||
2174 | |||
2175 | #ifdef CONFIG_IGB_DCA | ||
2176 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) { | ||
2177 | dev_info(&pdev->dev, "DCA disabled\n"); | ||
2178 | dca_remove_requester(&pdev->dev); | ||
2179 | adapter->flags &= ~IGB_FLAG_DCA_ENABLED; | ||
2180 | wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); | ||
2181 | } | ||
2182 | #endif | ||
2183 | |||
2184 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
2185 | * would have already happened in close and is redundant. */ | ||
2186 | igb_release_hw_control(adapter); | ||
2187 | |||
2188 | unregister_netdev(netdev); | ||
2189 | |||
2190 | igb_clear_interrupt_scheme(adapter); | ||
2191 | |||
2192 | #ifdef CONFIG_PCI_IOV | ||
2193 | /* reclaim resources allocated to VFs */ | ||
2194 | if (adapter->vf_data) { | ||
2195 | /* disable iov and allow time for transactions to clear */ | ||
2196 | pci_disable_sriov(pdev); | ||
2197 | msleep(500); | ||
2198 | |||
2199 | kfree(adapter->vf_data); | ||
2200 | adapter->vf_data = NULL; | ||
2201 | wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); | ||
2202 | wrfl(); | ||
2203 | msleep(100); | ||
2204 | dev_info(&pdev->dev, "IOV Disabled\n"); | ||
2205 | } | ||
2206 | #endif | ||
2207 | |||
2208 | iounmap(hw->hw_addr); | ||
2209 | if (hw->flash_address) | ||
2210 | iounmap(hw->flash_address); | ||
2211 | pci_release_selected_regions(pdev, | ||
2212 | pci_select_bars(pdev, IORESOURCE_MEM)); | ||
2213 | |||
2214 | free_netdev(netdev); | ||
2215 | |||
2216 | pci_disable_pcie_error_reporting(pdev); | ||
2217 | |||
2218 | pci_disable_device(pdev); | ||
2219 | } | ||
2220 | |||
2221 | /** | ||
2222 | * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space | ||
2223 | * @adapter: board private structure to initialize | ||
2224 | * | ||
2225 | * This function initializes the vf specific data storage and then attempts to | ||
2226 | * allocate the VFs. The reason for ordering it this way is because it is much | ||
2227 | * mor expensive time wise to disable SR-IOV than it is to allocate and free | ||
2228 | * the memory for the VFs. | ||
2229 | **/ | ||
2230 | static void __devinit igb_probe_vfs(struct igb_adapter * adapter) | ||
2231 | { | ||
2232 | #ifdef CONFIG_PCI_IOV | ||
2233 | struct pci_dev *pdev = adapter->pdev; | ||
2234 | |||
2235 | if (adapter->vfs_allocated_count) { | ||
2236 | adapter->vf_data = kcalloc(adapter->vfs_allocated_count, | ||
2237 | sizeof(struct vf_data_storage), | ||
2238 | GFP_KERNEL); | ||
2239 | /* if allocation failed then we do not support SR-IOV */ | ||
2240 | if (!adapter->vf_data) { | ||
2241 | adapter->vfs_allocated_count = 0; | ||
2242 | dev_err(&pdev->dev, "Unable to allocate memory for VF " | ||
2243 | "Data Storage\n"); | ||
2244 | } | ||
2245 | } | ||
2246 | |||
2247 | if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) { | ||
2248 | kfree(adapter->vf_data); | ||
2249 | adapter->vf_data = NULL; | ||
2250 | #endif /* CONFIG_PCI_IOV */ | ||
2251 | adapter->vfs_allocated_count = 0; | ||
2252 | #ifdef CONFIG_PCI_IOV | ||
2253 | } else { | ||
2254 | unsigned char mac_addr[ETH_ALEN]; | ||
2255 | int i; | ||
2256 | dev_info(&pdev->dev, "%d vfs allocated\n", | ||
2257 | adapter->vfs_allocated_count); | ||
2258 | for (i = 0; i < adapter->vfs_allocated_count; i++) { | ||
2259 | random_ether_addr(mac_addr); | ||
2260 | igb_set_vf_mac(adapter, i, mac_addr); | ||
2261 | } | ||
2262 | /* DMA Coalescing is not supported in IOV mode. */ | ||
2263 | if (adapter->flags & IGB_FLAG_DMAC) | ||
2264 | adapter->flags &= ~IGB_FLAG_DMAC; | ||
2265 | } | ||
2266 | #endif /* CONFIG_PCI_IOV */ | ||
2267 | } | ||
2268 | |||
2269 | |||
2270 | /** | ||
2271 | * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp | ||
2272 | * @adapter: board private structure to initialize | ||
2273 | * | ||
2274 | * igb_init_hw_timer initializes the function pointer and values for the hw | ||
2275 | * timer found in hardware. | ||
2276 | **/ | ||
2277 | static void igb_init_hw_timer(struct igb_adapter *adapter) | ||
2278 | { | ||
2279 | struct e1000_hw *hw = &adapter->hw; | ||
2280 | |||
2281 | switch (hw->mac.type) { | ||
2282 | case e1000_i350: | ||
2283 | case e1000_82580: | ||
2284 | memset(&adapter->cycles, 0, sizeof(adapter->cycles)); | ||
2285 | adapter->cycles.read = igb_read_clock; | ||
2286 | adapter->cycles.mask = CLOCKSOURCE_MASK(64); | ||
2287 | adapter->cycles.mult = 1; | ||
2288 | /* | ||
2289 | * The 82580 timesync updates the system timer every 8ns by 8ns | ||
2290 | * and the value cannot be shifted. Instead we need to shift | ||
2291 | * the registers to generate a 64bit timer value. As a result | ||
2292 | * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by | ||
2293 | * 24 in order to generate a larger value for synchronization. | ||
2294 | */ | ||
2295 | adapter->cycles.shift = IGB_82580_TSYNC_SHIFT; | ||
2296 | /* disable system timer temporarily by setting bit 31 */ | ||
2297 | wr32(E1000_TSAUXC, 0x80000000); | ||
2298 | wrfl(); | ||
2299 | |||
2300 | /* Set registers so that rollover occurs soon to test this. */ | ||
2301 | wr32(E1000_SYSTIMR, 0x00000000); | ||
2302 | wr32(E1000_SYSTIML, 0x80000000); | ||
2303 | wr32(E1000_SYSTIMH, 0x000000FF); | ||
2304 | wrfl(); | ||
2305 | |||
2306 | /* enable system timer by clearing bit 31 */ | ||
2307 | wr32(E1000_TSAUXC, 0x0); | ||
2308 | wrfl(); | ||
2309 | |||
2310 | timecounter_init(&adapter->clock, | ||
2311 | &adapter->cycles, | ||
2312 | ktime_to_ns(ktime_get_real())); | ||
2313 | /* | ||
2314 | * Synchronize our NIC clock against system wall clock. NIC | ||
2315 | * time stamp reading requires ~3us per sample, each sample | ||
2316 | * was pretty stable even under load => only require 10 | ||
2317 | * samples for each offset comparison. | ||
2318 | */ | ||
2319 | memset(&adapter->compare, 0, sizeof(adapter->compare)); | ||
2320 | adapter->compare.source = &adapter->clock; | ||
2321 | adapter->compare.target = ktime_get_real; | ||
2322 | adapter->compare.num_samples = 10; | ||
2323 | timecompare_update(&adapter->compare, 0); | ||
2324 | break; | ||
2325 | case e1000_82576: | ||
2326 | /* | ||
2327 | * Initialize hardware timer: we keep it running just in case | ||
2328 | * that some program needs it later on. | ||
2329 | */ | ||
2330 | memset(&adapter->cycles, 0, sizeof(adapter->cycles)); | ||
2331 | adapter->cycles.read = igb_read_clock; | ||
2332 | adapter->cycles.mask = CLOCKSOURCE_MASK(64); | ||
2333 | adapter->cycles.mult = 1; | ||
2334 | /** | ||
2335 | * Scale the NIC clock cycle by a large factor so that | ||
2336 | * relatively small clock corrections can be added or | ||
2337 | * subtracted at each clock tick. The drawbacks of a large | ||
2338 | * factor are a) that the clock register overflows more quickly | ||
2339 | * (not such a big deal) and b) that the increment per tick has | ||
2340 | * to fit into 24 bits. As a result we need to use a shift of | ||
2341 | * 19 so we can fit a value of 16 into the TIMINCA register. | ||
2342 | */ | ||
2343 | adapter->cycles.shift = IGB_82576_TSYNC_SHIFT; | ||
2344 | wr32(E1000_TIMINCA, | ||
2345 | (1 << E1000_TIMINCA_16NS_SHIFT) | | ||
2346 | (16 << IGB_82576_TSYNC_SHIFT)); | ||
2347 | |||
2348 | /* Set registers so that rollover occurs soon to test this. */ | ||
2349 | wr32(E1000_SYSTIML, 0x00000000); | ||
2350 | wr32(E1000_SYSTIMH, 0xFF800000); | ||
2351 | wrfl(); | ||
2352 | |||
2353 | timecounter_init(&adapter->clock, | ||
2354 | &adapter->cycles, | ||
2355 | ktime_to_ns(ktime_get_real())); | ||
2356 | /* | ||
2357 | * Synchronize our NIC clock against system wall clock. NIC | ||
2358 | * time stamp reading requires ~3us per sample, each sample | ||
2359 | * was pretty stable even under load => only require 10 | ||
2360 | * samples for each offset comparison. | ||
2361 | */ | ||
2362 | memset(&adapter->compare, 0, sizeof(adapter->compare)); | ||
2363 | adapter->compare.source = &adapter->clock; | ||
2364 | adapter->compare.target = ktime_get_real; | ||
2365 | adapter->compare.num_samples = 10; | ||
2366 | timecompare_update(&adapter->compare, 0); | ||
2367 | break; | ||
2368 | case e1000_82575: | ||
2369 | /* 82575 does not support timesync */ | ||
2370 | default: | ||
2371 | break; | ||
2372 | } | ||
2373 | |||
2374 | } | ||
2375 | |||
2376 | /** | ||
2377 | * igb_sw_init - Initialize general software structures (struct igb_adapter) | ||
2378 | * @adapter: board private structure to initialize | ||
2379 | * | ||
2380 | * igb_sw_init initializes the Adapter private data structure. | ||
2381 | * Fields are initialized based on PCI device information and | ||
2382 | * OS network device settings (MTU size). | ||
2383 | **/ | ||
2384 | static int __devinit igb_sw_init(struct igb_adapter *adapter) | ||
2385 | { | ||
2386 | struct e1000_hw *hw = &adapter->hw; | ||
2387 | struct net_device *netdev = adapter->netdev; | ||
2388 | struct pci_dev *pdev = adapter->pdev; | ||
2389 | |||
2390 | pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); | ||
2391 | |||
2392 | adapter->tx_ring_count = IGB_DEFAULT_TXD; | ||
2393 | adapter->rx_ring_count = IGB_DEFAULT_RXD; | ||
2394 | adapter->rx_itr_setting = IGB_DEFAULT_ITR; | ||
2395 | adapter->tx_itr_setting = IGB_DEFAULT_ITR; | ||
2396 | |||
2397 | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | ||
2398 | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | ||
2399 | |||
2400 | spin_lock_init(&adapter->stats64_lock); | ||
2401 | #ifdef CONFIG_PCI_IOV | ||
2402 | switch (hw->mac.type) { | ||
2403 | case e1000_82576: | ||
2404 | case e1000_i350: | ||
2405 | if (max_vfs > 7) { | ||
2406 | dev_warn(&pdev->dev, | ||
2407 | "Maximum of 7 VFs per PF, using max\n"); | ||
2408 | adapter->vfs_allocated_count = 7; | ||
2409 | } else | ||
2410 | adapter->vfs_allocated_count = max_vfs; | ||
2411 | break; | ||
2412 | default: | ||
2413 | break; | ||
2414 | } | ||
2415 | #endif /* CONFIG_PCI_IOV */ | ||
2416 | adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus()); | ||
2417 | /* i350 cannot do RSS and SR-IOV at the same time */ | ||
2418 | if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count) | ||
2419 | adapter->rss_queues = 1; | ||
2420 | |||
2421 | /* | ||
2422 | * if rss_queues > 4 or vfs are going to be allocated with rss_queues | ||
2423 | * then we should combine the queues into a queue pair in order to | ||
2424 | * conserve interrupts due to limited supply | ||
2425 | */ | ||
2426 | if ((adapter->rss_queues > 4) || | ||
2427 | ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6))) | ||
2428 | adapter->flags |= IGB_FLAG_QUEUE_PAIRS; | ||
2429 | |||
2430 | /* This call may decrease the number of queues */ | ||
2431 | if (igb_init_interrupt_scheme(adapter)) { | ||
2432 | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | ||
2433 | return -ENOMEM; | ||
2434 | } | ||
2435 | |||
2436 | igb_probe_vfs(adapter); | ||
2437 | |||
2438 | /* Explicitly disable IRQ since the NIC can be in any state. */ | ||
2439 | igb_irq_disable(adapter); | ||
2440 | |||
2441 | if (hw->mac.type == e1000_i350) | ||
2442 | adapter->flags &= ~IGB_FLAG_DMAC; | ||
2443 | |||
2444 | set_bit(__IGB_DOWN, &adapter->state); | ||
2445 | return 0; | ||
2446 | } | ||
2447 | |||
2448 | /** | ||
2449 | * igb_open - Called when a network interface is made active | ||
2450 | * @netdev: network interface device structure | ||
2451 | * | ||
2452 | * Returns 0 on success, negative value on failure | ||
2453 | * | ||
2454 | * The open entry point is called when a network interface is made | ||
2455 | * active by the system (IFF_UP). At this point all resources needed | ||
2456 | * for transmit and receive operations are allocated, the interrupt | ||
2457 | * handler is registered with the OS, the watchdog timer is started, | ||
2458 | * and the stack is notified that the interface is ready. | ||
2459 | **/ | ||
2460 | static int igb_open(struct net_device *netdev) | ||
2461 | { | ||
2462 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2463 | struct e1000_hw *hw = &adapter->hw; | ||
2464 | int err; | ||
2465 | int i; | ||
2466 | |||
2467 | /* disallow open during test */ | ||
2468 | if (test_bit(__IGB_TESTING, &adapter->state)) | ||
2469 | return -EBUSY; | ||
2470 | |||
2471 | netif_carrier_off(netdev); | ||
2472 | |||
2473 | /* allocate transmit descriptors */ | ||
2474 | err = igb_setup_all_tx_resources(adapter); | ||
2475 | if (err) | ||
2476 | goto err_setup_tx; | ||
2477 | |||
2478 | /* allocate receive descriptors */ | ||
2479 | err = igb_setup_all_rx_resources(adapter); | ||
2480 | if (err) | ||
2481 | goto err_setup_rx; | ||
2482 | |||
2483 | igb_power_up_link(adapter); | ||
2484 | |||
2485 | /* before we allocate an interrupt, we must be ready to handle it. | ||
2486 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | ||
2487 | * as soon as we call pci_request_irq, so we have to setup our | ||
2488 | * clean_rx handler before we do so. */ | ||
2489 | igb_configure(adapter); | ||
2490 | |||
2491 | err = igb_request_irq(adapter); | ||
2492 | if (err) | ||
2493 | goto err_req_irq; | ||
2494 | |||
2495 | /* From here on the code is the same as igb_up() */ | ||
2496 | clear_bit(__IGB_DOWN, &adapter->state); | ||
2497 | |||
2498 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
2499 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
2500 | napi_enable(&q_vector->napi); | ||
2501 | } | ||
2502 | |||
2503 | /* Clear any pending interrupts. */ | ||
2504 | rd32(E1000_ICR); | ||
2505 | |||
2506 | igb_irq_enable(adapter); | ||
2507 | |||
2508 | /* notify VFs that reset has been completed */ | ||
2509 | if (adapter->vfs_allocated_count) { | ||
2510 | u32 reg_data = rd32(E1000_CTRL_EXT); | ||
2511 | reg_data |= E1000_CTRL_EXT_PFRSTD; | ||
2512 | wr32(E1000_CTRL_EXT, reg_data); | ||
2513 | } | ||
2514 | |||
2515 | netif_tx_start_all_queues(netdev); | ||
2516 | |||
2517 | /* start the watchdog. */ | ||
2518 | hw->mac.get_link_status = 1; | ||
2519 | schedule_work(&adapter->watchdog_task); | ||
2520 | |||
2521 | return 0; | ||
2522 | |||
2523 | err_req_irq: | ||
2524 | igb_release_hw_control(adapter); | ||
2525 | igb_power_down_link(adapter); | ||
2526 | igb_free_all_rx_resources(adapter); | ||
2527 | err_setup_rx: | ||
2528 | igb_free_all_tx_resources(adapter); | ||
2529 | err_setup_tx: | ||
2530 | igb_reset(adapter); | ||
2531 | |||
2532 | return err; | ||
2533 | } | ||
2534 | |||
2535 | /** | ||
2536 | * igb_close - Disables a network interface | ||
2537 | * @netdev: network interface device structure | ||
2538 | * | ||
2539 | * Returns 0, this is not allowed to fail | ||
2540 | * | ||
2541 | * The close entry point is called when an interface is de-activated | ||
2542 | * by the OS. The hardware is still under the driver's control, but | ||
2543 | * needs to be disabled. A global MAC reset is issued to stop the | ||
2544 | * hardware, and all transmit and receive resources are freed. | ||
2545 | **/ | ||
2546 | static int igb_close(struct net_device *netdev) | ||
2547 | { | ||
2548 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2549 | |||
2550 | WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); | ||
2551 | igb_down(adapter); | ||
2552 | |||
2553 | igb_free_irq(adapter); | ||
2554 | |||
2555 | igb_free_all_tx_resources(adapter); | ||
2556 | igb_free_all_rx_resources(adapter); | ||
2557 | |||
2558 | return 0; | ||
2559 | } | ||
2560 | |||
2561 | /** | ||
2562 | * igb_setup_tx_resources - allocate Tx resources (Descriptors) | ||
2563 | * @tx_ring: tx descriptor ring (for a specific queue) to setup | ||
2564 | * | ||
2565 | * Return 0 on success, negative on failure | ||
2566 | **/ | ||
2567 | int igb_setup_tx_resources(struct igb_ring *tx_ring) | ||
2568 | { | ||
2569 | struct device *dev = tx_ring->dev; | ||
2570 | int size; | ||
2571 | |||
2572 | size = sizeof(struct igb_buffer) * tx_ring->count; | ||
2573 | tx_ring->buffer_info = vzalloc(size); | ||
2574 | if (!tx_ring->buffer_info) | ||
2575 | goto err; | ||
2576 | |||
2577 | /* round up to nearest 4K */ | ||
2578 | tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); | ||
2579 | tx_ring->size = ALIGN(tx_ring->size, 4096); | ||
2580 | |||
2581 | tx_ring->desc = dma_alloc_coherent(dev, | ||
2582 | tx_ring->size, | ||
2583 | &tx_ring->dma, | ||
2584 | GFP_KERNEL); | ||
2585 | |||
2586 | if (!tx_ring->desc) | ||
2587 | goto err; | ||
2588 | |||
2589 | tx_ring->next_to_use = 0; | ||
2590 | tx_ring->next_to_clean = 0; | ||
2591 | return 0; | ||
2592 | |||
2593 | err: | ||
2594 | vfree(tx_ring->buffer_info); | ||
2595 | dev_err(dev, | ||
2596 | "Unable to allocate memory for the transmit descriptor ring\n"); | ||
2597 | return -ENOMEM; | ||
2598 | } | ||
2599 | |||
2600 | /** | ||
2601 | * igb_setup_all_tx_resources - wrapper to allocate Tx resources | ||
2602 | * (Descriptors) for all queues | ||
2603 | * @adapter: board private structure | ||
2604 | * | ||
2605 | * Return 0 on success, negative on failure | ||
2606 | **/ | ||
2607 | static int igb_setup_all_tx_resources(struct igb_adapter *adapter) | ||
2608 | { | ||
2609 | struct pci_dev *pdev = adapter->pdev; | ||
2610 | int i, err = 0; | ||
2611 | |||
2612 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
2613 | err = igb_setup_tx_resources(adapter->tx_ring[i]); | ||
2614 | if (err) { | ||
2615 | dev_err(&pdev->dev, | ||
2616 | "Allocation for Tx Queue %u failed\n", i); | ||
2617 | for (i--; i >= 0; i--) | ||
2618 | igb_free_tx_resources(adapter->tx_ring[i]); | ||
2619 | break; | ||
2620 | } | ||
2621 | } | ||
2622 | |||
2623 | for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) { | ||
2624 | int r_idx = i % adapter->num_tx_queues; | ||
2625 | adapter->multi_tx_table[i] = adapter->tx_ring[r_idx]; | ||
2626 | } | ||
2627 | return err; | ||
2628 | } | ||
2629 | |||
2630 | /** | ||
2631 | * igb_setup_tctl - configure the transmit control registers | ||
2632 | * @adapter: Board private structure | ||
2633 | **/ | ||
2634 | void igb_setup_tctl(struct igb_adapter *adapter) | ||
2635 | { | ||
2636 | struct e1000_hw *hw = &adapter->hw; | ||
2637 | u32 tctl; | ||
2638 | |||
2639 | /* disable queue 0 which is enabled by default on 82575 and 82576 */ | ||
2640 | wr32(E1000_TXDCTL(0), 0); | ||
2641 | |||
2642 | /* Program the Transmit Control Register */ | ||
2643 | tctl = rd32(E1000_TCTL); | ||
2644 | tctl &= ~E1000_TCTL_CT; | ||
2645 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | ||
2646 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | ||
2647 | |||
2648 | igb_config_collision_dist(hw); | ||
2649 | |||
2650 | /* Enable transmits */ | ||
2651 | tctl |= E1000_TCTL_EN; | ||
2652 | |||
2653 | wr32(E1000_TCTL, tctl); | ||
2654 | } | ||
2655 | |||
2656 | /** | ||
2657 | * igb_configure_tx_ring - Configure transmit ring after Reset | ||
2658 | * @adapter: board private structure | ||
2659 | * @ring: tx ring to configure | ||
2660 | * | ||
2661 | * Configure a transmit ring after a reset. | ||
2662 | **/ | ||
2663 | void igb_configure_tx_ring(struct igb_adapter *adapter, | ||
2664 | struct igb_ring *ring) | ||
2665 | { | ||
2666 | struct e1000_hw *hw = &adapter->hw; | ||
2667 | u32 txdctl; | ||
2668 | u64 tdba = ring->dma; | ||
2669 | int reg_idx = ring->reg_idx; | ||
2670 | |||
2671 | /* disable the queue */ | ||
2672 | txdctl = rd32(E1000_TXDCTL(reg_idx)); | ||
2673 | wr32(E1000_TXDCTL(reg_idx), | ||
2674 | txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); | ||
2675 | wrfl(); | ||
2676 | mdelay(10); | ||
2677 | |||
2678 | wr32(E1000_TDLEN(reg_idx), | ||
2679 | ring->count * sizeof(union e1000_adv_tx_desc)); | ||
2680 | wr32(E1000_TDBAL(reg_idx), | ||
2681 | tdba & 0x00000000ffffffffULL); | ||
2682 | wr32(E1000_TDBAH(reg_idx), tdba >> 32); | ||
2683 | |||
2684 | ring->head = hw->hw_addr + E1000_TDH(reg_idx); | ||
2685 | ring->tail = hw->hw_addr + E1000_TDT(reg_idx); | ||
2686 | writel(0, ring->head); | ||
2687 | writel(0, ring->tail); | ||
2688 | |||
2689 | txdctl |= IGB_TX_PTHRESH; | ||
2690 | txdctl |= IGB_TX_HTHRESH << 8; | ||
2691 | txdctl |= IGB_TX_WTHRESH << 16; | ||
2692 | |||
2693 | txdctl |= E1000_TXDCTL_QUEUE_ENABLE; | ||
2694 | wr32(E1000_TXDCTL(reg_idx), txdctl); | ||
2695 | } | ||
2696 | |||
2697 | /** | ||
2698 | * igb_configure_tx - Configure transmit Unit after Reset | ||
2699 | * @adapter: board private structure | ||
2700 | * | ||
2701 | * Configure the Tx unit of the MAC after a reset. | ||
2702 | **/ | ||
2703 | static void igb_configure_tx(struct igb_adapter *adapter) | ||
2704 | { | ||
2705 | int i; | ||
2706 | |||
2707 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
2708 | igb_configure_tx_ring(adapter, adapter->tx_ring[i]); | ||
2709 | } | ||
2710 | |||
2711 | /** | ||
2712 | * igb_setup_rx_resources - allocate Rx resources (Descriptors) | ||
2713 | * @rx_ring: rx descriptor ring (for a specific queue) to setup | ||
2714 | * | ||
2715 | * Returns 0 on success, negative on failure | ||
2716 | **/ | ||
2717 | int igb_setup_rx_resources(struct igb_ring *rx_ring) | ||
2718 | { | ||
2719 | struct device *dev = rx_ring->dev; | ||
2720 | int size, desc_len; | ||
2721 | |||
2722 | size = sizeof(struct igb_buffer) * rx_ring->count; | ||
2723 | rx_ring->buffer_info = vzalloc(size); | ||
2724 | if (!rx_ring->buffer_info) | ||
2725 | goto err; | ||
2726 | |||
2727 | desc_len = sizeof(union e1000_adv_rx_desc); | ||
2728 | |||
2729 | /* Round up to nearest 4K */ | ||
2730 | rx_ring->size = rx_ring->count * desc_len; | ||
2731 | rx_ring->size = ALIGN(rx_ring->size, 4096); | ||
2732 | |||
2733 | rx_ring->desc = dma_alloc_coherent(dev, | ||
2734 | rx_ring->size, | ||
2735 | &rx_ring->dma, | ||
2736 | GFP_KERNEL); | ||
2737 | |||
2738 | if (!rx_ring->desc) | ||
2739 | goto err; | ||
2740 | |||
2741 | rx_ring->next_to_clean = 0; | ||
2742 | rx_ring->next_to_use = 0; | ||
2743 | |||
2744 | return 0; | ||
2745 | |||
2746 | err: | ||
2747 | vfree(rx_ring->buffer_info); | ||
2748 | rx_ring->buffer_info = NULL; | ||
2749 | dev_err(dev, "Unable to allocate memory for the receive descriptor" | ||
2750 | " ring\n"); | ||
2751 | return -ENOMEM; | ||
2752 | } | ||
2753 | |||
2754 | /** | ||
2755 | * igb_setup_all_rx_resources - wrapper to allocate Rx resources | ||
2756 | * (Descriptors) for all queues | ||
2757 | * @adapter: board private structure | ||
2758 | * | ||
2759 | * Return 0 on success, negative on failure | ||
2760 | **/ | ||
2761 | static int igb_setup_all_rx_resources(struct igb_adapter *adapter) | ||
2762 | { | ||
2763 | struct pci_dev *pdev = adapter->pdev; | ||
2764 | int i, err = 0; | ||
2765 | |||
2766 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
2767 | err = igb_setup_rx_resources(adapter->rx_ring[i]); | ||
2768 | if (err) { | ||
2769 | dev_err(&pdev->dev, | ||
2770 | "Allocation for Rx Queue %u failed\n", i); | ||
2771 | for (i--; i >= 0; i--) | ||
2772 | igb_free_rx_resources(adapter->rx_ring[i]); | ||
2773 | break; | ||
2774 | } | ||
2775 | } | ||
2776 | |||
2777 | return err; | ||
2778 | } | ||
2779 | |||
2780 | /** | ||
2781 | * igb_setup_mrqc - configure the multiple receive queue control registers | ||
2782 | * @adapter: Board private structure | ||
2783 | **/ | ||
2784 | static void igb_setup_mrqc(struct igb_adapter *adapter) | ||
2785 | { | ||
2786 | struct e1000_hw *hw = &adapter->hw; | ||
2787 | u32 mrqc, rxcsum; | ||
2788 | u32 j, num_rx_queues, shift = 0, shift2 = 0; | ||
2789 | union e1000_reta { | ||
2790 | u32 dword; | ||
2791 | u8 bytes[4]; | ||
2792 | } reta; | ||
2793 | static const u8 rsshash[40] = { | ||
2794 | 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67, | ||
2795 | 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb, | ||
2796 | 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, | ||
2797 | 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa }; | ||
2798 | |||
2799 | /* Fill out hash function seeds */ | ||
2800 | for (j = 0; j < 10; j++) { | ||
2801 | u32 rsskey = rsshash[(j * 4)]; | ||
2802 | rsskey |= rsshash[(j * 4) + 1] << 8; | ||
2803 | rsskey |= rsshash[(j * 4) + 2] << 16; | ||
2804 | rsskey |= rsshash[(j * 4) + 3] << 24; | ||
2805 | array_wr32(E1000_RSSRK(0), j, rsskey); | ||
2806 | } | ||
2807 | |||
2808 | num_rx_queues = adapter->rss_queues; | ||
2809 | |||
2810 | if (adapter->vfs_allocated_count) { | ||
2811 | /* 82575 and 82576 supports 2 RSS queues for VMDq */ | ||
2812 | switch (hw->mac.type) { | ||
2813 | case e1000_i350: | ||
2814 | case e1000_82580: | ||
2815 | num_rx_queues = 1; | ||
2816 | shift = 0; | ||
2817 | break; | ||
2818 | case e1000_82576: | ||
2819 | shift = 3; | ||
2820 | num_rx_queues = 2; | ||
2821 | break; | ||
2822 | case e1000_82575: | ||
2823 | shift = 2; | ||
2824 | shift2 = 6; | ||
2825 | default: | ||
2826 | break; | ||
2827 | } | ||
2828 | } else { | ||
2829 | if (hw->mac.type == e1000_82575) | ||
2830 | shift = 6; | ||
2831 | } | ||
2832 | |||
2833 | for (j = 0; j < (32 * 4); j++) { | ||
2834 | reta.bytes[j & 3] = (j % num_rx_queues) << shift; | ||
2835 | if (shift2) | ||
2836 | reta.bytes[j & 3] |= num_rx_queues << shift2; | ||
2837 | if ((j & 3) == 3) | ||
2838 | wr32(E1000_RETA(j >> 2), reta.dword); | ||
2839 | } | ||
2840 | |||
2841 | /* | ||
2842 | * Disable raw packet checksumming so that RSS hash is placed in | ||
2843 | * descriptor on writeback. No need to enable TCP/UDP/IP checksum | ||
2844 | * offloads as they are enabled by default | ||
2845 | */ | ||
2846 | rxcsum = rd32(E1000_RXCSUM); | ||
2847 | rxcsum |= E1000_RXCSUM_PCSD; | ||
2848 | |||
2849 | if (adapter->hw.mac.type >= e1000_82576) | ||
2850 | /* Enable Receive Checksum Offload for SCTP */ | ||
2851 | rxcsum |= E1000_RXCSUM_CRCOFL; | ||
2852 | |||
2853 | /* Don't need to set TUOFL or IPOFL, they default to 1 */ | ||
2854 | wr32(E1000_RXCSUM, rxcsum); | ||
2855 | |||
2856 | /* If VMDq is enabled then we set the appropriate mode for that, else | ||
2857 | * we default to RSS so that an RSS hash is calculated per packet even | ||
2858 | * if we are only using one queue */ | ||
2859 | if (adapter->vfs_allocated_count) { | ||
2860 | if (hw->mac.type > e1000_82575) { | ||
2861 | /* Set the default pool for the PF's first queue */ | ||
2862 | u32 vtctl = rd32(E1000_VT_CTL); | ||
2863 | vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | | ||
2864 | E1000_VT_CTL_DISABLE_DEF_POOL); | ||
2865 | vtctl |= adapter->vfs_allocated_count << | ||
2866 | E1000_VT_CTL_DEFAULT_POOL_SHIFT; | ||
2867 | wr32(E1000_VT_CTL, vtctl); | ||
2868 | } | ||
2869 | if (adapter->rss_queues > 1) | ||
2870 | mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q; | ||
2871 | else | ||
2872 | mrqc = E1000_MRQC_ENABLE_VMDQ; | ||
2873 | } else { | ||
2874 | mrqc = E1000_MRQC_ENABLE_RSS_4Q; | ||
2875 | } | ||
2876 | igb_vmm_control(adapter); | ||
2877 | |||
2878 | /* | ||
2879 | * Generate RSS hash based on TCP port numbers and/or | ||
2880 | * IPv4/v6 src and dst addresses since UDP cannot be | ||
2881 | * hashed reliably due to IP fragmentation | ||
2882 | */ | ||
2883 | mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | | ||
2884 | E1000_MRQC_RSS_FIELD_IPV4_TCP | | ||
2885 | E1000_MRQC_RSS_FIELD_IPV6 | | ||
2886 | E1000_MRQC_RSS_FIELD_IPV6_TCP | | ||
2887 | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; | ||
2888 | |||
2889 | wr32(E1000_MRQC, mrqc); | ||
2890 | } | ||
2891 | |||
2892 | /** | ||
2893 | * igb_setup_rctl - configure the receive control registers | ||
2894 | * @adapter: Board private structure | ||
2895 | **/ | ||
2896 | void igb_setup_rctl(struct igb_adapter *adapter) | ||
2897 | { | ||
2898 | struct e1000_hw *hw = &adapter->hw; | ||
2899 | u32 rctl; | ||
2900 | |||
2901 | rctl = rd32(E1000_RCTL); | ||
2902 | |||
2903 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | ||
2904 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | ||
2905 | |||
2906 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | | ||
2907 | (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
2908 | |||
2909 | /* | ||
2910 | * enable stripping of CRC. It's unlikely this will break BMC | ||
2911 | * redirection as it did with e1000. Newer features require | ||
2912 | * that the HW strips the CRC. | ||
2913 | */ | ||
2914 | rctl |= E1000_RCTL_SECRC; | ||
2915 | |||
2916 | /* disable store bad packets and clear size bits. */ | ||
2917 | rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); | ||
2918 | |||
2919 | /* enable LPE to prevent packets larger than max_frame_size */ | ||
2920 | rctl |= E1000_RCTL_LPE; | ||
2921 | |||
2922 | /* disable queue 0 to prevent tail write w/o re-config */ | ||
2923 | wr32(E1000_RXDCTL(0), 0); | ||
2924 | |||
2925 | /* Attention!!! For SR-IOV PF driver operations you must enable | ||
2926 | * queue drop for all VF and PF queues to prevent head of line blocking | ||
2927 | * if an un-trusted VF does not provide descriptors to hardware. | ||
2928 | */ | ||
2929 | if (adapter->vfs_allocated_count) { | ||
2930 | /* set all queue drop enable bits */ | ||
2931 | wr32(E1000_QDE, ALL_QUEUES); | ||
2932 | } | ||
2933 | |||
2934 | wr32(E1000_RCTL, rctl); | ||
2935 | } | ||
2936 | |||
2937 | static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, | ||
2938 | int vfn) | ||
2939 | { | ||
2940 | struct e1000_hw *hw = &adapter->hw; | ||
2941 | u32 vmolr; | ||
2942 | |||
2943 | /* if it isn't the PF check to see if VFs are enabled and | ||
2944 | * increase the size to support vlan tags */ | ||
2945 | if (vfn < adapter->vfs_allocated_count && | ||
2946 | adapter->vf_data[vfn].vlans_enabled) | ||
2947 | size += VLAN_TAG_SIZE; | ||
2948 | |||
2949 | vmolr = rd32(E1000_VMOLR(vfn)); | ||
2950 | vmolr &= ~E1000_VMOLR_RLPML_MASK; | ||
2951 | vmolr |= size | E1000_VMOLR_LPE; | ||
2952 | wr32(E1000_VMOLR(vfn), vmolr); | ||
2953 | |||
2954 | return 0; | ||
2955 | } | ||
2956 | |||
2957 | /** | ||
2958 | * igb_rlpml_set - set maximum receive packet size | ||
2959 | * @adapter: board private structure | ||
2960 | * | ||
2961 | * Configure maximum receivable packet size. | ||
2962 | **/ | ||
2963 | static void igb_rlpml_set(struct igb_adapter *adapter) | ||
2964 | { | ||
2965 | u32 max_frame_size; | ||
2966 | struct e1000_hw *hw = &adapter->hw; | ||
2967 | u16 pf_id = adapter->vfs_allocated_count; | ||
2968 | |||
2969 | max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE; | ||
2970 | |||
2971 | /* if vfs are enabled we set RLPML to the largest possible request | ||
2972 | * size and set the VMOLR RLPML to the size we need */ | ||
2973 | if (pf_id) { | ||
2974 | igb_set_vf_rlpml(adapter, max_frame_size, pf_id); | ||
2975 | max_frame_size = MAX_JUMBO_FRAME_SIZE; | ||
2976 | } | ||
2977 | |||
2978 | wr32(E1000_RLPML, max_frame_size); | ||
2979 | } | ||
2980 | |||
2981 | static inline void igb_set_vmolr(struct igb_adapter *adapter, | ||
2982 | int vfn, bool aupe) | ||
2983 | { | ||
2984 | struct e1000_hw *hw = &adapter->hw; | ||
2985 | u32 vmolr; | ||
2986 | |||
2987 | /* | ||
2988 | * This register exists only on 82576 and newer so if we are older then | ||
2989 | * we should exit and do nothing | ||
2990 | */ | ||
2991 | if (hw->mac.type < e1000_82576) | ||
2992 | return; | ||
2993 | |||
2994 | vmolr = rd32(E1000_VMOLR(vfn)); | ||
2995 | vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */ | ||
2996 | if (aupe) | ||
2997 | vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ | ||
2998 | else | ||
2999 | vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ | ||
3000 | |||
3001 | /* clear all bits that might not be set */ | ||
3002 | vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); | ||
3003 | |||
3004 | if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) | ||
3005 | vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ | ||
3006 | /* | ||
3007 | * for VMDq only allow the VFs and pool 0 to accept broadcast and | ||
3008 | * multicast packets | ||
3009 | */ | ||
3010 | if (vfn <= adapter->vfs_allocated_count) | ||
3011 | vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ | ||
3012 | |||
3013 | wr32(E1000_VMOLR(vfn), vmolr); | ||
3014 | } | ||
3015 | |||
3016 | /** | ||
3017 | * igb_configure_rx_ring - Configure a receive ring after Reset | ||
3018 | * @adapter: board private structure | ||
3019 | * @ring: receive ring to be configured | ||
3020 | * | ||
3021 | * Configure the Rx unit of the MAC after a reset. | ||
3022 | **/ | ||
3023 | void igb_configure_rx_ring(struct igb_adapter *adapter, | ||
3024 | struct igb_ring *ring) | ||
3025 | { | ||
3026 | struct e1000_hw *hw = &adapter->hw; | ||
3027 | u64 rdba = ring->dma; | ||
3028 | int reg_idx = ring->reg_idx; | ||
3029 | u32 srrctl, rxdctl; | ||
3030 | |||
3031 | /* disable the queue */ | ||
3032 | rxdctl = rd32(E1000_RXDCTL(reg_idx)); | ||
3033 | wr32(E1000_RXDCTL(reg_idx), | ||
3034 | rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); | ||
3035 | |||
3036 | /* Set DMA base address registers */ | ||
3037 | wr32(E1000_RDBAL(reg_idx), | ||
3038 | rdba & 0x00000000ffffffffULL); | ||
3039 | wr32(E1000_RDBAH(reg_idx), rdba >> 32); | ||
3040 | wr32(E1000_RDLEN(reg_idx), | ||
3041 | ring->count * sizeof(union e1000_adv_rx_desc)); | ||
3042 | |||
3043 | /* initialize head and tail */ | ||
3044 | ring->head = hw->hw_addr + E1000_RDH(reg_idx); | ||
3045 | ring->tail = hw->hw_addr + E1000_RDT(reg_idx); | ||
3046 | writel(0, ring->head); | ||
3047 | writel(0, ring->tail); | ||
3048 | |||
3049 | /* set descriptor configuration */ | ||
3050 | if (ring->rx_buffer_len < IGB_RXBUFFER_1024) { | ||
3051 | srrctl = ALIGN(ring->rx_buffer_len, 64) << | ||
3052 | E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; | ||
3053 | #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384 | ||
3054 | srrctl |= IGB_RXBUFFER_16384 >> | ||
3055 | E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
3056 | #else | ||
3057 | srrctl |= (PAGE_SIZE / 2) >> | ||
3058 | E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
3059 | #endif | ||
3060 | srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; | ||
3061 | } else { | ||
3062 | srrctl = ALIGN(ring->rx_buffer_len, 1024) >> | ||
3063 | E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
3064 | srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; | ||
3065 | } | ||
3066 | if (hw->mac.type == e1000_82580) | ||
3067 | srrctl |= E1000_SRRCTL_TIMESTAMP; | ||
3068 | /* Only set Drop Enable if we are supporting multiple queues */ | ||
3069 | if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) | ||
3070 | srrctl |= E1000_SRRCTL_DROP_EN; | ||
3071 | |||
3072 | wr32(E1000_SRRCTL(reg_idx), srrctl); | ||
3073 | |||
3074 | /* set filtering for VMDQ pools */ | ||
3075 | igb_set_vmolr(adapter, reg_idx & 0x7, true); | ||
3076 | |||
3077 | /* enable receive descriptor fetching */ | ||
3078 | rxdctl = rd32(E1000_RXDCTL(reg_idx)); | ||
3079 | rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; | ||
3080 | rxdctl &= 0xFFF00000; | ||
3081 | rxdctl |= IGB_RX_PTHRESH; | ||
3082 | rxdctl |= IGB_RX_HTHRESH << 8; | ||
3083 | rxdctl |= IGB_RX_WTHRESH << 16; | ||
3084 | wr32(E1000_RXDCTL(reg_idx), rxdctl); | ||
3085 | } | ||
3086 | |||
3087 | /** | ||
3088 | * igb_configure_rx - Configure receive Unit after Reset | ||
3089 | * @adapter: board private structure | ||
3090 | * | ||
3091 | * Configure the Rx unit of the MAC after a reset. | ||
3092 | **/ | ||
3093 | static void igb_configure_rx(struct igb_adapter *adapter) | ||
3094 | { | ||
3095 | int i; | ||
3096 | |||
3097 | /* set UTA to appropriate mode */ | ||
3098 | igb_set_uta(adapter); | ||
3099 | |||
3100 | /* set the correct pool for the PF default MAC address in entry 0 */ | ||
3101 | igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, | ||
3102 | adapter->vfs_allocated_count); | ||
3103 | |||
3104 | /* Setup the HW Rx Head and Tail Descriptor Pointers and | ||
3105 | * the Base and Length of the Rx Descriptor Ring */ | ||
3106 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
3107 | igb_configure_rx_ring(adapter, adapter->rx_ring[i]); | ||
3108 | } | ||
3109 | |||
3110 | /** | ||
3111 | * igb_free_tx_resources - Free Tx Resources per Queue | ||
3112 | * @tx_ring: Tx descriptor ring for a specific queue | ||
3113 | * | ||
3114 | * Free all transmit software resources | ||
3115 | **/ | ||
3116 | void igb_free_tx_resources(struct igb_ring *tx_ring) | ||
3117 | { | ||
3118 | igb_clean_tx_ring(tx_ring); | ||
3119 | |||
3120 | vfree(tx_ring->buffer_info); | ||
3121 | tx_ring->buffer_info = NULL; | ||
3122 | |||
3123 | /* if not set, then don't free */ | ||
3124 | if (!tx_ring->desc) | ||
3125 | return; | ||
3126 | |||
3127 | dma_free_coherent(tx_ring->dev, tx_ring->size, | ||
3128 | tx_ring->desc, tx_ring->dma); | ||
3129 | |||
3130 | tx_ring->desc = NULL; | ||
3131 | } | ||
3132 | |||
3133 | /** | ||
3134 | * igb_free_all_tx_resources - Free Tx Resources for All Queues | ||
3135 | * @adapter: board private structure | ||
3136 | * | ||
3137 | * Free all transmit software resources | ||
3138 | **/ | ||
3139 | static void igb_free_all_tx_resources(struct igb_adapter *adapter) | ||
3140 | { | ||
3141 | int i; | ||
3142 | |||
3143 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
3144 | igb_free_tx_resources(adapter->tx_ring[i]); | ||
3145 | } | ||
3146 | |||
3147 | void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring, | ||
3148 | struct igb_buffer *buffer_info) | ||
3149 | { | ||
3150 | if (buffer_info->dma) { | ||
3151 | if (buffer_info->mapped_as_page) | ||
3152 | dma_unmap_page(tx_ring->dev, | ||
3153 | buffer_info->dma, | ||
3154 | buffer_info->length, | ||
3155 | DMA_TO_DEVICE); | ||
3156 | else | ||
3157 | dma_unmap_single(tx_ring->dev, | ||
3158 | buffer_info->dma, | ||
3159 | buffer_info->length, | ||
3160 | DMA_TO_DEVICE); | ||
3161 | buffer_info->dma = 0; | ||
3162 | } | ||
3163 | if (buffer_info->skb) { | ||
3164 | dev_kfree_skb_any(buffer_info->skb); | ||
3165 | buffer_info->skb = NULL; | ||
3166 | } | ||
3167 | buffer_info->time_stamp = 0; | ||
3168 | buffer_info->length = 0; | ||
3169 | buffer_info->next_to_watch = 0; | ||
3170 | buffer_info->mapped_as_page = false; | ||
3171 | } | ||
3172 | |||
3173 | /** | ||
3174 | * igb_clean_tx_ring - Free Tx Buffers | ||
3175 | * @tx_ring: ring to be cleaned | ||
3176 | **/ | ||
3177 | static void igb_clean_tx_ring(struct igb_ring *tx_ring) | ||
3178 | { | ||
3179 | struct igb_buffer *buffer_info; | ||
3180 | unsigned long size; | ||
3181 | unsigned int i; | ||
3182 | |||
3183 | if (!tx_ring->buffer_info) | ||
3184 | return; | ||
3185 | /* Free all the Tx ring sk_buffs */ | ||
3186 | |||
3187 | for (i = 0; i < tx_ring->count; i++) { | ||
3188 | buffer_info = &tx_ring->buffer_info[i]; | ||
3189 | igb_unmap_and_free_tx_resource(tx_ring, buffer_info); | ||
3190 | } | ||
3191 | |||
3192 | size = sizeof(struct igb_buffer) * tx_ring->count; | ||
3193 | memset(tx_ring->buffer_info, 0, size); | ||
3194 | |||
3195 | /* Zero out the descriptor ring */ | ||
3196 | memset(tx_ring->desc, 0, tx_ring->size); | ||
3197 | |||
3198 | tx_ring->next_to_use = 0; | ||
3199 | tx_ring->next_to_clean = 0; | ||
3200 | } | ||
3201 | |||
3202 | /** | ||
3203 | * igb_clean_all_tx_rings - Free Tx Buffers for all queues | ||
3204 | * @adapter: board private structure | ||
3205 | **/ | ||
3206 | static void igb_clean_all_tx_rings(struct igb_adapter *adapter) | ||
3207 | { | ||
3208 | int i; | ||
3209 | |||
3210 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
3211 | igb_clean_tx_ring(adapter->tx_ring[i]); | ||
3212 | } | ||
3213 | |||
3214 | /** | ||
3215 | * igb_free_rx_resources - Free Rx Resources | ||
3216 | * @rx_ring: ring to clean the resources from | ||
3217 | * | ||
3218 | * Free all receive software resources | ||
3219 | **/ | ||
3220 | void igb_free_rx_resources(struct igb_ring *rx_ring) | ||
3221 | { | ||
3222 | igb_clean_rx_ring(rx_ring); | ||
3223 | |||
3224 | vfree(rx_ring->buffer_info); | ||
3225 | rx_ring->buffer_info = NULL; | ||
3226 | |||
3227 | /* if not set, then don't free */ | ||
3228 | if (!rx_ring->desc) | ||
3229 | return; | ||
3230 | |||
3231 | dma_free_coherent(rx_ring->dev, rx_ring->size, | ||
3232 | rx_ring->desc, rx_ring->dma); | ||
3233 | |||
3234 | rx_ring->desc = NULL; | ||
3235 | } | ||
3236 | |||
3237 | /** | ||
3238 | * igb_free_all_rx_resources - Free Rx Resources for All Queues | ||
3239 | * @adapter: board private structure | ||
3240 | * | ||
3241 | * Free all receive software resources | ||
3242 | **/ | ||
3243 | static void igb_free_all_rx_resources(struct igb_adapter *adapter) | ||
3244 | { | ||
3245 | int i; | ||
3246 | |||
3247 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
3248 | igb_free_rx_resources(adapter->rx_ring[i]); | ||
3249 | } | ||
3250 | |||
3251 | /** | ||
3252 | * igb_clean_rx_ring - Free Rx Buffers per Queue | ||
3253 | * @rx_ring: ring to free buffers from | ||
3254 | **/ | ||
3255 | static void igb_clean_rx_ring(struct igb_ring *rx_ring) | ||
3256 | { | ||
3257 | struct igb_buffer *buffer_info; | ||
3258 | unsigned long size; | ||
3259 | unsigned int i; | ||
3260 | |||
3261 | if (!rx_ring->buffer_info) | ||
3262 | return; | ||
3263 | |||
3264 | /* Free all the Rx ring sk_buffs */ | ||
3265 | for (i = 0; i < rx_ring->count; i++) { | ||
3266 | buffer_info = &rx_ring->buffer_info[i]; | ||
3267 | if (buffer_info->dma) { | ||
3268 | dma_unmap_single(rx_ring->dev, | ||
3269 | buffer_info->dma, | ||
3270 | rx_ring->rx_buffer_len, | ||
3271 | DMA_FROM_DEVICE); | ||
3272 | buffer_info->dma = 0; | ||
3273 | } | ||
3274 | |||
3275 | if (buffer_info->skb) { | ||
3276 | dev_kfree_skb(buffer_info->skb); | ||
3277 | buffer_info->skb = NULL; | ||
3278 | } | ||
3279 | if (buffer_info->page_dma) { | ||
3280 | dma_unmap_page(rx_ring->dev, | ||
3281 | buffer_info->page_dma, | ||
3282 | PAGE_SIZE / 2, | ||
3283 | DMA_FROM_DEVICE); | ||
3284 | buffer_info->page_dma = 0; | ||
3285 | } | ||
3286 | if (buffer_info->page) { | ||
3287 | put_page(buffer_info->page); | ||
3288 | buffer_info->page = NULL; | ||
3289 | buffer_info->page_offset = 0; | ||
3290 | } | ||
3291 | } | ||
3292 | |||
3293 | size = sizeof(struct igb_buffer) * rx_ring->count; | ||
3294 | memset(rx_ring->buffer_info, 0, size); | ||
3295 | |||
3296 | /* Zero out the descriptor ring */ | ||
3297 | memset(rx_ring->desc, 0, rx_ring->size); | ||
3298 | |||
3299 | rx_ring->next_to_clean = 0; | ||
3300 | rx_ring->next_to_use = 0; | ||
3301 | } | ||
3302 | |||
3303 | /** | ||
3304 | * igb_clean_all_rx_rings - Free Rx Buffers for all queues | ||
3305 | * @adapter: board private structure | ||
3306 | **/ | ||
3307 | static void igb_clean_all_rx_rings(struct igb_adapter *adapter) | ||
3308 | { | ||
3309 | int i; | ||
3310 | |||
3311 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
3312 | igb_clean_rx_ring(adapter->rx_ring[i]); | ||
3313 | } | ||
3314 | |||
3315 | /** | ||
3316 | * igb_set_mac - Change the Ethernet Address of the NIC | ||
3317 | * @netdev: network interface device structure | ||
3318 | * @p: pointer to an address structure | ||
3319 | * | ||
3320 | * Returns 0 on success, negative on failure | ||
3321 | **/ | ||
3322 | static int igb_set_mac(struct net_device *netdev, void *p) | ||
3323 | { | ||
3324 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3325 | struct e1000_hw *hw = &adapter->hw; | ||
3326 | struct sockaddr *addr = p; | ||
3327 | |||
3328 | if (!is_valid_ether_addr(addr->sa_data)) | ||
3329 | return -EADDRNOTAVAIL; | ||
3330 | |||
3331 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
3332 | memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); | ||
3333 | |||
3334 | /* set the correct pool for the new PF MAC address in entry 0 */ | ||
3335 | igb_rar_set_qsel(adapter, hw->mac.addr, 0, | ||
3336 | adapter->vfs_allocated_count); | ||
3337 | |||
3338 | return 0; | ||
3339 | } | ||
3340 | |||
3341 | /** | ||
3342 | * igb_write_mc_addr_list - write multicast addresses to MTA | ||
3343 | * @netdev: network interface device structure | ||
3344 | * | ||
3345 | * Writes multicast address list to the MTA hash table. | ||
3346 | * Returns: -ENOMEM on failure | ||
3347 | * 0 on no addresses written | ||
3348 | * X on writing X addresses to MTA | ||
3349 | **/ | ||
3350 | static int igb_write_mc_addr_list(struct net_device *netdev) | ||
3351 | { | ||
3352 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3353 | struct e1000_hw *hw = &adapter->hw; | ||
3354 | struct netdev_hw_addr *ha; | ||
3355 | u8 *mta_list; | ||
3356 | int i; | ||
3357 | |||
3358 | if (netdev_mc_empty(netdev)) { | ||
3359 | /* nothing to program, so clear mc list */ | ||
3360 | igb_update_mc_addr_list(hw, NULL, 0); | ||
3361 | igb_restore_vf_multicasts(adapter); | ||
3362 | return 0; | ||
3363 | } | ||
3364 | |||
3365 | mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); | ||
3366 | if (!mta_list) | ||
3367 | return -ENOMEM; | ||
3368 | |||
3369 | /* The shared function expects a packed array of only addresses. */ | ||
3370 | i = 0; | ||
3371 | netdev_for_each_mc_addr(ha, netdev) | ||
3372 | memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); | ||
3373 | |||
3374 | igb_update_mc_addr_list(hw, mta_list, i); | ||
3375 | kfree(mta_list); | ||
3376 | |||
3377 | return netdev_mc_count(netdev); | ||
3378 | } | ||
3379 | |||
3380 | /** | ||
3381 | * igb_write_uc_addr_list - write unicast addresses to RAR table | ||
3382 | * @netdev: network interface device structure | ||
3383 | * | ||
3384 | * Writes unicast address list to the RAR table. | ||
3385 | * Returns: -ENOMEM on failure/insufficient address space | ||
3386 | * 0 on no addresses written | ||
3387 | * X on writing X addresses to the RAR table | ||
3388 | **/ | ||
3389 | static int igb_write_uc_addr_list(struct net_device *netdev) | ||
3390 | { | ||
3391 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3392 | struct e1000_hw *hw = &adapter->hw; | ||
3393 | unsigned int vfn = adapter->vfs_allocated_count; | ||
3394 | unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); | ||
3395 | int count = 0; | ||
3396 | |||
3397 | /* return ENOMEM indicating insufficient memory for addresses */ | ||
3398 | if (netdev_uc_count(netdev) > rar_entries) | ||
3399 | return -ENOMEM; | ||
3400 | |||
3401 | if (!netdev_uc_empty(netdev) && rar_entries) { | ||
3402 | struct netdev_hw_addr *ha; | ||
3403 | |||
3404 | netdev_for_each_uc_addr(ha, netdev) { | ||
3405 | if (!rar_entries) | ||
3406 | break; | ||
3407 | igb_rar_set_qsel(adapter, ha->addr, | ||
3408 | rar_entries--, | ||
3409 | vfn); | ||
3410 | count++; | ||
3411 | } | ||
3412 | } | ||
3413 | /* write the addresses in reverse order to avoid write combining */ | ||
3414 | for (; rar_entries > 0 ; rar_entries--) { | ||
3415 | wr32(E1000_RAH(rar_entries), 0); | ||
3416 | wr32(E1000_RAL(rar_entries), 0); | ||
3417 | } | ||
3418 | wrfl(); | ||
3419 | |||
3420 | return count; | ||
3421 | } | ||
3422 | |||
3423 | /** | ||
3424 | * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set | ||
3425 | * @netdev: network interface device structure | ||
3426 | * | ||
3427 | * The set_rx_mode entry point is called whenever the unicast or multicast | ||
3428 | * address lists or the network interface flags are updated. This routine is | ||
3429 | * responsible for configuring the hardware for proper unicast, multicast, | ||
3430 | * promiscuous mode, and all-multi behavior. | ||
3431 | **/ | ||
3432 | static void igb_set_rx_mode(struct net_device *netdev) | ||
3433 | { | ||
3434 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3435 | struct e1000_hw *hw = &adapter->hw; | ||
3436 | unsigned int vfn = adapter->vfs_allocated_count; | ||
3437 | u32 rctl, vmolr = 0; | ||
3438 | int count; | ||
3439 | |||
3440 | /* Check for Promiscuous and All Multicast modes */ | ||
3441 | rctl = rd32(E1000_RCTL); | ||
3442 | |||
3443 | /* clear the effected bits */ | ||
3444 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); | ||
3445 | |||
3446 | if (netdev->flags & IFF_PROMISC) { | ||
3447 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
3448 | vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); | ||
3449 | } else { | ||
3450 | if (netdev->flags & IFF_ALLMULTI) { | ||
3451 | rctl |= E1000_RCTL_MPE; | ||
3452 | vmolr |= E1000_VMOLR_MPME; | ||
3453 | } else { | ||
3454 | /* | ||
3455 | * Write addresses to the MTA, if the attempt fails | ||
3456 | * then we should just turn on promiscuous mode so | ||
3457 | * that we can at least receive multicast traffic | ||
3458 | */ | ||
3459 | count = igb_write_mc_addr_list(netdev); | ||
3460 | if (count < 0) { | ||
3461 | rctl |= E1000_RCTL_MPE; | ||
3462 | vmolr |= E1000_VMOLR_MPME; | ||
3463 | } else if (count) { | ||
3464 | vmolr |= E1000_VMOLR_ROMPE; | ||
3465 | } | ||
3466 | } | ||
3467 | /* | ||
3468 | * Write addresses to available RAR registers, if there is not | ||
3469 | * sufficient space to store all the addresses then enable | ||
3470 | * unicast promiscuous mode | ||
3471 | */ | ||
3472 | count = igb_write_uc_addr_list(netdev); | ||
3473 | if (count < 0) { | ||
3474 | rctl |= E1000_RCTL_UPE; | ||
3475 | vmolr |= E1000_VMOLR_ROPE; | ||
3476 | } | ||
3477 | rctl |= E1000_RCTL_VFE; | ||
3478 | } | ||
3479 | wr32(E1000_RCTL, rctl); | ||
3480 | |||
3481 | /* | ||
3482 | * In order to support SR-IOV and eventually VMDq it is necessary to set | ||
3483 | * the VMOLR to enable the appropriate modes. Without this workaround | ||
3484 | * we will have issues with VLAN tag stripping not being done for frames | ||
3485 | * that are only arriving because we are the default pool | ||
3486 | */ | ||
3487 | if (hw->mac.type < e1000_82576) | ||
3488 | return; | ||
3489 | |||
3490 | vmolr |= rd32(E1000_VMOLR(vfn)) & | ||
3491 | ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); | ||
3492 | wr32(E1000_VMOLR(vfn), vmolr); | ||
3493 | igb_restore_vf_multicasts(adapter); | ||
3494 | } | ||
3495 | |||
3496 | static void igb_check_wvbr(struct igb_adapter *adapter) | ||
3497 | { | ||
3498 | struct e1000_hw *hw = &adapter->hw; | ||
3499 | u32 wvbr = 0; | ||
3500 | |||
3501 | switch (hw->mac.type) { | ||
3502 | case e1000_82576: | ||
3503 | case e1000_i350: | ||
3504 | if (!(wvbr = rd32(E1000_WVBR))) | ||
3505 | return; | ||
3506 | break; | ||
3507 | default: | ||
3508 | break; | ||
3509 | } | ||
3510 | |||
3511 | adapter->wvbr |= wvbr; | ||
3512 | } | ||
3513 | |||
3514 | #define IGB_STAGGERED_QUEUE_OFFSET 8 | ||
3515 | |||
3516 | static void igb_spoof_check(struct igb_adapter *adapter) | ||
3517 | { | ||
3518 | int j; | ||
3519 | |||
3520 | if (!adapter->wvbr) | ||
3521 | return; | ||
3522 | |||
3523 | for(j = 0; j < adapter->vfs_allocated_count; j++) { | ||
3524 | if (adapter->wvbr & (1 << j) || | ||
3525 | adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { | ||
3526 | dev_warn(&adapter->pdev->dev, | ||
3527 | "Spoof event(s) detected on VF %d\n", j); | ||
3528 | adapter->wvbr &= | ||
3529 | ~((1 << j) | | ||
3530 | (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); | ||
3531 | } | ||
3532 | } | ||
3533 | } | ||
3534 | |||
3535 | /* Need to wait a few seconds after link up to get diagnostic information from | ||
3536 | * the phy */ | ||
3537 | static void igb_update_phy_info(unsigned long data) | ||
3538 | { | ||
3539 | struct igb_adapter *adapter = (struct igb_adapter *) data; | ||
3540 | igb_get_phy_info(&adapter->hw); | ||
3541 | } | ||
3542 | |||
3543 | /** | ||
3544 | * igb_has_link - check shared code for link and determine up/down | ||
3545 | * @adapter: pointer to driver private info | ||
3546 | **/ | ||
3547 | bool igb_has_link(struct igb_adapter *adapter) | ||
3548 | { | ||
3549 | struct e1000_hw *hw = &adapter->hw; | ||
3550 | bool link_active = false; | ||
3551 | s32 ret_val = 0; | ||
3552 | |||
3553 | /* get_link_status is set on LSC (link status) interrupt or | ||
3554 | * rx sequence error interrupt. get_link_status will stay | ||
3555 | * false until the e1000_check_for_link establishes link | ||
3556 | * for copper adapters ONLY | ||
3557 | */ | ||
3558 | switch (hw->phy.media_type) { | ||
3559 | case e1000_media_type_copper: | ||
3560 | if (hw->mac.get_link_status) { | ||
3561 | ret_val = hw->mac.ops.check_for_link(hw); | ||
3562 | link_active = !hw->mac.get_link_status; | ||
3563 | } else { | ||
3564 | link_active = true; | ||
3565 | } | ||
3566 | break; | ||
3567 | case e1000_media_type_internal_serdes: | ||
3568 | ret_val = hw->mac.ops.check_for_link(hw); | ||
3569 | link_active = hw->mac.serdes_has_link; | ||
3570 | break; | ||
3571 | default: | ||
3572 | case e1000_media_type_unknown: | ||
3573 | break; | ||
3574 | } | ||
3575 | |||
3576 | return link_active; | ||
3577 | } | ||
3578 | |||
3579 | static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) | ||
3580 | { | ||
3581 | bool ret = false; | ||
3582 | u32 ctrl_ext, thstat; | ||
3583 | |||
3584 | /* check for thermal sensor event on i350, copper only */ | ||
3585 | if (hw->mac.type == e1000_i350) { | ||
3586 | thstat = rd32(E1000_THSTAT); | ||
3587 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
3588 | |||
3589 | if ((hw->phy.media_type == e1000_media_type_copper) && | ||
3590 | !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) { | ||
3591 | ret = !!(thstat & event); | ||
3592 | } | ||
3593 | } | ||
3594 | |||
3595 | return ret; | ||
3596 | } | ||
3597 | |||
3598 | /** | ||
3599 | * igb_watchdog - Timer Call-back | ||
3600 | * @data: pointer to adapter cast into an unsigned long | ||
3601 | **/ | ||
3602 | static void igb_watchdog(unsigned long data) | ||
3603 | { | ||
3604 | struct igb_adapter *adapter = (struct igb_adapter *)data; | ||
3605 | /* Do the rest outside of interrupt context */ | ||
3606 | schedule_work(&adapter->watchdog_task); | ||
3607 | } | ||
3608 | |||
3609 | static void igb_watchdog_task(struct work_struct *work) | ||
3610 | { | ||
3611 | struct igb_adapter *adapter = container_of(work, | ||
3612 | struct igb_adapter, | ||
3613 | watchdog_task); | ||
3614 | struct e1000_hw *hw = &adapter->hw; | ||
3615 | struct net_device *netdev = adapter->netdev; | ||
3616 | u32 link; | ||
3617 | int i; | ||
3618 | |||
3619 | link = igb_has_link(adapter); | ||
3620 | if (link) { | ||
3621 | if (!netif_carrier_ok(netdev)) { | ||
3622 | u32 ctrl; | ||
3623 | hw->mac.ops.get_speed_and_duplex(hw, | ||
3624 | &adapter->link_speed, | ||
3625 | &adapter->link_duplex); | ||
3626 | |||
3627 | ctrl = rd32(E1000_CTRL); | ||
3628 | /* Links status message must follow this format */ | ||
3629 | printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, " | ||
3630 | "Flow Control: %s\n", | ||
3631 | netdev->name, | ||
3632 | adapter->link_speed, | ||
3633 | adapter->link_duplex == FULL_DUPLEX ? | ||
3634 | "Full Duplex" : "Half Duplex", | ||
3635 | ((ctrl & E1000_CTRL_TFCE) && | ||
3636 | (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" : | ||
3637 | ((ctrl & E1000_CTRL_RFCE) ? "RX" : | ||
3638 | ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None"))); | ||
3639 | |||
3640 | /* check for thermal sensor event */ | ||
3641 | if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) { | ||
3642 | printk(KERN_INFO "igb: %s The network adapter " | ||
3643 | "link speed was downshifted " | ||
3644 | "because it overheated.\n", | ||
3645 | netdev->name); | ||
3646 | } | ||
3647 | |||
3648 | /* adjust timeout factor according to speed/duplex */ | ||
3649 | adapter->tx_timeout_factor = 1; | ||
3650 | switch (adapter->link_speed) { | ||
3651 | case SPEED_10: | ||
3652 | adapter->tx_timeout_factor = 14; | ||
3653 | break; | ||
3654 | case SPEED_100: | ||
3655 | /* maybe add some timeout factor ? */ | ||
3656 | break; | ||
3657 | } | ||
3658 | |||
3659 | netif_carrier_on(netdev); | ||
3660 | |||
3661 | igb_ping_all_vfs(adapter); | ||
3662 | igb_check_vf_rate_limit(adapter); | ||
3663 | |||
3664 | /* link state has changed, schedule phy info update */ | ||
3665 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3666 | mod_timer(&adapter->phy_info_timer, | ||
3667 | round_jiffies(jiffies + 2 * HZ)); | ||
3668 | } | ||
3669 | } else { | ||
3670 | if (netif_carrier_ok(netdev)) { | ||
3671 | adapter->link_speed = 0; | ||
3672 | adapter->link_duplex = 0; | ||
3673 | |||
3674 | /* check for thermal sensor event */ | ||
3675 | if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) { | ||
3676 | printk(KERN_ERR "igb: %s The network adapter " | ||
3677 | "was stopped because it " | ||
3678 | "overheated.\n", | ||
3679 | netdev->name); | ||
3680 | } | ||
3681 | |||
3682 | /* Links status message must follow this format */ | ||
3683 | printk(KERN_INFO "igb: %s NIC Link is Down\n", | ||
3684 | netdev->name); | ||
3685 | netif_carrier_off(netdev); | ||
3686 | |||
3687 | igb_ping_all_vfs(adapter); | ||
3688 | |||
3689 | /* link state has changed, schedule phy info update */ | ||
3690 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3691 | mod_timer(&adapter->phy_info_timer, | ||
3692 | round_jiffies(jiffies + 2 * HZ)); | ||
3693 | } | ||
3694 | } | ||
3695 | |||
3696 | spin_lock(&adapter->stats64_lock); | ||
3697 | igb_update_stats(adapter, &adapter->stats64); | ||
3698 | spin_unlock(&adapter->stats64_lock); | ||
3699 | |||
3700 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
3701 | struct igb_ring *tx_ring = adapter->tx_ring[i]; | ||
3702 | if (!netif_carrier_ok(netdev)) { | ||
3703 | /* We've lost link, so the controller stops DMA, | ||
3704 | * but we've got queued Tx work that's never going | ||
3705 | * to get done, so reset controller to flush Tx. | ||
3706 | * (Do the reset outside of interrupt context). */ | ||
3707 | if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { | ||
3708 | adapter->tx_timeout_count++; | ||
3709 | schedule_work(&adapter->reset_task); | ||
3710 | /* return immediately since reset is imminent */ | ||
3711 | return; | ||
3712 | } | ||
3713 | } | ||
3714 | |||
3715 | /* Force detection of hung controller every watchdog period */ | ||
3716 | tx_ring->detect_tx_hung = true; | ||
3717 | } | ||
3718 | |||
3719 | /* Cause software interrupt to ensure rx ring is cleaned */ | ||
3720 | if (adapter->msix_entries) { | ||
3721 | u32 eics = 0; | ||
3722 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
3723 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
3724 | eics |= q_vector->eims_value; | ||
3725 | } | ||
3726 | wr32(E1000_EICS, eics); | ||
3727 | } else { | ||
3728 | wr32(E1000_ICS, E1000_ICS_RXDMT0); | ||
3729 | } | ||
3730 | |||
3731 | igb_spoof_check(adapter); | ||
3732 | |||
3733 | /* Reset the timer */ | ||
3734 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3735 | mod_timer(&adapter->watchdog_timer, | ||
3736 | round_jiffies(jiffies + 2 * HZ)); | ||
3737 | } | ||
3738 | |||
3739 | enum latency_range { | ||
3740 | lowest_latency = 0, | ||
3741 | low_latency = 1, | ||
3742 | bulk_latency = 2, | ||
3743 | latency_invalid = 255 | ||
3744 | }; | ||
3745 | |||
3746 | /** | ||
3747 | * igb_update_ring_itr - update the dynamic ITR value based on packet size | ||
3748 | * | ||
3749 | * Stores a new ITR value based on strictly on packet size. This | ||
3750 | * algorithm is less sophisticated than that used in igb_update_itr, | ||
3751 | * due to the difficulty of synchronizing statistics across multiple | ||
3752 | * receive rings. The divisors and thresholds used by this function | ||
3753 | * were determined based on theoretical maximum wire speed and testing | ||
3754 | * data, in order to minimize response time while increasing bulk | ||
3755 | * throughput. | ||
3756 | * This functionality is controlled by the InterruptThrottleRate module | ||
3757 | * parameter (see igb_param.c) | ||
3758 | * NOTE: This function is called only when operating in a multiqueue | ||
3759 | * receive environment. | ||
3760 | * @q_vector: pointer to q_vector | ||
3761 | **/ | ||
3762 | static void igb_update_ring_itr(struct igb_q_vector *q_vector) | ||
3763 | { | ||
3764 | int new_val = q_vector->itr_val; | ||
3765 | int avg_wire_size = 0; | ||
3766 | struct igb_adapter *adapter = q_vector->adapter; | ||
3767 | struct igb_ring *ring; | ||
3768 | unsigned int packets; | ||
3769 | |||
3770 | /* For non-gigabit speeds, just fix the interrupt rate at 4000 | ||
3771 | * ints/sec - ITR timer value of 120 ticks. | ||
3772 | */ | ||
3773 | if (adapter->link_speed != SPEED_1000) { | ||
3774 | new_val = 976; | ||
3775 | goto set_itr_val; | ||
3776 | } | ||
3777 | |||
3778 | ring = q_vector->rx_ring; | ||
3779 | if (ring) { | ||
3780 | packets = ACCESS_ONCE(ring->total_packets); | ||
3781 | |||
3782 | if (packets) | ||
3783 | avg_wire_size = ring->total_bytes / packets; | ||
3784 | } | ||
3785 | |||
3786 | ring = q_vector->tx_ring; | ||
3787 | if (ring) { | ||
3788 | packets = ACCESS_ONCE(ring->total_packets); | ||
3789 | |||
3790 | if (packets) | ||
3791 | avg_wire_size = max_t(u32, avg_wire_size, | ||
3792 | ring->total_bytes / packets); | ||
3793 | } | ||
3794 | |||
3795 | /* if avg_wire_size isn't set no work was done */ | ||
3796 | if (!avg_wire_size) | ||
3797 | goto clear_counts; | ||
3798 | |||
3799 | /* Add 24 bytes to size to account for CRC, preamble, and gap */ | ||
3800 | avg_wire_size += 24; | ||
3801 | |||
3802 | /* Don't starve jumbo frames */ | ||
3803 | avg_wire_size = min(avg_wire_size, 3000); | ||
3804 | |||
3805 | /* Give a little boost to mid-size frames */ | ||
3806 | if ((avg_wire_size > 300) && (avg_wire_size < 1200)) | ||
3807 | new_val = avg_wire_size / 3; | ||
3808 | else | ||
3809 | new_val = avg_wire_size / 2; | ||
3810 | |||
3811 | /* when in itr mode 3 do not exceed 20K ints/sec */ | ||
3812 | if (adapter->rx_itr_setting == 3 && new_val < 196) | ||
3813 | new_val = 196; | ||
3814 | |||
3815 | set_itr_val: | ||
3816 | if (new_val != q_vector->itr_val) { | ||
3817 | q_vector->itr_val = new_val; | ||
3818 | q_vector->set_itr = 1; | ||
3819 | } | ||
3820 | clear_counts: | ||
3821 | if (q_vector->rx_ring) { | ||
3822 | q_vector->rx_ring->total_bytes = 0; | ||
3823 | q_vector->rx_ring->total_packets = 0; | ||
3824 | } | ||
3825 | if (q_vector->tx_ring) { | ||
3826 | q_vector->tx_ring->total_bytes = 0; | ||
3827 | q_vector->tx_ring->total_packets = 0; | ||
3828 | } | ||
3829 | } | ||
3830 | |||
3831 | /** | ||
3832 | * igb_update_itr - update the dynamic ITR value based on statistics | ||
3833 | * Stores a new ITR value based on packets and byte | ||
3834 | * counts during the last interrupt. The advantage of per interrupt | ||
3835 | * computation is faster updates and more accurate ITR for the current | ||
3836 | * traffic pattern. Constants in this function were computed | ||
3837 | * based on theoretical maximum wire speed and thresholds were set based | ||
3838 | * on testing data as well as attempting to minimize response time | ||
3839 | * while increasing bulk throughput. | ||
3840 | * this functionality is controlled by the InterruptThrottleRate module | ||
3841 | * parameter (see igb_param.c) | ||
3842 | * NOTE: These calculations are only valid when operating in a single- | ||
3843 | * queue environment. | ||
3844 | * @adapter: pointer to adapter | ||
3845 | * @itr_setting: current q_vector->itr_val | ||
3846 | * @packets: the number of packets during this measurement interval | ||
3847 | * @bytes: the number of bytes during this measurement interval | ||
3848 | **/ | ||
3849 | static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting, | ||
3850 | int packets, int bytes) | ||
3851 | { | ||
3852 | unsigned int retval = itr_setting; | ||
3853 | |||
3854 | if (packets == 0) | ||
3855 | goto update_itr_done; | ||
3856 | |||
3857 | switch (itr_setting) { | ||
3858 | case lowest_latency: | ||
3859 | /* handle TSO and jumbo frames */ | ||
3860 | if (bytes/packets > 8000) | ||
3861 | retval = bulk_latency; | ||
3862 | else if ((packets < 5) && (bytes > 512)) | ||
3863 | retval = low_latency; | ||
3864 | break; | ||
3865 | case low_latency: /* 50 usec aka 20000 ints/s */ | ||
3866 | if (bytes > 10000) { | ||
3867 | /* this if handles the TSO accounting */ | ||
3868 | if (bytes/packets > 8000) { | ||
3869 | retval = bulk_latency; | ||
3870 | } else if ((packets < 10) || ((bytes/packets) > 1200)) { | ||
3871 | retval = bulk_latency; | ||
3872 | } else if ((packets > 35)) { | ||
3873 | retval = lowest_latency; | ||
3874 | } | ||
3875 | } else if (bytes/packets > 2000) { | ||
3876 | retval = bulk_latency; | ||
3877 | } else if (packets <= 2 && bytes < 512) { | ||
3878 | retval = lowest_latency; | ||
3879 | } | ||
3880 | break; | ||
3881 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | ||
3882 | if (bytes > 25000) { | ||
3883 | if (packets > 35) | ||
3884 | retval = low_latency; | ||
3885 | } else if (bytes < 1500) { | ||
3886 | retval = low_latency; | ||
3887 | } | ||
3888 | break; | ||
3889 | } | ||
3890 | |||
3891 | update_itr_done: | ||
3892 | return retval; | ||
3893 | } | ||
3894 | |||
3895 | static void igb_set_itr(struct igb_adapter *adapter) | ||
3896 | { | ||
3897 | struct igb_q_vector *q_vector = adapter->q_vector[0]; | ||
3898 | u16 current_itr; | ||
3899 | u32 new_itr = q_vector->itr_val; | ||
3900 | |||
3901 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | ||
3902 | if (adapter->link_speed != SPEED_1000) { | ||
3903 | current_itr = 0; | ||
3904 | new_itr = 4000; | ||
3905 | goto set_itr_now; | ||
3906 | } | ||
3907 | |||
3908 | adapter->rx_itr = igb_update_itr(adapter, | ||
3909 | adapter->rx_itr, | ||
3910 | q_vector->rx_ring->total_packets, | ||
3911 | q_vector->rx_ring->total_bytes); | ||
3912 | |||
3913 | adapter->tx_itr = igb_update_itr(adapter, | ||
3914 | adapter->tx_itr, | ||
3915 | q_vector->tx_ring->total_packets, | ||
3916 | q_vector->tx_ring->total_bytes); | ||
3917 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | ||
3918 | |||
3919 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
3920 | if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency) | ||
3921 | current_itr = low_latency; | ||
3922 | |||
3923 | switch (current_itr) { | ||
3924 | /* counts and packets in update_itr are dependent on these numbers */ | ||
3925 | case lowest_latency: | ||
3926 | new_itr = 56; /* aka 70,000 ints/sec */ | ||
3927 | break; | ||
3928 | case low_latency: | ||
3929 | new_itr = 196; /* aka 20,000 ints/sec */ | ||
3930 | break; | ||
3931 | case bulk_latency: | ||
3932 | new_itr = 980; /* aka 4,000 ints/sec */ | ||
3933 | break; | ||
3934 | default: | ||
3935 | break; | ||
3936 | } | ||
3937 | |||
3938 | set_itr_now: | ||
3939 | q_vector->rx_ring->total_bytes = 0; | ||
3940 | q_vector->rx_ring->total_packets = 0; | ||
3941 | q_vector->tx_ring->total_bytes = 0; | ||
3942 | q_vector->tx_ring->total_packets = 0; | ||
3943 | |||
3944 | if (new_itr != q_vector->itr_val) { | ||
3945 | /* this attempts to bias the interrupt rate towards Bulk | ||
3946 | * by adding intermediate steps when interrupt rate is | ||
3947 | * increasing */ | ||
3948 | new_itr = new_itr > q_vector->itr_val ? | ||
3949 | max((new_itr * q_vector->itr_val) / | ||
3950 | (new_itr + (q_vector->itr_val >> 2)), | ||
3951 | new_itr) : | ||
3952 | new_itr; | ||
3953 | /* Don't write the value here; it resets the adapter's | ||
3954 | * internal timer, and causes us to delay far longer than | ||
3955 | * we should between interrupts. Instead, we write the ITR | ||
3956 | * value at the beginning of the next interrupt so the timing | ||
3957 | * ends up being correct. | ||
3958 | */ | ||
3959 | q_vector->itr_val = new_itr; | ||
3960 | q_vector->set_itr = 1; | ||
3961 | } | ||
3962 | } | ||
3963 | |||
3964 | #define IGB_TX_FLAGS_CSUM 0x00000001 | ||
3965 | #define IGB_TX_FLAGS_VLAN 0x00000002 | ||
3966 | #define IGB_TX_FLAGS_TSO 0x00000004 | ||
3967 | #define IGB_TX_FLAGS_IPV4 0x00000008 | ||
3968 | #define IGB_TX_FLAGS_TSTAMP 0x00000010 | ||
3969 | #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
3970 | #define IGB_TX_FLAGS_VLAN_SHIFT 16 | ||
3971 | |||
3972 | static inline int igb_tso_adv(struct igb_ring *tx_ring, | ||
3973 | struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) | ||
3974 | { | ||
3975 | struct e1000_adv_tx_context_desc *context_desc; | ||
3976 | unsigned int i; | ||
3977 | int err; | ||
3978 | struct igb_buffer *buffer_info; | ||
3979 | u32 info = 0, tu_cmd = 0; | ||
3980 | u32 mss_l4len_idx; | ||
3981 | u8 l4len; | ||
3982 | |||
3983 | if (skb_header_cloned(skb)) { | ||
3984 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
3985 | if (err) | ||
3986 | return err; | ||
3987 | } | ||
3988 | |||
3989 | l4len = tcp_hdrlen(skb); | ||
3990 | *hdr_len += l4len; | ||
3991 | |||
3992 | if (skb->protocol == htons(ETH_P_IP)) { | ||
3993 | struct iphdr *iph = ip_hdr(skb); | ||
3994 | iph->tot_len = 0; | ||
3995 | iph->check = 0; | ||
3996 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | ||
3997 | iph->daddr, 0, | ||
3998 | IPPROTO_TCP, | ||
3999 | 0); | ||
4000 | } else if (skb_is_gso_v6(skb)) { | ||
4001 | ipv6_hdr(skb)->payload_len = 0; | ||
4002 | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
4003 | &ipv6_hdr(skb)->daddr, | ||
4004 | 0, IPPROTO_TCP, 0); | ||
4005 | } | ||
4006 | |||
4007 | i = tx_ring->next_to_use; | ||
4008 | |||
4009 | buffer_info = &tx_ring->buffer_info[i]; | ||
4010 | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); | ||
4011 | /* VLAN MACLEN IPLEN */ | ||
4012 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
4013 | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); | ||
4014 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
4015 | *hdr_len += skb_network_offset(skb); | ||
4016 | info |= skb_network_header_len(skb); | ||
4017 | *hdr_len += skb_network_header_len(skb); | ||
4018 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
4019 | |||
4020 | /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ | ||
4021 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
4022 | |||
4023 | if (skb->protocol == htons(ETH_P_IP)) | ||
4024 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
4025 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
4026 | |||
4027 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
4028 | |||
4029 | /* MSS L4LEN IDX */ | ||
4030 | mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); | ||
4031 | mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); | ||
4032 | |||
4033 | /* For 82575, context index must be unique per ring. */ | ||
4034 | if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) | ||
4035 | mss_l4len_idx |= tx_ring->reg_idx << 4; | ||
4036 | |||
4037 | context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); | ||
4038 | context_desc->seqnum_seed = 0; | ||
4039 | |||
4040 | buffer_info->time_stamp = jiffies; | ||
4041 | buffer_info->next_to_watch = i; | ||
4042 | buffer_info->dma = 0; | ||
4043 | i++; | ||
4044 | if (i == tx_ring->count) | ||
4045 | i = 0; | ||
4046 | |||
4047 | tx_ring->next_to_use = i; | ||
4048 | |||
4049 | return true; | ||
4050 | } | ||
4051 | |||
4052 | static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring, | ||
4053 | struct sk_buff *skb, u32 tx_flags) | ||
4054 | { | ||
4055 | struct e1000_adv_tx_context_desc *context_desc; | ||
4056 | struct device *dev = tx_ring->dev; | ||
4057 | struct igb_buffer *buffer_info; | ||
4058 | u32 info = 0, tu_cmd = 0; | ||
4059 | unsigned int i; | ||
4060 | |||
4061 | if ((skb->ip_summed == CHECKSUM_PARTIAL) || | ||
4062 | (tx_flags & IGB_TX_FLAGS_VLAN)) { | ||
4063 | i = tx_ring->next_to_use; | ||
4064 | buffer_info = &tx_ring->buffer_info[i]; | ||
4065 | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); | ||
4066 | |||
4067 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
4068 | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); | ||
4069 | |||
4070 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
4071 | if (skb->ip_summed == CHECKSUM_PARTIAL) | ||
4072 | info |= skb_network_header_len(skb); | ||
4073 | |||
4074 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
4075 | |||
4076 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
4077 | |||
4078 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
4079 | __be16 protocol; | ||
4080 | |||
4081 | if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { | ||
4082 | const struct vlan_ethhdr *vhdr = | ||
4083 | (const struct vlan_ethhdr*)skb->data; | ||
4084 | |||
4085 | protocol = vhdr->h_vlan_encapsulated_proto; | ||
4086 | } else { | ||
4087 | protocol = skb->protocol; | ||
4088 | } | ||
4089 | |||
4090 | switch (protocol) { | ||
4091 | case cpu_to_be16(ETH_P_IP): | ||
4092 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
4093 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | ||
4094 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
4095 | else if (ip_hdr(skb)->protocol == IPPROTO_SCTP) | ||
4096 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; | ||
4097 | break; | ||
4098 | case cpu_to_be16(ETH_P_IPV6): | ||
4099 | /* XXX what about other V6 headers?? */ | ||
4100 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | ||
4101 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
4102 | else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP) | ||
4103 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; | ||
4104 | break; | ||
4105 | default: | ||
4106 | if (unlikely(net_ratelimit())) | ||
4107 | dev_warn(dev, | ||
4108 | "partial checksum but proto=%x!\n", | ||
4109 | skb->protocol); | ||
4110 | break; | ||
4111 | } | ||
4112 | } | ||
4113 | |||
4114 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
4115 | context_desc->seqnum_seed = 0; | ||
4116 | if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) | ||
4117 | context_desc->mss_l4len_idx = | ||
4118 | cpu_to_le32(tx_ring->reg_idx << 4); | ||
4119 | |||
4120 | buffer_info->time_stamp = jiffies; | ||
4121 | buffer_info->next_to_watch = i; | ||
4122 | buffer_info->dma = 0; | ||
4123 | |||
4124 | i++; | ||
4125 | if (i == tx_ring->count) | ||
4126 | i = 0; | ||
4127 | tx_ring->next_to_use = i; | ||
4128 | |||
4129 | return true; | ||
4130 | } | ||
4131 | return false; | ||
4132 | } | ||
4133 | |||
4134 | #define IGB_MAX_TXD_PWR 16 | ||
4135 | #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR) | ||
4136 | |||
4137 | static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb, | ||
4138 | unsigned int first) | ||
4139 | { | ||
4140 | struct igb_buffer *buffer_info; | ||
4141 | struct device *dev = tx_ring->dev; | ||
4142 | unsigned int hlen = skb_headlen(skb); | ||
4143 | unsigned int count = 0, i; | ||
4144 | unsigned int f; | ||
4145 | u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1; | ||
4146 | |||
4147 | i = tx_ring->next_to_use; | ||
4148 | |||
4149 | buffer_info = &tx_ring->buffer_info[i]; | ||
4150 | BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD); | ||
4151 | buffer_info->length = hlen; | ||
4152 | /* set time_stamp *before* dma to help avoid a possible race */ | ||
4153 | buffer_info->time_stamp = jiffies; | ||
4154 | buffer_info->next_to_watch = i; | ||
4155 | buffer_info->dma = dma_map_single(dev, skb->data, hlen, | ||
4156 | DMA_TO_DEVICE); | ||
4157 | if (dma_mapping_error(dev, buffer_info->dma)) | ||
4158 | goto dma_error; | ||
4159 | |||
4160 | for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { | ||
4161 | struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f]; | ||
4162 | unsigned int len = frag->size; | ||
4163 | |||
4164 | count++; | ||
4165 | i++; | ||
4166 | if (i == tx_ring->count) | ||
4167 | i = 0; | ||
4168 | |||
4169 | buffer_info = &tx_ring->buffer_info[i]; | ||
4170 | BUG_ON(len >= IGB_MAX_DATA_PER_TXD); | ||
4171 | buffer_info->length = len; | ||
4172 | buffer_info->time_stamp = jiffies; | ||
4173 | buffer_info->next_to_watch = i; | ||
4174 | buffer_info->mapped_as_page = true; | ||
4175 | buffer_info->dma = dma_map_page(dev, | ||
4176 | frag->page, | ||
4177 | frag->page_offset, | ||
4178 | len, | ||
4179 | DMA_TO_DEVICE); | ||
4180 | if (dma_mapping_error(dev, buffer_info->dma)) | ||
4181 | goto dma_error; | ||
4182 | |||
4183 | } | ||
4184 | |||
4185 | tx_ring->buffer_info[i].skb = skb; | ||
4186 | tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags; | ||
4187 | /* multiply data chunks by size of headers */ | ||
4188 | tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len; | ||
4189 | tx_ring->buffer_info[i].gso_segs = gso_segs; | ||
4190 | tx_ring->buffer_info[first].next_to_watch = i; | ||
4191 | |||
4192 | return ++count; | ||
4193 | |||
4194 | dma_error: | ||
4195 | dev_err(dev, "TX DMA map failed\n"); | ||
4196 | |||
4197 | /* clear timestamp and dma mappings for failed buffer_info mapping */ | ||
4198 | buffer_info->dma = 0; | ||
4199 | buffer_info->time_stamp = 0; | ||
4200 | buffer_info->length = 0; | ||
4201 | buffer_info->next_to_watch = 0; | ||
4202 | buffer_info->mapped_as_page = false; | ||
4203 | |||
4204 | /* clear timestamp and dma mappings for remaining portion of packet */ | ||
4205 | while (count--) { | ||
4206 | if (i == 0) | ||
4207 | i = tx_ring->count; | ||
4208 | i--; | ||
4209 | buffer_info = &tx_ring->buffer_info[i]; | ||
4210 | igb_unmap_and_free_tx_resource(tx_ring, buffer_info); | ||
4211 | } | ||
4212 | |||
4213 | return 0; | ||
4214 | } | ||
4215 | |||
4216 | static inline void igb_tx_queue_adv(struct igb_ring *tx_ring, | ||
4217 | u32 tx_flags, int count, u32 paylen, | ||
4218 | u8 hdr_len) | ||
4219 | { | ||
4220 | union e1000_adv_tx_desc *tx_desc; | ||
4221 | struct igb_buffer *buffer_info; | ||
4222 | u32 olinfo_status = 0, cmd_type_len; | ||
4223 | unsigned int i = tx_ring->next_to_use; | ||
4224 | |||
4225 | cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | | ||
4226 | E1000_ADVTXD_DCMD_DEXT); | ||
4227 | |||
4228 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
4229 | cmd_type_len |= E1000_ADVTXD_DCMD_VLE; | ||
4230 | |||
4231 | if (tx_flags & IGB_TX_FLAGS_TSTAMP) | ||
4232 | cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP; | ||
4233 | |||
4234 | if (tx_flags & IGB_TX_FLAGS_TSO) { | ||
4235 | cmd_type_len |= E1000_ADVTXD_DCMD_TSE; | ||
4236 | |||
4237 | /* insert tcp checksum */ | ||
4238 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
4239 | |||
4240 | /* insert ip checksum */ | ||
4241 | if (tx_flags & IGB_TX_FLAGS_IPV4) | ||
4242 | olinfo_status |= E1000_TXD_POPTS_IXSM << 8; | ||
4243 | |||
4244 | } else if (tx_flags & IGB_TX_FLAGS_CSUM) { | ||
4245 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
4246 | } | ||
4247 | |||
4248 | if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) && | ||
4249 | (tx_flags & (IGB_TX_FLAGS_CSUM | | ||
4250 | IGB_TX_FLAGS_TSO | | ||
4251 | IGB_TX_FLAGS_VLAN))) | ||
4252 | olinfo_status |= tx_ring->reg_idx << 4; | ||
4253 | |||
4254 | olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); | ||
4255 | |||
4256 | do { | ||
4257 | buffer_info = &tx_ring->buffer_info[i]; | ||
4258 | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | ||
4259 | tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); | ||
4260 | tx_desc->read.cmd_type_len = | ||
4261 | cpu_to_le32(cmd_type_len | buffer_info->length); | ||
4262 | tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); | ||
4263 | count--; | ||
4264 | i++; | ||
4265 | if (i == tx_ring->count) | ||
4266 | i = 0; | ||
4267 | } while (count > 0); | ||
4268 | |||
4269 | tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD); | ||
4270 | /* Force memory writes to complete before letting h/w | ||
4271 | * know there are new descriptors to fetch. (Only | ||
4272 | * applicable for weak-ordered memory model archs, | ||
4273 | * such as IA-64). */ | ||
4274 | wmb(); | ||
4275 | |||
4276 | tx_ring->next_to_use = i; | ||
4277 | writel(i, tx_ring->tail); | ||
4278 | /* we need this if more than one processor can write to our tail | ||
4279 | * at a time, it syncronizes IO on IA64/Altix systems */ | ||
4280 | mmiowb(); | ||
4281 | } | ||
4282 | |||
4283 | static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size) | ||
4284 | { | ||
4285 | struct net_device *netdev = tx_ring->netdev; | ||
4286 | |||
4287 | netif_stop_subqueue(netdev, tx_ring->queue_index); | ||
4288 | |||
4289 | /* Herbert's original patch had: | ||
4290 | * smp_mb__after_netif_stop_queue(); | ||
4291 | * but since that doesn't exist yet, just open code it. */ | ||
4292 | smp_mb(); | ||
4293 | |||
4294 | /* We need to check again in a case another CPU has just | ||
4295 | * made room available. */ | ||
4296 | if (igb_desc_unused(tx_ring) < size) | ||
4297 | return -EBUSY; | ||
4298 | |||
4299 | /* A reprieve! */ | ||
4300 | netif_wake_subqueue(netdev, tx_ring->queue_index); | ||
4301 | |||
4302 | u64_stats_update_begin(&tx_ring->tx_syncp2); | ||
4303 | tx_ring->tx_stats.restart_queue2++; | ||
4304 | u64_stats_update_end(&tx_ring->tx_syncp2); | ||
4305 | |||
4306 | return 0; | ||
4307 | } | ||
4308 | |||
4309 | static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size) | ||
4310 | { | ||
4311 | if (igb_desc_unused(tx_ring) >= size) | ||
4312 | return 0; | ||
4313 | return __igb_maybe_stop_tx(tx_ring, size); | ||
4314 | } | ||
4315 | |||
4316 | netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb, | ||
4317 | struct igb_ring *tx_ring) | ||
4318 | { | ||
4319 | int tso = 0, count; | ||
4320 | u32 tx_flags = 0; | ||
4321 | u16 first; | ||
4322 | u8 hdr_len = 0; | ||
4323 | |||
4324 | /* need: 1 descriptor per page, | ||
4325 | * + 2 desc gap to keep tail from touching head, | ||
4326 | * + 1 desc for skb->data, | ||
4327 | * + 1 desc for context descriptor, | ||
4328 | * otherwise try next time */ | ||
4329 | if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) { | ||
4330 | /* this is a hard error */ | ||
4331 | return NETDEV_TX_BUSY; | ||
4332 | } | ||
4333 | |||
4334 | if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { | ||
4335 | skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; | ||
4336 | tx_flags |= IGB_TX_FLAGS_TSTAMP; | ||
4337 | } | ||
4338 | |||
4339 | if (vlan_tx_tag_present(skb)) { | ||
4340 | tx_flags |= IGB_TX_FLAGS_VLAN; | ||
4341 | tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); | ||
4342 | } | ||
4343 | |||
4344 | if (skb->protocol == htons(ETH_P_IP)) | ||
4345 | tx_flags |= IGB_TX_FLAGS_IPV4; | ||
4346 | |||
4347 | first = tx_ring->next_to_use; | ||
4348 | if (skb_is_gso(skb)) { | ||
4349 | tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len); | ||
4350 | |||
4351 | if (tso < 0) { | ||
4352 | dev_kfree_skb_any(skb); | ||
4353 | return NETDEV_TX_OK; | ||
4354 | } | ||
4355 | } | ||
4356 | |||
4357 | if (tso) | ||
4358 | tx_flags |= IGB_TX_FLAGS_TSO; | ||
4359 | else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) && | ||
4360 | (skb->ip_summed == CHECKSUM_PARTIAL)) | ||
4361 | tx_flags |= IGB_TX_FLAGS_CSUM; | ||
4362 | |||
4363 | /* | ||
4364 | * count reflects descriptors mapped, if 0 or less then mapping error | ||
4365 | * has occurred and we need to rewind the descriptor queue | ||
4366 | */ | ||
4367 | count = igb_tx_map_adv(tx_ring, skb, first); | ||
4368 | if (!count) { | ||
4369 | dev_kfree_skb_any(skb); | ||
4370 | tx_ring->buffer_info[first].time_stamp = 0; | ||
4371 | tx_ring->next_to_use = first; | ||
4372 | return NETDEV_TX_OK; | ||
4373 | } | ||
4374 | |||
4375 | igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len); | ||
4376 | |||
4377 | /* Make sure there is space in the ring for the next send. */ | ||
4378 | igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4); | ||
4379 | |||
4380 | return NETDEV_TX_OK; | ||
4381 | } | ||
4382 | |||
4383 | static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, | ||
4384 | struct net_device *netdev) | ||
4385 | { | ||
4386 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4387 | struct igb_ring *tx_ring; | ||
4388 | int r_idx = 0; | ||
4389 | |||
4390 | if (test_bit(__IGB_DOWN, &adapter->state)) { | ||
4391 | dev_kfree_skb_any(skb); | ||
4392 | return NETDEV_TX_OK; | ||
4393 | } | ||
4394 | |||
4395 | if (skb->len <= 0) { | ||
4396 | dev_kfree_skb_any(skb); | ||
4397 | return NETDEV_TX_OK; | ||
4398 | } | ||
4399 | |||
4400 | r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1); | ||
4401 | tx_ring = adapter->multi_tx_table[r_idx]; | ||
4402 | |||
4403 | /* This goes back to the question of how to logically map a tx queue | ||
4404 | * to a flow. Right now, performance is impacted slightly negatively | ||
4405 | * if using multiple tx queues. If the stack breaks away from a | ||
4406 | * single qdisc implementation, we can look at this again. */ | ||
4407 | return igb_xmit_frame_ring_adv(skb, tx_ring); | ||
4408 | } | ||
4409 | |||
4410 | /** | ||
4411 | * igb_tx_timeout - Respond to a Tx Hang | ||
4412 | * @netdev: network interface device structure | ||
4413 | **/ | ||
4414 | static void igb_tx_timeout(struct net_device *netdev) | ||
4415 | { | ||
4416 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4417 | struct e1000_hw *hw = &adapter->hw; | ||
4418 | |||
4419 | /* Do the reset outside of interrupt context */ | ||
4420 | adapter->tx_timeout_count++; | ||
4421 | |||
4422 | if (hw->mac.type == e1000_82580) | ||
4423 | hw->dev_spec._82575.global_device_reset = true; | ||
4424 | |||
4425 | schedule_work(&adapter->reset_task); | ||
4426 | wr32(E1000_EICS, | ||
4427 | (adapter->eims_enable_mask & ~adapter->eims_other)); | ||
4428 | } | ||
4429 | |||
4430 | static void igb_reset_task(struct work_struct *work) | ||
4431 | { | ||
4432 | struct igb_adapter *adapter; | ||
4433 | adapter = container_of(work, struct igb_adapter, reset_task); | ||
4434 | |||
4435 | igb_dump(adapter); | ||
4436 | netdev_err(adapter->netdev, "Reset adapter\n"); | ||
4437 | igb_reinit_locked(adapter); | ||
4438 | } | ||
4439 | |||
4440 | /** | ||
4441 | * igb_get_stats64 - Get System Network Statistics | ||
4442 | * @netdev: network interface device structure | ||
4443 | * @stats: rtnl_link_stats64 pointer | ||
4444 | * | ||
4445 | **/ | ||
4446 | static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, | ||
4447 | struct rtnl_link_stats64 *stats) | ||
4448 | { | ||
4449 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4450 | |||
4451 | spin_lock(&adapter->stats64_lock); | ||
4452 | igb_update_stats(adapter, &adapter->stats64); | ||
4453 | memcpy(stats, &adapter->stats64, sizeof(*stats)); | ||
4454 | spin_unlock(&adapter->stats64_lock); | ||
4455 | |||
4456 | return stats; | ||
4457 | } | ||
4458 | |||
4459 | /** | ||
4460 | * igb_change_mtu - Change the Maximum Transfer Unit | ||
4461 | * @netdev: network interface device structure | ||
4462 | * @new_mtu: new value for maximum frame size | ||
4463 | * | ||
4464 | * Returns 0 on success, negative on failure | ||
4465 | **/ | ||
4466 | static int igb_change_mtu(struct net_device *netdev, int new_mtu) | ||
4467 | { | ||
4468 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4469 | struct pci_dev *pdev = adapter->pdev; | ||
4470 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | ||
4471 | u32 rx_buffer_len, i; | ||
4472 | |||
4473 | if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { | ||
4474 | dev_err(&pdev->dev, "Invalid MTU setting\n"); | ||
4475 | return -EINVAL; | ||
4476 | } | ||
4477 | |||
4478 | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | ||
4479 | dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); | ||
4480 | return -EINVAL; | ||
4481 | } | ||
4482 | |||
4483 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
4484 | msleep(1); | ||
4485 | |||
4486 | /* igb_down has a dependency on max_frame_size */ | ||
4487 | adapter->max_frame_size = max_frame; | ||
4488 | |||
4489 | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | ||
4490 | * means we reserve 2 more, this pushes us to allocate from the next | ||
4491 | * larger slab size. | ||
4492 | * i.e. RXBUFFER_2048 --> size-4096 slab | ||
4493 | */ | ||
4494 | |||
4495 | if (adapter->hw.mac.type == e1000_82580) | ||
4496 | max_frame += IGB_TS_HDR_LEN; | ||
4497 | |||
4498 | if (max_frame <= IGB_RXBUFFER_1024) | ||
4499 | rx_buffer_len = IGB_RXBUFFER_1024; | ||
4500 | else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE) | ||
4501 | rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
4502 | else | ||
4503 | rx_buffer_len = IGB_RXBUFFER_128; | ||
4504 | |||
4505 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) || | ||
4506 | (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN)) | ||
4507 | rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN; | ||
4508 | |||
4509 | if ((adapter->hw.mac.type == e1000_82580) && | ||
4510 | (rx_buffer_len == IGB_RXBUFFER_128)) | ||
4511 | rx_buffer_len += IGB_RXBUFFER_64; | ||
4512 | |||
4513 | if (netif_running(netdev)) | ||
4514 | igb_down(adapter); | ||
4515 | |||
4516 | dev_info(&pdev->dev, "changing MTU from %d to %d\n", | ||
4517 | netdev->mtu, new_mtu); | ||
4518 | netdev->mtu = new_mtu; | ||
4519 | |||
4520 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
4521 | adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len; | ||
4522 | |||
4523 | if (netif_running(netdev)) | ||
4524 | igb_up(adapter); | ||
4525 | else | ||
4526 | igb_reset(adapter); | ||
4527 | |||
4528 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
4529 | |||
4530 | return 0; | ||
4531 | } | ||
4532 | |||
4533 | /** | ||
4534 | * igb_update_stats - Update the board statistics counters | ||
4535 | * @adapter: board private structure | ||
4536 | **/ | ||
4537 | |||
4538 | void igb_update_stats(struct igb_adapter *adapter, | ||
4539 | struct rtnl_link_stats64 *net_stats) | ||
4540 | { | ||
4541 | struct e1000_hw *hw = &adapter->hw; | ||
4542 | struct pci_dev *pdev = adapter->pdev; | ||
4543 | u32 reg, mpc; | ||
4544 | u16 phy_tmp; | ||
4545 | int i; | ||
4546 | u64 bytes, packets; | ||
4547 | unsigned int start; | ||
4548 | u64 _bytes, _packets; | ||
4549 | |||
4550 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | ||
4551 | |||
4552 | /* | ||
4553 | * Prevent stats update while adapter is being reset, or if the pci | ||
4554 | * connection is down. | ||
4555 | */ | ||
4556 | if (adapter->link_speed == 0) | ||
4557 | return; | ||
4558 | if (pci_channel_offline(pdev)) | ||
4559 | return; | ||
4560 | |||
4561 | bytes = 0; | ||
4562 | packets = 0; | ||
4563 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
4564 | u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF; | ||
4565 | struct igb_ring *ring = adapter->rx_ring[i]; | ||
4566 | |||
4567 | ring->rx_stats.drops += rqdpc_tmp; | ||
4568 | net_stats->rx_fifo_errors += rqdpc_tmp; | ||
4569 | |||
4570 | do { | ||
4571 | start = u64_stats_fetch_begin_bh(&ring->rx_syncp); | ||
4572 | _bytes = ring->rx_stats.bytes; | ||
4573 | _packets = ring->rx_stats.packets; | ||
4574 | } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); | ||
4575 | bytes += _bytes; | ||
4576 | packets += _packets; | ||
4577 | } | ||
4578 | |||
4579 | net_stats->rx_bytes = bytes; | ||
4580 | net_stats->rx_packets = packets; | ||
4581 | |||
4582 | bytes = 0; | ||
4583 | packets = 0; | ||
4584 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
4585 | struct igb_ring *ring = adapter->tx_ring[i]; | ||
4586 | do { | ||
4587 | start = u64_stats_fetch_begin_bh(&ring->tx_syncp); | ||
4588 | _bytes = ring->tx_stats.bytes; | ||
4589 | _packets = ring->tx_stats.packets; | ||
4590 | } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); | ||
4591 | bytes += _bytes; | ||
4592 | packets += _packets; | ||
4593 | } | ||
4594 | net_stats->tx_bytes = bytes; | ||
4595 | net_stats->tx_packets = packets; | ||
4596 | |||
4597 | /* read stats registers */ | ||
4598 | adapter->stats.crcerrs += rd32(E1000_CRCERRS); | ||
4599 | adapter->stats.gprc += rd32(E1000_GPRC); | ||
4600 | adapter->stats.gorc += rd32(E1000_GORCL); | ||
4601 | rd32(E1000_GORCH); /* clear GORCL */ | ||
4602 | adapter->stats.bprc += rd32(E1000_BPRC); | ||
4603 | adapter->stats.mprc += rd32(E1000_MPRC); | ||
4604 | adapter->stats.roc += rd32(E1000_ROC); | ||
4605 | |||
4606 | adapter->stats.prc64 += rd32(E1000_PRC64); | ||
4607 | adapter->stats.prc127 += rd32(E1000_PRC127); | ||
4608 | adapter->stats.prc255 += rd32(E1000_PRC255); | ||
4609 | adapter->stats.prc511 += rd32(E1000_PRC511); | ||
4610 | adapter->stats.prc1023 += rd32(E1000_PRC1023); | ||
4611 | adapter->stats.prc1522 += rd32(E1000_PRC1522); | ||
4612 | adapter->stats.symerrs += rd32(E1000_SYMERRS); | ||
4613 | adapter->stats.sec += rd32(E1000_SEC); | ||
4614 | |||
4615 | mpc = rd32(E1000_MPC); | ||
4616 | adapter->stats.mpc += mpc; | ||
4617 | net_stats->rx_fifo_errors += mpc; | ||
4618 | adapter->stats.scc += rd32(E1000_SCC); | ||
4619 | adapter->stats.ecol += rd32(E1000_ECOL); | ||
4620 | adapter->stats.mcc += rd32(E1000_MCC); | ||
4621 | adapter->stats.latecol += rd32(E1000_LATECOL); | ||
4622 | adapter->stats.dc += rd32(E1000_DC); | ||
4623 | adapter->stats.rlec += rd32(E1000_RLEC); | ||
4624 | adapter->stats.xonrxc += rd32(E1000_XONRXC); | ||
4625 | adapter->stats.xontxc += rd32(E1000_XONTXC); | ||
4626 | adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); | ||
4627 | adapter->stats.xofftxc += rd32(E1000_XOFFTXC); | ||
4628 | adapter->stats.fcruc += rd32(E1000_FCRUC); | ||
4629 | adapter->stats.gptc += rd32(E1000_GPTC); | ||
4630 | adapter->stats.gotc += rd32(E1000_GOTCL); | ||
4631 | rd32(E1000_GOTCH); /* clear GOTCL */ | ||
4632 | adapter->stats.rnbc += rd32(E1000_RNBC); | ||
4633 | adapter->stats.ruc += rd32(E1000_RUC); | ||
4634 | adapter->stats.rfc += rd32(E1000_RFC); | ||
4635 | adapter->stats.rjc += rd32(E1000_RJC); | ||
4636 | adapter->stats.tor += rd32(E1000_TORH); | ||
4637 | adapter->stats.tot += rd32(E1000_TOTH); | ||
4638 | adapter->stats.tpr += rd32(E1000_TPR); | ||
4639 | |||
4640 | adapter->stats.ptc64 += rd32(E1000_PTC64); | ||
4641 | adapter->stats.ptc127 += rd32(E1000_PTC127); | ||
4642 | adapter->stats.ptc255 += rd32(E1000_PTC255); | ||
4643 | adapter->stats.ptc511 += rd32(E1000_PTC511); | ||
4644 | adapter->stats.ptc1023 += rd32(E1000_PTC1023); | ||
4645 | adapter->stats.ptc1522 += rd32(E1000_PTC1522); | ||
4646 | |||
4647 | adapter->stats.mptc += rd32(E1000_MPTC); | ||
4648 | adapter->stats.bptc += rd32(E1000_BPTC); | ||
4649 | |||
4650 | adapter->stats.tpt += rd32(E1000_TPT); | ||
4651 | adapter->stats.colc += rd32(E1000_COLC); | ||
4652 | |||
4653 | adapter->stats.algnerrc += rd32(E1000_ALGNERRC); | ||
4654 | /* read internal phy specific stats */ | ||
4655 | reg = rd32(E1000_CTRL_EXT); | ||
4656 | if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { | ||
4657 | adapter->stats.rxerrc += rd32(E1000_RXERRC); | ||
4658 | adapter->stats.tncrs += rd32(E1000_TNCRS); | ||
4659 | } | ||
4660 | |||
4661 | adapter->stats.tsctc += rd32(E1000_TSCTC); | ||
4662 | adapter->stats.tsctfc += rd32(E1000_TSCTFC); | ||
4663 | |||
4664 | adapter->stats.iac += rd32(E1000_IAC); | ||
4665 | adapter->stats.icrxoc += rd32(E1000_ICRXOC); | ||
4666 | adapter->stats.icrxptc += rd32(E1000_ICRXPTC); | ||
4667 | adapter->stats.icrxatc += rd32(E1000_ICRXATC); | ||
4668 | adapter->stats.ictxptc += rd32(E1000_ICTXPTC); | ||
4669 | adapter->stats.ictxatc += rd32(E1000_ICTXATC); | ||
4670 | adapter->stats.ictxqec += rd32(E1000_ICTXQEC); | ||
4671 | adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); | ||
4672 | adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); | ||
4673 | |||
4674 | /* Fill out the OS statistics structure */ | ||
4675 | net_stats->multicast = adapter->stats.mprc; | ||
4676 | net_stats->collisions = adapter->stats.colc; | ||
4677 | |||
4678 | /* Rx Errors */ | ||
4679 | |||
4680 | /* RLEC on some newer hardware can be incorrect so build | ||
4681 | * our own version based on RUC and ROC */ | ||
4682 | net_stats->rx_errors = adapter->stats.rxerrc + | ||
4683 | adapter->stats.crcerrs + adapter->stats.algnerrc + | ||
4684 | adapter->stats.ruc + adapter->stats.roc + | ||
4685 | adapter->stats.cexterr; | ||
4686 | net_stats->rx_length_errors = adapter->stats.ruc + | ||
4687 | adapter->stats.roc; | ||
4688 | net_stats->rx_crc_errors = adapter->stats.crcerrs; | ||
4689 | net_stats->rx_frame_errors = adapter->stats.algnerrc; | ||
4690 | net_stats->rx_missed_errors = adapter->stats.mpc; | ||
4691 | |||
4692 | /* Tx Errors */ | ||
4693 | net_stats->tx_errors = adapter->stats.ecol + | ||
4694 | adapter->stats.latecol; | ||
4695 | net_stats->tx_aborted_errors = adapter->stats.ecol; | ||
4696 | net_stats->tx_window_errors = adapter->stats.latecol; | ||
4697 | net_stats->tx_carrier_errors = adapter->stats.tncrs; | ||
4698 | |||
4699 | /* Tx Dropped needs to be maintained elsewhere */ | ||
4700 | |||
4701 | /* Phy Stats */ | ||
4702 | if (hw->phy.media_type == e1000_media_type_copper) { | ||
4703 | if ((adapter->link_speed == SPEED_1000) && | ||
4704 | (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { | ||
4705 | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | ||
4706 | adapter->phy_stats.idle_errors += phy_tmp; | ||
4707 | } | ||
4708 | } | ||
4709 | |||
4710 | /* Management Stats */ | ||
4711 | adapter->stats.mgptc += rd32(E1000_MGTPTC); | ||
4712 | adapter->stats.mgprc += rd32(E1000_MGTPRC); | ||
4713 | adapter->stats.mgpdc += rd32(E1000_MGTPDC); | ||
4714 | |||
4715 | /* OS2BMC Stats */ | ||
4716 | reg = rd32(E1000_MANC); | ||
4717 | if (reg & E1000_MANC_EN_BMC2OS) { | ||
4718 | adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); | ||
4719 | adapter->stats.o2bspc += rd32(E1000_O2BSPC); | ||
4720 | adapter->stats.b2ospc += rd32(E1000_B2OSPC); | ||
4721 | adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); | ||
4722 | } | ||
4723 | } | ||
4724 | |||
4725 | static irqreturn_t igb_msix_other(int irq, void *data) | ||
4726 | { | ||
4727 | struct igb_adapter *adapter = data; | ||
4728 | struct e1000_hw *hw = &adapter->hw; | ||
4729 | u32 icr = rd32(E1000_ICR); | ||
4730 | /* reading ICR causes bit 31 of EICR to be cleared */ | ||
4731 | |||
4732 | if (icr & E1000_ICR_DRSTA) | ||
4733 | schedule_work(&adapter->reset_task); | ||
4734 | |||
4735 | if (icr & E1000_ICR_DOUTSYNC) { | ||
4736 | /* HW is reporting DMA is out of sync */ | ||
4737 | adapter->stats.doosync++; | ||
4738 | /* The DMA Out of Sync is also indication of a spoof event | ||
4739 | * in IOV mode. Check the Wrong VM Behavior register to | ||
4740 | * see if it is really a spoof event. */ | ||
4741 | igb_check_wvbr(adapter); | ||
4742 | } | ||
4743 | |||
4744 | /* Check for a mailbox event */ | ||
4745 | if (icr & E1000_ICR_VMMB) | ||
4746 | igb_msg_task(adapter); | ||
4747 | |||
4748 | if (icr & E1000_ICR_LSC) { | ||
4749 | hw->mac.get_link_status = 1; | ||
4750 | /* guard against interrupt when we're going down */ | ||
4751 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
4752 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
4753 | } | ||
4754 | |||
4755 | if (adapter->vfs_allocated_count) | ||
4756 | wr32(E1000_IMS, E1000_IMS_LSC | | ||
4757 | E1000_IMS_VMMB | | ||
4758 | E1000_IMS_DOUTSYNC); | ||
4759 | else | ||
4760 | wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC); | ||
4761 | wr32(E1000_EIMS, adapter->eims_other); | ||
4762 | |||
4763 | return IRQ_HANDLED; | ||
4764 | } | ||
4765 | |||
4766 | static void igb_write_itr(struct igb_q_vector *q_vector) | ||
4767 | { | ||
4768 | struct igb_adapter *adapter = q_vector->adapter; | ||
4769 | u32 itr_val = q_vector->itr_val & 0x7FFC; | ||
4770 | |||
4771 | if (!q_vector->set_itr) | ||
4772 | return; | ||
4773 | |||
4774 | if (!itr_val) | ||
4775 | itr_val = 0x4; | ||
4776 | |||
4777 | if (adapter->hw.mac.type == e1000_82575) | ||
4778 | itr_val |= itr_val << 16; | ||
4779 | else | ||
4780 | itr_val |= 0x8000000; | ||
4781 | |||
4782 | writel(itr_val, q_vector->itr_register); | ||
4783 | q_vector->set_itr = 0; | ||
4784 | } | ||
4785 | |||
4786 | static irqreturn_t igb_msix_ring(int irq, void *data) | ||
4787 | { | ||
4788 | struct igb_q_vector *q_vector = data; | ||
4789 | |||
4790 | /* Write the ITR value calculated from the previous interrupt. */ | ||
4791 | igb_write_itr(q_vector); | ||
4792 | |||
4793 | napi_schedule(&q_vector->napi); | ||
4794 | |||
4795 | return IRQ_HANDLED; | ||
4796 | } | ||
4797 | |||
4798 | #ifdef CONFIG_IGB_DCA | ||
4799 | static void igb_update_dca(struct igb_q_vector *q_vector) | ||
4800 | { | ||
4801 | struct igb_adapter *adapter = q_vector->adapter; | ||
4802 | struct e1000_hw *hw = &adapter->hw; | ||
4803 | int cpu = get_cpu(); | ||
4804 | |||
4805 | if (q_vector->cpu == cpu) | ||
4806 | goto out_no_update; | ||
4807 | |||
4808 | if (q_vector->tx_ring) { | ||
4809 | int q = q_vector->tx_ring->reg_idx; | ||
4810 | u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q)); | ||
4811 | if (hw->mac.type == e1000_82575) { | ||
4812 | dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK; | ||
4813 | dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu); | ||
4814 | } else { | ||
4815 | dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576; | ||
4816 | dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) << | ||
4817 | E1000_DCA_TXCTRL_CPUID_SHIFT; | ||
4818 | } | ||
4819 | dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN; | ||
4820 | wr32(E1000_DCA_TXCTRL(q), dca_txctrl); | ||
4821 | } | ||
4822 | if (q_vector->rx_ring) { | ||
4823 | int q = q_vector->rx_ring->reg_idx; | ||
4824 | u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q)); | ||
4825 | if (hw->mac.type == e1000_82575) { | ||
4826 | dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK; | ||
4827 | dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu); | ||
4828 | } else { | ||
4829 | dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576; | ||
4830 | dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) << | ||
4831 | E1000_DCA_RXCTRL_CPUID_SHIFT; | ||
4832 | } | ||
4833 | dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN; | ||
4834 | dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN; | ||
4835 | dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN; | ||
4836 | wr32(E1000_DCA_RXCTRL(q), dca_rxctrl); | ||
4837 | } | ||
4838 | q_vector->cpu = cpu; | ||
4839 | out_no_update: | ||
4840 | put_cpu(); | ||
4841 | } | ||
4842 | |||
4843 | static void igb_setup_dca(struct igb_adapter *adapter) | ||
4844 | { | ||
4845 | struct e1000_hw *hw = &adapter->hw; | ||
4846 | int i; | ||
4847 | |||
4848 | if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) | ||
4849 | return; | ||
4850 | |||
4851 | /* Always use CB2 mode, difference is masked in the CB driver. */ | ||
4852 | wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); | ||
4853 | |||
4854 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
4855 | adapter->q_vector[i]->cpu = -1; | ||
4856 | igb_update_dca(adapter->q_vector[i]); | ||
4857 | } | ||
4858 | } | ||
4859 | |||
4860 | static int __igb_notify_dca(struct device *dev, void *data) | ||
4861 | { | ||
4862 | struct net_device *netdev = dev_get_drvdata(dev); | ||
4863 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4864 | struct pci_dev *pdev = adapter->pdev; | ||
4865 | struct e1000_hw *hw = &adapter->hw; | ||
4866 | unsigned long event = *(unsigned long *)data; | ||
4867 | |||
4868 | switch (event) { | ||
4869 | case DCA_PROVIDER_ADD: | ||
4870 | /* if already enabled, don't do it again */ | ||
4871 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) | ||
4872 | break; | ||
4873 | if (dca_add_requester(dev) == 0) { | ||
4874 | adapter->flags |= IGB_FLAG_DCA_ENABLED; | ||
4875 | dev_info(&pdev->dev, "DCA enabled\n"); | ||
4876 | igb_setup_dca(adapter); | ||
4877 | break; | ||
4878 | } | ||
4879 | /* Fall Through since DCA is disabled. */ | ||
4880 | case DCA_PROVIDER_REMOVE: | ||
4881 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) { | ||
4882 | /* without this a class_device is left | ||
4883 | * hanging around in the sysfs model */ | ||
4884 | dca_remove_requester(dev); | ||
4885 | dev_info(&pdev->dev, "DCA disabled\n"); | ||
4886 | adapter->flags &= ~IGB_FLAG_DCA_ENABLED; | ||
4887 | wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); | ||
4888 | } | ||
4889 | break; | ||
4890 | } | ||
4891 | |||
4892 | return 0; | ||
4893 | } | ||
4894 | |||
4895 | static int igb_notify_dca(struct notifier_block *nb, unsigned long event, | ||
4896 | void *p) | ||
4897 | { | ||
4898 | int ret_val; | ||
4899 | |||
4900 | ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, | ||
4901 | __igb_notify_dca); | ||
4902 | |||
4903 | return ret_val ? NOTIFY_BAD : NOTIFY_DONE; | ||
4904 | } | ||
4905 | #endif /* CONFIG_IGB_DCA */ | ||
4906 | |||
4907 | static void igb_ping_all_vfs(struct igb_adapter *adapter) | ||
4908 | { | ||
4909 | struct e1000_hw *hw = &adapter->hw; | ||
4910 | u32 ping; | ||
4911 | int i; | ||
4912 | |||
4913 | for (i = 0 ; i < adapter->vfs_allocated_count; i++) { | ||
4914 | ping = E1000_PF_CONTROL_MSG; | ||
4915 | if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) | ||
4916 | ping |= E1000_VT_MSGTYPE_CTS; | ||
4917 | igb_write_mbx(hw, &ping, 1, i); | ||
4918 | } | ||
4919 | } | ||
4920 | |||
4921 | static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) | ||
4922 | { | ||
4923 | struct e1000_hw *hw = &adapter->hw; | ||
4924 | u32 vmolr = rd32(E1000_VMOLR(vf)); | ||
4925 | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | ||
4926 | |||
4927 | vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | | ||
4928 | IGB_VF_FLAG_MULTI_PROMISC); | ||
4929 | vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); | ||
4930 | |||
4931 | if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { | ||
4932 | vmolr |= E1000_VMOLR_MPME; | ||
4933 | vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; | ||
4934 | *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; | ||
4935 | } else { | ||
4936 | /* | ||
4937 | * if we have hashes and we are clearing a multicast promisc | ||
4938 | * flag we need to write the hashes to the MTA as this step | ||
4939 | * was previously skipped | ||
4940 | */ | ||
4941 | if (vf_data->num_vf_mc_hashes > 30) { | ||
4942 | vmolr |= E1000_VMOLR_MPME; | ||
4943 | } else if (vf_data->num_vf_mc_hashes) { | ||
4944 | int j; | ||
4945 | vmolr |= E1000_VMOLR_ROMPE; | ||
4946 | for (j = 0; j < vf_data->num_vf_mc_hashes; j++) | ||
4947 | igb_mta_set(hw, vf_data->vf_mc_hashes[j]); | ||
4948 | } | ||
4949 | } | ||
4950 | |||
4951 | wr32(E1000_VMOLR(vf), vmolr); | ||
4952 | |||
4953 | /* there are flags left unprocessed, likely not supported */ | ||
4954 | if (*msgbuf & E1000_VT_MSGINFO_MASK) | ||
4955 | return -EINVAL; | ||
4956 | |||
4957 | return 0; | ||
4958 | |||
4959 | } | ||
4960 | |||
4961 | static int igb_set_vf_multicasts(struct igb_adapter *adapter, | ||
4962 | u32 *msgbuf, u32 vf) | ||
4963 | { | ||
4964 | int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; | ||
4965 | u16 *hash_list = (u16 *)&msgbuf[1]; | ||
4966 | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | ||
4967 | int i; | ||
4968 | |||
4969 | /* salt away the number of multicast addresses assigned | ||
4970 | * to this VF for later use to restore when the PF multi cast | ||
4971 | * list changes | ||
4972 | */ | ||
4973 | vf_data->num_vf_mc_hashes = n; | ||
4974 | |||
4975 | /* only up to 30 hash values supported */ | ||
4976 | if (n > 30) | ||
4977 | n = 30; | ||
4978 | |||
4979 | /* store the hashes for later use */ | ||
4980 | for (i = 0; i < n; i++) | ||
4981 | vf_data->vf_mc_hashes[i] = hash_list[i]; | ||
4982 | |||
4983 | /* Flush and reset the mta with the new values */ | ||
4984 | igb_set_rx_mode(adapter->netdev); | ||
4985 | |||
4986 | return 0; | ||
4987 | } | ||
4988 | |||
4989 | static void igb_restore_vf_multicasts(struct igb_adapter *adapter) | ||
4990 | { | ||
4991 | struct e1000_hw *hw = &adapter->hw; | ||
4992 | struct vf_data_storage *vf_data; | ||
4993 | int i, j; | ||
4994 | |||
4995 | for (i = 0; i < adapter->vfs_allocated_count; i++) { | ||
4996 | u32 vmolr = rd32(E1000_VMOLR(i)); | ||
4997 | vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); | ||
4998 | |||
4999 | vf_data = &adapter->vf_data[i]; | ||
5000 | |||
5001 | if ((vf_data->num_vf_mc_hashes > 30) || | ||
5002 | (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { | ||
5003 | vmolr |= E1000_VMOLR_MPME; | ||
5004 | } else if (vf_data->num_vf_mc_hashes) { | ||
5005 | vmolr |= E1000_VMOLR_ROMPE; | ||
5006 | for (j = 0; j < vf_data->num_vf_mc_hashes; j++) | ||
5007 | igb_mta_set(hw, vf_data->vf_mc_hashes[j]); | ||
5008 | } | ||
5009 | wr32(E1000_VMOLR(i), vmolr); | ||
5010 | } | ||
5011 | } | ||
5012 | |||
5013 | static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) | ||
5014 | { | ||
5015 | struct e1000_hw *hw = &adapter->hw; | ||
5016 | u32 pool_mask, reg, vid; | ||
5017 | int i; | ||
5018 | |||
5019 | pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); | ||
5020 | |||
5021 | /* Find the vlan filter for this id */ | ||
5022 | for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { | ||
5023 | reg = rd32(E1000_VLVF(i)); | ||
5024 | |||
5025 | /* remove the vf from the pool */ | ||
5026 | reg &= ~pool_mask; | ||
5027 | |||
5028 | /* if pool is empty then remove entry from vfta */ | ||
5029 | if (!(reg & E1000_VLVF_POOLSEL_MASK) && | ||
5030 | (reg & E1000_VLVF_VLANID_ENABLE)) { | ||
5031 | reg = 0; | ||
5032 | vid = reg & E1000_VLVF_VLANID_MASK; | ||
5033 | igb_vfta_set(hw, vid, false); | ||
5034 | } | ||
5035 | |||
5036 | wr32(E1000_VLVF(i), reg); | ||
5037 | } | ||
5038 | |||
5039 | adapter->vf_data[vf].vlans_enabled = 0; | ||
5040 | } | ||
5041 | |||
5042 | static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) | ||
5043 | { | ||
5044 | struct e1000_hw *hw = &adapter->hw; | ||
5045 | u32 reg, i; | ||
5046 | |||
5047 | /* The vlvf table only exists on 82576 hardware and newer */ | ||
5048 | if (hw->mac.type < e1000_82576) | ||
5049 | return -1; | ||
5050 | |||
5051 | /* we only need to do this if VMDq is enabled */ | ||
5052 | if (!adapter->vfs_allocated_count) | ||
5053 | return -1; | ||
5054 | |||
5055 | /* Find the vlan filter for this id */ | ||
5056 | for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { | ||
5057 | reg = rd32(E1000_VLVF(i)); | ||
5058 | if ((reg & E1000_VLVF_VLANID_ENABLE) && | ||
5059 | vid == (reg & E1000_VLVF_VLANID_MASK)) | ||
5060 | break; | ||
5061 | } | ||
5062 | |||
5063 | if (add) { | ||
5064 | if (i == E1000_VLVF_ARRAY_SIZE) { | ||
5065 | /* Did not find a matching VLAN ID entry that was | ||
5066 | * enabled. Search for a free filter entry, i.e. | ||
5067 | * one without the enable bit set | ||
5068 | */ | ||
5069 | for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { | ||
5070 | reg = rd32(E1000_VLVF(i)); | ||
5071 | if (!(reg & E1000_VLVF_VLANID_ENABLE)) | ||
5072 | break; | ||
5073 | } | ||
5074 | } | ||
5075 | if (i < E1000_VLVF_ARRAY_SIZE) { | ||
5076 | /* Found an enabled/available entry */ | ||
5077 | reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); | ||
5078 | |||
5079 | /* if !enabled we need to set this up in vfta */ | ||
5080 | if (!(reg & E1000_VLVF_VLANID_ENABLE)) { | ||
5081 | /* add VID to filter table */ | ||
5082 | igb_vfta_set(hw, vid, true); | ||
5083 | reg |= E1000_VLVF_VLANID_ENABLE; | ||
5084 | } | ||
5085 | reg &= ~E1000_VLVF_VLANID_MASK; | ||
5086 | reg |= vid; | ||
5087 | wr32(E1000_VLVF(i), reg); | ||
5088 | |||
5089 | /* do not modify RLPML for PF devices */ | ||
5090 | if (vf >= adapter->vfs_allocated_count) | ||
5091 | return 0; | ||
5092 | |||
5093 | if (!adapter->vf_data[vf].vlans_enabled) { | ||
5094 | u32 size; | ||
5095 | reg = rd32(E1000_VMOLR(vf)); | ||
5096 | size = reg & E1000_VMOLR_RLPML_MASK; | ||
5097 | size += 4; | ||
5098 | reg &= ~E1000_VMOLR_RLPML_MASK; | ||
5099 | reg |= size; | ||
5100 | wr32(E1000_VMOLR(vf), reg); | ||
5101 | } | ||
5102 | |||
5103 | adapter->vf_data[vf].vlans_enabled++; | ||
5104 | return 0; | ||
5105 | } | ||
5106 | } else { | ||
5107 | if (i < E1000_VLVF_ARRAY_SIZE) { | ||
5108 | /* remove vf from the pool */ | ||
5109 | reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); | ||
5110 | /* if pool is empty then remove entry from vfta */ | ||
5111 | if (!(reg & E1000_VLVF_POOLSEL_MASK)) { | ||
5112 | reg = 0; | ||
5113 | igb_vfta_set(hw, vid, false); | ||
5114 | } | ||
5115 | wr32(E1000_VLVF(i), reg); | ||
5116 | |||
5117 | /* do not modify RLPML for PF devices */ | ||
5118 | if (vf >= adapter->vfs_allocated_count) | ||
5119 | return 0; | ||
5120 | |||
5121 | adapter->vf_data[vf].vlans_enabled--; | ||
5122 | if (!adapter->vf_data[vf].vlans_enabled) { | ||
5123 | u32 size; | ||
5124 | reg = rd32(E1000_VMOLR(vf)); | ||
5125 | size = reg & E1000_VMOLR_RLPML_MASK; | ||
5126 | size -= 4; | ||
5127 | reg &= ~E1000_VMOLR_RLPML_MASK; | ||
5128 | reg |= size; | ||
5129 | wr32(E1000_VMOLR(vf), reg); | ||
5130 | } | ||
5131 | } | ||
5132 | } | ||
5133 | return 0; | ||
5134 | } | ||
5135 | |||
5136 | static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) | ||
5137 | { | ||
5138 | struct e1000_hw *hw = &adapter->hw; | ||
5139 | |||
5140 | if (vid) | ||
5141 | wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); | ||
5142 | else | ||
5143 | wr32(E1000_VMVIR(vf), 0); | ||
5144 | } | ||
5145 | |||
5146 | static int igb_ndo_set_vf_vlan(struct net_device *netdev, | ||
5147 | int vf, u16 vlan, u8 qos) | ||
5148 | { | ||
5149 | int err = 0; | ||
5150 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
5151 | |||
5152 | if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) | ||
5153 | return -EINVAL; | ||
5154 | if (vlan || qos) { | ||
5155 | err = igb_vlvf_set(adapter, vlan, !!vlan, vf); | ||
5156 | if (err) | ||
5157 | goto out; | ||
5158 | igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); | ||
5159 | igb_set_vmolr(adapter, vf, !vlan); | ||
5160 | adapter->vf_data[vf].pf_vlan = vlan; | ||
5161 | adapter->vf_data[vf].pf_qos = qos; | ||
5162 | dev_info(&adapter->pdev->dev, | ||
5163 | "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); | ||
5164 | if (test_bit(__IGB_DOWN, &adapter->state)) { | ||
5165 | dev_warn(&adapter->pdev->dev, | ||
5166 | "The VF VLAN has been set," | ||
5167 | " but the PF device is not up.\n"); | ||
5168 | dev_warn(&adapter->pdev->dev, | ||
5169 | "Bring the PF device up before" | ||
5170 | " attempting to use the VF device.\n"); | ||
5171 | } | ||
5172 | } else { | ||
5173 | igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, | ||
5174 | false, vf); | ||
5175 | igb_set_vmvir(adapter, vlan, vf); | ||
5176 | igb_set_vmolr(adapter, vf, true); | ||
5177 | adapter->vf_data[vf].pf_vlan = 0; | ||
5178 | adapter->vf_data[vf].pf_qos = 0; | ||
5179 | } | ||
5180 | out: | ||
5181 | return err; | ||
5182 | } | ||
5183 | |||
5184 | static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) | ||
5185 | { | ||
5186 | int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; | ||
5187 | int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); | ||
5188 | |||
5189 | return igb_vlvf_set(adapter, vid, add, vf); | ||
5190 | } | ||
5191 | |||
5192 | static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) | ||
5193 | { | ||
5194 | /* clear flags - except flag that indicates PF has set the MAC */ | ||
5195 | adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; | ||
5196 | adapter->vf_data[vf].last_nack = jiffies; | ||
5197 | |||
5198 | /* reset offloads to defaults */ | ||
5199 | igb_set_vmolr(adapter, vf, true); | ||
5200 | |||
5201 | /* reset vlans for device */ | ||
5202 | igb_clear_vf_vfta(adapter, vf); | ||
5203 | if (adapter->vf_data[vf].pf_vlan) | ||
5204 | igb_ndo_set_vf_vlan(adapter->netdev, vf, | ||
5205 | adapter->vf_data[vf].pf_vlan, | ||
5206 | adapter->vf_data[vf].pf_qos); | ||
5207 | else | ||
5208 | igb_clear_vf_vfta(adapter, vf); | ||
5209 | |||
5210 | /* reset multicast table array for vf */ | ||
5211 | adapter->vf_data[vf].num_vf_mc_hashes = 0; | ||
5212 | |||
5213 | /* Flush and reset the mta with the new values */ | ||
5214 | igb_set_rx_mode(adapter->netdev); | ||
5215 | } | ||
5216 | |||
5217 | static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) | ||
5218 | { | ||
5219 | unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; | ||
5220 | |||
5221 | /* generate a new mac address as we were hotplug removed/added */ | ||
5222 | if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) | ||
5223 | random_ether_addr(vf_mac); | ||
5224 | |||
5225 | /* process remaining reset events */ | ||
5226 | igb_vf_reset(adapter, vf); | ||
5227 | } | ||
5228 | |||
5229 | static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) | ||
5230 | { | ||
5231 | struct e1000_hw *hw = &adapter->hw; | ||
5232 | unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; | ||
5233 | int rar_entry = hw->mac.rar_entry_count - (vf + 1); | ||
5234 | u32 reg, msgbuf[3]; | ||
5235 | u8 *addr = (u8 *)(&msgbuf[1]); | ||
5236 | |||
5237 | /* process all the same items cleared in a function level reset */ | ||
5238 | igb_vf_reset(adapter, vf); | ||
5239 | |||
5240 | /* set vf mac address */ | ||
5241 | igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); | ||
5242 | |||
5243 | /* enable transmit and receive for vf */ | ||
5244 | reg = rd32(E1000_VFTE); | ||
5245 | wr32(E1000_VFTE, reg | (1 << vf)); | ||
5246 | reg = rd32(E1000_VFRE); | ||
5247 | wr32(E1000_VFRE, reg | (1 << vf)); | ||
5248 | |||
5249 | adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; | ||
5250 | |||
5251 | /* reply to reset with ack and vf mac address */ | ||
5252 | msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; | ||
5253 | memcpy(addr, vf_mac, 6); | ||
5254 | igb_write_mbx(hw, msgbuf, 3, vf); | ||
5255 | } | ||
5256 | |||
5257 | static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) | ||
5258 | { | ||
5259 | /* | ||
5260 | * The VF MAC Address is stored in a packed array of bytes | ||
5261 | * starting at the second 32 bit word of the msg array | ||
5262 | */ | ||
5263 | unsigned char *addr = (char *)&msg[1]; | ||
5264 | int err = -1; | ||
5265 | |||
5266 | if (is_valid_ether_addr(addr)) | ||
5267 | err = igb_set_vf_mac(adapter, vf, addr); | ||
5268 | |||
5269 | return err; | ||
5270 | } | ||
5271 | |||
5272 | static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) | ||
5273 | { | ||
5274 | struct e1000_hw *hw = &adapter->hw; | ||
5275 | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | ||
5276 | u32 msg = E1000_VT_MSGTYPE_NACK; | ||
5277 | |||
5278 | /* if device isn't clear to send it shouldn't be reading either */ | ||
5279 | if (!(vf_data->flags & IGB_VF_FLAG_CTS) && | ||
5280 | time_after(jiffies, vf_data->last_nack + (2 * HZ))) { | ||
5281 | igb_write_mbx(hw, &msg, 1, vf); | ||
5282 | vf_data->last_nack = jiffies; | ||
5283 | } | ||
5284 | } | ||
5285 | |||
5286 | static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) | ||
5287 | { | ||
5288 | struct pci_dev *pdev = adapter->pdev; | ||
5289 | u32 msgbuf[E1000_VFMAILBOX_SIZE]; | ||
5290 | struct e1000_hw *hw = &adapter->hw; | ||
5291 | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | ||
5292 | s32 retval; | ||
5293 | |||
5294 | retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); | ||
5295 | |||
5296 | if (retval) { | ||
5297 | /* if receive failed revoke VF CTS stats and restart init */ | ||
5298 | dev_err(&pdev->dev, "Error receiving message from VF\n"); | ||
5299 | vf_data->flags &= ~IGB_VF_FLAG_CTS; | ||
5300 | if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) | ||
5301 | return; | ||
5302 | goto out; | ||
5303 | } | ||
5304 | |||
5305 | /* this is a message we already processed, do nothing */ | ||
5306 | if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) | ||
5307 | return; | ||
5308 | |||
5309 | /* | ||
5310 | * until the vf completes a reset it should not be | ||
5311 | * allowed to start any configuration. | ||
5312 | */ | ||
5313 | |||
5314 | if (msgbuf[0] == E1000_VF_RESET) { | ||
5315 | igb_vf_reset_msg(adapter, vf); | ||
5316 | return; | ||
5317 | } | ||
5318 | |||
5319 | if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { | ||
5320 | if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) | ||
5321 | return; | ||
5322 | retval = -1; | ||
5323 | goto out; | ||
5324 | } | ||
5325 | |||
5326 | switch ((msgbuf[0] & 0xFFFF)) { | ||
5327 | case E1000_VF_SET_MAC_ADDR: | ||
5328 | retval = -EINVAL; | ||
5329 | if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) | ||
5330 | retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); | ||
5331 | else | ||
5332 | dev_warn(&pdev->dev, | ||
5333 | "VF %d attempted to override administratively " | ||
5334 | "set MAC address\nReload the VF driver to " | ||
5335 | "resume operations\n", vf); | ||
5336 | break; | ||
5337 | case E1000_VF_SET_PROMISC: | ||
5338 | retval = igb_set_vf_promisc(adapter, msgbuf, vf); | ||
5339 | break; | ||
5340 | case E1000_VF_SET_MULTICAST: | ||
5341 | retval = igb_set_vf_multicasts(adapter, msgbuf, vf); | ||
5342 | break; | ||
5343 | case E1000_VF_SET_LPE: | ||
5344 | retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); | ||
5345 | break; | ||
5346 | case E1000_VF_SET_VLAN: | ||
5347 | retval = -1; | ||
5348 | if (vf_data->pf_vlan) | ||
5349 | dev_warn(&pdev->dev, | ||
5350 | "VF %d attempted to override administratively " | ||
5351 | "set VLAN tag\nReload the VF driver to " | ||
5352 | "resume operations\n", vf); | ||
5353 | else | ||
5354 | retval = igb_set_vf_vlan(adapter, msgbuf, vf); | ||
5355 | break; | ||
5356 | default: | ||
5357 | dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); | ||
5358 | retval = -1; | ||
5359 | break; | ||
5360 | } | ||
5361 | |||
5362 | msgbuf[0] |= E1000_VT_MSGTYPE_CTS; | ||
5363 | out: | ||
5364 | /* notify the VF of the results of what it sent us */ | ||
5365 | if (retval) | ||
5366 | msgbuf[0] |= E1000_VT_MSGTYPE_NACK; | ||
5367 | else | ||
5368 | msgbuf[0] |= E1000_VT_MSGTYPE_ACK; | ||
5369 | |||
5370 | igb_write_mbx(hw, msgbuf, 1, vf); | ||
5371 | } | ||
5372 | |||
5373 | static void igb_msg_task(struct igb_adapter *adapter) | ||
5374 | { | ||
5375 | struct e1000_hw *hw = &adapter->hw; | ||
5376 | u32 vf; | ||
5377 | |||
5378 | for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { | ||
5379 | /* process any reset requests */ | ||
5380 | if (!igb_check_for_rst(hw, vf)) | ||
5381 | igb_vf_reset_event(adapter, vf); | ||
5382 | |||
5383 | /* process any messages pending */ | ||
5384 | if (!igb_check_for_msg(hw, vf)) | ||
5385 | igb_rcv_msg_from_vf(adapter, vf); | ||
5386 | |||
5387 | /* process any acks */ | ||
5388 | if (!igb_check_for_ack(hw, vf)) | ||
5389 | igb_rcv_ack_from_vf(adapter, vf); | ||
5390 | } | ||
5391 | } | ||
5392 | |||
5393 | /** | ||
5394 | * igb_set_uta - Set unicast filter table address | ||
5395 | * @adapter: board private structure | ||
5396 | * | ||
5397 | * The unicast table address is a register array of 32-bit registers. | ||
5398 | * The table is meant to be used in a way similar to how the MTA is used | ||
5399 | * however due to certain limitations in the hardware it is necessary to | ||
5400 | * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous | ||
5401 | * enable bit to allow vlan tag stripping when promiscuous mode is enabled | ||
5402 | **/ | ||
5403 | static void igb_set_uta(struct igb_adapter *adapter) | ||
5404 | { | ||
5405 | struct e1000_hw *hw = &adapter->hw; | ||
5406 | int i; | ||
5407 | |||
5408 | /* The UTA table only exists on 82576 hardware and newer */ | ||
5409 | if (hw->mac.type < e1000_82576) | ||
5410 | return; | ||
5411 | |||
5412 | /* we only need to do this if VMDq is enabled */ | ||
5413 | if (!adapter->vfs_allocated_count) | ||
5414 | return; | ||
5415 | |||
5416 | for (i = 0; i < hw->mac.uta_reg_count; i++) | ||
5417 | array_wr32(E1000_UTA, i, ~0); | ||
5418 | } | ||
5419 | |||
5420 | /** | ||
5421 | * igb_intr_msi - Interrupt Handler | ||
5422 | * @irq: interrupt number | ||
5423 | * @data: pointer to a network interface device structure | ||
5424 | **/ | ||
5425 | static irqreturn_t igb_intr_msi(int irq, void *data) | ||
5426 | { | ||
5427 | struct igb_adapter *adapter = data; | ||
5428 | struct igb_q_vector *q_vector = adapter->q_vector[0]; | ||
5429 | struct e1000_hw *hw = &adapter->hw; | ||
5430 | /* read ICR disables interrupts using IAM */ | ||
5431 | u32 icr = rd32(E1000_ICR); | ||
5432 | |||
5433 | igb_write_itr(q_vector); | ||
5434 | |||
5435 | if (icr & E1000_ICR_DRSTA) | ||
5436 | schedule_work(&adapter->reset_task); | ||
5437 | |||
5438 | if (icr & E1000_ICR_DOUTSYNC) { | ||
5439 | /* HW is reporting DMA is out of sync */ | ||
5440 | adapter->stats.doosync++; | ||
5441 | } | ||
5442 | |||
5443 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
5444 | hw->mac.get_link_status = 1; | ||
5445 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
5446 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
5447 | } | ||
5448 | |||
5449 | napi_schedule(&q_vector->napi); | ||
5450 | |||
5451 | return IRQ_HANDLED; | ||
5452 | } | ||
5453 | |||
5454 | /** | ||
5455 | * igb_intr - Legacy Interrupt Handler | ||
5456 | * @irq: interrupt number | ||
5457 | * @data: pointer to a network interface device structure | ||
5458 | **/ | ||
5459 | static irqreturn_t igb_intr(int irq, void *data) | ||
5460 | { | ||
5461 | struct igb_adapter *adapter = data; | ||
5462 | struct igb_q_vector *q_vector = adapter->q_vector[0]; | ||
5463 | struct e1000_hw *hw = &adapter->hw; | ||
5464 | /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No | ||
5465 | * need for the IMC write */ | ||
5466 | u32 icr = rd32(E1000_ICR); | ||
5467 | if (!icr) | ||
5468 | return IRQ_NONE; /* Not our interrupt */ | ||
5469 | |||
5470 | igb_write_itr(q_vector); | ||
5471 | |||
5472 | /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is | ||
5473 | * not set, then the adapter didn't send an interrupt */ | ||
5474 | if (!(icr & E1000_ICR_INT_ASSERTED)) | ||
5475 | return IRQ_NONE; | ||
5476 | |||
5477 | if (icr & E1000_ICR_DRSTA) | ||
5478 | schedule_work(&adapter->reset_task); | ||
5479 | |||
5480 | if (icr & E1000_ICR_DOUTSYNC) { | ||
5481 | /* HW is reporting DMA is out of sync */ | ||
5482 | adapter->stats.doosync++; | ||
5483 | } | ||
5484 | |||
5485 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
5486 | hw->mac.get_link_status = 1; | ||
5487 | /* guard against interrupt when we're going down */ | ||
5488 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
5489 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
5490 | } | ||
5491 | |||
5492 | napi_schedule(&q_vector->napi); | ||
5493 | |||
5494 | return IRQ_HANDLED; | ||
5495 | } | ||
5496 | |||
5497 | static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector) | ||
5498 | { | ||
5499 | struct igb_adapter *adapter = q_vector->adapter; | ||
5500 | struct e1000_hw *hw = &adapter->hw; | ||
5501 | |||
5502 | if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) || | ||
5503 | (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) { | ||
5504 | if (!adapter->msix_entries) | ||
5505 | igb_set_itr(adapter); | ||
5506 | else | ||
5507 | igb_update_ring_itr(q_vector); | ||
5508 | } | ||
5509 | |||
5510 | if (!test_bit(__IGB_DOWN, &adapter->state)) { | ||
5511 | if (adapter->msix_entries) | ||
5512 | wr32(E1000_EIMS, q_vector->eims_value); | ||
5513 | else | ||
5514 | igb_irq_enable(adapter); | ||
5515 | } | ||
5516 | } | ||
5517 | |||
5518 | /** | ||
5519 | * igb_poll - NAPI Rx polling callback | ||
5520 | * @napi: napi polling structure | ||
5521 | * @budget: count of how many packets we should handle | ||
5522 | **/ | ||
5523 | static int igb_poll(struct napi_struct *napi, int budget) | ||
5524 | { | ||
5525 | struct igb_q_vector *q_vector = container_of(napi, | ||
5526 | struct igb_q_vector, | ||
5527 | napi); | ||
5528 | int tx_clean_complete = 1, work_done = 0; | ||
5529 | |||
5530 | #ifdef CONFIG_IGB_DCA | ||
5531 | if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) | ||
5532 | igb_update_dca(q_vector); | ||
5533 | #endif | ||
5534 | if (q_vector->tx_ring) | ||
5535 | tx_clean_complete = igb_clean_tx_irq(q_vector); | ||
5536 | |||
5537 | if (q_vector->rx_ring) | ||
5538 | igb_clean_rx_irq_adv(q_vector, &work_done, budget); | ||
5539 | |||
5540 | if (!tx_clean_complete) | ||
5541 | work_done = budget; | ||
5542 | |||
5543 | /* If not enough Rx work done, exit the polling mode */ | ||
5544 | if (work_done < budget) { | ||
5545 | napi_complete(napi); | ||
5546 | igb_ring_irq_enable(q_vector); | ||
5547 | } | ||
5548 | |||
5549 | return work_done; | ||
5550 | } | ||
5551 | |||
5552 | /** | ||
5553 | * igb_systim_to_hwtstamp - convert system time value to hw timestamp | ||
5554 | * @adapter: board private structure | ||
5555 | * @shhwtstamps: timestamp structure to update | ||
5556 | * @regval: unsigned 64bit system time value. | ||
5557 | * | ||
5558 | * We need to convert the system time value stored in the RX/TXSTMP registers | ||
5559 | * into a hwtstamp which can be used by the upper level timestamping functions | ||
5560 | */ | ||
5561 | static void igb_systim_to_hwtstamp(struct igb_adapter *adapter, | ||
5562 | struct skb_shared_hwtstamps *shhwtstamps, | ||
5563 | u64 regval) | ||
5564 | { | ||
5565 | u64 ns; | ||
5566 | |||
5567 | /* | ||
5568 | * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to | ||
5569 | * 24 to match clock shift we setup earlier. | ||
5570 | */ | ||
5571 | if (adapter->hw.mac.type == e1000_82580) | ||
5572 | regval <<= IGB_82580_TSYNC_SHIFT; | ||
5573 | |||
5574 | ns = timecounter_cyc2time(&adapter->clock, regval); | ||
5575 | timecompare_update(&adapter->compare, ns); | ||
5576 | memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps)); | ||
5577 | shhwtstamps->hwtstamp = ns_to_ktime(ns); | ||
5578 | shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns); | ||
5579 | } | ||
5580 | |||
5581 | /** | ||
5582 | * igb_tx_hwtstamp - utility function which checks for TX time stamp | ||
5583 | * @q_vector: pointer to q_vector containing needed info | ||
5584 | * @buffer: pointer to igb_buffer structure | ||
5585 | * | ||
5586 | * If we were asked to do hardware stamping and such a time stamp is | ||
5587 | * available, then it must have been for this skb here because we only | ||
5588 | * allow only one such packet into the queue. | ||
5589 | */ | ||
5590 | static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info) | ||
5591 | { | ||
5592 | struct igb_adapter *adapter = q_vector->adapter; | ||
5593 | struct e1000_hw *hw = &adapter->hw; | ||
5594 | struct skb_shared_hwtstamps shhwtstamps; | ||
5595 | u64 regval; | ||
5596 | |||
5597 | /* if skb does not support hw timestamp or TX stamp not valid exit */ | ||
5598 | if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) || | ||
5599 | !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID)) | ||
5600 | return; | ||
5601 | |||
5602 | regval = rd32(E1000_TXSTMPL); | ||
5603 | regval |= (u64)rd32(E1000_TXSTMPH) << 32; | ||
5604 | |||
5605 | igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval); | ||
5606 | skb_tstamp_tx(buffer_info->skb, &shhwtstamps); | ||
5607 | } | ||
5608 | |||
5609 | /** | ||
5610 | * igb_clean_tx_irq - Reclaim resources after transmit completes | ||
5611 | * @q_vector: pointer to q_vector containing needed info | ||
5612 | * returns true if ring is completely cleaned | ||
5613 | **/ | ||
5614 | static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) | ||
5615 | { | ||
5616 | struct igb_adapter *adapter = q_vector->adapter; | ||
5617 | struct igb_ring *tx_ring = q_vector->tx_ring; | ||
5618 | struct net_device *netdev = tx_ring->netdev; | ||
5619 | struct e1000_hw *hw = &adapter->hw; | ||
5620 | struct igb_buffer *buffer_info; | ||
5621 | union e1000_adv_tx_desc *tx_desc, *eop_desc; | ||
5622 | unsigned int total_bytes = 0, total_packets = 0; | ||
5623 | unsigned int i, eop, count = 0; | ||
5624 | bool cleaned = false; | ||
5625 | |||
5626 | i = tx_ring->next_to_clean; | ||
5627 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
5628 | eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop); | ||
5629 | |||
5630 | while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) && | ||
5631 | (count < tx_ring->count)) { | ||
5632 | rmb(); /* read buffer_info after eop_desc status */ | ||
5633 | for (cleaned = false; !cleaned; count++) { | ||
5634 | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | ||
5635 | buffer_info = &tx_ring->buffer_info[i]; | ||
5636 | cleaned = (i == eop); | ||
5637 | |||
5638 | if (buffer_info->skb) { | ||
5639 | total_bytes += buffer_info->bytecount; | ||
5640 | /* gso_segs is currently only valid for tcp */ | ||
5641 | total_packets += buffer_info->gso_segs; | ||
5642 | igb_tx_hwtstamp(q_vector, buffer_info); | ||
5643 | } | ||
5644 | |||
5645 | igb_unmap_and_free_tx_resource(tx_ring, buffer_info); | ||
5646 | tx_desc->wb.status = 0; | ||
5647 | |||
5648 | i++; | ||
5649 | if (i == tx_ring->count) | ||
5650 | i = 0; | ||
5651 | } | ||
5652 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
5653 | eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop); | ||
5654 | } | ||
5655 | |||
5656 | tx_ring->next_to_clean = i; | ||
5657 | |||
5658 | if (unlikely(count && | ||
5659 | netif_carrier_ok(netdev) && | ||
5660 | igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) { | ||
5661 | /* Make sure that anybody stopping the queue after this | ||
5662 | * sees the new next_to_clean. | ||
5663 | */ | ||
5664 | smp_mb(); | ||
5665 | if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) && | ||
5666 | !(test_bit(__IGB_DOWN, &adapter->state))) { | ||
5667 | netif_wake_subqueue(netdev, tx_ring->queue_index); | ||
5668 | |||
5669 | u64_stats_update_begin(&tx_ring->tx_syncp); | ||
5670 | tx_ring->tx_stats.restart_queue++; | ||
5671 | u64_stats_update_end(&tx_ring->tx_syncp); | ||
5672 | } | ||
5673 | } | ||
5674 | |||
5675 | if (tx_ring->detect_tx_hung) { | ||
5676 | /* Detect a transmit hang in hardware, this serializes the | ||
5677 | * check with the clearing of time_stamp and movement of i */ | ||
5678 | tx_ring->detect_tx_hung = false; | ||
5679 | if (tx_ring->buffer_info[i].time_stamp && | ||
5680 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp + | ||
5681 | (adapter->tx_timeout_factor * HZ)) && | ||
5682 | !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { | ||
5683 | |||
5684 | /* detected Tx unit hang */ | ||
5685 | dev_err(tx_ring->dev, | ||
5686 | "Detected Tx Unit Hang\n" | ||
5687 | " Tx Queue <%d>\n" | ||
5688 | " TDH <%x>\n" | ||
5689 | " TDT <%x>\n" | ||
5690 | " next_to_use <%x>\n" | ||
5691 | " next_to_clean <%x>\n" | ||
5692 | "buffer_info[next_to_clean]\n" | ||
5693 | " time_stamp <%lx>\n" | ||
5694 | " next_to_watch <%x>\n" | ||
5695 | " jiffies <%lx>\n" | ||
5696 | " desc.status <%x>\n", | ||
5697 | tx_ring->queue_index, | ||
5698 | readl(tx_ring->head), | ||
5699 | readl(tx_ring->tail), | ||
5700 | tx_ring->next_to_use, | ||
5701 | tx_ring->next_to_clean, | ||
5702 | tx_ring->buffer_info[eop].time_stamp, | ||
5703 | eop, | ||
5704 | jiffies, | ||
5705 | eop_desc->wb.status); | ||
5706 | netif_stop_subqueue(netdev, tx_ring->queue_index); | ||
5707 | } | ||
5708 | } | ||
5709 | tx_ring->total_bytes += total_bytes; | ||
5710 | tx_ring->total_packets += total_packets; | ||
5711 | u64_stats_update_begin(&tx_ring->tx_syncp); | ||
5712 | tx_ring->tx_stats.bytes += total_bytes; | ||
5713 | tx_ring->tx_stats.packets += total_packets; | ||
5714 | u64_stats_update_end(&tx_ring->tx_syncp); | ||
5715 | return count < tx_ring->count; | ||
5716 | } | ||
5717 | |||
5718 | static inline void igb_rx_checksum_adv(struct igb_ring *ring, | ||
5719 | u32 status_err, struct sk_buff *skb) | ||
5720 | { | ||
5721 | skb_checksum_none_assert(skb); | ||
5722 | |||
5723 | /* Ignore Checksum bit is set or checksum is disabled through ethtool */ | ||
5724 | if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) || | ||
5725 | (status_err & E1000_RXD_STAT_IXSM)) | ||
5726 | return; | ||
5727 | |||
5728 | /* TCP/UDP checksum error bit is set */ | ||
5729 | if (status_err & | ||
5730 | (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { | ||
5731 | /* | ||
5732 | * work around errata with sctp packets where the TCPE aka | ||
5733 | * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) | ||
5734 | * packets, (aka let the stack check the crc32c) | ||
5735 | */ | ||
5736 | if ((skb->len == 60) && | ||
5737 | (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) { | ||
5738 | u64_stats_update_begin(&ring->rx_syncp); | ||
5739 | ring->rx_stats.csum_err++; | ||
5740 | u64_stats_update_end(&ring->rx_syncp); | ||
5741 | } | ||
5742 | /* let the stack verify checksum errors */ | ||
5743 | return; | ||
5744 | } | ||
5745 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
5746 | if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) | ||
5747 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
5748 | |||
5749 | dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err); | ||
5750 | } | ||
5751 | |||
5752 | static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr, | ||
5753 | struct sk_buff *skb) | ||
5754 | { | ||
5755 | struct igb_adapter *adapter = q_vector->adapter; | ||
5756 | struct e1000_hw *hw = &adapter->hw; | ||
5757 | u64 regval; | ||
5758 | |||
5759 | /* | ||
5760 | * If this bit is set, then the RX registers contain the time stamp. No | ||
5761 | * other packet will be time stamped until we read these registers, so | ||
5762 | * read the registers to make them available again. Because only one | ||
5763 | * packet can be time stamped at a time, we know that the register | ||
5764 | * values must belong to this one here and therefore we don't need to | ||
5765 | * compare any of the additional attributes stored for it. | ||
5766 | * | ||
5767 | * If nothing went wrong, then it should have a shared tx_flags that we | ||
5768 | * can turn into a skb_shared_hwtstamps. | ||
5769 | */ | ||
5770 | if (staterr & E1000_RXDADV_STAT_TSIP) { | ||
5771 | u32 *stamp = (u32 *)skb->data; | ||
5772 | regval = le32_to_cpu(*(stamp + 2)); | ||
5773 | regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32; | ||
5774 | skb_pull(skb, IGB_TS_HDR_LEN); | ||
5775 | } else { | ||
5776 | if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) | ||
5777 | return; | ||
5778 | |||
5779 | regval = rd32(E1000_RXSTMPL); | ||
5780 | regval |= (u64)rd32(E1000_RXSTMPH) << 32; | ||
5781 | } | ||
5782 | |||
5783 | igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); | ||
5784 | } | ||
5785 | static inline u16 igb_get_hlen(struct igb_ring *rx_ring, | ||
5786 | union e1000_adv_rx_desc *rx_desc) | ||
5787 | { | ||
5788 | /* HW will not DMA in data larger than the given buffer, even if it | ||
5789 | * parses the (NFS, of course) header to be larger. In that case, it | ||
5790 | * fills the header buffer and spills the rest into the page. | ||
5791 | */ | ||
5792 | u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) & | ||
5793 | E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT; | ||
5794 | if (hlen > rx_ring->rx_buffer_len) | ||
5795 | hlen = rx_ring->rx_buffer_len; | ||
5796 | return hlen; | ||
5797 | } | ||
5798 | |||
5799 | static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector, | ||
5800 | int *work_done, int budget) | ||
5801 | { | ||
5802 | struct igb_ring *rx_ring = q_vector->rx_ring; | ||
5803 | struct net_device *netdev = rx_ring->netdev; | ||
5804 | struct device *dev = rx_ring->dev; | ||
5805 | union e1000_adv_rx_desc *rx_desc , *next_rxd; | ||
5806 | struct igb_buffer *buffer_info , *next_buffer; | ||
5807 | struct sk_buff *skb; | ||
5808 | bool cleaned = false; | ||
5809 | int cleaned_count = 0; | ||
5810 | int current_node = numa_node_id(); | ||
5811 | unsigned int total_bytes = 0, total_packets = 0; | ||
5812 | unsigned int i; | ||
5813 | u32 staterr; | ||
5814 | u16 length; | ||
5815 | |||
5816 | i = rx_ring->next_to_clean; | ||
5817 | buffer_info = &rx_ring->buffer_info[i]; | ||
5818 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
5819 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
5820 | |||
5821 | while (staterr & E1000_RXD_STAT_DD) { | ||
5822 | if (*work_done >= budget) | ||
5823 | break; | ||
5824 | (*work_done)++; | ||
5825 | rmb(); /* read descriptor and rx_buffer_info after status DD */ | ||
5826 | |||
5827 | skb = buffer_info->skb; | ||
5828 | prefetch(skb->data - NET_IP_ALIGN); | ||
5829 | buffer_info->skb = NULL; | ||
5830 | |||
5831 | i++; | ||
5832 | if (i == rx_ring->count) | ||
5833 | i = 0; | ||
5834 | |||
5835 | next_rxd = E1000_RX_DESC_ADV(*rx_ring, i); | ||
5836 | prefetch(next_rxd); | ||
5837 | next_buffer = &rx_ring->buffer_info[i]; | ||
5838 | |||
5839 | length = le16_to_cpu(rx_desc->wb.upper.length); | ||
5840 | cleaned = true; | ||
5841 | cleaned_count++; | ||
5842 | |||
5843 | if (buffer_info->dma) { | ||
5844 | dma_unmap_single(dev, buffer_info->dma, | ||
5845 | rx_ring->rx_buffer_len, | ||
5846 | DMA_FROM_DEVICE); | ||
5847 | buffer_info->dma = 0; | ||
5848 | if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) { | ||
5849 | skb_put(skb, length); | ||
5850 | goto send_up; | ||
5851 | } | ||
5852 | skb_put(skb, igb_get_hlen(rx_ring, rx_desc)); | ||
5853 | } | ||
5854 | |||
5855 | if (length) { | ||
5856 | dma_unmap_page(dev, buffer_info->page_dma, | ||
5857 | PAGE_SIZE / 2, DMA_FROM_DEVICE); | ||
5858 | buffer_info->page_dma = 0; | ||
5859 | |||
5860 | skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, | ||
5861 | buffer_info->page, | ||
5862 | buffer_info->page_offset, | ||
5863 | length); | ||
5864 | |||
5865 | if ((page_count(buffer_info->page) != 1) || | ||
5866 | (page_to_nid(buffer_info->page) != current_node)) | ||
5867 | buffer_info->page = NULL; | ||
5868 | else | ||
5869 | get_page(buffer_info->page); | ||
5870 | |||
5871 | skb->len += length; | ||
5872 | skb->data_len += length; | ||
5873 | skb->truesize += length; | ||
5874 | } | ||
5875 | |||
5876 | if (!(staterr & E1000_RXD_STAT_EOP)) { | ||
5877 | buffer_info->skb = next_buffer->skb; | ||
5878 | buffer_info->dma = next_buffer->dma; | ||
5879 | next_buffer->skb = skb; | ||
5880 | next_buffer->dma = 0; | ||
5881 | goto next_desc; | ||
5882 | } | ||
5883 | send_up: | ||
5884 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | ||
5885 | dev_kfree_skb_irq(skb); | ||
5886 | goto next_desc; | ||
5887 | } | ||
5888 | |||
5889 | if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS)) | ||
5890 | igb_rx_hwtstamp(q_vector, staterr, skb); | ||
5891 | total_bytes += skb->len; | ||
5892 | total_packets++; | ||
5893 | |||
5894 | igb_rx_checksum_adv(rx_ring, staterr, skb); | ||
5895 | |||
5896 | skb->protocol = eth_type_trans(skb, netdev); | ||
5897 | skb_record_rx_queue(skb, rx_ring->queue_index); | ||
5898 | |||
5899 | if (staterr & E1000_RXD_STAT_VP) { | ||
5900 | u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); | ||
5901 | |||
5902 | __vlan_hwaccel_put_tag(skb, vid); | ||
5903 | } | ||
5904 | napi_gro_receive(&q_vector->napi, skb); | ||
5905 | |||
5906 | next_desc: | ||
5907 | rx_desc->wb.upper.status_error = 0; | ||
5908 | |||
5909 | /* return some buffers to hardware, one at a time is too slow */ | ||
5910 | if (cleaned_count >= IGB_RX_BUFFER_WRITE) { | ||
5911 | igb_alloc_rx_buffers_adv(rx_ring, cleaned_count); | ||
5912 | cleaned_count = 0; | ||
5913 | } | ||
5914 | |||
5915 | /* use prefetched values */ | ||
5916 | rx_desc = next_rxd; | ||
5917 | buffer_info = next_buffer; | ||
5918 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
5919 | } | ||
5920 | |||
5921 | rx_ring->next_to_clean = i; | ||
5922 | cleaned_count = igb_desc_unused(rx_ring); | ||
5923 | |||
5924 | if (cleaned_count) | ||
5925 | igb_alloc_rx_buffers_adv(rx_ring, cleaned_count); | ||
5926 | |||
5927 | rx_ring->total_packets += total_packets; | ||
5928 | rx_ring->total_bytes += total_bytes; | ||
5929 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
5930 | rx_ring->rx_stats.packets += total_packets; | ||
5931 | rx_ring->rx_stats.bytes += total_bytes; | ||
5932 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
5933 | return cleaned; | ||
5934 | } | ||
5935 | |||
5936 | /** | ||
5937 | * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split | ||
5938 | * @adapter: address of board private structure | ||
5939 | **/ | ||
5940 | void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count) | ||
5941 | { | ||
5942 | struct net_device *netdev = rx_ring->netdev; | ||
5943 | union e1000_adv_rx_desc *rx_desc; | ||
5944 | struct igb_buffer *buffer_info; | ||
5945 | struct sk_buff *skb; | ||
5946 | unsigned int i; | ||
5947 | int bufsz; | ||
5948 | |||
5949 | i = rx_ring->next_to_use; | ||
5950 | buffer_info = &rx_ring->buffer_info[i]; | ||
5951 | |||
5952 | bufsz = rx_ring->rx_buffer_len; | ||
5953 | |||
5954 | while (cleaned_count--) { | ||
5955 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
5956 | |||
5957 | if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) { | ||
5958 | if (!buffer_info->page) { | ||
5959 | buffer_info->page = netdev_alloc_page(netdev); | ||
5960 | if (unlikely(!buffer_info->page)) { | ||
5961 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
5962 | rx_ring->rx_stats.alloc_failed++; | ||
5963 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
5964 | goto no_buffers; | ||
5965 | } | ||
5966 | buffer_info->page_offset = 0; | ||
5967 | } else { | ||
5968 | buffer_info->page_offset ^= PAGE_SIZE / 2; | ||
5969 | } | ||
5970 | buffer_info->page_dma = | ||
5971 | dma_map_page(rx_ring->dev, buffer_info->page, | ||
5972 | buffer_info->page_offset, | ||
5973 | PAGE_SIZE / 2, | ||
5974 | DMA_FROM_DEVICE); | ||
5975 | if (dma_mapping_error(rx_ring->dev, | ||
5976 | buffer_info->page_dma)) { | ||
5977 | buffer_info->page_dma = 0; | ||
5978 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
5979 | rx_ring->rx_stats.alloc_failed++; | ||
5980 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
5981 | goto no_buffers; | ||
5982 | } | ||
5983 | } | ||
5984 | |||
5985 | skb = buffer_info->skb; | ||
5986 | if (!skb) { | ||
5987 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); | ||
5988 | if (unlikely(!skb)) { | ||
5989 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
5990 | rx_ring->rx_stats.alloc_failed++; | ||
5991 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
5992 | goto no_buffers; | ||
5993 | } | ||
5994 | |||
5995 | buffer_info->skb = skb; | ||
5996 | } | ||
5997 | if (!buffer_info->dma) { | ||
5998 | buffer_info->dma = dma_map_single(rx_ring->dev, | ||
5999 | skb->data, | ||
6000 | bufsz, | ||
6001 | DMA_FROM_DEVICE); | ||
6002 | if (dma_mapping_error(rx_ring->dev, | ||
6003 | buffer_info->dma)) { | ||
6004 | buffer_info->dma = 0; | ||
6005 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
6006 | rx_ring->rx_stats.alloc_failed++; | ||
6007 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
6008 | goto no_buffers; | ||
6009 | } | ||
6010 | } | ||
6011 | /* Refresh the desc even if buffer_addrs didn't change because | ||
6012 | * each write-back erases this info. */ | ||
6013 | if (bufsz < IGB_RXBUFFER_1024) { | ||
6014 | rx_desc->read.pkt_addr = | ||
6015 | cpu_to_le64(buffer_info->page_dma); | ||
6016 | rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); | ||
6017 | } else { | ||
6018 | rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma); | ||
6019 | rx_desc->read.hdr_addr = 0; | ||
6020 | } | ||
6021 | |||
6022 | i++; | ||
6023 | if (i == rx_ring->count) | ||
6024 | i = 0; | ||
6025 | buffer_info = &rx_ring->buffer_info[i]; | ||
6026 | } | ||
6027 | |||
6028 | no_buffers: | ||
6029 | if (rx_ring->next_to_use != i) { | ||
6030 | rx_ring->next_to_use = i; | ||
6031 | if (i == 0) | ||
6032 | i = (rx_ring->count - 1); | ||
6033 | else | ||
6034 | i--; | ||
6035 | |||
6036 | /* Force memory writes to complete before letting h/w | ||
6037 | * know there are new descriptors to fetch. (Only | ||
6038 | * applicable for weak-ordered memory model archs, | ||
6039 | * such as IA-64). */ | ||
6040 | wmb(); | ||
6041 | writel(i, rx_ring->tail); | ||
6042 | } | ||
6043 | } | ||
6044 | |||
6045 | /** | ||
6046 | * igb_mii_ioctl - | ||
6047 | * @netdev: | ||
6048 | * @ifreq: | ||
6049 | * @cmd: | ||
6050 | **/ | ||
6051 | static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
6052 | { | ||
6053 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6054 | struct mii_ioctl_data *data = if_mii(ifr); | ||
6055 | |||
6056 | if (adapter->hw.phy.media_type != e1000_media_type_copper) | ||
6057 | return -EOPNOTSUPP; | ||
6058 | |||
6059 | switch (cmd) { | ||
6060 | case SIOCGMIIPHY: | ||
6061 | data->phy_id = adapter->hw.phy.addr; | ||
6062 | break; | ||
6063 | case SIOCGMIIREG: | ||
6064 | if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, | ||
6065 | &data->val_out)) | ||
6066 | return -EIO; | ||
6067 | break; | ||
6068 | case SIOCSMIIREG: | ||
6069 | default: | ||
6070 | return -EOPNOTSUPP; | ||
6071 | } | ||
6072 | return 0; | ||
6073 | } | ||
6074 | |||
6075 | /** | ||
6076 | * igb_hwtstamp_ioctl - control hardware time stamping | ||
6077 | * @netdev: | ||
6078 | * @ifreq: | ||
6079 | * @cmd: | ||
6080 | * | ||
6081 | * Outgoing time stamping can be enabled and disabled. Play nice and | ||
6082 | * disable it when requested, although it shouldn't case any overhead | ||
6083 | * when no packet needs it. At most one packet in the queue may be | ||
6084 | * marked for time stamping, otherwise it would be impossible to tell | ||
6085 | * for sure to which packet the hardware time stamp belongs. | ||
6086 | * | ||
6087 | * Incoming time stamping has to be configured via the hardware | ||
6088 | * filters. Not all combinations are supported, in particular event | ||
6089 | * type has to be specified. Matching the kind of event packet is | ||
6090 | * not supported, with the exception of "all V2 events regardless of | ||
6091 | * level 2 or 4". | ||
6092 | * | ||
6093 | **/ | ||
6094 | static int igb_hwtstamp_ioctl(struct net_device *netdev, | ||
6095 | struct ifreq *ifr, int cmd) | ||
6096 | { | ||
6097 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6098 | struct e1000_hw *hw = &adapter->hw; | ||
6099 | struct hwtstamp_config config; | ||
6100 | u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; | ||
6101 | u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; | ||
6102 | u32 tsync_rx_cfg = 0; | ||
6103 | bool is_l4 = false; | ||
6104 | bool is_l2 = false; | ||
6105 | u32 regval; | ||
6106 | |||
6107 | if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) | ||
6108 | return -EFAULT; | ||
6109 | |||
6110 | /* reserved for future extensions */ | ||
6111 | if (config.flags) | ||
6112 | return -EINVAL; | ||
6113 | |||
6114 | switch (config.tx_type) { | ||
6115 | case HWTSTAMP_TX_OFF: | ||
6116 | tsync_tx_ctl = 0; | ||
6117 | case HWTSTAMP_TX_ON: | ||
6118 | break; | ||
6119 | default: | ||
6120 | return -ERANGE; | ||
6121 | } | ||
6122 | |||
6123 | switch (config.rx_filter) { | ||
6124 | case HWTSTAMP_FILTER_NONE: | ||
6125 | tsync_rx_ctl = 0; | ||
6126 | break; | ||
6127 | case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: | ||
6128 | case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: | ||
6129 | case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: | ||
6130 | case HWTSTAMP_FILTER_ALL: | ||
6131 | /* | ||
6132 | * register TSYNCRXCFG must be set, therefore it is not | ||
6133 | * possible to time stamp both Sync and Delay_Req messages | ||
6134 | * => fall back to time stamping all packets | ||
6135 | */ | ||
6136 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; | ||
6137 | config.rx_filter = HWTSTAMP_FILTER_ALL; | ||
6138 | break; | ||
6139 | case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: | ||
6140 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; | ||
6141 | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; | ||
6142 | is_l4 = true; | ||
6143 | break; | ||
6144 | case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: | ||
6145 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; | ||
6146 | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; | ||
6147 | is_l4 = true; | ||
6148 | break; | ||
6149 | case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: | ||
6150 | case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: | ||
6151 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; | ||
6152 | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE; | ||
6153 | is_l2 = true; | ||
6154 | is_l4 = true; | ||
6155 | config.rx_filter = HWTSTAMP_FILTER_SOME; | ||
6156 | break; | ||
6157 | case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: | ||
6158 | case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: | ||
6159 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; | ||
6160 | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE; | ||
6161 | is_l2 = true; | ||
6162 | is_l4 = true; | ||
6163 | config.rx_filter = HWTSTAMP_FILTER_SOME; | ||
6164 | break; | ||
6165 | case HWTSTAMP_FILTER_PTP_V2_EVENT: | ||
6166 | case HWTSTAMP_FILTER_PTP_V2_SYNC: | ||
6167 | case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: | ||
6168 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; | ||
6169 | config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; | ||
6170 | is_l2 = true; | ||
6171 | break; | ||
6172 | default: | ||
6173 | return -ERANGE; | ||
6174 | } | ||
6175 | |||
6176 | if (hw->mac.type == e1000_82575) { | ||
6177 | if (tsync_rx_ctl | tsync_tx_ctl) | ||
6178 | return -EINVAL; | ||
6179 | return 0; | ||
6180 | } | ||
6181 | |||
6182 | /* | ||
6183 | * Per-packet timestamping only works if all packets are | ||
6184 | * timestamped, so enable timestamping in all packets as | ||
6185 | * long as one rx filter was configured. | ||
6186 | */ | ||
6187 | if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) { | ||
6188 | tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; | ||
6189 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; | ||
6190 | } | ||
6191 | |||
6192 | /* enable/disable TX */ | ||
6193 | regval = rd32(E1000_TSYNCTXCTL); | ||
6194 | regval &= ~E1000_TSYNCTXCTL_ENABLED; | ||
6195 | regval |= tsync_tx_ctl; | ||
6196 | wr32(E1000_TSYNCTXCTL, regval); | ||
6197 | |||
6198 | /* enable/disable RX */ | ||
6199 | regval = rd32(E1000_TSYNCRXCTL); | ||
6200 | regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); | ||
6201 | regval |= tsync_rx_ctl; | ||
6202 | wr32(E1000_TSYNCRXCTL, regval); | ||
6203 | |||
6204 | /* define which PTP packets are time stamped */ | ||
6205 | wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); | ||
6206 | |||
6207 | /* define ethertype filter for timestamped packets */ | ||
6208 | if (is_l2) | ||
6209 | wr32(E1000_ETQF(3), | ||
6210 | (E1000_ETQF_FILTER_ENABLE | /* enable filter */ | ||
6211 | E1000_ETQF_1588 | /* enable timestamping */ | ||
6212 | ETH_P_1588)); /* 1588 eth protocol type */ | ||
6213 | else | ||
6214 | wr32(E1000_ETQF(3), 0); | ||
6215 | |||
6216 | #define PTP_PORT 319 | ||
6217 | /* L4 Queue Filter[3]: filter by destination port and protocol */ | ||
6218 | if (is_l4) { | ||
6219 | u32 ftqf = (IPPROTO_UDP /* UDP */ | ||
6220 | | E1000_FTQF_VF_BP /* VF not compared */ | ||
6221 | | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ | ||
6222 | | E1000_FTQF_MASK); /* mask all inputs */ | ||
6223 | ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ | ||
6224 | |||
6225 | wr32(E1000_IMIR(3), htons(PTP_PORT)); | ||
6226 | wr32(E1000_IMIREXT(3), | ||
6227 | (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); | ||
6228 | if (hw->mac.type == e1000_82576) { | ||
6229 | /* enable source port check */ | ||
6230 | wr32(E1000_SPQF(3), htons(PTP_PORT)); | ||
6231 | ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; | ||
6232 | } | ||
6233 | wr32(E1000_FTQF(3), ftqf); | ||
6234 | } else { | ||
6235 | wr32(E1000_FTQF(3), E1000_FTQF_MASK); | ||
6236 | } | ||
6237 | wrfl(); | ||
6238 | |||
6239 | adapter->hwtstamp_config = config; | ||
6240 | |||
6241 | /* clear TX/RX time stamp registers, just to be sure */ | ||
6242 | regval = rd32(E1000_TXSTMPH); | ||
6243 | regval = rd32(E1000_RXSTMPH); | ||
6244 | |||
6245 | return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? | ||
6246 | -EFAULT : 0; | ||
6247 | } | ||
6248 | |||
6249 | /** | ||
6250 | * igb_ioctl - | ||
6251 | * @netdev: | ||
6252 | * @ifreq: | ||
6253 | * @cmd: | ||
6254 | **/ | ||
6255 | static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
6256 | { | ||
6257 | switch (cmd) { | ||
6258 | case SIOCGMIIPHY: | ||
6259 | case SIOCGMIIREG: | ||
6260 | case SIOCSMIIREG: | ||
6261 | return igb_mii_ioctl(netdev, ifr, cmd); | ||
6262 | case SIOCSHWTSTAMP: | ||
6263 | return igb_hwtstamp_ioctl(netdev, ifr, cmd); | ||
6264 | default: | ||
6265 | return -EOPNOTSUPP; | ||
6266 | } | ||
6267 | } | ||
6268 | |||
6269 | s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) | ||
6270 | { | ||
6271 | struct igb_adapter *adapter = hw->back; | ||
6272 | u16 cap_offset; | ||
6273 | |||
6274 | cap_offset = adapter->pdev->pcie_cap; | ||
6275 | if (!cap_offset) | ||
6276 | return -E1000_ERR_CONFIG; | ||
6277 | |||
6278 | pci_read_config_word(adapter->pdev, cap_offset + reg, value); | ||
6279 | |||
6280 | return 0; | ||
6281 | } | ||
6282 | |||
6283 | s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) | ||
6284 | { | ||
6285 | struct igb_adapter *adapter = hw->back; | ||
6286 | u16 cap_offset; | ||
6287 | |||
6288 | cap_offset = adapter->pdev->pcie_cap; | ||
6289 | if (!cap_offset) | ||
6290 | return -E1000_ERR_CONFIG; | ||
6291 | |||
6292 | pci_write_config_word(adapter->pdev, cap_offset + reg, *value); | ||
6293 | |||
6294 | return 0; | ||
6295 | } | ||
6296 | |||
6297 | static void igb_vlan_mode(struct net_device *netdev, u32 features) | ||
6298 | { | ||
6299 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6300 | struct e1000_hw *hw = &adapter->hw; | ||
6301 | u32 ctrl, rctl; | ||
6302 | |||
6303 | igb_irq_disable(adapter); | ||
6304 | |||
6305 | if (features & NETIF_F_HW_VLAN_RX) { | ||
6306 | /* enable VLAN tag insert/strip */ | ||
6307 | ctrl = rd32(E1000_CTRL); | ||
6308 | ctrl |= E1000_CTRL_VME; | ||
6309 | wr32(E1000_CTRL, ctrl); | ||
6310 | |||
6311 | /* Disable CFI check */ | ||
6312 | rctl = rd32(E1000_RCTL); | ||
6313 | rctl &= ~E1000_RCTL_CFIEN; | ||
6314 | wr32(E1000_RCTL, rctl); | ||
6315 | } else { | ||
6316 | /* disable VLAN tag insert/strip */ | ||
6317 | ctrl = rd32(E1000_CTRL); | ||
6318 | ctrl &= ~E1000_CTRL_VME; | ||
6319 | wr32(E1000_CTRL, ctrl); | ||
6320 | } | ||
6321 | |||
6322 | igb_rlpml_set(adapter); | ||
6323 | |||
6324 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
6325 | igb_irq_enable(adapter); | ||
6326 | } | ||
6327 | |||
6328 | static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | ||
6329 | { | ||
6330 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6331 | struct e1000_hw *hw = &adapter->hw; | ||
6332 | int pf_id = adapter->vfs_allocated_count; | ||
6333 | |||
6334 | /* attempt to add filter to vlvf array */ | ||
6335 | igb_vlvf_set(adapter, vid, true, pf_id); | ||
6336 | |||
6337 | /* add the filter since PF can receive vlans w/o entry in vlvf */ | ||
6338 | igb_vfta_set(hw, vid, true); | ||
6339 | |||
6340 | set_bit(vid, adapter->active_vlans); | ||
6341 | } | ||
6342 | |||
6343 | static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | ||
6344 | { | ||
6345 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6346 | struct e1000_hw *hw = &adapter->hw; | ||
6347 | int pf_id = adapter->vfs_allocated_count; | ||
6348 | s32 err; | ||
6349 | |||
6350 | igb_irq_disable(adapter); | ||
6351 | |||
6352 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
6353 | igb_irq_enable(adapter); | ||
6354 | |||
6355 | /* remove vlan from VLVF table array */ | ||
6356 | err = igb_vlvf_set(adapter, vid, false, pf_id); | ||
6357 | |||
6358 | /* if vid was not present in VLVF just remove it from table */ | ||
6359 | if (err) | ||
6360 | igb_vfta_set(hw, vid, false); | ||
6361 | |||
6362 | clear_bit(vid, adapter->active_vlans); | ||
6363 | } | ||
6364 | |||
6365 | static void igb_restore_vlan(struct igb_adapter *adapter) | ||
6366 | { | ||
6367 | u16 vid; | ||
6368 | |||
6369 | for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) | ||
6370 | igb_vlan_rx_add_vid(adapter->netdev, vid); | ||
6371 | } | ||
6372 | |||
6373 | int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) | ||
6374 | { | ||
6375 | struct pci_dev *pdev = adapter->pdev; | ||
6376 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
6377 | |||
6378 | mac->autoneg = 0; | ||
6379 | |||
6380 | /* Make sure dplx is at most 1 bit and lsb of speed is not set | ||
6381 | * for the switch() below to work */ | ||
6382 | if ((spd & 1) || (dplx & ~1)) | ||
6383 | goto err_inval; | ||
6384 | |||
6385 | /* Fiber NIC's only allow 1000 Gbps Full duplex */ | ||
6386 | if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) && | ||
6387 | spd != SPEED_1000 && | ||
6388 | dplx != DUPLEX_FULL) | ||
6389 | goto err_inval; | ||
6390 | |||
6391 | switch (spd + dplx) { | ||
6392 | case SPEED_10 + DUPLEX_HALF: | ||
6393 | mac->forced_speed_duplex = ADVERTISE_10_HALF; | ||
6394 | break; | ||
6395 | case SPEED_10 + DUPLEX_FULL: | ||
6396 | mac->forced_speed_duplex = ADVERTISE_10_FULL; | ||
6397 | break; | ||
6398 | case SPEED_100 + DUPLEX_HALF: | ||
6399 | mac->forced_speed_duplex = ADVERTISE_100_HALF; | ||
6400 | break; | ||
6401 | case SPEED_100 + DUPLEX_FULL: | ||
6402 | mac->forced_speed_duplex = ADVERTISE_100_FULL; | ||
6403 | break; | ||
6404 | case SPEED_1000 + DUPLEX_FULL: | ||
6405 | mac->autoneg = 1; | ||
6406 | adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; | ||
6407 | break; | ||
6408 | case SPEED_1000 + DUPLEX_HALF: /* not supported */ | ||
6409 | default: | ||
6410 | goto err_inval; | ||
6411 | } | ||
6412 | return 0; | ||
6413 | |||
6414 | err_inval: | ||
6415 | dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); | ||
6416 | return -EINVAL; | ||
6417 | } | ||
6418 | |||
6419 | static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake) | ||
6420 | { | ||
6421 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
6422 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6423 | struct e1000_hw *hw = &adapter->hw; | ||
6424 | u32 ctrl, rctl, status; | ||
6425 | u32 wufc = adapter->wol; | ||
6426 | #ifdef CONFIG_PM | ||
6427 | int retval = 0; | ||
6428 | #endif | ||
6429 | |||
6430 | netif_device_detach(netdev); | ||
6431 | |||
6432 | if (netif_running(netdev)) | ||
6433 | igb_close(netdev); | ||
6434 | |||
6435 | igb_clear_interrupt_scheme(adapter); | ||
6436 | |||
6437 | #ifdef CONFIG_PM | ||
6438 | retval = pci_save_state(pdev); | ||
6439 | if (retval) | ||
6440 | return retval; | ||
6441 | #endif | ||
6442 | |||
6443 | status = rd32(E1000_STATUS); | ||
6444 | if (status & E1000_STATUS_LU) | ||
6445 | wufc &= ~E1000_WUFC_LNKC; | ||
6446 | |||
6447 | if (wufc) { | ||
6448 | igb_setup_rctl(adapter); | ||
6449 | igb_set_rx_mode(netdev); | ||
6450 | |||
6451 | /* turn on all-multi mode if wake on multicast is enabled */ | ||
6452 | if (wufc & E1000_WUFC_MC) { | ||
6453 | rctl = rd32(E1000_RCTL); | ||
6454 | rctl |= E1000_RCTL_MPE; | ||
6455 | wr32(E1000_RCTL, rctl); | ||
6456 | } | ||
6457 | |||
6458 | ctrl = rd32(E1000_CTRL); | ||
6459 | /* advertise wake from D3Cold */ | ||
6460 | #define E1000_CTRL_ADVD3WUC 0x00100000 | ||
6461 | /* phy power management enable */ | ||
6462 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | ||
6463 | ctrl |= E1000_CTRL_ADVD3WUC; | ||
6464 | wr32(E1000_CTRL, ctrl); | ||
6465 | |||
6466 | /* Allow time for pending master requests to run */ | ||
6467 | igb_disable_pcie_master(hw); | ||
6468 | |||
6469 | wr32(E1000_WUC, E1000_WUC_PME_EN); | ||
6470 | wr32(E1000_WUFC, wufc); | ||
6471 | } else { | ||
6472 | wr32(E1000_WUC, 0); | ||
6473 | wr32(E1000_WUFC, 0); | ||
6474 | } | ||
6475 | |||
6476 | *enable_wake = wufc || adapter->en_mng_pt; | ||
6477 | if (!*enable_wake) | ||
6478 | igb_power_down_link(adapter); | ||
6479 | else | ||
6480 | igb_power_up_link(adapter); | ||
6481 | |||
6482 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
6483 | * would have already happened in close and is redundant. */ | ||
6484 | igb_release_hw_control(adapter); | ||
6485 | |||
6486 | pci_disable_device(pdev); | ||
6487 | |||
6488 | return 0; | ||
6489 | } | ||
6490 | |||
6491 | #ifdef CONFIG_PM | ||
6492 | static int igb_suspend(struct pci_dev *pdev, pm_message_t state) | ||
6493 | { | ||
6494 | int retval; | ||
6495 | bool wake; | ||
6496 | |||
6497 | retval = __igb_shutdown(pdev, &wake); | ||
6498 | if (retval) | ||
6499 | return retval; | ||
6500 | |||
6501 | if (wake) { | ||
6502 | pci_prepare_to_sleep(pdev); | ||
6503 | } else { | ||
6504 | pci_wake_from_d3(pdev, false); | ||
6505 | pci_set_power_state(pdev, PCI_D3hot); | ||
6506 | } | ||
6507 | |||
6508 | return 0; | ||
6509 | } | ||
6510 | |||
6511 | static int igb_resume(struct pci_dev *pdev) | ||
6512 | { | ||
6513 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
6514 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6515 | struct e1000_hw *hw = &adapter->hw; | ||
6516 | u32 err; | ||
6517 | |||
6518 | pci_set_power_state(pdev, PCI_D0); | ||
6519 | pci_restore_state(pdev); | ||
6520 | pci_save_state(pdev); | ||
6521 | |||
6522 | err = pci_enable_device_mem(pdev); | ||
6523 | if (err) { | ||
6524 | dev_err(&pdev->dev, | ||
6525 | "igb: Cannot enable PCI device from suspend\n"); | ||
6526 | return err; | ||
6527 | } | ||
6528 | pci_set_master(pdev); | ||
6529 | |||
6530 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
6531 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
6532 | |||
6533 | if (igb_init_interrupt_scheme(adapter)) { | ||
6534 | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | ||
6535 | return -ENOMEM; | ||
6536 | } | ||
6537 | |||
6538 | igb_reset(adapter); | ||
6539 | |||
6540 | /* let the f/w know that the h/w is now under the control of the | ||
6541 | * driver. */ | ||
6542 | igb_get_hw_control(adapter); | ||
6543 | |||
6544 | wr32(E1000_WUS, ~0); | ||
6545 | |||
6546 | if (netif_running(netdev)) { | ||
6547 | err = igb_open(netdev); | ||
6548 | if (err) | ||
6549 | return err; | ||
6550 | } | ||
6551 | |||
6552 | netif_device_attach(netdev); | ||
6553 | |||
6554 | return 0; | ||
6555 | } | ||
6556 | #endif | ||
6557 | |||
6558 | static void igb_shutdown(struct pci_dev *pdev) | ||
6559 | { | ||
6560 | bool wake; | ||
6561 | |||
6562 | __igb_shutdown(pdev, &wake); | ||
6563 | |||
6564 | if (system_state == SYSTEM_POWER_OFF) { | ||
6565 | pci_wake_from_d3(pdev, wake); | ||
6566 | pci_set_power_state(pdev, PCI_D3hot); | ||
6567 | } | ||
6568 | } | ||
6569 | |||
6570 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
6571 | /* | ||
6572 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
6573 | * without having to re-enable interrupts. It's not called while | ||
6574 | * the interrupt routine is executing. | ||
6575 | */ | ||
6576 | static void igb_netpoll(struct net_device *netdev) | ||
6577 | { | ||
6578 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6579 | struct e1000_hw *hw = &adapter->hw; | ||
6580 | int i; | ||
6581 | |||
6582 | if (!adapter->msix_entries) { | ||
6583 | struct igb_q_vector *q_vector = adapter->q_vector[0]; | ||
6584 | igb_irq_disable(adapter); | ||
6585 | napi_schedule(&q_vector->napi); | ||
6586 | return; | ||
6587 | } | ||
6588 | |||
6589 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
6590 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
6591 | wr32(E1000_EIMC, q_vector->eims_value); | ||
6592 | napi_schedule(&q_vector->napi); | ||
6593 | } | ||
6594 | } | ||
6595 | #endif /* CONFIG_NET_POLL_CONTROLLER */ | ||
6596 | |||
6597 | /** | ||
6598 | * igb_io_error_detected - called when PCI error is detected | ||
6599 | * @pdev: Pointer to PCI device | ||
6600 | * @state: The current pci connection state | ||
6601 | * | ||
6602 | * This function is called after a PCI bus error affecting | ||
6603 | * this device has been detected. | ||
6604 | */ | ||
6605 | static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, | ||
6606 | pci_channel_state_t state) | ||
6607 | { | ||
6608 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
6609 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6610 | |||
6611 | netif_device_detach(netdev); | ||
6612 | |||
6613 | if (state == pci_channel_io_perm_failure) | ||
6614 | return PCI_ERS_RESULT_DISCONNECT; | ||
6615 | |||
6616 | if (netif_running(netdev)) | ||
6617 | igb_down(adapter); | ||
6618 | pci_disable_device(pdev); | ||
6619 | |||
6620 | /* Request a slot slot reset. */ | ||
6621 | return PCI_ERS_RESULT_NEED_RESET; | ||
6622 | } | ||
6623 | |||
6624 | /** | ||
6625 | * igb_io_slot_reset - called after the pci bus has been reset. | ||
6626 | * @pdev: Pointer to PCI device | ||
6627 | * | ||
6628 | * Restart the card from scratch, as if from a cold-boot. Implementation | ||
6629 | * resembles the first-half of the igb_resume routine. | ||
6630 | */ | ||
6631 | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) | ||
6632 | { | ||
6633 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
6634 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6635 | struct e1000_hw *hw = &adapter->hw; | ||
6636 | pci_ers_result_t result; | ||
6637 | int err; | ||
6638 | |||
6639 | if (pci_enable_device_mem(pdev)) { | ||
6640 | dev_err(&pdev->dev, | ||
6641 | "Cannot re-enable PCI device after reset.\n"); | ||
6642 | result = PCI_ERS_RESULT_DISCONNECT; | ||
6643 | } else { | ||
6644 | pci_set_master(pdev); | ||
6645 | pci_restore_state(pdev); | ||
6646 | pci_save_state(pdev); | ||
6647 | |||
6648 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
6649 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
6650 | |||
6651 | igb_reset(adapter); | ||
6652 | wr32(E1000_WUS, ~0); | ||
6653 | result = PCI_ERS_RESULT_RECOVERED; | ||
6654 | } | ||
6655 | |||
6656 | err = pci_cleanup_aer_uncorrect_error_status(pdev); | ||
6657 | if (err) { | ||
6658 | dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status " | ||
6659 | "failed 0x%0x\n", err); | ||
6660 | /* non-fatal, continue */ | ||
6661 | } | ||
6662 | |||
6663 | return result; | ||
6664 | } | ||
6665 | |||
6666 | /** | ||
6667 | * igb_io_resume - called when traffic can start flowing again. | ||
6668 | * @pdev: Pointer to PCI device | ||
6669 | * | ||
6670 | * This callback is called when the error recovery driver tells us that | ||
6671 | * its OK to resume normal operation. Implementation resembles the | ||
6672 | * second-half of the igb_resume routine. | ||
6673 | */ | ||
6674 | static void igb_io_resume(struct pci_dev *pdev) | ||
6675 | { | ||
6676 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
6677 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6678 | |||
6679 | if (netif_running(netdev)) { | ||
6680 | if (igb_up(adapter)) { | ||
6681 | dev_err(&pdev->dev, "igb_up failed after reset\n"); | ||
6682 | return; | ||
6683 | } | ||
6684 | } | ||
6685 | |||
6686 | netif_device_attach(netdev); | ||
6687 | |||
6688 | /* let the f/w know that the h/w is now under the control of the | ||
6689 | * driver. */ | ||
6690 | igb_get_hw_control(adapter); | ||
6691 | } | ||
6692 | |||
6693 | static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, | ||
6694 | u8 qsel) | ||
6695 | { | ||
6696 | u32 rar_low, rar_high; | ||
6697 | struct e1000_hw *hw = &adapter->hw; | ||
6698 | |||
6699 | /* HW expects these in little endian so we reverse the byte order | ||
6700 | * from network order (big endian) to little endian | ||
6701 | */ | ||
6702 | rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | | ||
6703 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | ||
6704 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | ||
6705 | |||
6706 | /* Indicate to hardware the Address is Valid. */ | ||
6707 | rar_high |= E1000_RAH_AV; | ||
6708 | |||
6709 | if (hw->mac.type == e1000_82575) | ||
6710 | rar_high |= E1000_RAH_POOL_1 * qsel; | ||
6711 | else | ||
6712 | rar_high |= E1000_RAH_POOL_1 << qsel; | ||
6713 | |||
6714 | wr32(E1000_RAL(index), rar_low); | ||
6715 | wrfl(); | ||
6716 | wr32(E1000_RAH(index), rar_high); | ||
6717 | wrfl(); | ||
6718 | } | ||
6719 | |||
6720 | static int igb_set_vf_mac(struct igb_adapter *adapter, | ||
6721 | int vf, unsigned char *mac_addr) | ||
6722 | { | ||
6723 | struct e1000_hw *hw = &adapter->hw; | ||
6724 | /* VF MAC addresses start at end of receive addresses and moves | ||
6725 | * torwards the first, as a result a collision should not be possible */ | ||
6726 | int rar_entry = hw->mac.rar_entry_count - (vf + 1); | ||
6727 | |||
6728 | memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); | ||
6729 | |||
6730 | igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); | ||
6731 | |||
6732 | return 0; | ||
6733 | } | ||
6734 | |||
6735 | static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) | ||
6736 | { | ||
6737 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6738 | if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) | ||
6739 | return -EINVAL; | ||
6740 | adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; | ||
6741 | dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); | ||
6742 | dev_info(&adapter->pdev->dev, "Reload the VF driver to make this" | ||
6743 | " change effective."); | ||
6744 | if (test_bit(__IGB_DOWN, &adapter->state)) { | ||
6745 | dev_warn(&adapter->pdev->dev, "The VF MAC address has been set," | ||
6746 | " but the PF device is not up.\n"); | ||
6747 | dev_warn(&adapter->pdev->dev, "Bring the PF device up before" | ||
6748 | " attempting to use the VF device.\n"); | ||
6749 | } | ||
6750 | return igb_set_vf_mac(adapter, vf, mac); | ||
6751 | } | ||
6752 | |||
6753 | static int igb_link_mbps(int internal_link_speed) | ||
6754 | { | ||
6755 | switch (internal_link_speed) { | ||
6756 | case SPEED_100: | ||
6757 | return 100; | ||
6758 | case SPEED_1000: | ||
6759 | return 1000; | ||
6760 | default: | ||
6761 | return 0; | ||
6762 | } | ||
6763 | } | ||
6764 | |||
6765 | static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, | ||
6766 | int link_speed) | ||
6767 | { | ||
6768 | int rf_dec, rf_int; | ||
6769 | u32 bcnrc_val; | ||
6770 | |||
6771 | if (tx_rate != 0) { | ||
6772 | /* Calculate the rate factor values to set */ | ||
6773 | rf_int = link_speed / tx_rate; | ||
6774 | rf_dec = (link_speed - (rf_int * tx_rate)); | ||
6775 | rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate; | ||
6776 | |||
6777 | bcnrc_val = E1000_RTTBCNRC_RS_ENA; | ||
6778 | bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) & | ||
6779 | E1000_RTTBCNRC_RF_INT_MASK); | ||
6780 | bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); | ||
6781 | } else { | ||
6782 | bcnrc_val = 0; | ||
6783 | } | ||
6784 | |||
6785 | wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ | ||
6786 | wr32(E1000_RTTBCNRC, bcnrc_val); | ||
6787 | } | ||
6788 | |||
6789 | static void igb_check_vf_rate_limit(struct igb_adapter *adapter) | ||
6790 | { | ||
6791 | int actual_link_speed, i; | ||
6792 | bool reset_rate = false; | ||
6793 | |||
6794 | /* VF TX rate limit was not set or not supported */ | ||
6795 | if ((adapter->vf_rate_link_speed == 0) || | ||
6796 | (adapter->hw.mac.type != e1000_82576)) | ||
6797 | return; | ||
6798 | |||
6799 | actual_link_speed = igb_link_mbps(adapter->link_speed); | ||
6800 | if (actual_link_speed != adapter->vf_rate_link_speed) { | ||
6801 | reset_rate = true; | ||
6802 | adapter->vf_rate_link_speed = 0; | ||
6803 | dev_info(&adapter->pdev->dev, | ||
6804 | "Link speed has been changed. VF Transmit " | ||
6805 | "rate is disabled\n"); | ||
6806 | } | ||
6807 | |||
6808 | for (i = 0; i < adapter->vfs_allocated_count; i++) { | ||
6809 | if (reset_rate) | ||
6810 | adapter->vf_data[i].tx_rate = 0; | ||
6811 | |||
6812 | igb_set_vf_rate_limit(&adapter->hw, i, | ||
6813 | adapter->vf_data[i].tx_rate, | ||
6814 | actual_link_speed); | ||
6815 | } | ||
6816 | } | ||
6817 | |||
6818 | static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate) | ||
6819 | { | ||
6820 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6821 | struct e1000_hw *hw = &adapter->hw; | ||
6822 | int actual_link_speed; | ||
6823 | |||
6824 | if (hw->mac.type != e1000_82576) | ||
6825 | return -EOPNOTSUPP; | ||
6826 | |||
6827 | actual_link_speed = igb_link_mbps(adapter->link_speed); | ||
6828 | if ((vf >= adapter->vfs_allocated_count) || | ||
6829 | (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || | ||
6830 | (tx_rate < 0) || (tx_rate > actual_link_speed)) | ||
6831 | return -EINVAL; | ||
6832 | |||
6833 | adapter->vf_rate_link_speed = actual_link_speed; | ||
6834 | adapter->vf_data[vf].tx_rate = (u16)tx_rate; | ||
6835 | igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed); | ||
6836 | |||
6837 | return 0; | ||
6838 | } | ||
6839 | |||
6840 | static int igb_ndo_get_vf_config(struct net_device *netdev, | ||
6841 | int vf, struct ifla_vf_info *ivi) | ||
6842 | { | ||
6843 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
6844 | if (vf >= adapter->vfs_allocated_count) | ||
6845 | return -EINVAL; | ||
6846 | ivi->vf = vf; | ||
6847 | memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); | ||
6848 | ivi->tx_rate = adapter->vf_data[vf].tx_rate; | ||
6849 | ivi->vlan = adapter->vf_data[vf].pf_vlan; | ||
6850 | ivi->qos = adapter->vf_data[vf].pf_qos; | ||
6851 | return 0; | ||
6852 | } | ||
6853 | |||
6854 | static void igb_vmm_control(struct igb_adapter *adapter) | ||
6855 | { | ||
6856 | struct e1000_hw *hw = &adapter->hw; | ||
6857 | u32 reg; | ||
6858 | |||
6859 | switch (hw->mac.type) { | ||
6860 | case e1000_82575: | ||
6861 | default: | ||
6862 | /* replication is not supported for 82575 */ | ||
6863 | return; | ||
6864 | case e1000_82576: | ||
6865 | /* notify HW that the MAC is adding vlan tags */ | ||
6866 | reg = rd32(E1000_DTXCTL); | ||
6867 | reg |= E1000_DTXCTL_VLAN_ADDED; | ||
6868 | wr32(E1000_DTXCTL, reg); | ||
6869 | case e1000_82580: | ||
6870 | /* enable replication vlan tag stripping */ | ||
6871 | reg = rd32(E1000_RPLOLR); | ||
6872 | reg |= E1000_RPLOLR_STRVLAN; | ||
6873 | wr32(E1000_RPLOLR, reg); | ||
6874 | case e1000_i350: | ||
6875 | /* none of the above registers are supported by i350 */ | ||
6876 | break; | ||
6877 | } | ||
6878 | |||
6879 | if (adapter->vfs_allocated_count) { | ||
6880 | igb_vmdq_set_loopback_pf(hw, true); | ||
6881 | igb_vmdq_set_replication_pf(hw, true); | ||
6882 | igb_vmdq_set_anti_spoofing_pf(hw, true, | ||
6883 | adapter->vfs_allocated_count); | ||
6884 | } else { | ||
6885 | igb_vmdq_set_loopback_pf(hw, false); | ||
6886 | igb_vmdq_set_replication_pf(hw, false); | ||
6887 | } | ||
6888 | } | ||
6889 | |||
6890 | /* igb_main.c */ | ||