diff options
Diffstat (limited to 'drivers/net/igb/igb_main.c')
| -rw-r--r-- | drivers/net/igb/igb_main.c | 6890 |
1 files changed, 6890 insertions, 0 deletions
diff --git a/drivers/net/igb/igb_main.c b/drivers/net/igb/igb_main.c new file mode 100644 index 00000000000..40d4c405fd7 --- /dev/null +++ b/drivers/net/igb/igb_main.c | |||
| @@ -0,0 +1,6890 @@ | |||
| 1 | /******************************************************************************* | ||
| 2 | |||
| 3 | Intel(R) Gigabit Ethernet Linux driver | ||
| 4 | Copyright(c) 2007-2011 Intel Corporation. | ||
| 5 | |||
| 6 | This program is free software; you can redistribute it and/or modify it | ||
| 7 | under the terms and conditions of the GNU General Public License, | ||
| 8 | version 2, as published by the Free Software Foundation. | ||
| 9 | |||
| 10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
| 13 | more details. | ||
| 14 | |||
| 15 | You should have received a copy of the GNU General Public License along with | ||
| 16 | this program; if not, write to the Free Software Foundation, Inc., | ||
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
| 18 | |||
| 19 | The full GNU General Public License is included in this distribution in | ||
| 20 | the file called "COPYING". | ||
| 21 | |||
| 22 | Contact Information: | ||
| 23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
| 24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
| 25 | |||
| 26 | *******************************************************************************/ | ||
| 27 | |||
| 28 | #include <linux/module.h> | ||
| 29 | #include <linux/types.h> | ||
| 30 | #include <linux/init.h> | ||
| 31 | #include <linux/bitops.h> | ||
| 32 | #include <linux/vmalloc.h> | ||
| 33 | #include <linux/pagemap.h> | ||
| 34 | #include <linux/netdevice.h> | ||
| 35 | #include <linux/ipv6.h> | ||
| 36 | #include <linux/slab.h> | ||
| 37 | #include <net/checksum.h> | ||
| 38 | #include <net/ip6_checksum.h> | ||
| 39 | #include <linux/net_tstamp.h> | ||
| 40 | #include <linux/mii.h> | ||
| 41 | #include <linux/ethtool.h> | ||
| 42 | #include <linux/if_vlan.h> | ||
| 43 | #include <linux/pci.h> | ||
| 44 | #include <linux/pci-aspm.h> | ||
| 45 | #include <linux/delay.h> | ||
| 46 | #include <linux/interrupt.h> | ||
| 47 | #include <linux/if_ether.h> | ||
| 48 | #include <linux/aer.h> | ||
| 49 | #include <linux/prefetch.h> | ||
| 50 | #ifdef CONFIG_IGB_DCA | ||
| 51 | #include <linux/dca.h> | ||
| 52 | #endif | ||
| 53 | #include "igb.h" | ||
| 54 | |||
| 55 | #define MAJ 3 | ||
| 56 | #define MIN 0 | ||
| 57 | #define BUILD 6 | ||
| 58 | #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ | ||
| 59 | __stringify(BUILD) "-k" | ||
| 60 | char igb_driver_name[] = "igb"; | ||
| 61 | char igb_driver_version[] = DRV_VERSION; | ||
| 62 | static const char igb_driver_string[] = | ||
| 63 | "Intel(R) Gigabit Ethernet Network Driver"; | ||
| 64 | static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation."; | ||
| 65 | |||
| 66 | static const struct e1000_info *igb_info_tbl[] = { | ||
| 67 | [board_82575] = &e1000_82575_info, | ||
| 68 | }; | ||
| 69 | |||
| 70 | static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = { | ||
| 71 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, | ||
| 72 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, | ||
| 73 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, | ||
| 74 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, | ||
| 75 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, | ||
| 76 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, | ||
| 77 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, | ||
| 78 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, | ||
| 79 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, | ||
| 80 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, | ||
| 81 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, | ||
| 82 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, | ||
| 83 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, | ||
| 84 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, | ||
| 85 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, | ||
| 86 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, | ||
| 87 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, | ||
| 88 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, | ||
| 89 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, | ||
| 90 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, | ||
| 91 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, | ||
| 92 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, | ||
| 93 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, | ||
| 94 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, | ||
| 95 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, | ||
| 96 | /* required last entry */ | ||
| 97 | {0, } | ||
| 98 | }; | ||
| 99 | |||
| 100 | MODULE_DEVICE_TABLE(pci, igb_pci_tbl); | ||
| 101 | |||
| 102 | void igb_reset(struct igb_adapter *); | ||
| 103 | static int igb_setup_all_tx_resources(struct igb_adapter *); | ||
| 104 | static int igb_setup_all_rx_resources(struct igb_adapter *); | ||
| 105 | static void igb_free_all_tx_resources(struct igb_adapter *); | ||
| 106 | static void igb_free_all_rx_resources(struct igb_adapter *); | ||
| 107 | static void igb_setup_mrqc(struct igb_adapter *); | ||
| 108 | static int igb_probe(struct pci_dev *, const struct pci_device_id *); | ||
| 109 | static void __devexit igb_remove(struct pci_dev *pdev); | ||
| 110 | static void igb_init_hw_timer(struct igb_adapter *adapter); | ||
| 111 | static int igb_sw_init(struct igb_adapter *); | ||
| 112 | static int igb_open(struct net_device *); | ||
| 113 | static int igb_close(struct net_device *); | ||
| 114 | static void igb_configure_tx(struct igb_adapter *); | ||
| 115 | static void igb_configure_rx(struct igb_adapter *); | ||
| 116 | static void igb_clean_all_tx_rings(struct igb_adapter *); | ||
| 117 | static void igb_clean_all_rx_rings(struct igb_adapter *); | ||
| 118 | static void igb_clean_tx_ring(struct igb_ring *); | ||
| 119 | static void igb_clean_rx_ring(struct igb_ring *); | ||
| 120 | static void igb_set_rx_mode(struct net_device *); | ||
| 121 | static void igb_update_phy_info(unsigned long); | ||
| 122 | static void igb_watchdog(unsigned long); | ||
| 123 | static void igb_watchdog_task(struct work_struct *); | ||
| 124 | static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *); | ||
| 125 | static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, | ||
| 126 | struct rtnl_link_stats64 *stats); | ||
| 127 | static int igb_change_mtu(struct net_device *, int); | ||
| 128 | static int igb_set_mac(struct net_device *, void *); | ||
| 129 | static void igb_set_uta(struct igb_adapter *adapter); | ||
| 130 | static irqreturn_t igb_intr(int irq, void *); | ||
| 131 | static irqreturn_t igb_intr_msi(int irq, void *); | ||
| 132 | static irqreturn_t igb_msix_other(int irq, void *); | ||
| 133 | static irqreturn_t igb_msix_ring(int irq, void *); | ||
| 134 | #ifdef CONFIG_IGB_DCA | ||
| 135 | static void igb_update_dca(struct igb_q_vector *); | ||
| 136 | static void igb_setup_dca(struct igb_adapter *); | ||
| 137 | #endif /* CONFIG_IGB_DCA */ | ||
| 138 | static bool igb_clean_tx_irq(struct igb_q_vector *); | ||
| 139 | static int igb_poll(struct napi_struct *, int); | ||
| 140 | static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int); | ||
| 141 | static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); | ||
| 142 | static void igb_tx_timeout(struct net_device *); | ||
| 143 | static void igb_reset_task(struct work_struct *); | ||
| 144 | static void igb_vlan_mode(struct net_device *netdev, u32 features); | ||
| 145 | static void igb_vlan_rx_add_vid(struct net_device *, u16); | ||
| 146 | static void igb_vlan_rx_kill_vid(struct net_device *, u16); | ||
| 147 | static void igb_restore_vlan(struct igb_adapter *); | ||
| 148 | static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); | ||
| 149 | static void igb_ping_all_vfs(struct igb_adapter *); | ||
| 150 | static void igb_msg_task(struct igb_adapter *); | ||
| 151 | static void igb_vmm_control(struct igb_adapter *); | ||
| 152 | static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); | ||
| 153 | static void igb_restore_vf_multicasts(struct igb_adapter *adapter); | ||
| 154 | static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); | ||
| 155 | static int igb_ndo_set_vf_vlan(struct net_device *netdev, | ||
| 156 | int vf, u16 vlan, u8 qos); | ||
| 157 | static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate); | ||
| 158 | static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, | ||
| 159 | struct ifla_vf_info *ivi); | ||
| 160 | static void igb_check_vf_rate_limit(struct igb_adapter *); | ||
| 161 | |||
| 162 | #ifdef CONFIG_PM | ||
| 163 | static int igb_suspend(struct pci_dev *, pm_message_t); | ||
| 164 | static int igb_resume(struct pci_dev *); | ||
| 165 | #endif | ||
| 166 | static void igb_shutdown(struct pci_dev *); | ||
| 167 | #ifdef CONFIG_IGB_DCA | ||
| 168 | static int igb_notify_dca(struct notifier_block *, unsigned long, void *); | ||
| 169 | static struct notifier_block dca_notifier = { | ||
| 170 | .notifier_call = igb_notify_dca, | ||
| 171 | .next = NULL, | ||
| 172 | .priority = 0 | ||
| 173 | }; | ||
| 174 | #endif | ||
| 175 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
| 176 | /* for netdump / net console */ | ||
| 177 | static void igb_netpoll(struct net_device *); | ||
| 178 | #endif | ||
| 179 | #ifdef CONFIG_PCI_IOV | ||
| 180 | static unsigned int max_vfs = 0; | ||
| 181 | module_param(max_vfs, uint, 0); | ||
| 182 | MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate " | ||
| 183 | "per physical function"); | ||
| 184 | #endif /* CONFIG_PCI_IOV */ | ||
| 185 | |||
| 186 | static pci_ers_result_t igb_io_error_detected(struct pci_dev *, | ||
| 187 | pci_channel_state_t); | ||
| 188 | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); | ||
| 189 | static void igb_io_resume(struct pci_dev *); | ||
| 190 | |||
| 191 | static struct pci_error_handlers igb_err_handler = { | ||
| 192 | .error_detected = igb_io_error_detected, | ||
| 193 | .slot_reset = igb_io_slot_reset, | ||
| 194 | .resume = igb_io_resume, | ||
| 195 | }; | ||
| 196 | |||
| 197 | |||
| 198 | static struct pci_driver igb_driver = { | ||
| 199 | .name = igb_driver_name, | ||
| 200 | .id_table = igb_pci_tbl, | ||
| 201 | .probe = igb_probe, | ||
| 202 | .remove = __devexit_p(igb_remove), | ||
| 203 | #ifdef CONFIG_PM | ||
| 204 | /* Power Management Hooks */ | ||
| 205 | .suspend = igb_suspend, | ||
| 206 | .resume = igb_resume, | ||
| 207 | #endif | ||
| 208 | .shutdown = igb_shutdown, | ||
| 209 | .err_handler = &igb_err_handler | ||
| 210 | }; | ||
| 211 | |||
| 212 | MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); | ||
| 213 | MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); | ||
| 214 | MODULE_LICENSE("GPL"); | ||
| 215 | MODULE_VERSION(DRV_VERSION); | ||
| 216 | |||
| 217 | struct igb_reg_info { | ||
| 218 | u32 ofs; | ||
| 219 | char *name; | ||
| 220 | }; | ||
| 221 | |||
| 222 | static const struct igb_reg_info igb_reg_info_tbl[] = { | ||
| 223 | |||
| 224 | /* General Registers */ | ||
| 225 | {E1000_CTRL, "CTRL"}, | ||
| 226 | {E1000_STATUS, "STATUS"}, | ||
| 227 | {E1000_CTRL_EXT, "CTRL_EXT"}, | ||
| 228 | |||
| 229 | /* Interrupt Registers */ | ||
| 230 | {E1000_ICR, "ICR"}, | ||
| 231 | |||
| 232 | /* RX Registers */ | ||
| 233 | {E1000_RCTL, "RCTL"}, | ||
| 234 | {E1000_RDLEN(0), "RDLEN"}, | ||
| 235 | {E1000_RDH(0), "RDH"}, | ||
| 236 | {E1000_RDT(0), "RDT"}, | ||
| 237 | {E1000_RXDCTL(0), "RXDCTL"}, | ||
| 238 | {E1000_RDBAL(0), "RDBAL"}, | ||
| 239 | {E1000_RDBAH(0), "RDBAH"}, | ||
| 240 | |||
| 241 | /* TX Registers */ | ||
| 242 | {E1000_TCTL, "TCTL"}, | ||
| 243 | {E1000_TDBAL(0), "TDBAL"}, | ||
| 244 | {E1000_TDBAH(0), "TDBAH"}, | ||
| 245 | {E1000_TDLEN(0), "TDLEN"}, | ||
| 246 | {E1000_TDH(0), "TDH"}, | ||
| 247 | {E1000_TDT(0), "TDT"}, | ||
| 248 | {E1000_TXDCTL(0), "TXDCTL"}, | ||
| 249 | {E1000_TDFH, "TDFH"}, | ||
| 250 | {E1000_TDFT, "TDFT"}, | ||
| 251 | {E1000_TDFHS, "TDFHS"}, | ||
| 252 | {E1000_TDFPC, "TDFPC"}, | ||
| 253 | |||
| 254 | /* List Terminator */ | ||
| 255 | {} | ||
| 256 | }; | ||
| 257 | |||
| 258 | /* | ||
| 259 | * igb_regdump - register printout routine | ||
| 260 | */ | ||
| 261 | static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) | ||
| 262 | { | ||
| 263 | int n = 0; | ||
| 264 | char rname[16]; | ||
| 265 | u32 regs[8]; | ||
| 266 | |||
| 267 | switch (reginfo->ofs) { | ||
| 268 | case E1000_RDLEN(0): | ||
| 269 | for (n = 0; n < 4; n++) | ||
| 270 | regs[n] = rd32(E1000_RDLEN(n)); | ||
| 271 | break; | ||
| 272 | case E1000_RDH(0): | ||
| 273 | for (n = 0; n < 4; n++) | ||
| 274 | regs[n] = rd32(E1000_RDH(n)); | ||
| 275 | break; | ||
| 276 | case E1000_RDT(0): | ||
| 277 | for (n = 0; n < 4; n++) | ||
| 278 | regs[n] = rd32(E1000_RDT(n)); | ||
| 279 | break; | ||
| 280 | case E1000_RXDCTL(0): | ||
| 281 | for (n = 0; n < 4; n++) | ||
| 282 | regs[n] = rd32(E1000_RXDCTL(n)); | ||
| 283 | break; | ||
| 284 | case E1000_RDBAL(0): | ||
| 285 | for (n = 0; n < 4; n++) | ||
| 286 | regs[n] = rd32(E1000_RDBAL(n)); | ||
| 287 | break; | ||
| 288 | case E1000_RDBAH(0): | ||
| 289 | for (n = 0; n < 4; n++) | ||
| 290 | regs[n] = rd32(E1000_RDBAH(n)); | ||
| 291 | break; | ||
| 292 | case E1000_TDBAL(0): | ||
| 293 | for (n = 0; n < 4; n++) | ||
| 294 | regs[n] = rd32(E1000_RDBAL(n)); | ||
| 295 | break; | ||
| 296 | case E1000_TDBAH(0): | ||
| 297 | for (n = 0; n < 4; n++) | ||
| 298 | regs[n] = rd32(E1000_TDBAH(n)); | ||
| 299 | break; | ||
| 300 | case E1000_TDLEN(0): | ||
| 301 | for (n = 0; n < 4; n++) | ||
| 302 | regs[n] = rd32(E1000_TDLEN(n)); | ||
| 303 | break; | ||
| 304 | case E1000_TDH(0): | ||
| 305 | for (n = 0; n < 4; n++) | ||
| 306 | regs[n] = rd32(E1000_TDH(n)); | ||
| 307 | break; | ||
| 308 | case E1000_TDT(0): | ||
| 309 | for (n = 0; n < 4; n++) | ||
| 310 | regs[n] = rd32(E1000_TDT(n)); | ||
| 311 | break; | ||
| 312 | case E1000_TXDCTL(0): | ||
| 313 | for (n = 0; n < 4; n++) | ||
| 314 | regs[n] = rd32(E1000_TXDCTL(n)); | ||
| 315 | break; | ||
| 316 | default: | ||
| 317 | printk(KERN_INFO "%-15s %08x\n", | ||
| 318 | reginfo->name, rd32(reginfo->ofs)); | ||
| 319 | return; | ||
| 320 | } | ||
| 321 | |||
| 322 | snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); | ||
| 323 | printk(KERN_INFO "%-15s ", rname); | ||
| 324 | for (n = 0; n < 4; n++) | ||
| 325 | printk(KERN_CONT "%08x ", regs[n]); | ||
| 326 | printk(KERN_CONT "\n"); | ||
| 327 | } | ||
| 328 | |||
| 329 | /* | ||
| 330 | * igb_dump - Print registers, tx-rings and rx-rings | ||
| 331 | */ | ||
| 332 | static void igb_dump(struct igb_adapter *adapter) | ||
| 333 | { | ||
| 334 | struct net_device *netdev = adapter->netdev; | ||
| 335 | struct e1000_hw *hw = &adapter->hw; | ||
| 336 | struct igb_reg_info *reginfo; | ||
| 337 | int n = 0; | ||
| 338 | struct igb_ring *tx_ring; | ||
| 339 | union e1000_adv_tx_desc *tx_desc; | ||
| 340 | struct my_u0 { u64 a; u64 b; } *u0; | ||
| 341 | struct igb_buffer *buffer_info; | ||
| 342 | struct igb_ring *rx_ring; | ||
| 343 | union e1000_adv_rx_desc *rx_desc; | ||
| 344 | u32 staterr; | ||
| 345 | int i = 0; | ||
| 346 | |||
| 347 | if (!netif_msg_hw(adapter)) | ||
| 348 | return; | ||
| 349 | |||
| 350 | /* Print netdevice Info */ | ||
| 351 | if (netdev) { | ||
| 352 | dev_info(&adapter->pdev->dev, "Net device Info\n"); | ||
| 353 | printk(KERN_INFO "Device Name state " | ||
| 354 | "trans_start last_rx\n"); | ||
| 355 | printk(KERN_INFO "%-15s %016lX %016lX %016lX\n", | ||
| 356 | netdev->name, | ||
| 357 | netdev->state, | ||
| 358 | netdev->trans_start, | ||
| 359 | netdev->last_rx); | ||
| 360 | } | ||
| 361 | |||
| 362 | /* Print Registers */ | ||
| 363 | dev_info(&adapter->pdev->dev, "Register Dump\n"); | ||
| 364 | printk(KERN_INFO " Register Name Value\n"); | ||
| 365 | for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; | ||
| 366 | reginfo->name; reginfo++) { | ||
| 367 | igb_regdump(hw, reginfo); | ||
| 368 | } | ||
| 369 | |||
| 370 | /* Print TX Ring Summary */ | ||
| 371 | if (!netdev || !netif_running(netdev)) | ||
| 372 | goto exit; | ||
| 373 | |||
| 374 | dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); | ||
| 375 | printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]" | ||
| 376 | " leng ntw timestamp\n"); | ||
| 377 | for (n = 0; n < adapter->num_tx_queues; n++) { | ||
| 378 | tx_ring = adapter->tx_ring[n]; | ||
| 379 | buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; | ||
| 380 | printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n", | ||
| 381 | n, tx_ring->next_to_use, tx_ring->next_to_clean, | ||
| 382 | (u64)buffer_info->dma, | ||
| 383 | buffer_info->length, | ||
| 384 | buffer_info->next_to_watch, | ||
| 385 | (u64)buffer_info->time_stamp); | ||
| 386 | } | ||
| 387 | |||
| 388 | /* Print TX Rings */ | ||
| 389 | if (!netif_msg_tx_done(adapter)) | ||
| 390 | goto rx_ring_summary; | ||
| 391 | |||
| 392 | dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); | ||
| 393 | |||
| 394 | /* Transmit Descriptor Formats | ||
| 395 | * | ||
| 396 | * Advanced Transmit Descriptor | ||
| 397 | * +--------------------------------------------------------------+ | ||
| 398 | * 0 | Buffer Address [63:0] | | ||
| 399 | * +--------------------------------------------------------------+ | ||
| 400 | * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | | ||
| 401 | * +--------------------------------------------------------------+ | ||
| 402 | * 63 46 45 40 39 38 36 35 32 31 24 15 0 | ||
| 403 | */ | ||
| 404 | |||
| 405 | for (n = 0; n < adapter->num_tx_queues; n++) { | ||
| 406 | tx_ring = adapter->tx_ring[n]; | ||
| 407 | printk(KERN_INFO "------------------------------------\n"); | ||
| 408 | printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index); | ||
| 409 | printk(KERN_INFO "------------------------------------\n"); | ||
| 410 | printk(KERN_INFO "T [desc] [address 63:0 ] " | ||
| 411 | "[PlPOCIStDDM Ln] [bi->dma ] " | ||
| 412 | "leng ntw timestamp bi->skb\n"); | ||
| 413 | |||
| 414 | for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { | ||
| 415 | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | ||
| 416 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 417 | u0 = (struct my_u0 *)tx_desc; | ||
| 418 | printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX" | ||
| 419 | " %04X %3X %016llX %p", i, | ||
| 420 | le64_to_cpu(u0->a), | ||
| 421 | le64_to_cpu(u0->b), | ||
| 422 | (u64)buffer_info->dma, | ||
| 423 | buffer_info->length, | ||
| 424 | buffer_info->next_to_watch, | ||
| 425 | (u64)buffer_info->time_stamp, | ||
| 426 | buffer_info->skb); | ||
| 427 | if (i == tx_ring->next_to_use && | ||
| 428 | i == tx_ring->next_to_clean) | ||
| 429 | printk(KERN_CONT " NTC/U\n"); | ||
| 430 | else if (i == tx_ring->next_to_use) | ||
| 431 | printk(KERN_CONT " NTU\n"); | ||
| 432 | else if (i == tx_ring->next_to_clean) | ||
| 433 | printk(KERN_CONT " NTC\n"); | ||
| 434 | else | ||
| 435 | printk(KERN_CONT "\n"); | ||
| 436 | |||
| 437 | if (netif_msg_pktdata(adapter) && buffer_info->dma != 0) | ||
| 438 | print_hex_dump(KERN_INFO, "", | ||
| 439 | DUMP_PREFIX_ADDRESS, | ||
| 440 | 16, 1, phys_to_virt(buffer_info->dma), | ||
| 441 | buffer_info->length, true); | ||
| 442 | } | ||
| 443 | } | ||
| 444 | |||
| 445 | /* Print RX Rings Summary */ | ||
| 446 | rx_ring_summary: | ||
| 447 | dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); | ||
| 448 | printk(KERN_INFO "Queue [NTU] [NTC]\n"); | ||
| 449 | for (n = 0; n < adapter->num_rx_queues; n++) { | ||
| 450 | rx_ring = adapter->rx_ring[n]; | ||
| 451 | printk(KERN_INFO " %5d %5X %5X\n", n, | ||
| 452 | rx_ring->next_to_use, rx_ring->next_to_clean); | ||
| 453 | } | ||
| 454 | |||
| 455 | /* Print RX Rings */ | ||
| 456 | if (!netif_msg_rx_status(adapter)) | ||
| 457 | goto exit; | ||
| 458 | |||
| 459 | dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); | ||
| 460 | |||
| 461 | /* Advanced Receive Descriptor (Read) Format | ||
| 462 | * 63 1 0 | ||
| 463 | * +-----------------------------------------------------+ | ||
| 464 | * 0 | Packet Buffer Address [63:1] |A0/NSE| | ||
| 465 | * +----------------------------------------------+------+ | ||
| 466 | * 8 | Header Buffer Address [63:1] | DD | | ||
| 467 | * +-----------------------------------------------------+ | ||
| 468 | * | ||
| 469 | * | ||
| 470 | * Advanced Receive Descriptor (Write-Back) Format | ||
| 471 | * | ||
| 472 | * 63 48 47 32 31 30 21 20 17 16 4 3 0 | ||
| 473 | * +------------------------------------------------------+ | ||
| 474 | * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | | ||
| 475 | * | Checksum Ident | | | | Type | Type | | ||
| 476 | * +------------------------------------------------------+ | ||
| 477 | * 8 | VLAN Tag | Length | Extended Error | Extended Status | | ||
| 478 | * +------------------------------------------------------+ | ||
| 479 | * 63 48 47 32 31 20 19 0 | ||
| 480 | */ | ||
| 481 | |||
| 482 | for (n = 0; n < adapter->num_rx_queues; n++) { | ||
| 483 | rx_ring = adapter->rx_ring[n]; | ||
| 484 | printk(KERN_INFO "------------------------------------\n"); | ||
| 485 | printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index); | ||
| 486 | printk(KERN_INFO "------------------------------------\n"); | ||
| 487 | printk(KERN_INFO "R [desc] [ PktBuf A0] " | ||
| 488 | "[ HeadBuf DD] [bi->dma ] [bi->skb] " | ||
| 489 | "<-- Adv Rx Read format\n"); | ||
| 490 | printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] " | ||
| 491 | "[vl er S cks ln] ---------------- [bi->skb] " | ||
| 492 | "<-- Adv Rx Write-Back format\n"); | ||
| 493 | |||
| 494 | for (i = 0; i < rx_ring->count; i++) { | ||
| 495 | buffer_info = &rx_ring->buffer_info[i]; | ||
| 496 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
| 497 | u0 = (struct my_u0 *)rx_desc; | ||
| 498 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
| 499 | if (staterr & E1000_RXD_STAT_DD) { | ||
| 500 | /* Descriptor Done */ | ||
| 501 | printk(KERN_INFO "RWB[0x%03X] %016llX " | ||
| 502 | "%016llX ---------------- %p", i, | ||
| 503 | le64_to_cpu(u0->a), | ||
| 504 | le64_to_cpu(u0->b), | ||
| 505 | buffer_info->skb); | ||
| 506 | } else { | ||
| 507 | printk(KERN_INFO "R [0x%03X] %016llX " | ||
| 508 | "%016llX %016llX %p", i, | ||
| 509 | le64_to_cpu(u0->a), | ||
| 510 | le64_to_cpu(u0->b), | ||
| 511 | (u64)buffer_info->dma, | ||
| 512 | buffer_info->skb); | ||
| 513 | |||
| 514 | if (netif_msg_pktdata(adapter)) { | ||
| 515 | print_hex_dump(KERN_INFO, "", | ||
| 516 | DUMP_PREFIX_ADDRESS, | ||
| 517 | 16, 1, | ||
| 518 | phys_to_virt(buffer_info->dma), | ||
| 519 | rx_ring->rx_buffer_len, true); | ||
| 520 | if (rx_ring->rx_buffer_len | ||
| 521 | < IGB_RXBUFFER_1024) | ||
| 522 | print_hex_dump(KERN_INFO, "", | ||
| 523 | DUMP_PREFIX_ADDRESS, | ||
| 524 | 16, 1, | ||
| 525 | phys_to_virt( | ||
| 526 | buffer_info->page_dma + | ||
| 527 | buffer_info->page_offset), | ||
| 528 | PAGE_SIZE/2, true); | ||
| 529 | } | ||
| 530 | } | ||
| 531 | |||
| 532 | if (i == rx_ring->next_to_use) | ||
| 533 | printk(KERN_CONT " NTU\n"); | ||
| 534 | else if (i == rx_ring->next_to_clean) | ||
| 535 | printk(KERN_CONT " NTC\n"); | ||
| 536 | else | ||
| 537 | printk(KERN_CONT "\n"); | ||
| 538 | |||
| 539 | } | ||
| 540 | } | ||
| 541 | |||
| 542 | exit: | ||
| 543 | return; | ||
| 544 | } | ||
| 545 | |||
| 546 | |||
| 547 | /** | ||
| 548 | * igb_read_clock - read raw cycle counter (to be used by time counter) | ||
| 549 | */ | ||
| 550 | static cycle_t igb_read_clock(const struct cyclecounter *tc) | ||
| 551 | { | ||
| 552 | struct igb_adapter *adapter = | ||
| 553 | container_of(tc, struct igb_adapter, cycles); | ||
| 554 | struct e1000_hw *hw = &adapter->hw; | ||
| 555 | u64 stamp = 0; | ||
| 556 | int shift = 0; | ||
| 557 | |||
| 558 | /* | ||
| 559 | * The timestamp latches on lowest register read. For the 82580 | ||
| 560 | * the lowest register is SYSTIMR instead of SYSTIML. However we never | ||
| 561 | * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it. | ||
| 562 | */ | ||
| 563 | if (hw->mac.type == e1000_82580) { | ||
| 564 | stamp = rd32(E1000_SYSTIMR) >> 8; | ||
| 565 | shift = IGB_82580_TSYNC_SHIFT; | ||
| 566 | } | ||
| 567 | |||
| 568 | stamp |= (u64)rd32(E1000_SYSTIML) << shift; | ||
| 569 | stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32); | ||
| 570 | return stamp; | ||
| 571 | } | ||
| 572 | |||
| 573 | /** | ||
| 574 | * igb_get_hw_dev - return device | ||
| 575 | * used by hardware layer to print debugging information | ||
| 576 | **/ | ||
| 577 | struct net_device *igb_get_hw_dev(struct e1000_hw *hw) | ||
| 578 | { | ||
| 579 | struct igb_adapter *adapter = hw->back; | ||
| 580 | return adapter->netdev; | ||
| 581 | } | ||
| 582 | |||
| 583 | /** | ||
| 584 | * igb_init_module - Driver Registration Routine | ||
| 585 | * | ||
| 586 | * igb_init_module is the first routine called when the driver is | ||
| 587 | * loaded. All it does is register with the PCI subsystem. | ||
| 588 | **/ | ||
| 589 | static int __init igb_init_module(void) | ||
| 590 | { | ||
| 591 | int ret; | ||
| 592 | printk(KERN_INFO "%s - version %s\n", | ||
| 593 | igb_driver_string, igb_driver_version); | ||
| 594 | |||
| 595 | printk(KERN_INFO "%s\n", igb_copyright); | ||
| 596 | |||
| 597 | #ifdef CONFIG_IGB_DCA | ||
| 598 | dca_register_notify(&dca_notifier); | ||
| 599 | #endif | ||
| 600 | ret = pci_register_driver(&igb_driver); | ||
| 601 | return ret; | ||
| 602 | } | ||
| 603 | |||
| 604 | module_init(igb_init_module); | ||
| 605 | |||
| 606 | /** | ||
| 607 | * igb_exit_module - Driver Exit Cleanup Routine | ||
| 608 | * | ||
| 609 | * igb_exit_module is called just before the driver is removed | ||
| 610 | * from memory. | ||
| 611 | **/ | ||
| 612 | static void __exit igb_exit_module(void) | ||
| 613 | { | ||
| 614 | #ifdef CONFIG_IGB_DCA | ||
| 615 | dca_unregister_notify(&dca_notifier); | ||
| 616 | #endif | ||
| 617 | pci_unregister_driver(&igb_driver); | ||
| 618 | } | ||
| 619 | |||
| 620 | module_exit(igb_exit_module); | ||
| 621 | |||
| 622 | #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) | ||
| 623 | /** | ||
| 624 | * igb_cache_ring_register - Descriptor ring to register mapping | ||
| 625 | * @adapter: board private structure to initialize | ||
| 626 | * | ||
| 627 | * Once we know the feature-set enabled for the device, we'll cache | ||
| 628 | * the register offset the descriptor ring is assigned to. | ||
| 629 | **/ | ||
| 630 | static void igb_cache_ring_register(struct igb_adapter *adapter) | ||
| 631 | { | ||
| 632 | int i = 0, j = 0; | ||
| 633 | u32 rbase_offset = adapter->vfs_allocated_count; | ||
| 634 | |||
| 635 | switch (adapter->hw.mac.type) { | ||
| 636 | case e1000_82576: | ||
| 637 | /* The queues are allocated for virtualization such that VF 0 | ||
| 638 | * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. | ||
| 639 | * In order to avoid collision we start at the first free queue | ||
| 640 | * and continue consuming queues in the same sequence | ||
| 641 | */ | ||
| 642 | if (adapter->vfs_allocated_count) { | ||
| 643 | for (; i < adapter->rss_queues; i++) | ||
| 644 | adapter->rx_ring[i]->reg_idx = rbase_offset + | ||
| 645 | Q_IDX_82576(i); | ||
| 646 | } | ||
| 647 | case e1000_82575: | ||
| 648 | case e1000_82580: | ||
| 649 | case e1000_i350: | ||
| 650 | default: | ||
| 651 | for (; i < adapter->num_rx_queues; i++) | ||
| 652 | adapter->rx_ring[i]->reg_idx = rbase_offset + i; | ||
| 653 | for (; j < adapter->num_tx_queues; j++) | ||
| 654 | adapter->tx_ring[j]->reg_idx = rbase_offset + j; | ||
| 655 | break; | ||
| 656 | } | ||
| 657 | } | ||
| 658 | |||
| 659 | static void igb_free_queues(struct igb_adapter *adapter) | ||
| 660 | { | ||
| 661 | int i; | ||
| 662 | |||
| 663 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
| 664 | kfree(adapter->tx_ring[i]); | ||
| 665 | adapter->tx_ring[i] = NULL; | ||
| 666 | } | ||
| 667 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
| 668 | kfree(adapter->rx_ring[i]); | ||
| 669 | adapter->rx_ring[i] = NULL; | ||
| 670 | } | ||
| 671 | adapter->num_rx_queues = 0; | ||
| 672 | adapter->num_tx_queues = 0; | ||
| 673 | } | ||
| 674 | |||
| 675 | /** | ||
| 676 | * igb_alloc_queues - Allocate memory for all rings | ||
| 677 | * @adapter: board private structure to initialize | ||
| 678 | * | ||
| 679 | * We allocate one ring per queue at run-time since we don't know the | ||
| 680 | * number of queues at compile-time. | ||
| 681 | **/ | ||
| 682 | static int igb_alloc_queues(struct igb_adapter *adapter) | ||
| 683 | { | ||
| 684 | struct igb_ring *ring; | ||
| 685 | int i; | ||
| 686 | |||
| 687 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
| 688 | ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL); | ||
| 689 | if (!ring) | ||
| 690 | goto err; | ||
| 691 | ring->count = adapter->tx_ring_count; | ||
| 692 | ring->queue_index = i; | ||
| 693 | ring->dev = &adapter->pdev->dev; | ||
| 694 | ring->netdev = adapter->netdev; | ||
| 695 | /* For 82575, context index must be unique per ring. */ | ||
| 696 | if (adapter->hw.mac.type == e1000_82575) | ||
| 697 | ring->flags = IGB_RING_FLAG_TX_CTX_IDX; | ||
| 698 | adapter->tx_ring[i] = ring; | ||
| 699 | } | ||
| 700 | |||
| 701 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
| 702 | ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL); | ||
| 703 | if (!ring) | ||
| 704 | goto err; | ||
| 705 | ring->count = adapter->rx_ring_count; | ||
| 706 | ring->queue_index = i; | ||
| 707 | ring->dev = &adapter->pdev->dev; | ||
| 708 | ring->netdev = adapter->netdev; | ||
| 709 | ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
| 710 | ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */ | ||
| 711 | /* set flag indicating ring supports SCTP checksum offload */ | ||
| 712 | if (adapter->hw.mac.type >= e1000_82576) | ||
| 713 | ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM; | ||
| 714 | adapter->rx_ring[i] = ring; | ||
| 715 | } | ||
| 716 | |||
| 717 | igb_cache_ring_register(adapter); | ||
| 718 | |||
| 719 | return 0; | ||
| 720 | |||
| 721 | err: | ||
| 722 | igb_free_queues(adapter); | ||
| 723 | |||
| 724 | return -ENOMEM; | ||
| 725 | } | ||
| 726 | |||
| 727 | #define IGB_N0_QUEUE -1 | ||
| 728 | static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) | ||
| 729 | { | ||
| 730 | u32 msixbm = 0; | ||
| 731 | struct igb_adapter *adapter = q_vector->adapter; | ||
| 732 | struct e1000_hw *hw = &adapter->hw; | ||
| 733 | u32 ivar, index; | ||
| 734 | int rx_queue = IGB_N0_QUEUE; | ||
| 735 | int tx_queue = IGB_N0_QUEUE; | ||
| 736 | |||
| 737 | if (q_vector->rx_ring) | ||
| 738 | rx_queue = q_vector->rx_ring->reg_idx; | ||
| 739 | if (q_vector->tx_ring) | ||
| 740 | tx_queue = q_vector->tx_ring->reg_idx; | ||
| 741 | |||
| 742 | switch (hw->mac.type) { | ||
| 743 | case e1000_82575: | ||
| 744 | /* The 82575 assigns vectors using a bitmask, which matches the | ||
| 745 | bitmask for the EICR/EIMS/EIMC registers. To assign one | ||
| 746 | or more queues to a vector, we write the appropriate bits | ||
| 747 | into the MSIXBM register for that vector. */ | ||
| 748 | if (rx_queue > IGB_N0_QUEUE) | ||
| 749 | msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; | ||
| 750 | if (tx_queue > IGB_N0_QUEUE) | ||
| 751 | msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; | ||
| 752 | if (!adapter->msix_entries && msix_vector == 0) | ||
| 753 | msixbm |= E1000_EIMS_OTHER; | ||
| 754 | array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); | ||
| 755 | q_vector->eims_value = msixbm; | ||
| 756 | break; | ||
| 757 | case e1000_82576: | ||
| 758 | /* 82576 uses a table-based method for assigning vectors. | ||
| 759 | Each queue has a single entry in the table to which we write | ||
| 760 | a vector number along with a "valid" bit. Sadly, the layout | ||
| 761 | of the table is somewhat counterintuitive. */ | ||
| 762 | if (rx_queue > IGB_N0_QUEUE) { | ||
| 763 | index = (rx_queue & 0x7); | ||
| 764 | ivar = array_rd32(E1000_IVAR0, index); | ||
| 765 | if (rx_queue < 8) { | ||
| 766 | /* vector goes into low byte of register */ | ||
| 767 | ivar = ivar & 0xFFFFFF00; | ||
| 768 | ivar |= msix_vector | E1000_IVAR_VALID; | ||
| 769 | } else { | ||
| 770 | /* vector goes into third byte of register */ | ||
| 771 | ivar = ivar & 0xFF00FFFF; | ||
| 772 | ivar |= (msix_vector | E1000_IVAR_VALID) << 16; | ||
| 773 | } | ||
| 774 | array_wr32(E1000_IVAR0, index, ivar); | ||
| 775 | } | ||
| 776 | if (tx_queue > IGB_N0_QUEUE) { | ||
| 777 | index = (tx_queue & 0x7); | ||
| 778 | ivar = array_rd32(E1000_IVAR0, index); | ||
| 779 | if (tx_queue < 8) { | ||
| 780 | /* vector goes into second byte of register */ | ||
| 781 | ivar = ivar & 0xFFFF00FF; | ||
| 782 | ivar |= (msix_vector | E1000_IVAR_VALID) << 8; | ||
| 783 | } else { | ||
| 784 | /* vector goes into high byte of register */ | ||
| 785 | ivar = ivar & 0x00FFFFFF; | ||
| 786 | ivar |= (msix_vector | E1000_IVAR_VALID) << 24; | ||
| 787 | } | ||
| 788 | array_wr32(E1000_IVAR0, index, ivar); | ||
| 789 | } | ||
| 790 | q_vector->eims_value = 1 << msix_vector; | ||
| 791 | break; | ||
| 792 | case e1000_82580: | ||
| 793 | case e1000_i350: | ||
| 794 | /* 82580 uses the same table-based approach as 82576 but has fewer | ||
| 795 | entries as a result we carry over for queues greater than 4. */ | ||
| 796 | if (rx_queue > IGB_N0_QUEUE) { | ||
| 797 | index = (rx_queue >> 1); | ||
| 798 | ivar = array_rd32(E1000_IVAR0, index); | ||
| 799 | if (rx_queue & 0x1) { | ||
| 800 | /* vector goes into third byte of register */ | ||
| 801 | ivar = ivar & 0xFF00FFFF; | ||
| 802 | ivar |= (msix_vector | E1000_IVAR_VALID) << 16; | ||
| 803 | } else { | ||
| 804 | /* vector goes into low byte of register */ | ||
| 805 | ivar = ivar & 0xFFFFFF00; | ||
| 806 | ivar |= msix_vector | E1000_IVAR_VALID; | ||
| 807 | } | ||
| 808 | array_wr32(E1000_IVAR0, index, ivar); | ||
| 809 | } | ||
| 810 | if (tx_queue > IGB_N0_QUEUE) { | ||
| 811 | index = (tx_queue >> 1); | ||
| 812 | ivar = array_rd32(E1000_IVAR0, index); | ||
| 813 | if (tx_queue & 0x1) { | ||
| 814 | /* vector goes into high byte of register */ | ||
| 815 | ivar = ivar & 0x00FFFFFF; | ||
| 816 | ivar |= (msix_vector | E1000_IVAR_VALID) << 24; | ||
| 817 | } else { | ||
| 818 | /* vector goes into second byte of register */ | ||
| 819 | ivar = ivar & 0xFFFF00FF; | ||
| 820 | ivar |= (msix_vector | E1000_IVAR_VALID) << 8; | ||
| 821 | } | ||
| 822 | array_wr32(E1000_IVAR0, index, ivar); | ||
| 823 | } | ||
| 824 | q_vector->eims_value = 1 << msix_vector; | ||
| 825 | break; | ||
| 826 | default: | ||
| 827 | BUG(); | ||
| 828 | break; | ||
| 829 | } | ||
| 830 | |||
| 831 | /* add q_vector eims value to global eims_enable_mask */ | ||
| 832 | adapter->eims_enable_mask |= q_vector->eims_value; | ||
| 833 | |||
| 834 | /* configure q_vector to set itr on first interrupt */ | ||
| 835 | q_vector->set_itr = 1; | ||
| 836 | } | ||
| 837 | |||
| 838 | /** | ||
| 839 | * igb_configure_msix - Configure MSI-X hardware | ||
| 840 | * | ||
| 841 | * igb_configure_msix sets up the hardware to properly | ||
| 842 | * generate MSI-X interrupts. | ||
| 843 | **/ | ||
| 844 | static void igb_configure_msix(struct igb_adapter *adapter) | ||
| 845 | { | ||
| 846 | u32 tmp; | ||
| 847 | int i, vector = 0; | ||
| 848 | struct e1000_hw *hw = &adapter->hw; | ||
| 849 | |||
| 850 | adapter->eims_enable_mask = 0; | ||
| 851 | |||
| 852 | /* set vector for other causes, i.e. link changes */ | ||
| 853 | switch (hw->mac.type) { | ||
| 854 | case e1000_82575: | ||
| 855 | tmp = rd32(E1000_CTRL_EXT); | ||
| 856 | /* enable MSI-X PBA support*/ | ||
| 857 | tmp |= E1000_CTRL_EXT_PBA_CLR; | ||
| 858 | |||
| 859 | /* Auto-Mask interrupts upon ICR read. */ | ||
| 860 | tmp |= E1000_CTRL_EXT_EIAME; | ||
| 861 | tmp |= E1000_CTRL_EXT_IRCA; | ||
| 862 | |||
| 863 | wr32(E1000_CTRL_EXT, tmp); | ||
| 864 | |||
| 865 | /* enable msix_other interrupt */ | ||
| 866 | array_wr32(E1000_MSIXBM(0), vector++, | ||
| 867 | E1000_EIMS_OTHER); | ||
| 868 | adapter->eims_other = E1000_EIMS_OTHER; | ||
| 869 | |||
| 870 | break; | ||
| 871 | |||
| 872 | case e1000_82576: | ||
| 873 | case e1000_82580: | ||
| 874 | case e1000_i350: | ||
| 875 | /* Turn on MSI-X capability first, or our settings | ||
| 876 | * won't stick. And it will take days to debug. */ | ||
| 877 | wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | | ||
| 878 | E1000_GPIE_PBA | E1000_GPIE_EIAME | | ||
| 879 | E1000_GPIE_NSICR); | ||
| 880 | |||
| 881 | /* enable msix_other interrupt */ | ||
| 882 | adapter->eims_other = 1 << vector; | ||
| 883 | tmp = (vector++ | E1000_IVAR_VALID) << 8; | ||
| 884 | |||
| 885 | wr32(E1000_IVAR_MISC, tmp); | ||
| 886 | break; | ||
| 887 | default: | ||
| 888 | /* do nothing, since nothing else supports MSI-X */ | ||
| 889 | break; | ||
| 890 | } /* switch (hw->mac.type) */ | ||
| 891 | |||
| 892 | adapter->eims_enable_mask |= adapter->eims_other; | ||
| 893 | |||
| 894 | for (i = 0; i < adapter->num_q_vectors; i++) | ||
| 895 | igb_assign_vector(adapter->q_vector[i], vector++); | ||
| 896 | |||
| 897 | wrfl(); | ||
| 898 | } | ||
| 899 | |||
| 900 | /** | ||
| 901 | * igb_request_msix - Initialize MSI-X interrupts | ||
| 902 | * | ||
| 903 | * igb_request_msix allocates MSI-X vectors and requests interrupts from the | ||
| 904 | * kernel. | ||
| 905 | **/ | ||
| 906 | static int igb_request_msix(struct igb_adapter *adapter) | ||
| 907 | { | ||
| 908 | struct net_device *netdev = adapter->netdev; | ||
| 909 | struct e1000_hw *hw = &adapter->hw; | ||
| 910 | int i, err = 0, vector = 0; | ||
| 911 | |||
| 912 | err = request_irq(adapter->msix_entries[vector].vector, | ||
| 913 | igb_msix_other, 0, netdev->name, adapter); | ||
| 914 | if (err) | ||
| 915 | goto out; | ||
| 916 | vector++; | ||
| 917 | |||
| 918 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
| 919 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
| 920 | |||
| 921 | q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); | ||
| 922 | |||
| 923 | if (q_vector->rx_ring && q_vector->tx_ring) | ||
| 924 | sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, | ||
| 925 | q_vector->rx_ring->queue_index); | ||
| 926 | else if (q_vector->tx_ring) | ||
| 927 | sprintf(q_vector->name, "%s-tx-%u", netdev->name, | ||
| 928 | q_vector->tx_ring->queue_index); | ||
| 929 | else if (q_vector->rx_ring) | ||
| 930 | sprintf(q_vector->name, "%s-rx-%u", netdev->name, | ||
| 931 | q_vector->rx_ring->queue_index); | ||
| 932 | else | ||
| 933 | sprintf(q_vector->name, "%s-unused", netdev->name); | ||
| 934 | |||
| 935 | err = request_irq(adapter->msix_entries[vector].vector, | ||
| 936 | igb_msix_ring, 0, q_vector->name, | ||
| 937 | q_vector); | ||
| 938 | if (err) | ||
| 939 | goto out; | ||
| 940 | vector++; | ||
| 941 | } | ||
| 942 | |||
| 943 | igb_configure_msix(adapter); | ||
| 944 | return 0; | ||
| 945 | out: | ||
| 946 | return err; | ||
| 947 | } | ||
| 948 | |||
| 949 | static void igb_reset_interrupt_capability(struct igb_adapter *adapter) | ||
| 950 | { | ||
| 951 | if (adapter->msix_entries) { | ||
| 952 | pci_disable_msix(adapter->pdev); | ||
| 953 | kfree(adapter->msix_entries); | ||
| 954 | adapter->msix_entries = NULL; | ||
| 955 | } else if (adapter->flags & IGB_FLAG_HAS_MSI) { | ||
| 956 | pci_disable_msi(adapter->pdev); | ||
| 957 | } | ||
| 958 | } | ||
| 959 | |||
| 960 | /** | ||
| 961 | * igb_free_q_vectors - Free memory allocated for interrupt vectors | ||
| 962 | * @adapter: board private structure to initialize | ||
| 963 | * | ||
| 964 | * This function frees the memory allocated to the q_vectors. In addition if | ||
| 965 | * NAPI is enabled it will delete any references to the NAPI struct prior | ||
| 966 | * to freeing the q_vector. | ||
| 967 | **/ | ||
| 968 | static void igb_free_q_vectors(struct igb_adapter *adapter) | ||
| 969 | { | ||
| 970 | int v_idx; | ||
| 971 | |||
| 972 | for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) { | ||
| 973 | struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; | ||
| 974 | adapter->q_vector[v_idx] = NULL; | ||
| 975 | if (!q_vector) | ||
| 976 | continue; | ||
| 977 | netif_napi_del(&q_vector->napi); | ||
| 978 | kfree(q_vector); | ||
| 979 | } | ||
| 980 | adapter->num_q_vectors = 0; | ||
| 981 | } | ||
| 982 | |||
| 983 | /** | ||
| 984 | * igb_clear_interrupt_scheme - reset the device to a state of no interrupts | ||
| 985 | * | ||
| 986 | * This function resets the device so that it has 0 rx queues, tx queues, and | ||
| 987 | * MSI-X interrupts allocated. | ||
| 988 | */ | ||
| 989 | static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) | ||
| 990 | { | ||
| 991 | igb_free_queues(adapter); | ||
| 992 | igb_free_q_vectors(adapter); | ||
| 993 | igb_reset_interrupt_capability(adapter); | ||
| 994 | } | ||
| 995 | |||
| 996 | /** | ||
| 997 | * igb_set_interrupt_capability - set MSI or MSI-X if supported | ||
| 998 | * | ||
| 999 | * Attempt to configure interrupts using the best available | ||
| 1000 | * capabilities of the hardware and kernel. | ||
| 1001 | **/ | ||
| 1002 | static int igb_set_interrupt_capability(struct igb_adapter *adapter) | ||
| 1003 | { | ||
| 1004 | int err; | ||
| 1005 | int numvecs, i; | ||
| 1006 | |||
| 1007 | /* Number of supported queues. */ | ||
| 1008 | adapter->num_rx_queues = adapter->rss_queues; | ||
| 1009 | if (adapter->vfs_allocated_count) | ||
| 1010 | adapter->num_tx_queues = 1; | ||
| 1011 | else | ||
| 1012 | adapter->num_tx_queues = adapter->rss_queues; | ||
| 1013 | |||
| 1014 | /* start with one vector for every rx queue */ | ||
| 1015 | numvecs = adapter->num_rx_queues; | ||
| 1016 | |||
| 1017 | /* if tx handler is separate add 1 for every tx queue */ | ||
| 1018 | if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) | ||
| 1019 | numvecs += adapter->num_tx_queues; | ||
| 1020 | |||
| 1021 | /* store the number of vectors reserved for queues */ | ||
| 1022 | adapter->num_q_vectors = numvecs; | ||
| 1023 | |||
| 1024 | /* add 1 vector for link status interrupts */ | ||
| 1025 | numvecs++; | ||
| 1026 | adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), | ||
| 1027 | GFP_KERNEL); | ||
| 1028 | if (!adapter->msix_entries) | ||
| 1029 | goto msi_only; | ||
| 1030 | |||
| 1031 | for (i = 0; i < numvecs; i++) | ||
| 1032 | adapter->msix_entries[i].entry = i; | ||
| 1033 | |||
| 1034 | err = pci_enable_msix(adapter->pdev, | ||
| 1035 | adapter->msix_entries, | ||
| 1036 | numvecs); | ||
| 1037 | if (err == 0) | ||
| 1038 | goto out; | ||
| 1039 | |||
| 1040 | igb_reset_interrupt_capability(adapter); | ||
| 1041 | |||
| 1042 | /* If we can't do MSI-X, try MSI */ | ||
| 1043 | msi_only: | ||
| 1044 | #ifdef CONFIG_PCI_IOV | ||
| 1045 | /* disable SR-IOV for non MSI-X configurations */ | ||
| 1046 | if (adapter->vf_data) { | ||
| 1047 | struct e1000_hw *hw = &adapter->hw; | ||
| 1048 | /* disable iov and allow time for transactions to clear */ | ||
| 1049 | pci_disable_sriov(adapter->pdev); | ||
| 1050 | msleep(500); | ||
| 1051 | |||
| 1052 | kfree(adapter->vf_data); | ||
| 1053 | adapter->vf_data = NULL; | ||
| 1054 | wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); | ||
| 1055 | wrfl(); | ||
| 1056 | msleep(100); | ||
| 1057 | dev_info(&adapter->pdev->dev, "IOV Disabled\n"); | ||
| 1058 | } | ||
| 1059 | #endif | ||
| 1060 | adapter->vfs_allocated_count = 0; | ||
| 1061 | adapter->rss_queues = 1; | ||
| 1062 | adapter->flags |= IGB_FLAG_QUEUE_PAIRS; | ||
| 1063 | adapter->num_rx_queues = 1; | ||
| 1064 | adapter->num_tx_queues = 1; | ||
| 1065 | adapter->num_q_vectors = 1; | ||
| 1066 | if (!pci_enable_msi(adapter->pdev)) | ||
| 1067 | adapter->flags |= IGB_FLAG_HAS_MSI; | ||
| 1068 | out: | ||
| 1069 | /* Notify the stack of the (possibly) reduced queue counts. */ | ||
| 1070 | netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues); | ||
| 1071 | return netif_set_real_num_rx_queues(adapter->netdev, | ||
| 1072 | adapter->num_rx_queues); | ||
| 1073 | } | ||
| 1074 | |||
| 1075 | /** | ||
| 1076 | * igb_alloc_q_vectors - Allocate memory for interrupt vectors | ||
| 1077 | * @adapter: board private structure to initialize | ||
| 1078 | * | ||
| 1079 | * We allocate one q_vector per queue interrupt. If allocation fails we | ||
| 1080 | * return -ENOMEM. | ||
| 1081 | **/ | ||
| 1082 | static int igb_alloc_q_vectors(struct igb_adapter *adapter) | ||
| 1083 | { | ||
| 1084 | struct igb_q_vector *q_vector; | ||
| 1085 | struct e1000_hw *hw = &adapter->hw; | ||
| 1086 | int v_idx; | ||
| 1087 | |||
| 1088 | for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) { | ||
| 1089 | q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL); | ||
| 1090 | if (!q_vector) | ||
| 1091 | goto err_out; | ||
| 1092 | q_vector->adapter = adapter; | ||
| 1093 | q_vector->itr_register = hw->hw_addr + E1000_EITR(0); | ||
| 1094 | q_vector->itr_val = IGB_START_ITR; | ||
| 1095 | netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64); | ||
| 1096 | adapter->q_vector[v_idx] = q_vector; | ||
| 1097 | } | ||
| 1098 | return 0; | ||
| 1099 | |||
| 1100 | err_out: | ||
| 1101 | igb_free_q_vectors(adapter); | ||
| 1102 | return -ENOMEM; | ||
| 1103 | } | ||
| 1104 | |||
| 1105 | static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter, | ||
| 1106 | int ring_idx, int v_idx) | ||
| 1107 | { | ||
| 1108 | struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; | ||
| 1109 | |||
| 1110 | q_vector->rx_ring = adapter->rx_ring[ring_idx]; | ||
| 1111 | q_vector->rx_ring->q_vector = q_vector; | ||
| 1112 | q_vector->itr_val = adapter->rx_itr_setting; | ||
| 1113 | if (q_vector->itr_val && q_vector->itr_val <= 3) | ||
| 1114 | q_vector->itr_val = IGB_START_ITR; | ||
| 1115 | } | ||
| 1116 | |||
| 1117 | static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter, | ||
| 1118 | int ring_idx, int v_idx) | ||
| 1119 | { | ||
| 1120 | struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; | ||
| 1121 | |||
| 1122 | q_vector->tx_ring = adapter->tx_ring[ring_idx]; | ||
| 1123 | q_vector->tx_ring->q_vector = q_vector; | ||
| 1124 | q_vector->itr_val = adapter->tx_itr_setting; | ||
| 1125 | if (q_vector->itr_val && q_vector->itr_val <= 3) | ||
| 1126 | q_vector->itr_val = IGB_START_ITR; | ||
| 1127 | } | ||
| 1128 | |||
| 1129 | /** | ||
| 1130 | * igb_map_ring_to_vector - maps allocated queues to vectors | ||
| 1131 | * | ||
| 1132 | * This function maps the recently allocated queues to vectors. | ||
| 1133 | **/ | ||
| 1134 | static int igb_map_ring_to_vector(struct igb_adapter *adapter) | ||
| 1135 | { | ||
| 1136 | int i; | ||
| 1137 | int v_idx = 0; | ||
| 1138 | |||
| 1139 | if ((adapter->num_q_vectors < adapter->num_rx_queues) || | ||
| 1140 | (adapter->num_q_vectors < adapter->num_tx_queues)) | ||
| 1141 | return -ENOMEM; | ||
| 1142 | |||
| 1143 | if (adapter->num_q_vectors >= | ||
| 1144 | (adapter->num_rx_queues + adapter->num_tx_queues)) { | ||
| 1145 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
| 1146 | igb_map_rx_ring_to_vector(adapter, i, v_idx++); | ||
| 1147 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
| 1148 | igb_map_tx_ring_to_vector(adapter, i, v_idx++); | ||
| 1149 | } else { | ||
| 1150 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
| 1151 | if (i < adapter->num_tx_queues) | ||
| 1152 | igb_map_tx_ring_to_vector(adapter, i, v_idx); | ||
| 1153 | igb_map_rx_ring_to_vector(adapter, i, v_idx++); | ||
| 1154 | } | ||
| 1155 | for (; i < adapter->num_tx_queues; i++) | ||
| 1156 | igb_map_tx_ring_to_vector(adapter, i, v_idx++); | ||
| 1157 | } | ||
| 1158 | return 0; | ||
| 1159 | } | ||
| 1160 | |||
| 1161 | /** | ||
| 1162 | * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors | ||
| 1163 | * | ||
| 1164 | * This function initializes the interrupts and allocates all of the queues. | ||
| 1165 | **/ | ||
| 1166 | static int igb_init_interrupt_scheme(struct igb_adapter *adapter) | ||
| 1167 | { | ||
| 1168 | struct pci_dev *pdev = adapter->pdev; | ||
| 1169 | int err; | ||
| 1170 | |||
| 1171 | err = igb_set_interrupt_capability(adapter); | ||
| 1172 | if (err) | ||
| 1173 | return err; | ||
| 1174 | |||
| 1175 | err = igb_alloc_q_vectors(adapter); | ||
| 1176 | if (err) { | ||
| 1177 | dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); | ||
| 1178 | goto err_alloc_q_vectors; | ||
| 1179 | } | ||
| 1180 | |||
| 1181 | err = igb_alloc_queues(adapter); | ||
| 1182 | if (err) { | ||
| 1183 | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | ||
| 1184 | goto err_alloc_queues; | ||
| 1185 | } | ||
| 1186 | |||
| 1187 | err = igb_map_ring_to_vector(adapter); | ||
| 1188 | if (err) { | ||
| 1189 | dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n"); | ||
| 1190 | goto err_map_queues; | ||
| 1191 | } | ||
| 1192 | |||
| 1193 | |||
| 1194 | return 0; | ||
| 1195 | err_map_queues: | ||
| 1196 | igb_free_queues(adapter); | ||
| 1197 | err_alloc_queues: | ||
| 1198 | igb_free_q_vectors(adapter); | ||
| 1199 | err_alloc_q_vectors: | ||
| 1200 | igb_reset_interrupt_capability(adapter); | ||
| 1201 | return err; | ||
| 1202 | } | ||
| 1203 | |||
| 1204 | /** | ||
| 1205 | * igb_request_irq - initialize interrupts | ||
| 1206 | * | ||
| 1207 | * Attempts to configure interrupts using the best available | ||
| 1208 | * capabilities of the hardware and kernel. | ||
| 1209 | **/ | ||
| 1210 | static int igb_request_irq(struct igb_adapter *adapter) | ||
| 1211 | { | ||
| 1212 | struct net_device *netdev = adapter->netdev; | ||
| 1213 | struct pci_dev *pdev = adapter->pdev; | ||
| 1214 | int err = 0; | ||
| 1215 | |||
| 1216 | if (adapter->msix_entries) { | ||
| 1217 | err = igb_request_msix(adapter); | ||
| 1218 | if (!err) | ||
| 1219 | goto request_done; | ||
| 1220 | /* fall back to MSI */ | ||
| 1221 | igb_clear_interrupt_scheme(adapter); | ||
| 1222 | if (!pci_enable_msi(adapter->pdev)) | ||
| 1223 | adapter->flags |= IGB_FLAG_HAS_MSI; | ||
| 1224 | igb_free_all_tx_resources(adapter); | ||
| 1225 | igb_free_all_rx_resources(adapter); | ||
| 1226 | adapter->num_tx_queues = 1; | ||
| 1227 | adapter->num_rx_queues = 1; | ||
| 1228 | adapter->num_q_vectors = 1; | ||
| 1229 | err = igb_alloc_q_vectors(adapter); | ||
| 1230 | if (err) { | ||
| 1231 | dev_err(&pdev->dev, | ||
| 1232 | "Unable to allocate memory for vectors\n"); | ||
| 1233 | goto request_done; | ||
| 1234 | } | ||
| 1235 | err = igb_alloc_queues(adapter); | ||
| 1236 | if (err) { | ||
| 1237 | dev_err(&pdev->dev, | ||
| 1238 | "Unable to allocate memory for queues\n"); | ||
| 1239 | igb_free_q_vectors(adapter); | ||
| 1240 | goto request_done; | ||
| 1241 | } | ||
| 1242 | igb_setup_all_tx_resources(adapter); | ||
| 1243 | igb_setup_all_rx_resources(adapter); | ||
| 1244 | } else { | ||
| 1245 | igb_assign_vector(adapter->q_vector[0], 0); | ||
| 1246 | } | ||
| 1247 | |||
| 1248 | if (adapter->flags & IGB_FLAG_HAS_MSI) { | ||
| 1249 | err = request_irq(adapter->pdev->irq, igb_intr_msi, 0, | ||
| 1250 | netdev->name, adapter); | ||
| 1251 | if (!err) | ||
| 1252 | goto request_done; | ||
| 1253 | |||
| 1254 | /* fall back to legacy interrupts */ | ||
| 1255 | igb_reset_interrupt_capability(adapter); | ||
| 1256 | adapter->flags &= ~IGB_FLAG_HAS_MSI; | ||
| 1257 | } | ||
| 1258 | |||
| 1259 | err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED, | ||
| 1260 | netdev->name, adapter); | ||
| 1261 | |||
| 1262 | if (err) | ||
| 1263 | dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n", | ||
| 1264 | err); | ||
| 1265 | |||
| 1266 | request_done: | ||
| 1267 | return err; | ||
| 1268 | } | ||
| 1269 | |||
| 1270 | static void igb_free_irq(struct igb_adapter *adapter) | ||
| 1271 | { | ||
| 1272 | if (adapter->msix_entries) { | ||
| 1273 | int vector = 0, i; | ||
| 1274 | |||
| 1275 | free_irq(adapter->msix_entries[vector++].vector, adapter); | ||
| 1276 | |||
| 1277 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
| 1278 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
| 1279 | free_irq(adapter->msix_entries[vector++].vector, | ||
| 1280 | q_vector); | ||
| 1281 | } | ||
| 1282 | } else { | ||
| 1283 | free_irq(adapter->pdev->irq, adapter); | ||
| 1284 | } | ||
| 1285 | } | ||
| 1286 | |||
| 1287 | /** | ||
| 1288 | * igb_irq_disable - Mask off interrupt generation on the NIC | ||
| 1289 | * @adapter: board private structure | ||
| 1290 | **/ | ||
| 1291 | static void igb_irq_disable(struct igb_adapter *adapter) | ||
| 1292 | { | ||
| 1293 | struct e1000_hw *hw = &adapter->hw; | ||
| 1294 | |||
| 1295 | /* | ||
| 1296 | * we need to be careful when disabling interrupts. The VFs are also | ||
| 1297 | * mapped into these registers and so clearing the bits can cause | ||
| 1298 | * issues on the VF drivers so we only need to clear what we set | ||
| 1299 | */ | ||
| 1300 | if (adapter->msix_entries) { | ||
| 1301 | u32 regval = rd32(E1000_EIAM); | ||
| 1302 | wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); | ||
| 1303 | wr32(E1000_EIMC, adapter->eims_enable_mask); | ||
| 1304 | regval = rd32(E1000_EIAC); | ||
| 1305 | wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); | ||
| 1306 | } | ||
| 1307 | |||
| 1308 | wr32(E1000_IAM, 0); | ||
| 1309 | wr32(E1000_IMC, ~0); | ||
| 1310 | wrfl(); | ||
| 1311 | if (adapter->msix_entries) { | ||
| 1312 | int i; | ||
| 1313 | for (i = 0; i < adapter->num_q_vectors; i++) | ||
| 1314 | synchronize_irq(adapter->msix_entries[i].vector); | ||
| 1315 | } else { | ||
| 1316 | synchronize_irq(adapter->pdev->irq); | ||
| 1317 | } | ||
| 1318 | } | ||
| 1319 | |||
| 1320 | /** | ||
| 1321 | * igb_irq_enable - Enable default interrupt generation settings | ||
| 1322 | * @adapter: board private structure | ||
| 1323 | **/ | ||
| 1324 | static void igb_irq_enable(struct igb_adapter *adapter) | ||
| 1325 | { | ||
| 1326 | struct e1000_hw *hw = &adapter->hw; | ||
| 1327 | |||
| 1328 | if (adapter->msix_entries) { | ||
| 1329 | u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC; | ||
| 1330 | u32 regval = rd32(E1000_EIAC); | ||
| 1331 | wr32(E1000_EIAC, regval | adapter->eims_enable_mask); | ||
| 1332 | regval = rd32(E1000_EIAM); | ||
| 1333 | wr32(E1000_EIAM, regval | adapter->eims_enable_mask); | ||
| 1334 | wr32(E1000_EIMS, adapter->eims_enable_mask); | ||
| 1335 | if (adapter->vfs_allocated_count) { | ||
| 1336 | wr32(E1000_MBVFIMR, 0xFF); | ||
| 1337 | ims |= E1000_IMS_VMMB; | ||
| 1338 | } | ||
| 1339 | if (adapter->hw.mac.type == e1000_82580) | ||
| 1340 | ims |= E1000_IMS_DRSTA; | ||
| 1341 | |||
| 1342 | wr32(E1000_IMS, ims); | ||
| 1343 | } else { | ||
| 1344 | wr32(E1000_IMS, IMS_ENABLE_MASK | | ||
| 1345 | E1000_IMS_DRSTA); | ||
| 1346 | wr32(E1000_IAM, IMS_ENABLE_MASK | | ||
| 1347 | E1000_IMS_DRSTA); | ||
| 1348 | } | ||
| 1349 | } | ||
| 1350 | |||
| 1351 | static void igb_update_mng_vlan(struct igb_adapter *adapter) | ||
| 1352 | { | ||
| 1353 | struct e1000_hw *hw = &adapter->hw; | ||
| 1354 | u16 vid = adapter->hw.mng_cookie.vlan_id; | ||
| 1355 | u16 old_vid = adapter->mng_vlan_id; | ||
| 1356 | |||
| 1357 | if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | ||
| 1358 | /* add VID to filter table */ | ||
| 1359 | igb_vfta_set(hw, vid, true); | ||
| 1360 | adapter->mng_vlan_id = vid; | ||
| 1361 | } else { | ||
| 1362 | adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; | ||
| 1363 | } | ||
| 1364 | |||
| 1365 | if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && | ||
| 1366 | (vid != old_vid) && | ||
| 1367 | !test_bit(old_vid, adapter->active_vlans)) { | ||
| 1368 | /* remove VID from filter table */ | ||
| 1369 | igb_vfta_set(hw, old_vid, false); | ||
| 1370 | } | ||
| 1371 | } | ||
| 1372 | |||
| 1373 | /** | ||
| 1374 | * igb_release_hw_control - release control of the h/w to f/w | ||
| 1375 | * @adapter: address of board private structure | ||
| 1376 | * | ||
| 1377 | * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. | ||
| 1378 | * For ASF and Pass Through versions of f/w this means that the | ||
| 1379 | * driver is no longer loaded. | ||
| 1380 | * | ||
| 1381 | **/ | ||
| 1382 | static void igb_release_hw_control(struct igb_adapter *adapter) | ||
| 1383 | { | ||
| 1384 | struct e1000_hw *hw = &adapter->hw; | ||
| 1385 | u32 ctrl_ext; | ||
| 1386 | |||
| 1387 | /* Let firmware take over control of h/w */ | ||
| 1388 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
| 1389 | wr32(E1000_CTRL_EXT, | ||
| 1390 | ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | ||
| 1391 | } | ||
| 1392 | |||
| 1393 | /** | ||
| 1394 | * igb_get_hw_control - get control of the h/w from f/w | ||
| 1395 | * @adapter: address of board private structure | ||
| 1396 | * | ||
| 1397 | * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. | ||
| 1398 | * For ASF and Pass Through versions of f/w this means that | ||
| 1399 | * the driver is loaded. | ||
| 1400 | * | ||
| 1401 | **/ | ||
| 1402 | static void igb_get_hw_control(struct igb_adapter *adapter) | ||
| 1403 | { | ||
| 1404 | struct e1000_hw *hw = &adapter->hw; | ||
| 1405 | u32 ctrl_ext; | ||
| 1406 | |||
| 1407 | /* Let firmware know the driver has taken over */ | ||
| 1408 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
| 1409 | wr32(E1000_CTRL_EXT, | ||
| 1410 | ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | ||
| 1411 | } | ||
| 1412 | |||
| 1413 | /** | ||
| 1414 | * igb_configure - configure the hardware for RX and TX | ||
| 1415 | * @adapter: private board structure | ||
| 1416 | **/ | ||
| 1417 | static void igb_configure(struct igb_adapter *adapter) | ||
| 1418 | { | ||
| 1419 | struct net_device *netdev = adapter->netdev; | ||
| 1420 | int i; | ||
| 1421 | |||
| 1422 | igb_get_hw_control(adapter); | ||
| 1423 | igb_set_rx_mode(netdev); | ||
| 1424 | |||
| 1425 | igb_restore_vlan(adapter); | ||
| 1426 | |||
| 1427 | igb_setup_tctl(adapter); | ||
| 1428 | igb_setup_mrqc(adapter); | ||
| 1429 | igb_setup_rctl(adapter); | ||
| 1430 | |||
| 1431 | igb_configure_tx(adapter); | ||
| 1432 | igb_configure_rx(adapter); | ||
| 1433 | |||
| 1434 | igb_rx_fifo_flush_82575(&adapter->hw); | ||
| 1435 | |||
| 1436 | /* call igb_desc_unused which always leaves | ||
| 1437 | * at least 1 descriptor unused to make sure | ||
| 1438 | * next_to_use != next_to_clean */ | ||
| 1439 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
| 1440 | struct igb_ring *ring = adapter->rx_ring[i]; | ||
| 1441 | igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring)); | ||
| 1442 | } | ||
| 1443 | } | ||
| 1444 | |||
| 1445 | /** | ||
| 1446 | * igb_power_up_link - Power up the phy/serdes link | ||
| 1447 | * @adapter: address of board private structure | ||
| 1448 | **/ | ||
| 1449 | void igb_power_up_link(struct igb_adapter *adapter) | ||
| 1450 | { | ||
| 1451 | if (adapter->hw.phy.media_type == e1000_media_type_copper) | ||
| 1452 | igb_power_up_phy_copper(&adapter->hw); | ||
| 1453 | else | ||
| 1454 | igb_power_up_serdes_link_82575(&adapter->hw); | ||
| 1455 | } | ||
| 1456 | |||
| 1457 | /** | ||
| 1458 | * igb_power_down_link - Power down the phy/serdes link | ||
| 1459 | * @adapter: address of board private structure | ||
| 1460 | */ | ||
| 1461 | static void igb_power_down_link(struct igb_adapter *adapter) | ||
| 1462 | { | ||
| 1463 | if (adapter->hw.phy.media_type == e1000_media_type_copper) | ||
| 1464 | igb_power_down_phy_copper_82575(&adapter->hw); | ||
| 1465 | else | ||
| 1466 | igb_shutdown_serdes_link_82575(&adapter->hw); | ||
| 1467 | } | ||
| 1468 | |||
| 1469 | /** | ||
| 1470 | * igb_up - Open the interface and prepare it to handle traffic | ||
| 1471 | * @adapter: board private structure | ||
| 1472 | **/ | ||
| 1473 | int igb_up(struct igb_adapter *adapter) | ||
| 1474 | { | ||
| 1475 | struct e1000_hw *hw = &adapter->hw; | ||
| 1476 | int i; | ||
| 1477 | |||
| 1478 | /* hardware has been reset, we need to reload some things */ | ||
| 1479 | igb_configure(adapter); | ||
| 1480 | |||
| 1481 | clear_bit(__IGB_DOWN, &adapter->state); | ||
| 1482 | |||
| 1483 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
| 1484 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
| 1485 | napi_enable(&q_vector->napi); | ||
| 1486 | } | ||
| 1487 | if (adapter->msix_entries) | ||
| 1488 | igb_configure_msix(adapter); | ||
| 1489 | else | ||
| 1490 | igb_assign_vector(adapter->q_vector[0], 0); | ||
| 1491 | |||
| 1492 | /* Clear any pending interrupts. */ | ||
| 1493 | rd32(E1000_ICR); | ||
| 1494 | igb_irq_enable(adapter); | ||
| 1495 | |||
| 1496 | /* notify VFs that reset has been completed */ | ||
| 1497 | if (adapter->vfs_allocated_count) { | ||
| 1498 | u32 reg_data = rd32(E1000_CTRL_EXT); | ||
| 1499 | reg_data |= E1000_CTRL_EXT_PFRSTD; | ||
| 1500 | wr32(E1000_CTRL_EXT, reg_data); | ||
| 1501 | } | ||
| 1502 | |||
| 1503 | netif_tx_start_all_queues(adapter->netdev); | ||
| 1504 | |||
| 1505 | /* start the watchdog. */ | ||
| 1506 | hw->mac.get_link_status = 1; | ||
| 1507 | schedule_work(&adapter->watchdog_task); | ||
| 1508 | |||
| 1509 | return 0; | ||
| 1510 | } | ||
| 1511 | |||
| 1512 | void igb_down(struct igb_adapter *adapter) | ||
| 1513 | { | ||
| 1514 | struct net_device *netdev = adapter->netdev; | ||
| 1515 | struct e1000_hw *hw = &adapter->hw; | ||
| 1516 | u32 tctl, rctl; | ||
| 1517 | int i; | ||
| 1518 | |||
| 1519 | /* signal that we're down so the interrupt handler does not | ||
| 1520 | * reschedule our watchdog timer */ | ||
| 1521 | set_bit(__IGB_DOWN, &adapter->state); | ||
| 1522 | |||
| 1523 | /* disable receives in the hardware */ | ||
| 1524 | rctl = rd32(E1000_RCTL); | ||
| 1525 | wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); | ||
| 1526 | /* flush and sleep below */ | ||
| 1527 | |||
| 1528 | netif_tx_stop_all_queues(netdev); | ||
| 1529 | |||
| 1530 | /* disable transmits in the hardware */ | ||
| 1531 | tctl = rd32(E1000_TCTL); | ||
| 1532 | tctl &= ~E1000_TCTL_EN; | ||
| 1533 | wr32(E1000_TCTL, tctl); | ||
| 1534 | /* flush both disables and wait for them to finish */ | ||
| 1535 | wrfl(); | ||
| 1536 | msleep(10); | ||
| 1537 | |||
| 1538 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
| 1539 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
| 1540 | napi_disable(&q_vector->napi); | ||
| 1541 | } | ||
| 1542 | |||
| 1543 | igb_irq_disable(adapter); | ||
| 1544 | |||
| 1545 | del_timer_sync(&adapter->watchdog_timer); | ||
| 1546 | del_timer_sync(&adapter->phy_info_timer); | ||
| 1547 | |||
| 1548 | netif_carrier_off(netdev); | ||
| 1549 | |||
| 1550 | /* record the stats before reset*/ | ||
| 1551 | spin_lock(&adapter->stats64_lock); | ||
| 1552 | igb_update_stats(adapter, &adapter->stats64); | ||
| 1553 | spin_unlock(&adapter->stats64_lock); | ||
| 1554 | |||
| 1555 | adapter->link_speed = 0; | ||
| 1556 | adapter->link_duplex = 0; | ||
| 1557 | |||
| 1558 | if (!pci_channel_offline(adapter->pdev)) | ||
| 1559 | igb_reset(adapter); | ||
| 1560 | igb_clean_all_tx_rings(adapter); | ||
| 1561 | igb_clean_all_rx_rings(adapter); | ||
| 1562 | #ifdef CONFIG_IGB_DCA | ||
| 1563 | |||
| 1564 | /* since we reset the hardware DCA settings were cleared */ | ||
| 1565 | igb_setup_dca(adapter); | ||
| 1566 | #endif | ||
| 1567 | } | ||
| 1568 | |||
| 1569 | void igb_reinit_locked(struct igb_adapter *adapter) | ||
| 1570 | { | ||
| 1571 | WARN_ON(in_interrupt()); | ||
| 1572 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
| 1573 | msleep(1); | ||
| 1574 | igb_down(adapter); | ||
| 1575 | igb_up(adapter); | ||
| 1576 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
| 1577 | } | ||
| 1578 | |||
| 1579 | void igb_reset(struct igb_adapter *adapter) | ||
| 1580 | { | ||
| 1581 | struct pci_dev *pdev = adapter->pdev; | ||
| 1582 | struct e1000_hw *hw = &adapter->hw; | ||
| 1583 | struct e1000_mac_info *mac = &hw->mac; | ||
| 1584 | struct e1000_fc_info *fc = &hw->fc; | ||
| 1585 | u32 pba = 0, tx_space, min_tx_space, min_rx_space; | ||
| 1586 | u16 hwm; | ||
| 1587 | |||
| 1588 | /* Repartition Pba for greater than 9k mtu | ||
| 1589 | * To take effect CTRL.RST is required. | ||
| 1590 | */ | ||
| 1591 | switch (mac->type) { | ||
| 1592 | case e1000_i350: | ||
| 1593 | case e1000_82580: | ||
| 1594 | pba = rd32(E1000_RXPBS); | ||
| 1595 | pba = igb_rxpbs_adjust_82580(pba); | ||
| 1596 | break; | ||
| 1597 | case e1000_82576: | ||
| 1598 | pba = rd32(E1000_RXPBS); | ||
| 1599 | pba &= E1000_RXPBS_SIZE_MASK_82576; | ||
| 1600 | break; | ||
| 1601 | case e1000_82575: | ||
| 1602 | default: | ||
| 1603 | pba = E1000_PBA_34K; | ||
| 1604 | break; | ||
| 1605 | } | ||
| 1606 | |||
| 1607 | if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && | ||
| 1608 | (mac->type < e1000_82576)) { | ||
| 1609 | /* adjust PBA for jumbo frames */ | ||
| 1610 | wr32(E1000_PBA, pba); | ||
| 1611 | |||
| 1612 | /* To maintain wire speed transmits, the Tx FIFO should be | ||
| 1613 | * large enough to accommodate two full transmit packets, | ||
| 1614 | * rounded up to the next 1KB and expressed in KB. Likewise, | ||
| 1615 | * the Rx FIFO should be large enough to accommodate at least | ||
| 1616 | * one full receive packet and is similarly rounded up and | ||
| 1617 | * expressed in KB. */ | ||
| 1618 | pba = rd32(E1000_PBA); | ||
| 1619 | /* upper 16 bits has Tx packet buffer allocation size in KB */ | ||
| 1620 | tx_space = pba >> 16; | ||
| 1621 | /* lower 16 bits has Rx packet buffer allocation size in KB */ | ||
| 1622 | pba &= 0xffff; | ||
| 1623 | /* the tx fifo also stores 16 bytes of information about the tx | ||
| 1624 | * but don't include ethernet FCS because hardware appends it */ | ||
| 1625 | min_tx_space = (adapter->max_frame_size + | ||
| 1626 | sizeof(union e1000_adv_tx_desc) - | ||
| 1627 | ETH_FCS_LEN) * 2; | ||
| 1628 | min_tx_space = ALIGN(min_tx_space, 1024); | ||
| 1629 | min_tx_space >>= 10; | ||
| 1630 | /* software strips receive CRC, so leave room for it */ | ||
| 1631 | min_rx_space = adapter->max_frame_size; | ||
| 1632 | min_rx_space = ALIGN(min_rx_space, 1024); | ||
| 1633 | min_rx_space >>= 10; | ||
| 1634 | |||
| 1635 | /* If current Tx allocation is less than the min Tx FIFO size, | ||
| 1636 | * and the min Tx FIFO size is less than the current Rx FIFO | ||
| 1637 | * allocation, take space away from current Rx allocation */ | ||
| 1638 | if (tx_space < min_tx_space && | ||
| 1639 | ((min_tx_space - tx_space) < pba)) { | ||
| 1640 | pba = pba - (min_tx_space - tx_space); | ||
| 1641 | |||
| 1642 | /* if short on rx space, rx wins and must trump tx | ||
| 1643 | * adjustment */ | ||
| 1644 | if (pba < min_rx_space) | ||
| 1645 | pba = min_rx_space; | ||
| 1646 | } | ||
| 1647 | wr32(E1000_PBA, pba); | ||
| 1648 | } | ||
| 1649 | |||
| 1650 | /* flow control settings */ | ||
| 1651 | /* The high water mark must be low enough to fit one full frame | ||
| 1652 | * (or the size used for early receive) above it in the Rx FIFO. | ||
| 1653 | * Set it to the lower of: | ||
| 1654 | * - 90% of the Rx FIFO size, or | ||
| 1655 | * - the full Rx FIFO size minus one full frame */ | ||
| 1656 | hwm = min(((pba << 10) * 9 / 10), | ||
| 1657 | ((pba << 10) - 2 * adapter->max_frame_size)); | ||
| 1658 | |||
| 1659 | fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */ | ||
| 1660 | fc->low_water = fc->high_water - 16; | ||
| 1661 | fc->pause_time = 0xFFFF; | ||
| 1662 | fc->send_xon = 1; | ||
| 1663 | fc->current_mode = fc->requested_mode; | ||
| 1664 | |||
| 1665 | /* disable receive for all VFs and wait one second */ | ||
| 1666 | if (adapter->vfs_allocated_count) { | ||
| 1667 | int i; | ||
| 1668 | for (i = 0 ; i < adapter->vfs_allocated_count; i++) | ||
| 1669 | adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; | ||
| 1670 | |||
| 1671 | /* ping all the active vfs to let them know we are going down */ | ||
| 1672 | igb_ping_all_vfs(adapter); | ||
| 1673 | |||
| 1674 | /* disable transmits and receives */ | ||
| 1675 | wr32(E1000_VFRE, 0); | ||
| 1676 | wr32(E1000_VFTE, 0); | ||
| 1677 | } | ||
| 1678 | |||
| 1679 | /* Allow time for pending master requests to run */ | ||
| 1680 | hw->mac.ops.reset_hw(hw); | ||
| 1681 | wr32(E1000_WUC, 0); | ||
| 1682 | |||
| 1683 | if (hw->mac.ops.init_hw(hw)) | ||
| 1684 | dev_err(&pdev->dev, "Hardware Error\n"); | ||
| 1685 | if (hw->mac.type > e1000_82580) { | ||
| 1686 | if (adapter->flags & IGB_FLAG_DMAC) { | ||
| 1687 | u32 reg; | ||
| 1688 | |||
| 1689 | /* | ||
| 1690 | * DMA Coalescing high water mark needs to be higher | ||
| 1691 | * than * the * Rx threshold. The Rx threshold is | ||
| 1692 | * currently * pba - 6, so we * should use a high water | ||
| 1693 | * mark of pba * - 4. */ | ||
| 1694 | hwm = (pba - 4) << 10; | ||
| 1695 | |||
| 1696 | reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT) | ||
| 1697 | & E1000_DMACR_DMACTHR_MASK); | ||
| 1698 | |||
| 1699 | /* transition to L0x or L1 if available..*/ | ||
| 1700 | reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); | ||
| 1701 | |||
| 1702 | /* watchdog timer= +-1000 usec in 32usec intervals */ | ||
| 1703 | reg |= (1000 >> 5); | ||
| 1704 | wr32(E1000_DMACR, reg); | ||
| 1705 | |||
| 1706 | /* no lower threshold to disable coalescing(smart fifb) | ||
| 1707 | * -UTRESH=0*/ | ||
| 1708 | wr32(E1000_DMCRTRH, 0); | ||
| 1709 | |||
| 1710 | /* set hwm to PBA - 2 * max frame size */ | ||
| 1711 | wr32(E1000_FCRTC, hwm); | ||
| 1712 | |||
| 1713 | /* | ||
| 1714 | * This sets the time to wait before requesting tran- | ||
| 1715 | * sition to * low power state to number of usecs needed | ||
| 1716 | * to receive 1 512 * byte frame at gigabit line rate | ||
| 1717 | */ | ||
| 1718 | reg = rd32(E1000_DMCTLX); | ||
| 1719 | reg |= IGB_DMCTLX_DCFLUSH_DIS; | ||
| 1720 | |||
| 1721 | /* Delay 255 usec before entering Lx state. */ | ||
| 1722 | reg |= 0xFF; | ||
| 1723 | wr32(E1000_DMCTLX, reg); | ||
| 1724 | |||
| 1725 | /* free space in Tx packet buffer to wake from DMAC */ | ||
| 1726 | wr32(E1000_DMCTXTH, | ||
| 1727 | (IGB_MIN_TXPBSIZE - | ||
| 1728 | (IGB_TX_BUF_4096 + adapter->max_frame_size)) | ||
| 1729 | >> 6); | ||
| 1730 | |||
| 1731 | /* make low power state decision controlled by DMAC */ | ||
| 1732 | reg = rd32(E1000_PCIEMISC); | ||
| 1733 | reg |= E1000_PCIEMISC_LX_DECISION; | ||
| 1734 | wr32(E1000_PCIEMISC, reg); | ||
| 1735 | } /* end if IGB_FLAG_DMAC set */ | ||
| 1736 | } | ||
| 1737 | if (hw->mac.type == e1000_82580) { | ||
| 1738 | u32 reg = rd32(E1000_PCIEMISC); | ||
| 1739 | wr32(E1000_PCIEMISC, | ||
| 1740 | reg & ~E1000_PCIEMISC_LX_DECISION); | ||
| 1741 | } | ||
| 1742 | if (!netif_running(adapter->netdev)) | ||
| 1743 | igb_power_down_link(adapter); | ||
| 1744 | |||
| 1745 | igb_update_mng_vlan(adapter); | ||
| 1746 | |||
| 1747 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | ||
| 1748 | wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); | ||
| 1749 | |||
| 1750 | igb_get_phy_info(hw); | ||
| 1751 | } | ||
| 1752 | |||
| 1753 | static u32 igb_fix_features(struct net_device *netdev, u32 features) | ||
| 1754 | { | ||
| 1755 | /* | ||
| 1756 | * Since there is no support for separate rx/tx vlan accel | ||
| 1757 | * enable/disable make sure tx flag is always in same state as rx. | ||
| 1758 | */ | ||
| 1759 | if (features & NETIF_F_HW_VLAN_RX) | ||
| 1760 | features |= NETIF_F_HW_VLAN_TX; | ||
| 1761 | else | ||
| 1762 | features &= ~NETIF_F_HW_VLAN_TX; | ||
| 1763 | |||
| 1764 | return features; | ||
| 1765 | } | ||
| 1766 | |||
| 1767 | static int igb_set_features(struct net_device *netdev, u32 features) | ||
| 1768 | { | ||
| 1769 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 1770 | int i; | ||
| 1771 | u32 changed = netdev->features ^ features; | ||
| 1772 | |||
| 1773 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
| 1774 | if (features & NETIF_F_RXCSUM) | ||
| 1775 | adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM; | ||
| 1776 | else | ||
| 1777 | adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM; | ||
| 1778 | } | ||
| 1779 | |||
| 1780 | if (changed & NETIF_F_HW_VLAN_RX) | ||
| 1781 | igb_vlan_mode(netdev, features); | ||
| 1782 | |||
| 1783 | return 0; | ||
| 1784 | } | ||
| 1785 | |||
| 1786 | static const struct net_device_ops igb_netdev_ops = { | ||
| 1787 | .ndo_open = igb_open, | ||
| 1788 | .ndo_stop = igb_close, | ||
| 1789 | .ndo_start_xmit = igb_xmit_frame_adv, | ||
| 1790 | .ndo_get_stats64 = igb_get_stats64, | ||
| 1791 | .ndo_set_rx_mode = igb_set_rx_mode, | ||
| 1792 | .ndo_set_multicast_list = igb_set_rx_mode, | ||
| 1793 | .ndo_set_mac_address = igb_set_mac, | ||
| 1794 | .ndo_change_mtu = igb_change_mtu, | ||
| 1795 | .ndo_do_ioctl = igb_ioctl, | ||
| 1796 | .ndo_tx_timeout = igb_tx_timeout, | ||
| 1797 | .ndo_validate_addr = eth_validate_addr, | ||
| 1798 | .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, | ||
| 1799 | .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, | ||
| 1800 | .ndo_set_vf_mac = igb_ndo_set_vf_mac, | ||
| 1801 | .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, | ||
| 1802 | .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw, | ||
| 1803 | .ndo_get_vf_config = igb_ndo_get_vf_config, | ||
| 1804 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
| 1805 | .ndo_poll_controller = igb_netpoll, | ||
| 1806 | #endif | ||
| 1807 | .ndo_fix_features = igb_fix_features, | ||
| 1808 | .ndo_set_features = igb_set_features, | ||
| 1809 | }; | ||
| 1810 | |||
| 1811 | /** | ||
| 1812 | * igb_probe - Device Initialization Routine | ||
| 1813 | * @pdev: PCI device information struct | ||
| 1814 | * @ent: entry in igb_pci_tbl | ||
| 1815 | * | ||
| 1816 | * Returns 0 on success, negative on failure | ||
| 1817 | * | ||
| 1818 | * igb_probe initializes an adapter identified by a pci_dev structure. | ||
| 1819 | * The OS initialization, configuring of the adapter private structure, | ||
| 1820 | * and a hardware reset occur. | ||
| 1821 | **/ | ||
| 1822 | static int __devinit igb_probe(struct pci_dev *pdev, | ||
| 1823 | const struct pci_device_id *ent) | ||
| 1824 | { | ||
| 1825 | struct net_device *netdev; | ||
| 1826 | struct igb_adapter *adapter; | ||
| 1827 | struct e1000_hw *hw; | ||
| 1828 | u16 eeprom_data = 0; | ||
| 1829 | s32 ret_val; | ||
| 1830 | static int global_quad_port_a; /* global quad port a indication */ | ||
| 1831 | const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; | ||
| 1832 | unsigned long mmio_start, mmio_len; | ||
| 1833 | int err, pci_using_dac; | ||
| 1834 | u16 eeprom_apme_mask = IGB_EEPROM_APME; | ||
| 1835 | u8 part_str[E1000_PBANUM_LENGTH]; | ||
| 1836 | |||
| 1837 | /* Catch broken hardware that put the wrong VF device ID in | ||
| 1838 | * the PCIe SR-IOV capability. | ||
| 1839 | */ | ||
| 1840 | if (pdev->is_virtfn) { | ||
| 1841 | WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", | ||
| 1842 | pci_name(pdev), pdev->vendor, pdev->device); | ||
| 1843 | return -EINVAL; | ||
| 1844 | } | ||
| 1845 | |||
| 1846 | err = pci_enable_device_mem(pdev); | ||
| 1847 | if (err) | ||
| 1848 | return err; | ||
| 1849 | |||
| 1850 | pci_using_dac = 0; | ||
| 1851 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
| 1852 | if (!err) { | ||
| 1853 | err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
| 1854 | if (!err) | ||
| 1855 | pci_using_dac = 1; | ||
| 1856 | } else { | ||
| 1857 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); | ||
| 1858 | if (err) { | ||
| 1859 | err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); | ||
| 1860 | if (err) { | ||
| 1861 | dev_err(&pdev->dev, "No usable DMA " | ||
| 1862 | "configuration, aborting\n"); | ||
| 1863 | goto err_dma; | ||
| 1864 | } | ||
| 1865 | } | ||
| 1866 | } | ||
| 1867 | |||
| 1868 | err = pci_request_selected_regions(pdev, pci_select_bars(pdev, | ||
| 1869 | IORESOURCE_MEM), | ||
| 1870 | igb_driver_name); | ||
| 1871 | if (err) | ||
| 1872 | goto err_pci_reg; | ||
| 1873 | |||
| 1874 | pci_enable_pcie_error_reporting(pdev); | ||
| 1875 | |||
| 1876 | pci_set_master(pdev); | ||
| 1877 | pci_save_state(pdev); | ||
| 1878 | |||
| 1879 | err = -ENOMEM; | ||
| 1880 | netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), | ||
| 1881 | IGB_ABS_MAX_TX_QUEUES); | ||
| 1882 | if (!netdev) | ||
| 1883 | goto err_alloc_etherdev; | ||
| 1884 | |||
| 1885 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
| 1886 | |||
| 1887 | pci_set_drvdata(pdev, netdev); | ||
| 1888 | adapter = netdev_priv(netdev); | ||
| 1889 | adapter->netdev = netdev; | ||
| 1890 | adapter->pdev = pdev; | ||
| 1891 | hw = &adapter->hw; | ||
| 1892 | hw->back = adapter; | ||
| 1893 | adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE; | ||
| 1894 | |||
| 1895 | mmio_start = pci_resource_start(pdev, 0); | ||
| 1896 | mmio_len = pci_resource_len(pdev, 0); | ||
| 1897 | |||
| 1898 | err = -EIO; | ||
| 1899 | hw->hw_addr = ioremap(mmio_start, mmio_len); | ||
| 1900 | if (!hw->hw_addr) | ||
| 1901 | goto err_ioremap; | ||
| 1902 | |||
| 1903 | netdev->netdev_ops = &igb_netdev_ops; | ||
| 1904 | igb_set_ethtool_ops(netdev); | ||
| 1905 | netdev->watchdog_timeo = 5 * HZ; | ||
| 1906 | |||
| 1907 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
| 1908 | |||
| 1909 | netdev->mem_start = mmio_start; | ||
| 1910 | netdev->mem_end = mmio_start + mmio_len; | ||
| 1911 | |||
| 1912 | /* PCI config space info */ | ||
| 1913 | hw->vendor_id = pdev->vendor; | ||
| 1914 | hw->device_id = pdev->device; | ||
| 1915 | hw->revision_id = pdev->revision; | ||
| 1916 | hw->subsystem_vendor_id = pdev->subsystem_vendor; | ||
| 1917 | hw->subsystem_device_id = pdev->subsystem_device; | ||
| 1918 | |||
| 1919 | /* Copy the default MAC, PHY and NVM function pointers */ | ||
| 1920 | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | ||
| 1921 | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | ||
| 1922 | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | ||
| 1923 | /* Initialize skew-specific constants */ | ||
| 1924 | err = ei->get_invariants(hw); | ||
| 1925 | if (err) | ||
| 1926 | goto err_sw_init; | ||
| 1927 | |||
| 1928 | /* setup the private structure */ | ||
| 1929 | err = igb_sw_init(adapter); | ||
| 1930 | if (err) | ||
| 1931 | goto err_sw_init; | ||
| 1932 | |||
| 1933 | igb_get_bus_info_pcie(hw); | ||
| 1934 | |||
| 1935 | hw->phy.autoneg_wait_to_complete = false; | ||
| 1936 | |||
| 1937 | /* Copper options */ | ||
| 1938 | if (hw->phy.media_type == e1000_media_type_copper) { | ||
| 1939 | hw->phy.mdix = AUTO_ALL_MODES; | ||
| 1940 | hw->phy.disable_polarity_correction = false; | ||
| 1941 | hw->phy.ms_type = e1000_ms_hw_default; | ||
| 1942 | } | ||
| 1943 | |||
| 1944 | if (igb_check_reset_block(hw)) | ||
| 1945 | dev_info(&pdev->dev, | ||
| 1946 | "PHY reset is blocked due to SOL/IDER session.\n"); | ||
| 1947 | |||
| 1948 | netdev->hw_features = NETIF_F_SG | | ||
| 1949 | NETIF_F_IP_CSUM | | ||
| 1950 | NETIF_F_IPV6_CSUM | | ||
| 1951 | NETIF_F_TSO | | ||
| 1952 | NETIF_F_TSO6 | | ||
| 1953 | NETIF_F_RXCSUM | | ||
| 1954 | NETIF_F_HW_VLAN_RX; | ||
| 1955 | |||
| 1956 | netdev->features = netdev->hw_features | | ||
| 1957 | NETIF_F_HW_VLAN_TX | | ||
| 1958 | NETIF_F_HW_VLAN_FILTER; | ||
| 1959 | |||
| 1960 | netdev->vlan_features |= NETIF_F_TSO; | ||
| 1961 | netdev->vlan_features |= NETIF_F_TSO6; | ||
| 1962 | netdev->vlan_features |= NETIF_F_IP_CSUM; | ||
| 1963 | netdev->vlan_features |= NETIF_F_IPV6_CSUM; | ||
| 1964 | netdev->vlan_features |= NETIF_F_SG; | ||
| 1965 | |||
| 1966 | if (pci_using_dac) { | ||
| 1967 | netdev->features |= NETIF_F_HIGHDMA; | ||
| 1968 | netdev->vlan_features |= NETIF_F_HIGHDMA; | ||
| 1969 | } | ||
| 1970 | |||
| 1971 | if (hw->mac.type >= e1000_82576) { | ||
| 1972 | netdev->hw_features |= NETIF_F_SCTP_CSUM; | ||
| 1973 | netdev->features |= NETIF_F_SCTP_CSUM; | ||
| 1974 | } | ||
| 1975 | |||
| 1976 | adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); | ||
| 1977 | |||
| 1978 | /* before reading the NVM, reset the controller to put the device in a | ||
| 1979 | * known good starting state */ | ||
| 1980 | hw->mac.ops.reset_hw(hw); | ||
| 1981 | |||
| 1982 | /* make sure the NVM is good */ | ||
| 1983 | if (hw->nvm.ops.validate(hw) < 0) { | ||
| 1984 | dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); | ||
| 1985 | err = -EIO; | ||
| 1986 | goto err_eeprom; | ||
| 1987 | } | ||
| 1988 | |||
| 1989 | /* copy the MAC address out of the NVM */ | ||
| 1990 | if (hw->mac.ops.read_mac_addr(hw)) | ||
| 1991 | dev_err(&pdev->dev, "NVM Read Error\n"); | ||
| 1992 | |||
| 1993 | memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); | ||
| 1994 | memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len); | ||
| 1995 | |||
| 1996 | if (!is_valid_ether_addr(netdev->perm_addr)) { | ||
| 1997 | dev_err(&pdev->dev, "Invalid MAC Address\n"); | ||
| 1998 | err = -EIO; | ||
| 1999 | goto err_eeprom; | ||
| 2000 | } | ||
| 2001 | |||
| 2002 | setup_timer(&adapter->watchdog_timer, igb_watchdog, | ||
| 2003 | (unsigned long) adapter); | ||
| 2004 | setup_timer(&adapter->phy_info_timer, igb_update_phy_info, | ||
| 2005 | (unsigned long) adapter); | ||
| 2006 | |||
| 2007 | INIT_WORK(&adapter->reset_task, igb_reset_task); | ||
| 2008 | INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); | ||
| 2009 | |||
| 2010 | /* Initialize link properties that are user-changeable */ | ||
| 2011 | adapter->fc_autoneg = true; | ||
| 2012 | hw->mac.autoneg = true; | ||
| 2013 | hw->phy.autoneg_advertised = 0x2f; | ||
| 2014 | |||
| 2015 | hw->fc.requested_mode = e1000_fc_default; | ||
| 2016 | hw->fc.current_mode = e1000_fc_default; | ||
| 2017 | |||
| 2018 | igb_validate_mdi_setting(hw); | ||
| 2019 | |||
| 2020 | /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM, | ||
| 2021 | * enable the ACPI Magic Packet filter | ||
| 2022 | */ | ||
| 2023 | |||
| 2024 | if (hw->bus.func == 0) | ||
| 2025 | hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | ||
| 2026 | else if (hw->mac.type >= e1000_82580) | ||
| 2027 | hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + | ||
| 2028 | NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, | ||
| 2029 | &eeprom_data); | ||
| 2030 | else if (hw->bus.func == 1) | ||
| 2031 | hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | ||
| 2032 | |||
| 2033 | if (eeprom_data & eeprom_apme_mask) | ||
| 2034 | adapter->eeprom_wol |= E1000_WUFC_MAG; | ||
| 2035 | |||
| 2036 | /* now that we have the eeprom settings, apply the special cases where | ||
| 2037 | * the eeprom may be wrong or the board simply won't support wake on | ||
| 2038 | * lan on a particular port */ | ||
| 2039 | switch (pdev->device) { | ||
| 2040 | case E1000_DEV_ID_82575GB_QUAD_COPPER: | ||
| 2041 | adapter->eeprom_wol = 0; | ||
| 2042 | break; | ||
| 2043 | case E1000_DEV_ID_82575EB_FIBER_SERDES: | ||
| 2044 | case E1000_DEV_ID_82576_FIBER: | ||
| 2045 | case E1000_DEV_ID_82576_SERDES: | ||
| 2046 | /* Wake events only supported on port A for dual fiber | ||
| 2047 | * regardless of eeprom setting */ | ||
| 2048 | if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) | ||
| 2049 | adapter->eeprom_wol = 0; | ||
| 2050 | break; | ||
| 2051 | case E1000_DEV_ID_82576_QUAD_COPPER: | ||
| 2052 | case E1000_DEV_ID_82576_QUAD_COPPER_ET2: | ||
| 2053 | /* if quad port adapter, disable WoL on all but port A */ | ||
| 2054 | if (global_quad_port_a != 0) | ||
| 2055 | adapter->eeprom_wol = 0; | ||
| 2056 | else | ||
| 2057 | adapter->flags |= IGB_FLAG_QUAD_PORT_A; | ||
| 2058 | /* Reset for multiple quad port adapters */ | ||
| 2059 | if (++global_quad_port_a == 4) | ||
| 2060 | global_quad_port_a = 0; | ||
| 2061 | break; | ||
| 2062 | } | ||
| 2063 | |||
| 2064 | /* initialize the wol settings based on the eeprom settings */ | ||
| 2065 | adapter->wol = adapter->eeprom_wol; | ||
| 2066 | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | ||
| 2067 | |||
| 2068 | /* reset the hardware with the new settings */ | ||
| 2069 | igb_reset(adapter); | ||
| 2070 | |||
| 2071 | /* let the f/w know that the h/w is now under the control of the | ||
| 2072 | * driver. */ | ||
| 2073 | igb_get_hw_control(adapter); | ||
| 2074 | |||
| 2075 | strcpy(netdev->name, "eth%d"); | ||
| 2076 | err = register_netdev(netdev); | ||
| 2077 | if (err) | ||
| 2078 | goto err_register; | ||
| 2079 | |||
| 2080 | igb_vlan_mode(netdev, netdev->features); | ||
| 2081 | |||
| 2082 | /* carrier off reporting is important to ethtool even BEFORE open */ | ||
| 2083 | netif_carrier_off(netdev); | ||
| 2084 | |||
| 2085 | #ifdef CONFIG_IGB_DCA | ||
| 2086 | if (dca_add_requester(&pdev->dev) == 0) { | ||
| 2087 | adapter->flags |= IGB_FLAG_DCA_ENABLED; | ||
| 2088 | dev_info(&pdev->dev, "DCA enabled\n"); | ||
| 2089 | igb_setup_dca(adapter); | ||
| 2090 | } | ||
| 2091 | |||
| 2092 | #endif | ||
| 2093 | /* do hw tstamp init after resetting */ | ||
| 2094 | igb_init_hw_timer(adapter); | ||
| 2095 | |||
| 2096 | dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); | ||
| 2097 | /* print bus type/speed/width info */ | ||
| 2098 | dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", | ||
| 2099 | netdev->name, | ||
| 2100 | ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : | ||
| 2101 | (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : | ||
| 2102 | "unknown"), | ||
| 2103 | ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : | ||
| 2104 | (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" : | ||
| 2105 | (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" : | ||
| 2106 | "unknown"), | ||
| 2107 | netdev->dev_addr); | ||
| 2108 | |||
| 2109 | ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH); | ||
| 2110 | if (ret_val) | ||
| 2111 | strcpy(part_str, "Unknown"); | ||
| 2112 | dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); | ||
| 2113 | dev_info(&pdev->dev, | ||
| 2114 | "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", | ||
| 2115 | adapter->msix_entries ? "MSI-X" : | ||
| 2116 | (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", | ||
| 2117 | adapter->num_rx_queues, adapter->num_tx_queues); | ||
| 2118 | switch (hw->mac.type) { | ||
| 2119 | case e1000_i350: | ||
| 2120 | igb_set_eee_i350(hw); | ||
| 2121 | break; | ||
| 2122 | default: | ||
| 2123 | break; | ||
| 2124 | } | ||
| 2125 | return 0; | ||
| 2126 | |||
| 2127 | err_register: | ||
| 2128 | igb_release_hw_control(adapter); | ||
| 2129 | err_eeprom: | ||
| 2130 | if (!igb_check_reset_block(hw)) | ||
| 2131 | igb_reset_phy(hw); | ||
| 2132 | |||
| 2133 | if (hw->flash_address) | ||
| 2134 | iounmap(hw->flash_address); | ||
| 2135 | err_sw_init: | ||
| 2136 | igb_clear_interrupt_scheme(adapter); | ||
| 2137 | iounmap(hw->hw_addr); | ||
| 2138 | err_ioremap: | ||
| 2139 | free_netdev(netdev); | ||
| 2140 | err_alloc_etherdev: | ||
| 2141 | pci_release_selected_regions(pdev, | ||
| 2142 | pci_select_bars(pdev, IORESOURCE_MEM)); | ||
| 2143 | err_pci_reg: | ||
| 2144 | err_dma: | ||
| 2145 | pci_disable_device(pdev); | ||
| 2146 | return err; | ||
| 2147 | } | ||
| 2148 | |||
| 2149 | /** | ||
| 2150 | * igb_remove - Device Removal Routine | ||
| 2151 | * @pdev: PCI device information struct | ||
| 2152 | * | ||
| 2153 | * igb_remove is called by the PCI subsystem to alert the driver | ||
| 2154 | * that it should release a PCI device. The could be caused by a | ||
| 2155 | * Hot-Plug event, or because the driver is going to be removed from | ||
| 2156 | * memory. | ||
| 2157 | **/ | ||
| 2158 | static void __devexit igb_remove(struct pci_dev *pdev) | ||
| 2159 | { | ||
| 2160 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
| 2161 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 2162 | struct e1000_hw *hw = &adapter->hw; | ||
| 2163 | |||
| 2164 | /* | ||
| 2165 | * The watchdog timer may be rescheduled, so explicitly | ||
| 2166 | * disable watchdog from being rescheduled. | ||
| 2167 | */ | ||
| 2168 | set_bit(__IGB_DOWN, &adapter->state); | ||
| 2169 | del_timer_sync(&adapter->watchdog_timer); | ||
| 2170 | del_timer_sync(&adapter->phy_info_timer); | ||
| 2171 | |||
| 2172 | cancel_work_sync(&adapter->reset_task); | ||
| 2173 | cancel_work_sync(&adapter->watchdog_task); | ||
| 2174 | |||
| 2175 | #ifdef CONFIG_IGB_DCA | ||
| 2176 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) { | ||
| 2177 | dev_info(&pdev->dev, "DCA disabled\n"); | ||
| 2178 | dca_remove_requester(&pdev->dev); | ||
| 2179 | adapter->flags &= ~IGB_FLAG_DCA_ENABLED; | ||
| 2180 | wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); | ||
| 2181 | } | ||
| 2182 | #endif | ||
| 2183 | |||
| 2184 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
| 2185 | * would have already happened in close and is redundant. */ | ||
| 2186 | igb_release_hw_control(adapter); | ||
| 2187 | |||
| 2188 | unregister_netdev(netdev); | ||
| 2189 | |||
| 2190 | igb_clear_interrupt_scheme(adapter); | ||
| 2191 | |||
| 2192 | #ifdef CONFIG_PCI_IOV | ||
| 2193 | /* reclaim resources allocated to VFs */ | ||
| 2194 | if (adapter->vf_data) { | ||
| 2195 | /* disable iov and allow time for transactions to clear */ | ||
| 2196 | pci_disable_sriov(pdev); | ||
| 2197 | msleep(500); | ||
| 2198 | |||
| 2199 | kfree(adapter->vf_data); | ||
| 2200 | adapter->vf_data = NULL; | ||
| 2201 | wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); | ||
| 2202 | wrfl(); | ||
| 2203 | msleep(100); | ||
| 2204 | dev_info(&pdev->dev, "IOV Disabled\n"); | ||
| 2205 | } | ||
| 2206 | #endif | ||
| 2207 | |||
| 2208 | iounmap(hw->hw_addr); | ||
| 2209 | if (hw->flash_address) | ||
| 2210 | iounmap(hw->flash_address); | ||
| 2211 | pci_release_selected_regions(pdev, | ||
| 2212 | pci_select_bars(pdev, IORESOURCE_MEM)); | ||
| 2213 | |||
| 2214 | free_netdev(netdev); | ||
| 2215 | |||
| 2216 | pci_disable_pcie_error_reporting(pdev); | ||
| 2217 | |||
| 2218 | pci_disable_device(pdev); | ||
| 2219 | } | ||
| 2220 | |||
| 2221 | /** | ||
| 2222 | * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space | ||
| 2223 | * @adapter: board private structure to initialize | ||
| 2224 | * | ||
| 2225 | * This function initializes the vf specific data storage and then attempts to | ||
| 2226 | * allocate the VFs. The reason for ordering it this way is because it is much | ||
| 2227 | * mor expensive time wise to disable SR-IOV than it is to allocate and free | ||
| 2228 | * the memory for the VFs. | ||
| 2229 | **/ | ||
| 2230 | static void __devinit igb_probe_vfs(struct igb_adapter * adapter) | ||
| 2231 | { | ||
| 2232 | #ifdef CONFIG_PCI_IOV | ||
| 2233 | struct pci_dev *pdev = adapter->pdev; | ||
| 2234 | |||
| 2235 | if (adapter->vfs_allocated_count) { | ||
| 2236 | adapter->vf_data = kcalloc(adapter->vfs_allocated_count, | ||
| 2237 | sizeof(struct vf_data_storage), | ||
| 2238 | GFP_KERNEL); | ||
| 2239 | /* if allocation failed then we do not support SR-IOV */ | ||
| 2240 | if (!adapter->vf_data) { | ||
| 2241 | adapter->vfs_allocated_count = 0; | ||
| 2242 | dev_err(&pdev->dev, "Unable to allocate memory for VF " | ||
| 2243 | "Data Storage\n"); | ||
| 2244 | } | ||
| 2245 | } | ||
| 2246 | |||
| 2247 | if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) { | ||
| 2248 | kfree(adapter->vf_data); | ||
| 2249 | adapter->vf_data = NULL; | ||
| 2250 | #endif /* CONFIG_PCI_IOV */ | ||
| 2251 | adapter->vfs_allocated_count = 0; | ||
| 2252 | #ifdef CONFIG_PCI_IOV | ||
| 2253 | } else { | ||
| 2254 | unsigned char mac_addr[ETH_ALEN]; | ||
| 2255 | int i; | ||
| 2256 | dev_info(&pdev->dev, "%d vfs allocated\n", | ||
| 2257 | adapter->vfs_allocated_count); | ||
| 2258 | for (i = 0; i < adapter->vfs_allocated_count; i++) { | ||
| 2259 | random_ether_addr(mac_addr); | ||
| 2260 | igb_set_vf_mac(adapter, i, mac_addr); | ||
| 2261 | } | ||
| 2262 | /* DMA Coalescing is not supported in IOV mode. */ | ||
| 2263 | if (adapter->flags & IGB_FLAG_DMAC) | ||
| 2264 | adapter->flags &= ~IGB_FLAG_DMAC; | ||
| 2265 | } | ||
| 2266 | #endif /* CONFIG_PCI_IOV */ | ||
| 2267 | } | ||
| 2268 | |||
| 2269 | |||
| 2270 | /** | ||
| 2271 | * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp | ||
| 2272 | * @adapter: board private structure to initialize | ||
| 2273 | * | ||
| 2274 | * igb_init_hw_timer initializes the function pointer and values for the hw | ||
| 2275 | * timer found in hardware. | ||
| 2276 | **/ | ||
| 2277 | static void igb_init_hw_timer(struct igb_adapter *adapter) | ||
| 2278 | { | ||
| 2279 | struct e1000_hw *hw = &adapter->hw; | ||
| 2280 | |||
| 2281 | switch (hw->mac.type) { | ||
| 2282 | case e1000_i350: | ||
| 2283 | case e1000_82580: | ||
| 2284 | memset(&adapter->cycles, 0, sizeof(adapter->cycles)); | ||
| 2285 | adapter->cycles.read = igb_read_clock; | ||
| 2286 | adapter->cycles.mask = CLOCKSOURCE_MASK(64); | ||
| 2287 | adapter->cycles.mult = 1; | ||
| 2288 | /* | ||
| 2289 | * The 82580 timesync updates the system timer every 8ns by 8ns | ||
| 2290 | * and the value cannot be shifted. Instead we need to shift | ||
| 2291 | * the registers to generate a 64bit timer value. As a result | ||
| 2292 | * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by | ||
| 2293 | * 24 in order to generate a larger value for synchronization. | ||
| 2294 | */ | ||
| 2295 | adapter->cycles.shift = IGB_82580_TSYNC_SHIFT; | ||
| 2296 | /* disable system timer temporarily by setting bit 31 */ | ||
| 2297 | wr32(E1000_TSAUXC, 0x80000000); | ||
| 2298 | wrfl(); | ||
| 2299 | |||
| 2300 | /* Set registers so that rollover occurs soon to test this. */ | ||
| 2301 | wr32(E1000_SYSTIMR, 0x00000000); | ||
| 2302 | wr32(E1000_SYSTIML, 0x80000000); | ||
| 2303 | wr32(E1000_SYSTIMH, 0x000000FF); | ||
| 2304 | wrfl(); | ||
| 2305 | |||
| 2306 | /* enable system timer by clearing bit 31 */ | ||
| 2307 | wr32(E1000_TSAUXC, 0x0); | ||
| 2308 | wrfl(); | ||
| 2309 | |||
| 2310 | timecounter_init(&adapter->clock, | ||
| 2311 | &adapter->cycles, | ||
| 2312 | ktime_to_ns(ktime_get_real())); | ||
| 2313 | /* | ||
| 2314 | * Synchronize our NIC clock against system wall clock. NIC | ||
| 2315 | * time stamp reading requires ~3us per sample, each sample | ||
| 2316 | * was pretty stable even under load => only require 10 | ||
| 2317 | * samples for each offset comparison. | ||
| 2318 | */ | ||
| 2319 | memset(&adapter->compare, 0, sizeof(adapter->compare)); | ||
| 2320 | adapter->compare.source = &adapter->clock; | ||
| 2321 | adapter->compare.target = ktime_get_real; | ||
| 2322 | adapter->compare.num_samples = 10; | ||
| 2323 | timecompare_update(&adapter->compare, 0); | ||
| 2324 | break; | ||
| 2325 | case e1000_82576: | ||
| 2326 | /* | ||
| 2327 | * Initialize hardware timer: we keep it running just in case | ||
| 2328 | * that some program needs it later on. | ||
| 2329 | */ | ||
| 2330 | memset(&adapter->cycles, 0, sizeof(adapter->cycles)); | ||
| 2331 | adapter->cycles.read = igb_read_clock; | ||
| 2332 | adapter->cycles.mask = CLOCKSOURCE_MASK(64); | ||
| 2333 | adapter->cycles.mult = 1; | ||
| 2334 | /** | ||
| 2335 | * Scale the NIC clock cycle by a large factor so that | ||
| 2336 | * relatively small clock corrections can be added or | ||
| 2337 | * subtracted at each clock tick. The drawbacks of a large | ||
| 2338 | * factor are a) that the clock register overflows more quickly | ||
| 2339 | * (not such a big deal) and b) that the increment per tick has | ||
| 2340 | * to fit into 24 bits. As a result we need to use a shift of | ||
| 2341 | * 19 so we can fit a value of 16 into the TIMINCA register. | ||
| 2342 | */ | ||
| 2343 | adapter->cycles.shift = IGB_82576_TSYNC_SHIFT; | ||
| 2344 | wr32(E1000_TIMINCA, | ||
| 2345 | (1 << E1000_TIMINCA_16NS_SHIFT) | | ||
| 2346 | (16 << IGB_82576_TSYNC_SHIFT)); | ||
| 2347 | |||
| 2348 | /* Set registers so that rollover occurs soon to test this. */ | ||
| 2349 | wr32(E1000_SYSTIML, 0x00000000); | ||
| 2350 | wr32(E1000_SYSTIMH, 0xFF800000); | ||
| 2351 | wrfl(); | ||
| 2352 | |||
| 2353 | timecounter_init(&adapter->clock, | ||
| 2354 | &adapter->cycles, | ||
| 2355 | ktime_to_ns(ktime_get_real())); | ||
| 2356 | /* | ||
| 2357 | * Synchronize our NIC clock against system wall clock. NIC | ||
| 2358 | * time stamp reading requires ~3us per sample, each sample | ||
| 2359 | * was pretty stable even under load => only require 10 | ||
| 2360 | * samples for each offset comparison. | ||
| 2361 | */ | ||
| 2362 | memset(&adapter->compare, 0, sizeof(adapter->compare)); | ||
| 2363 | adapter->compare.source = &adapter->clock; | ||
| 2364 | adapter->compare.target = ktime_get_real; | ||
| 2365 | adapter->compare.num_samples = 10; | ||
| 2366 | timecompare_update(&adapter->compare, 0); | ||
| 2367 | break; | ||
| 2368 | case e1000_82575: | ||
| 2369 | /* 82575 does not support timesync */ | ||
| 2370 | default: | ||
| 2371 | break; | ||
| 2372 | } | ||
| 2373 | |||
| 2374 | } | ||
| 2375 | |||
| 2376 | /** | ||
| 2377 | * igb_sw_init - Initialize general software structures (struct igb_adapter) | ||
| 2378 | * @adapter: board private structure to initialize | ||
| 2379 | * | ||
| 2380 | * igb_sw_init initializes the Adapter private data structure. | ||
| 2381 | * Fields are initialized based on PCI device information and | ||
| 2382 | * OS network device settings (MTU size). | ||
| 2383 | **/ | ||
| 2384 | static int __devinit igb_sw_init(struct igb_adapter *adapter) | ||
| 2385 | { | ||
| 2386 | struct e1000_hw *hw = &adapter->hw; | ||
| 2387 | struct net_device *netdev = adapter->netdev; | ||
| 2388 | struct pci_dev *pdev = adapter->pdev; | ||
| 2389 | |||
| 2390 | pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); | ||
| 2391 | |||
| 2392 | adapter->tx_ring_count = IGB_DEFAULT_TXD; | ||
| 2393 | adapter->rx_ring_count = IGB_DEFAULT_RXD; | ||
| 2394 | adapter->rx_itr_setting = IGB_DEFAULT_ITR; | ||
| 2395 | adapter->tx_itr_setting = IGB_DEFAULT_ITR; | ||
| 2396 | |||
| 2397 | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | ||
| 2398 | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | ||
| 2399 | |||
| 2400 | spin_lock_init(&adapter->stats64_lock); | ||
| 2401 | #ifdef CONFIG_PCI_IOV | ||
| 2402 | switch (hw->mac.type) { | ||
| 2403 | case e1000_82576: | ||
| 2404 | case e1000_i350: | ||
| 2405 | if (max_vfs > 7) { | ||
| 2406 | dev_warn(&pdev->dev, | ||
| 2407 | "Maximum of 7 VFs per PF, using max\n"); | ||
| 2408 | adapter->vfs_allocated_count = 7; | ||
| 2409 | } else | ||
| 2410 | adapter->vfs_allocated_count = max_vfs; | ||
| 2411 | break; | ||
| 2412 | default: | ||
| 2413 | break; | ||
| 2414 | } | ||
| 2415 | #endif /* CONFIG_PCI_IOV */ | ||
| 2416 | adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus()); | ||
| 2417 | /* i350 cannot do RSS and SR-IOV at the same time */ | ||
| 2418 | if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count) | ||
| 2419 | adapter->rss_queues = 1; | ||
| 2420 | |||
| 2421 | /* | ||
| 2422 | * if rss_queues > 4 or vfs are going to be allocated with rss_queues | ||
| 2423 | * then we should combine the queues into a queue pair in order to | ||
| 2424 | * conserve interrupts due to limited supply | ||
| 2425 | */ | ||
| 2426 | if ((adapter->rss_queues > 4) || | ||
| 2427 | ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6))) | ||
| 2428 | adapter->flags |= IGB_FLAG_QUEUE_PAIRS; | ||
| 2429 | |||
| 2430 | /* This call may decrease the number of queues */ | ||
| 2431 | if (igb_init_interrupt_scheme(adapter)) { | ||
| 2432 | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | ||
| 2433 | return -ENOMEM; | ||
| 2434 | } | ||
| 2435 | |||
| 2436 | igb_probe_vfs(adapter); | ||
| 2437 | |||
| 2438 | /* Explicitly disable IRQ since the NIC can be in any state. */ | ||
| 2439 | igb_irq_disable(adapter); | ||
| 2440 | |||
| 2441 | if (hw->mac.type == e1000_i350) | ||
| 2442 | adapter->flags &= ~IGB_FLAG_DMAC; | ||
| 2443 | |||
| 2444 | set_bit(__IGB_DOWN, &adapter->state); | ||
| 2445 | return 0; | ||
| 2446 | } | ||
| 2447 | |||
| 2448 | /** | ||
| 2449 | * igb_open - Called when a network interface is made active | ||
| 2450 | * @netdev: network interface device structure | ||
| 2451 | * | ||
| 2452 | * Returns 0 on success, negative value on failure | ||
| 2453 | * | ||
| 2454 | * The open entry point is called when a network interface is made | ||
| 2455 | * active by the system (IFF_UP). At this point all resources needed | ||
| 2456 | * for transmit and receive operations are allocated, the interrupt | ||
| 2457 | * handler is registered with the OS, the watchdog timer is started, | ||
| 2458 | * and the stack is notified that the interface is ready. | ||
| 2459 | **/ | ||
| 2460 | static int igb_open(struct net_device *netdev) | ||
| 2461 | { | ||
| 2462 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 2463 | struct e1000_hw *hw = &adapter->hw; | ||
| 2464 | int err; | ||
| 2465 | int i; | ||
| 2466 | |||
| 2467 | /* disallow open during test */ | ||
| 2468 | if (test_bit(__IGB_TESTING, &adapter->state)) | ||
| 2469 | return -EBUSY; | ||
| 2470 | |||
| 2471 | netif_carrier_off(netdev); | ||
| 2472 | |||
| 2473 | /* allocate transmit descriptors */ | ||
| 2474 | err = igb_setup_all_tx_resources(adapter); | ||
| 2475 | if (err) | ||
| 2476 | goto err_setup_tx; | ||
| 2477 | |||
| 2478 | /* allocate receive descriptors */ | ||
| 2479 | err = igb_setup_all_rx_resources(adapter); | ||
| 2480 | if (err) | ||
| 2481 | goto err_setup_rx; | ||
| 2482 | |||
| 2483 | igb_power_up_link(adapter); | ||
| 2484 | |||
| 2485 | /* before we allocate an interrupt, we must be ready to handle it. | ||
| 2486 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | ||
| 2487 | * as soon as we call pci_request_irq, so we have to setup our | ||
| 2488 | * clean_rx handler before we do so. */ | ||
| 2489 | igb_configure(adapter); | ||
| 2490 | |||
| 2491 | err = igb_request_irq(adapter); | ||
| 2492 | if (err) | ||
| 2493 | goto err_req_irq; | ||
| 2494 | |||
| 2495 | /* From here on the code is the same as igb_up() */ | ||
| 2496 | clear_bit(__IGB_DOWN, &adapter->state); | ||
| 2497 | |||
| 2498 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
| 2499 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
| 2500 | napi_enable(&q_vector->napi); | ||
| 2501 | } | ||
| 2502 | |||
| 2503 | /* Clear any pending interrupts. */ | ||
| 2504 | rd32(E1000_ICR); | ||
| 2505 | |||
| 2506 | igb_irq_enable(adapter); | ||
| 2507 | |||
| 2508 | /* notify VFs that reset has been completed */ | ||
| 2509 | if (adapter->vfs_allocated_count) { | ||
| 2510 | u32 reg_data = rd32(E1000_CTRL_EXT); | ||
| 2511 | reg_data |= E1000_CTRL_EXT_PFRSTD; | ||
| 2512 | wr32(E1000_CTRL_EXT, reg_data); | ||
| 2513 | } | ||
| 2514 | |||
| 2515 | netif_tx_start_all_queues(netdev); | ||
| 2516 | |||
| 2517 | /* start the watchdog. */ | ||
| 2518 | hw->mac.get_link_status = 1; | ||
| 2519 | schedule_work(&adapter->watchdog_task); | ||
| 2520 | |||
| 2521 | return 0; | ||
| 2522 | |||
| 2523 | err_req_irq: | ||
| 2524 | igb_release_hw_control(adapter); | ||
| 2525 | igb_power_down_link(adapter); | ||
| 2526 | igb_free_all_rx_resources(adapter); | ||
| 2527 | err_setup_rx: | ||
| 2528 | igb_free_all_tx_resources(adapter); | ||
| 2529 | err_setup_tx: | ||
| 2530 | igb_reset(adapter); | ||
| 2531 | |||
| 2532 | return err; | ||
| 2533 | } | ||
| 2534 | |||
| 2535 | /** | ||
| 2536 | * igb_close - Disables a network interface | ||
| 2537 | * @netdev: network interface device structure | ||
| 2538 | * | ||
| 2539 | * Returns 0, this is not allowed to fail | ||
| 2540 | * | ||
| 2541 | * The close entry point is called when an interface is de-activated | ||
| 2542 | * by the OS. The hardware is still under the driver's control, but | ||
| 2543 | * needs to be disabled. A global MAC reset is issued to stop the | ||
| 2544 | * hardware, and all transmit and receive resources are freed. | ||
| 2545 | **/ | ||
| 2546 | static int igb_close(struct net_device *netdev) | ||
| 2547 | { | ||
| 2548 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 2549 | |||
| 2550 | WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); | ||
| 2551 | igb_down(adapter); | ||
| 2552 | |||
| 2553 | igb_free_irq(adapter); | ||
| 2554 | |||
| 2555 | igb_free_all_tx_resources(adapter); | ||
| 2556 | igb_free_all_rx_resources(adapter); | ||
| 2557 | |||
| 2558 | return 0; | ||
| 2559 | } | ||
| 2560 | |||
| 2561 | /** | ||
| 2562 | * igb_setup_tx_resources - allocate Tx resources (Descriptors) | ||
| 2563 | * @tx_ring: tx descriptor ring (for a specific queue) to setup | ||
| 2564 | * | ||
| 2565 | * Return 0 on success, negative on failure | ||
| 2566 | **/ | ||
| 2567 | int igb_setup_tx_resources(struct igb_ring *tx_ring) | ||
| 2568 | { | ||
| 2569 | struct device *dev = tx_ring->dev; | ||
| 2570 | int size; | ||
| 2571 | |||
| 2572 | size = sizeof(struct igb_buffer) * tx_ring->count; | ||
| 2573 | tx_ring->buffer_info = vzalloc(size); | ||
| 2574 | if (!tx_ring->buffer_info) | ||
| 2575 | goto err; | ||
| 2576 | |||
| 2577 | /* round up to nearest 4K */ | ||
| 2578 | tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); | ||
| 2579 | tx_ring->size = ALIGN(tx_ring->size, 4096); | ||
| 2580 | |||
| 2581 | tx_ring->desc = dma_alloc_coherent(dev, | ||
| 2582 | tx_ring->size, | ||
| 2583 | &tx_ring->dma, | ||
| 2584 | GFP_KERNEL); | ||
| 2585 | |||
| 2586 | if (!tx_ring->desc) | ||
| 2587 | goto err; | ||
| 2588 | |||
| 2589 | tx_ring->next_to_use = 0; | ||
| 2590 | tx_ring->next_to_clean = 0; | ||
| 2591 | return 0; | ||
| 2592 | |||
| 2593 | err: | ||
| 2594 | vfree(tx_ring->buffer_info); | ||
| 2595 | dev_err(dev, | ||
| 2596 | "Unable to allocate memory for the transmit descriptor ring\n"); | ||
| 2597 | return -ENOMEM; | ||
| 2598 | } | ||
| 2599 | |||
| 2600 | /** | ||
| 2601 | * igb_setup_all_tx_resources - wrapper to allocate Tx resources | ||
| 2602 | * (Descriptors) for all queues | ||
| 2603 | * @adapter: board private structure | ||
| 2604 | * | ||
| 2605 | * Return 0 on success, negative on failure | ||
| 2606 | **/ | ||
| 2607 | static int igb_setup_all_tx_resources(struct igb_adapter *adapter) | ||
| 2608 | { | ||
| 2609 | struct pci_dev *pdev = adapter->pdev; | ||
| 2610 | int i, err = 0; | ||
| 2611 | |||
| 2612 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
| 2613 | err = igb_setup_tx_resources(adapter->tx_ring[i]); | ||
| 2614 | if (err) { | ||
| 2615 | dev_err(&pdev->dev, | ||
| 2616 | "Allocation for Tx Queue %u failed\n", i); | ||
| 2617 | for (i--; i >= 0; i--) | ||
| 2618 | igb_free_tx_resources(adapter->tx_ring[i]); | ||
| 2619 | break; | ||
| 2620 | } | ||
| 2621 | } | ||
| 2622 | |||
| 2623 | for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) { | ||
| 2624 | int r_idx = i % adapter->num_tx_queues; | ||
| 2625 | adapter->multi_tx_table[i] = adapter->tx_ring[r_idx]; | ||
| 2626 | } | ||
| 2627 | return err; | ||
| 2628 | } | ||
| 2629 | |||
| 2630 | /** | ||
| 2631 | * igb_setup_tctl - configure the transmit control registers | ||
| 2632 | * @adapter: Board private structure | ||
| 2633 | **/ | ||
| 2634 | void igb_setup_tctl(struct igb_adapter *adapter) | ||
| 2635 | { | ||
| 2636 | struct e1000_hw *hw = &adapter->hw; | ||
| 2637 | u32 tctl; | ||
| 2638 | |||
| 2639 | /* disable queue 0 which is enabled by default on 82575 and 82576 */ | ||
| 2640 | wr32(E1000_TXDCTL(0), 0); | ||
| 2641 | |||
| 2642 | /* Program the Transmit Control Register */ | ||
| 2643 | tctl = rd32(E1000_TCTL); | ||
| 2644 | tctl &= ~E1000_TCTL_CT; | ||
| 2645 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | ||
| 2646 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | ||
| 2647 | |||
| 2648 | igb_config_collision_dist(hw); | ||
| 2649 | |||
| 2650 | /* Enable transmits */ | ||
| 2651 | tctl |= E1000_TCTL_EN; | ||
| 2652 | |||
| 2653 | wr32(E1000_TCTL, tctl); | ||
| 2654 | } | ||
| 2655 | |||
| 2656 | /** | ||
| 2657 | * igb_configure_tx_ring - Configure transmit ring after Reset | ||
| 2658 | * @adapter: board private structure | ||
| 2659 | * @ring: tx ring to configure | ||
| 2660 | * | ||
| 2661 | * Configure a transmit ring after a reset. | ||
| 2662 | **/ | ||
| 2663 | void igb_configure_tx_ring(struct igb_adapter *adapter, | ||
| 2664 | struct igb_ring *ring) | ||
| 2665 | { | ||
| 2666 | struct e1000_hw *hw = &adapter->hw; | ||
| 2667 | u32 txdctl; | ||
| 2668 | u64 tdba = ring->dma; | ||
| 2669 | int reg_idx = ring->reg_idx; | ||
| 2670 | |||
| 2671 | /* disable the queue */ | ||
| 2672 | txdctl = rd32(E1000_TXDCTL(reg_idx)); | ||
| 2673 | wr32(E1000_TXDCTL(reg_idx), | ||
| 2674 | txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); | ||
| 2675 | wrfl(); | ||
| 2676 | mdelay(10); | ||
| 2677 | |||
| 2678 | wr32(E1000_TDLEN(reg_idx), | ||
| 2679 | ring->count * sizeof(union e1000_adv_tx_desc)); | ||
| 2680 | wr32(E1000_TDBAL(reg_idx), | ||
| 2681 | tdba & 0x00000000ffffffffULL); | ||
| 2682 | wr32(E1000_TDBAH(reg_idx), tdba >> 32); | ||
| 2683 | |||
| 2684 | ring->head = hw->hw_addr + E1000_TDH(reg_idx); | ||
| 2685 | ring->tail = hw->hw_addr + E1000_TDT(reg_idx); | ||
| 2686 | writel(0, ring->head); | ||
| 2687 | writel(0, ring->tail); | ||
| 2688 | |||
| 2689 | txdctl |= IGB_TX_PTHRESH; | ||
| 2690 | txdctl |= IGB_TX_HTHRESH << 8; | ||
| 2691 | txdctl |= IGB_TX_WTHRESH << 16; | ||
| 2692 | |||
| 2693 | txdctl |= E1000_TXDCTL_QUEUE_ENABLE; | ||
| 2694 | wr32(E1000_TXDCTL(reg_idx), txdctl); | ||
| 2695 | } | ||
| 2696 | |||
| 2697 | /** | ||
| 2698 | * igb_configure_tx - Configure transmit Unit after Reset | ||
| 2699 | * @adapter: board private structure | ||
| 2700 | * | ||
| 2701 | * Configure the Tx unit of the MAC after a reset. | ||
| 2702 | **/ | ||
| 2703 | static void igb_configure_tx(struct igb_adapter *adapter) | ||
| 2704 | { | ||
| 2705 | int i; | ||
| 2706 | |||
| 2707 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
| 2708 | igb_configure_tx_ring(adapter, adapter->tx_ring[i]); | ||
| 2709 | } | ||
| 2710 | |||
| 2711 | /** | ||
| 2712 | * igb_setup_rx_resources - allocate Rx resources (Descriptors) | ||
| 2713 | * @rx_ring: rx descriptor ring (for a specific queue) to setup | ||
| 2714 | * | ||
| 2715 | * Returns 0 on success, negative on failure | ||
| 2716 | **/ | ||
| 2717 | int igb_setup_rx_resources(struct igb_ring *rx_ring) | ||
| 2718 | { | ||
| 2719 | struct device *dev = rx_ring->dev; | ||
| 2720 | int size, desc_len; | ||
| 2721 | |||
| 2722 | size = sizeof(struct igb_buffer) * rx_ring->count; | ||
| 2723 | rx_ring->buffer_info = vzalloc(size); | ||
| 2724 | if (!rx_ring->buffer_info) | ||
| 2725 | goto err; | ||
| 2726 | |||
| 2727 | desc_len = sizeof(union e1000_adv_rx_desc); | ||
| 2728 | |||
| 2729 | /* Round up to nearest 4K */ | ||
| 2730 | rx_ring->size = rx_ring->count * desc_len; | ||
| 2731 | rx_ring->size = ALIGN(rx_ring->size, 4096); | ||
| 2732 | |||
| 2733 | rx_ring->desc = dma_alloc_coherent(dev, | ||
| 2734 | rx_ring->size, | ||
| 2735 | &rx_ring->dma, | ||
| 2736 | GFP_KERNEL); | ||
| 2737 | |||
| 2738 | if (!rx_ring->desc) | ||
| 2739 | goto err; | ||
| 2740 | |||
| 2741 | rx_ring->next_to_clean = 0; | ||
| 2742 | rx_ring->next_to_use = 0; | ||
| 2743 | |||
| 2744 | return 0; | ||
| 2745 | |||
| 2746 | err: | ||
| 2747 | vfree(rx_ring->buffer_info); | ||
| 2748 | rx_ring->buffer_info = NULL; | ||
| 2749 | dev_err(dev, "Unable to allocate memory for the receive descriptor" | ||
| 2750 | " ring\n"); | ||
| 2751 | return -ENOMEM; | ||
| 2752 | } | ||
| 2753 | |||
| 2754 | /** | ||
| 2755 | * igb_setup_all_rx_resources - wrapper to allocate Rx resources | ||
| 2756 | * (Descriptors) for all queues | ||
| 2757 | * @adapter: board private structure | ||
| 2758 | * | ||
| 2759 | * Return 0 on success, negative on failure | ||
| 2760 | **/ | ||
| 2761 | static int igb_setup_all_rx_resources(struct igb_adapter *adapter) | ||
| 2762 | { | ||
| 2763 | struct pci_dev *pdev = adapter->pdev; | ||
| 2764 | int i, err = 0; | ||
| 2765 | |||
| 2766 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
| 2767 | err = igb_setup_rx_resources(adapter->rx_ring[i]); | ||
| 2768 | if (err) { | ||
| 2769 | dev_err(&pdev->dev, | ||
| 2770 | "Allocation for Rx Queue %u failed\n", i); | ||
| 2771 | for (i--; i >= 0; i--) | ||
| 2772 | igb_free_rx_resources(adapter->rx_ring[i]); | ||
| 2773 | break; | ||
| 2774 | } | ||
| 2775 | } | ||
| 2776 | |||
| 2777 | return err; | ||
| 2778 | } | ||
| 2779 | |||
| 2780 | /** | ||
| 2781 | * igb_setup_mrqc - configure the multiple receive queue control registers | ||
| 2782 | * @adapter: Board private structure | ||
| 2783 | **/ | ||
| 2784 | static void igb_setup_mrqc(struct igb_adapter *adapter) | ||
| 2785 | { | ||
| 2786 | struct e1000_hw *hw = &adapter->hw; | ||
| 2787 | u32 mrqc, rxcsum; | ||
| 2788 | u32 j, num_rx_queues, shift = 0, shift2 = 0; | ||
| 2789 | union e1000_reta { | ||
| 2790 | u32 dword; | ||
| 2791 | u8 bytes[4]; | ||
| 2792 | } reta; | ||
| 2793 | static const u8 rsshash[40] = { | ||
| 2794 | 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67, | ||
| 2795 | 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb, | ||
| 2796 | 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, | ||
| 2797 | 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa }; | ||
| 2798 | |||
| 2799 | /* Fill out hash function seeds */ | ||
| 2800 | for (j = 0; j < 10; j++) { | ||
| 2801 | u32 rsskey = rsshash[(j * 4)]; | ||
| 2802 | rsskey |= rsshash[(j * 4) + 1] << 8; | ||
| 2803 | rsskey |= rsshash[(j * 4) + 2] << 16; | ||
| 2804 | rsskey |= rsshash[(j * 4) + 3] << 24; | ||
| 2805 | array_wr32(E1000_RSSRK(0), j, rsskey); | ||
| 2806 | } | ||
| 2807 | |||
| 2808 | num_rx_queues = adapter->rss_queues; | ||
| 2809 | |||
| 2810 | if (adapter->vfs_allocated_count) { | ||
| 2811 | /* 82575 and 82576 supports 2 RSS queues for VMDq */ | ||
| 2812 | switch (hw->mac.type) { | ||
| 2813 | case e1000_i350: | ||
| 2814 | case e1000_82580: | ||
| 2815 | num_rx_queues = 1; | ||
| 2816 | shift = 0; | ||
| 2817 | break; | ||
| 2818 | case e1000_82576: | ||
| 2819 | shift = 3; | ||
| 2820 | num_rx_queues = 2; | ||
| 2821 | break; | ||
| 2822 | case e1000_82575: | ||
| 2823 | shift = 2; | ||
| 2824 | shift2 = 6; | ||
| 2825 | default: | ||
| 2826 | break; | ||
| 2827 | } | ||
| 2828 | } else { | ||
| 2829 | if (hw->mac.type == e1000_82575) | ||
| 2830 | shift = 6; | ||
| 2831 | } | ||
| 2832 | |||
| 2833 | for (j = 0; j < (32 * 4); j++) { | ||
| 2834 | reta.bytes[j & 3] = (j % num_rx_queues) << shift; | ||
| 2835 | if (shift2) | ||
| 2836 | reta.bytes[j & 3] |= num_rx_queues << shift2; | ||
| 2837 | if ((j & 3) == 3) | ||
| 2838 | wr32(E1000_RETA(j >> 2), reta.dword); | ||
| 2839 | } | ||
| 2840 | |||
| 2841 | /* | ||
| 2842 | * Disable raw packet checksumming so that RSS hash is placed in | ||
| 2843 | * descriptor on writeback. No need to enable TCP/UDP/IP checksum | ||
| 2844 | * offloads as they are enabled by default | ||
| 2845 | */ | ||
| 2846 | rxcsum = rd32(E1000_RXCSUM); | ||
| 2847 | rxcsum |= E1000_RXCSUM_PCSD; | ||
| 2848 | |||
| 2849 | if (adapter->hw.mac.type >= e1000_82576) | ||
| 2850 | /* Enable Receive Checksum Offload for SCTP */ | ||
| 2851 | rxcsum |= E1000_RXCSUM_CRCOFL; | ||
| 2852 | |||
| 2853 | /* Don't need to set TUOFL or IPOFL, they default to 1 */ | ||
| 2854 | wr32(E1000_RXCSUM, rxcsum); | ||
| 2855 | |||
| 2856 | /* If VMDq is enabled then we set the appropriate mode for that, else | ||
| 2857 | * we default to RSS so that an RSS hash is calculated per packet even | ||
| 2858 | * if we are only using one queue */ | ||
| 2859 | if (adapter->vfs_allocated_count) { | ||
| 2860 | if (hw->mac.type > e1000_82575) { | ||
| 2861 | /* Set the default pool for the PF's first queue */ | ||
| 2862 | u32 vtctl = rd32(E1000_VT_CTL); | ||
| 2863 | vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | | ||
| 2864 | E1000_VT_CTL_DISABLE_DEF_POOL); | ||
| 2865 | vtctl |= adapter->vfs_allocated_count << | ||
| 2866 | E1000_VT_CTL_DEFAULT_POOL_SHIFT; | ||
| 2867 | wr32(E1000_VT_CTL, vtctl); | ||
| 2868 | } | ||
| 2869 | if (adapter->rss_queues > 1) | ||
| 2870 | mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q; | ||
| 2871 | else | ||
| 2872 | mrqc = E1000_MRQC_ENABLE_VMDQ; | ||
| 2873 | } else { | ||
| 2874 | mrqc = E1000_MRQC_ENABLE_RSS_4Q; | ||
| 2875 | } | ||
| 2876 | igb_vmm_control(adapter); | ||
| 2877 | |||
| 2878 | /* | ||
| 2879 | * Generate RSS hash based on TCP port numbers and/or | ||
| 2880 | * IPv4/v6 src and dst addresses since UDP cannot be | ||
| 2881 | * hashed reliably due to IP fragmentation | ||
| 2882 | */ | ||
| 2883 | mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | | ||
| 2884 | E1000_MRQC_RSS_FIELD_IPV4_TCP | | ||
| 2885 | E1000_MRQC_RSS_FIELD_IPV6 | | ||
| 2886 | E1000_MRQC_RSS_FIELD_IPV6_TCP | | ||
| 2887 | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; | ||
| 2888 | |||
| 2889 | wr32(E1000_MRQC, mrqc); | ||
| 2890 | } | ||
| 2891 | |||
| 2892 | /** | ||
| 2893 | * igb_setup_rctl - configure the receive control registers | ||
| 2894 | * @adapter: Board private structure | ||
| 2895 | **/ | ||
| 2896 | void igb_setup_rctl(struct igb_adapter *adapter) | ||
| 2897 | { | ||
| 2898 | struct e1000_hw *hw = &adapter->hw; | ||
| 2899 | u32 rctl; | ||
| 2900 | |||
| 2901 | rctl = rd32(E1000_RCTL); | ||
| 2902 | |||
| 2903 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | ||
| 2904 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | ||
| 2905 | |||
| 2906 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | | ||
| 2907 | (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
| 2908 | |||
| 2909 | /* | ||
| 2910 | * enable stripping of CRC. It's unlikely this will break BMC | ||
| 2911 | * redirection as it did with e1000. Newer features require | ||
| 2912 | * that the HW strips the CRC. | ||
| 2913 | */ | ||
| 2914 | rctl |= E1000_RCTL_SECRC; | ||
| 2915 | |||
| 2916 | /* disable store bad packets and clear size bits. */ | ||
| 2917 | rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); | ||
| 2918 | |||
| 2919 | /* enable LPE to prevent packets larger than max_frame_size */ | ||
| 2920 | rctl |= E1000_RCTL_LPE; | ||
| 2921 | |||
| 2922 | /* disable queue 0 to prevent tail write w/o re-config */ | ||
| 2923 | wr32(E1000_RXDCTL(0), 0); | ||
| 2924 | |||
| 2925 | /* Attention!!! For SR-IOV PF driver operations you must enable | ||
| 2926 | * queue drop for all VF and PF queues to prevent head of line blocking | ||
| 2927 | * if an un-trusted VF does not provide descriptors to hardware. | ||
| 2928 | */ | ||
| 2929 | if (adapter->vfs_allocated_count) { | ||
| 2930 | /* set all queue drop enable bits */ | ||
| 2931 | wr32(E1000_QDE, ALL_QUEUES); | ||
| 2932 | } | ||
| 2933 | |||
| 2934 | wr32(E1000_RCTL, rctl); | ||
| 2935 | } | ||
| 2936 | |||
| 2937 | static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, | ||
| 2938 | int vfn) | ||
| 2939 | { | ||
| 2940 | struct e1000_hw *hw = &adapter->hw; | ||
| 2941 | u32 vmolr; | ||
| 2942 | |||
| 2943 | /* if it isn't the PF check to see if VFs are enabled and | ||
| 2944 | * increase the size to support vlan tags */ | ||
| 2945 | if (vfn < adapter->vfs_allocated_count && | ||
| 2946 | adapter->vf_data[vfn].vlans_enabled) | ||
| 2947 | size += VLAN_TAG_SIZE; | ||
| 2948 | |||
| 2949 | vmolr = rd32(E1000_VMOLR(vfn)); | ||
| 2950 | vmolr &= ~E1000_VMOLR_RLPML_MASK; | ||
| 2951 | vmolr |= size | E1000_VMOLR_LPE; | ||
| 2952 | wr32(E1000_VMOLR(vfn), vmolr); | ||
| 2953 | |||
| 2954 | return 0; | ||
| 2955 | } | ||
| 2956 | |||
| 2957 | /** | ||
| 2958 | * igb_rlpml_set - set maximum receive packet size | ||
| 2959 | * @adapter: board private structure | ||
| 2960 | * | ||
| 2961 | * Configure maximum receivable packet size. | ||
| 2962 | **/ | ||
| 2963 | static void igb_rlpml_set(struct igb_adapter *adapter) | ||
| 2964 | { | ||
| 2965 | u32 max_frame_size; | ||
| 2966 | struct e1000_hw *hw = &adapter->hw; | ||
| 2967 | u16 pf_id = adapter->vfs_allocated_count; | ||
| 2968 | |||
| 2969 | max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE; | ||
| 2970 | |||
| 2971 | /* if vfs are enabled we set RLPML to the largest possible request | ||
| 2972 | * size and set the VMOLR RLPML to the size we need */ | ||
| 2973 | if (pf_id) { | ||
| 2974 | igb_set_vf_rlpml(adapter, max_frame_size, pf_id); | ||
| 2975 | max_frame_size = MAX_JUMBO_FRAME_SIZE; | ||
| 2976 | } | ||
| 2977 | |||
| 2978 | wr32(E1000_RLPML, max_frame_size); | ||
| 2979 | } | ||
| 2980 | |||
| 2981 | static inline void igb_set_vmolr(struct igb_adapter *adapter, | ||
| 2982 | int vfn, bool aupe) | ||
| 2983 | { | ||
| 2984 | struct e1000_hw *hw = &adapter->hw; | ||
| 2985 | u32 vmolr; | ||
| 2986 | |||
| 2987 | /* | ||
| 2988 | * This register exists only on 82576 and newer so if we are older then | ||
| 2989 | * we should exit and do nothing | ||
| 2990 | */ | ||
| 2991 | if (hw->mac.type < e1000_82576) | ||
| 2992 | return; | ||
| 2993 | |||
| 2994 | vmolr = rd32(E1000_VMOLR(vfn)); | ||
| 2995 | vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */ | ||
| 2996 | if (aupe) | ||
| 2997 | vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ | ||
| 2998 | else | ||
| 2999 | vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ | ||
| 3000 | |||
| 3001 | /* clear all bits that might not be set */ | ||
| 3002 | vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); | ||
| 3003 | |||
| 3004 | if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) | ||
| 3005 | vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ | ||
| 3006 | /* | ||
| 3007 | * for VMDq only allow the VFs and pool 0 to accept broadcast and | ||
| 3008 | * multicast packets | ||
| 3009 | */ | ||
| 3010 | if (vfn <= adapter->vfs_allocated_count) | ||
| 3011 | vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ | ||
| 3012 | |||
| 3013 | wr32(E1000_VMOLR(vfn), vmolr); | ||
| 3014 | } | ||
| 3015 | |||
| 3016 | /** | ||
| 3017 | * igb_configure_rx_ring - Configure a receive ring after Reset | ||
| 3018 | * @adapter: board private structure | ||
| 3019 | * @ring: receive ring to be configured | ||
| 3020 | * | ||
| 3021 | * Configure the Rx unit of the MAC after a reset. | ||
| 3022 | **/ | ||
| 3023 | void igb_configure_rx_ring(struct igb_adapter *adapter, | ||
| 3024 | struct igb_ring *ring) | ||
| 3025 | { | ||
| 3026 | struct e1000_hw *hw = &adapter->hw; | ||
| 3027 | u64 rdba = ring->dma; | ||
| 3028 | int reg_idx = ring->reg_idx; | ||
| 3029 | u32 srrctl, rxdctl; | ||
| 3030 | |||
| 3031 | /* disable the queue */ | ||
| 3032 | rxdctl = rd32(E1000_RXDCTL(reg_idx)); | ||
| 3033 | wr32(E1000_RXDCTL(reg_idx), | ||
| 3034 | rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); | ||
| 3035 | |||
| 3036 | /* Set DMA base address registers */ | ||
| 3037 | wr32(E1000_RDBAL(reg_idx), | ||
| 3038 | rdba & 0x00000000ffffffffULL); | ||
| 3039 | wr32(E1000_RDBAH(reg_idx), rdba >> 32); | ||
| 3040 | wr32(E1000_RDLEN(reg_idx), | ||
| 3041 | ring->count * sizeof(union e1000_adv_rx_desc)); | ||
| 3042 | |||
| 3043 | /* initialize head and tail */ | ||
| 3044 | ring->head = hw->hw_addr + E1000_RDH(reg_idx); | ||
| 3045 | ring->tail = hw->hw_addr + E1000_RDT(reg_idx); | ||
| 3046 | writel(0, ring->head); | ||
| 3047 | writel(0, ring->tail); | ||
| 3048 | |||
| 3049 | /* set descriptor configuration */ | ||
| 3050 | if (ring->rx_buffer_len < IGB_RXBUFFER_1024) { | ||
| 3051 | srrctl = ALIGN(ring->rx_buffer_len, 64) << | ||
| 3052 | E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; | ||
| 3053 | #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384 | ||
| 3054 | srrctl |= IGB_RXBUFFER_16384 >> | ||
| 3055 | E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
| 3056 | #else | ||
| 3057 | srrctl |= (PAGE_SIZE / 2) >> | ||
| 3058 | E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
| 3059 | #endif | ||
| 3060 | srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; | ||
| 3061 | } else { | ||
| 3062 | srrctl = ALIGN(ring->rx_buffer_len, 1024) >> | ||
| 3063 | E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
| 3064 | srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; | ||
| 3065 | } | ||
| 3066 | if (hw->mac.type == e1000_82580) | ||
| 3067 | srrctl |= E1000_SRRCTL_TIMESTAMP; | ||
| 3068 | /* Only set Drop Enable if we are supporting multiple queues */ | ||
| 3069 | if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) | ||
| 3070 | srrctl |= E1000_SRRCTL_DROP_EN; | ||
| 3071 | |||
| 3072 | wr32(E1000_SRRCTL(reg_idx), srrctl); | ||
| 3073 | |||
| 3074 | /* set filtering for VMDQ pools */ | ||
| 3075 | igb_set_vmolr(adapter, reg_idx & 0x7, true); | ||
| 3076 | |||
| 3077 | /* enable receive descriptor fetching */ | ||
| 3078 | rxdctl = rd32(E1000_RXDCTL(reg_idx)); | ||
| 3079 | rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; | ||
| 3080 | rxdctl &= 0xFFF00000; | ||
| 3081 | rxdctl |= IGB_RX_PTHRESH; | ||
| 3082 | rxdctl |= IGB_RX_HTHRESH << 8; | ||
| 3083 | rxdctl |= IGB_RX_WTHRESH << 16; | ||
| 3084 | wr32(E1000_RXDCTL(reg_idx), rxdctl); | ||
| 3085 | } | ||
| 3086 | |||
| 3087 | /** | ||
| 3088 | * igb_configure_rx - Configure receive Unit after Reset | ||
| 3089 | * @adapter: board private structure | ||
| 3090 | * | ||
| 3091 | * Configure the Rx unit of the MAC after a reset. | ||
| 3092 | **/ | ||
| 3093 | static void igb_configure_rx(struct igb_adapter *adapter) | ||
| 3094 | { | ||
| 3095 | int i; | ||
| 3096 | |||
| 3097 | /* set UTA to appropriate mode */ | ||
| 3098 | igb_set_uta(adapter); | ||
| 3099 | |||
| 3100 | /* set the correct pool for the PF default MAC address in entry 0 */ | ||
| 3101 | igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, | ||
| 3102 | adapter->vfs_allocated_count); | ||
| 3103 | |||
| 3104 | /* Setup the HW Rx Head and Tail Descriptor Pointers and | ||
| 3105 | * the Base and Length of the Rx Descriptor Ring */ | ||
| 3106 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
| 3107 | igb_configure_rx_ring(adapter, adapter->rx_ring[i]); | ||
| 3108 | } | ||
| 3109 | |||
| 3110 | /** | ||
| 3111 | * igb_free_tx_resources - Free Tx Resources per Queue | ||
| 3112 | * @tx_ring: Tx descriptor ring for a specific queue | ||
| 3113 | * | ||
| 3114 | * Free all transmit software resources | ||
| 3115 | **/ | ||
| 3116 | void igb_free_tx_resources(struct igb_ring *tx_ring) | ||
| 3117 | { | ||
| 3118 | igb_clean_tx_ring(tx_ring); | ||
| 3119 | |||
| 3120 | vfree(tx_ring->buffer_info); | ||
| 3121 | tx_ring->buffer_info = NULL; | ||
| 3122 | |||
| 3123 | /* if not set, then don't free */ | ||
| 3124 | if (!tx_ring->desc) | ||
| 3125 | return; | ||
| 3126 | |||
| 3127 | dma_free_coherent(tx_ring->dev, tx_ring->size, | ||
| 3128 | tx_ring->desc, tx_ring->dma); | ||
| 3129 | |||
| 3130 | tx_ring->desc = NULL; | ||
| 3131 | } | ||
| 3132 | |||
| 3133 | /** | ||
| 3134 | * igb_free_all_tx_resources - Free Tx Resources for All Queues | ||
| 3135 | * @adapter: board private structure | ||
| 3136 | * | ||
| 3137 | * Free all transmit software resources | ||
| 3138 | **/ | ||
| 3139 | static void igb_free_all_tx_resources(struct igb_adapter *adapter) | ||
| 3140 | { | ||
| 3141 | int i; | ||
| 3142 | |||
| 3143 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
| 3144 | igb_free_tx_resources(adapter->tx_ring[i]); | ||
| 3145 | } | ||
| 3146 | |||
| 3147 | void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring, | ||
| 3148 | struct igb_buffer *buffer_info) | ||
| 3149 | { | ||
| 3150 | if (buffer_info->dma) { | ||
| 3151 | if (buffer_info->mapped_as_page) | ||
| 3152 | dma_unmap_page(tx_ring->dev, | ||
| 3153 | buffer_info->dma, | ||
| 3154 | buffer_info->length, | ||
| 3155 | DMA_TO_DEVICE); | ||
| 3156 | else | ||
| 3157 | dma_unmap_single(tx_ring->dev, | ||
| 3158 | buffer_info->dma, | ||
| 3159 | buffer_info->length, | ||
| 3160 | DMA_TO_DEVICE); | ||
| 3161 | buffer_info->dma = 0; | ||
| 3162 | } | ||
| 3163 | if (buffer_info->skb) { | ||
| 3164 | dev_kfree_skb_any(buffer_info->skb); | ||
| 3165 | buffer_info->skb = NULL; | ||
| 3166 | } | ||
| 3167 | buffer_info->time_stamp = 0; | ||
| 3168 | buffer_info->length = 0; | ||
| 3169 | buffer_info->next_to_watch = 0; | ||
| 3170 | buffer_info->mapped_as_page = false; | ||
| 3171 | } | ||
| 3172 | |||
| 3173 | /** | ||
| 3174 | * igb_clean_tx_ring - Free Tx Buffers | ||
| 3175 | * @tx_ring: ring to be cleaned | ||
| 3176 | **/ | ||
| 3177 | static void igb_clean_tx_ring(struct igb_ring *tx_ring) | ||
| 3178 | { | ||
| 3179 | struct igb_buffer *buffer_info; | ||
| 3180 | unsigned long size; | ||
| 3181 | unsigned int i; | ||
| 3182 | |||
| 3183 | if (!tx_ring->buffer_info) | ||
| 3184 | return; | ||
| 3185 | /* Free all the Tx ring sk_buffs */ | ||
| 3186 | |||
| 3187 | for (i = 0; i < tx_ring->count; i++) { | ||
| 3188 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 3189 | igb_unmap_and_free_tx_resource(tx_ring, buffer_info); | ||
| 3190 | } | ||
| 3191 | |||
| 3192 | size = sizeof(struct igb_buffer) * tx_ring->count; | ||
| 3193 | memset(tx_ring->buffer_info, 0, size); | ||
| 3194 | |||
| 3195 | /* Zero out the descriptor ring */ | ||
| 3196 | memset(tx_ring->desc, 0, tx_ring->size); | ||
| 3197 | |||
| 3198 | tx_ring->next_to_use = 0; | ||
| 3199 | tx_ring->next_to_clean = 0; | ||
| 3200 | } | ||
| 3201 | |||
| 3202 | /** | ||
| 3203 | * igb_clean_all_tx_rings - Free Tx Buffers for all queues | ||
| 3204 | * @adapter: board private structure | ||
| 3205 | **/ | ||
| 3206 | static void igb_clean_all_tx_rings(struct igb_adapter *adapter) | ||
| 3207 | { | ||
| 3208 | int i; | ||
| 3209 | |||
| 3210 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
| 3211 | igb_clean_tx_ring(adapter->tx_ring[i]); | ||
| 3212 | } | ||
| 3213 | |||
| 3214 | /** | ||
| 3215 | * igb_free_rx_resources - Free Rx Resources | ||
| 3216 | * @rx_ring: ring to clean the resources from | ||
| 3217 | * | ||
| 3218 | * Free all receive software resources | ||
| 3219 | **/ | ||
| 3220 | void igb_free_rx_resources(struct igb_ring *rx_ring) | ||
| 3221 | { | ||
| 3222 | igb_clean_rx_ring(rx_ring); | ||
| 3223 | |||
| 3224 | vfree(rx_ring->buffer_info); | ||
| 3225 | rx_ring->buffer_info = NULL; | ||
| 3226 | |||
| 3227 | /* if not set, then don't free */ | ||
| 3228 | if (!rx_ring->desc) | ||
| 3229 | return; | ||
| 3230 | |||
| 3231 | dma_free_coherent(rx_ring->dev, rx_ring->size, | ||
| 3232 | rx_ring->desc, rx_ring->dma); | ||
| 3233 | |||
| 3234 | rx_ring->desc = NULL; | ||
| 3235 | } | ||
| 3236 | |||
| 3237 | /** | ||
| 3238 | * igb_free_all_rx_resources - Free Rx Resources for All Queues | ||
| 3239 | * @adapter: board private structure | ||
| 3240 | * | ||
| 3241 | * Free all receive software resources | ||
| 3242 | **/ | ||
| 3243 | static void igb_free_all_rx_resources(struct igb_adapter *adapter) | ||
| 3244 | { | ||
| 3245 | int i; | ||
| 3246 | |||
| 3247 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
| 3248 | igb_free_rx_resources(adapter->rx_ring[i]); | ||
| 3249 | } | ||
| 3250 | |||
| 3251 | /** | ||
| 3252 | * igb_clean_rx_ring - Free Rx Buffers per Queue | ||
| 3253 | * @rx_ring: ring to free buffers from | ||
| 3254 | **/ | ||
| 3255 | static void igb_clean_rx_ring(struct igb_ring *rx_ring) | ||
| 3256 | { | ||
| 3257 | struct igb_buffer *buffer_info; | ||
| 3258 | unsigned long size; | ||
| 3259 | unsigned int i; | ||
| 3260 | |||
| 3261 | if (!rx_ring->buffer_info) | ||
| 3262 | return; | ||
| 3263 | |||
| 3264 | /* Free all the Rx ring sk_buffs */ | ||
| 3265 | for (i = 0; i < rx_ring->count; i++) { | ||
| 3266 | buffer_info = &rx_ring->buffer_info[i]; | ||
| 3267 | if (buffer_info->dma) { | ||
| 3268 | dma_unmap_single(rx_ring->dev, | ||
| 3269 | buffer_info->dma, | ||
| 3270 | rx_ring->rx_buffer_len, | ||
| 3271 | DMA_FROM_DEVICE); | ||
| 3272 | buffer_info->dma = 0; | ||
| 3273 | } | ||
| 3274 | |||
| 3275 | if (buffer_info->skb) { | ||
| 3276 | dev_kfree_skb(buffer_info->skb); | ||
| 3277 | buffer_info->skb = NULL; | ||
| 3278 | } | ||
| 3279 | if (buffer_info->page_dma) { | ||
| 3280 | dma_unmap_page(rx_ring->dev, | ||
| 3281 | buffer_info->page_dma, | ||
| 3282 | PAGE_SIZE / 2, | ||
| 3283 | DMA_FROM_DEVICE); | ||
| 3284 | buffer_info->page_dma = 0; | ||
| 3285 | } | ||
| 3286 | if (buffer_info->page) { | ||
| 3287 | put_page(buffer_info->page); | ||
| 3288 | buffer_info->page = NULL; | ||
| 3289 | buffer_info->page_offset = 0; | ||
| 3290 | } | ||
| 3291 | } | ||
| 3292 | |||
| 3293 | size = sizeof(struct igb_buffer) * rx_ring->count; | ||
| 3294 | memset(rx_ring->buffer_info, 0, size); | ||
| 3295 | |||
| 3296 | /* Zero out the descriptor ring */ | ||
| 3297 | memset(rx_ring->desc, 0, rx_ring->size); | ||
| 3298 | |||
| 3299 | rx_ring->next_to_clean = 0; | ||
| 3300 | rx_ring->next_to_use = 0; | ||
| 3301 | } | ||
| 3302 | |||
| 3303 | /** | ||
| 3304 | * igb_clean_all_rx_rings - Free Rx Buffers for all queues | ||
| 3305 | * @adapter: board private structure | ||
| 3306 | **/ | ||
| 3307 | static void igb_clean_all_rx_rings(struct igb_adapter *adapter) | ||
| 3308 | { | ||
| 3309 | int i; | ||
| 3310 | |||
| 3311 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
| 3312 | igb_clean_rx_ring(adapter->rx_ring[i]); | ||
| 3313 | } | ||
| 3314 | |||
| 3315 | /** | ||
| 3316 | * igb_set_mac - Change the Ethernet Address of the NIC | ||
| 3317 | * @netdev: network interface device structure | ||
| 3318 | * @p: pointer to an address structure | ||
| 3319 | * | ||
| 3320 | * Returns 0 on success, negative on failure | ||
| 3321 | **/ | ||
| 3322 | static int igb_set_mac(struct net_device *netdev, void *p) | ||
| 3323 | { | ||
| 3324 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 3325 | struct e1000_hw *hw = &adapter->hw; | ||
| 3326 | struct sockaddr *addr = p; | ||
| 3327 | |||
| 3328 | if (!is_valid_ether_addr(addr->sa_data)) | ||
| 3329 | return -EADDRNOTAVAIL; | ||
| 3330 | |||
| 3331 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
| 3332 | memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); | ||
| 3333 | |||
| 3334 | /* set the correct pool for the new PF MAC address in entry 0 */ | ||
| 3335 | igb_rar_set_qsel(adapter, hw->mac.addr, 0, | ||
| 3336 | adapter->vfs_allocated_count); | ||
| 3337 | |||
| 3338 | return 0; | ||
| 3339 | } | ||
| 3340 | |||
| 3341 | /** | ||
| 3342 | * igb_write_mc_addr_list - write multicast addresses to MTA | ||
| 3343 | * @netdev: network interface device structure | ||
| 3344 | * | ||
| 3345 | * Writes multicast address list to the MTA hash table. | ||
| 3346 | * Returns: -ENOMEM on failure | ||
| 3347 | * 0 on no addresses written | ||
| 3348 | * X on writing X addresses to MTA | ||
| 3349 | **/ | ||
| 3350 | static int igb_write_mc_addr_list(struct net_device *netdev) | ||
| 3351 | { | ||
| 3352 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 3353 | struct e1000_hw *hw = &adapter->hw; | ||
| 3354 | struct netdev_hw_addr *ha; | ||
| 3355 | u8 *mta_list; | ||
| 3356 | int i; | ||
| 3357 | |||
| 3358 | if (netdev_mc_empty(netdev)) { | ||
| 3359 | /* nothing to program, so clear mc list */ | ||
| 3360 | igb_update_mc_addr_list(hw, NULL, 0); | ||
| 3361 | igb_restore_vf_multicasts(adapter); | ||
| 3362 | return 0; | ||
| 3363 | } | ||
| 3364 | |||
| 3365 | mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); | ||
| 3366 | if (!mta_list) | ||
| 3367 | return -ENOMEM; | ||
| 3368 | |||
| 3369 | /* The shared function expects a packed array of only addresses. */ | ||
| 3370 | i = 0; | ||
| 3371 | netdev_for_each_mc_addr(ha, netdev) | ||
| 3372 | memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); | ||
| 3373 | |||
| 3374 | igb_update_mc_addr_list(hw, mta_list, i); | ||
| 3375 | kfree(mta_list); | ||
| 3376 | |||
| 3377 | return netdev_mc_count(netdev); | ||
| 3378 | } | ||
| 3379 | |||
| 3380 | /** | ||
| 3381 | * igb_write_uc_addr_list - write unicast addresses to RAR table | ||
| 3382 | * @netdev: network interface device structure | ||
| 3383 | * | ||
| 3384 | * Writes unicast address list to the RAR table. | ||
| 3385 | * Returns: -ENOMEM on failure/insufficient address space | ||
| 3386 | * 0 on no addresses written | ||
| 3387 | * X on writing X addresses to the RAR table | ||
| 3388 | **/ | ||
| 3389 | static int igb_write_uc_addr_list(struct net_device *netdev) | ||
| 3390 | { | ||
| 3391 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 3392 | struct e1000_hw *hw = &adapter->hw; | ||
| 3393 | unsigned int vfn = adapter->vfs_allocated_count; | ||
| 3394 | unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); | ||
| 3395 | int count = 0; | ||
| 3396 | |||
| 3397 | /* return ENOMEM indicating insufficient memory for addresses */ | ||
| 3398 | if (netdev_uc_count(netdev) > rar_entries) | ||
| 3399 | return -ENOMEM; | ||
| 3400 | |||
| 3401 | if (!netdev_uc_empty(netdev) && rar_entries) { | ||
| 3402 | struct netdev_hw_addr *ha; | ||
| 3403 | |||
| 3404 | netdev_for_each_uc_addr(ha, netdev) { | ||
| 3405 | if (!rar_entries) | ||
| 3406 | break; | ||
| 3407 | igb_rar_set_qsel(adapter, ha->addr, | ||
| 3408 | rar_entries--, | ||
| 3409 | vfn); | ||
| 3410 | count++; | ||
| 3411 | } | ||
| 3412 | } | ||
| 3413 | /* write the addresses in reverse order to avoid write combining */ | ||
| 3414 | for (; rar_entries > 0 ; rar_entries--) { | ||
| 3415 | wr32(E1000_RAH(rar_entries), 0); | ||
| 3416 | wr32(E1000_RAL(rar_entries), 0); | ||
| 3417 | } | ||
| 3418 | wrfl(); | ||
| 3419 | |||
| 3420 | return count; | ||
| 3421 | } | ||
| 3422 | |||
| 3423 | /** | ||
| 3424 | * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set | ||
| 3425 | * @netdev: network interface device structure | ||
| 3426 | * | ||
| 3427 | * The set_rx_mode entry point is called whenever the unicast or multicast | ||
| 3428 | * address lists or the network interface flags are updated. This routine is | ||
| 3429 | * responsible for configuring the hardware for proper unicast, multicast, | ||
| 3430 | * promiscuous mode, and all-multi behavior. | ||
| 3431 | **/ | ||
| 3432 | static void igb_set_rx_mode(struct net_device *netdev) | ||
| 3433 | { | ||
| 3434 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 3435 | struct e1000_hw *hw = &adapter->hw; | ||
| 3436 | unsigned int vfn = adapter->vfs_allocated_count; | ||
| 3437 | u32 rctl, vmolr = 0; | ||
| 3438 | int count; | ||
| 3439 | |||
| 3440 | /* Check for Promiscuous and All Multicast modes */ | ||
| 3441 | rctl = rd32(E1000_RCTL); | ||
| 3442 | |||
| 3443 | /* clear the effected bits */ | ||
| 3444 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); | ||
| 3445 | |||
| 3446 | if (netdev->flags & IFF_PROMISC) { | ||
| 3447 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
| 3448 | vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); | ||
| 3449 | } else { | ||
| 3450 | if (netdev->flags & IFF_ALLMULTI) { | ||
| 3451 | rctl |= E1000_RCTL_MPE; | ||
| 3452 | vmolr |= E1000_VMOLR_MPME; | ||
| 3453 | } else { | ||
| 3454 | /* | ||
| 3455 | * Write addresses to the MTA, if the attempt fails | ||
| 3456 | * then we should just turn on promiscuous mode so | ||
| 3457 | * that we can at least receive multicast traffic | ||
| 3458 | */ | ||
| 3459 | count = igb_write_mc_addr_list(netdev); | ||
| 3460 | if (count < 0) { | ||
| 3461 | rctl |= E1000_RCTL_MPE; | ||
| 3462 | vmolr |= E1000_VMOLR_MPME; | ||
| 3463 | } else if (count) { | ||
| 3464 | vmolr |= E1000_VMOLR_ROMPE; | ||
| 3465 | } | ||
| 3466 | } | ||
| 3467 | /* | ||
| 3468 | * Write addresses to available RAR registers, if there is not | ||
| 3469 | * sufficient space to store all the addresses then enable | ||
| 3470 | * unicast promiscuous mode | ||
| 3471 | */ | ||
| 3472 | count = igb_write_uc_addr_list(netdev); | ||
| 3473 | if (count < 0) { | ||
| 3474 | rctl |= E1000_RCTL_UPE; | ||
| 3475 | vmolr |= E1000_VMOLR_ROPE; | ||
| 3476 | } | ||
| 3477 | rctl |= E1000_RCTL_VFE; | ||
| 3478 | } | ||
| 3479 | wr32(E1000_RCTL, rctl); | ||
| 3480 | |||
| 3481 | /* | ||
| 3482 | * In order to support SR-IOV and eventually VMDq it is necessary to set | ||
| 3483 | * the VMOLR to enable the appropriate modes. Without this workaround | ||
| 3484 | * we will have issues with VLAN tag stripping not being done for frames | ||
| 3485 | * that are only arriving because we are the default pool | ||
| 3486 | */ | ||
| 3487 | if (hw->mac.type < e1000_82576) | ||
| 3488 | return; | ||
| 3489 | |||
| 3490 | vmolr |= rd32(E1000_VMOLR(vfn)) & | ||
| 3491 | ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); | ||
| 3492 | wr32(E1000_VMOLR(vfn), vmolr); | ||
| 3493 | igb_restore_vf_multicasts(adapter); | ||
| 3494 | } | ||
| 3495 | |||
| 3496 | static void igb_check_wvbr(struct igb_adapter *adapter) | ||
| 3497 | { | ||
| 3498 | struct e1000_hw *hw = &adapter->hw; | ||
| 3499 | u32 wvbr = 0; | ||
| 3500 | |||
| 3501 | switch (hw->mac.type) { | ||
| 3502 | case e1000_82576: | ||
| 3503 | case e1000_i350: | ||
| 3504 | if (!(wvbr = rd32(E1000_WVBR))) | ||
| 3505 | return; | ||
| 3506 | break; | ||
| 3507 | default: | ||
| 3508 | break; | ||
| 3509 | } | ||
| 3510 | |||
| 3511 | adapter->wvbr |= wvbr; | ||
| 3512 | } | ||
| 3513 | |||
| 3514 | #define IGB_STAGGERED_QUEUE_OFFSET 8 | ||
| 3515 | |||
| 3516 | static void igb_spoof_check(struct igb_adapter *adapter) | ||
| 3517 | { | ||
| 3518 | int j; | ||
| 3519 | |||
| 3520 | if (!adapter->wvbr) | ||
| 3521 | return; | ||
| 3522 | |||
| 3523 | for(j = 0; j < adapter->vfs_allocated_count; j++) { | ||
| 3524 | if (adapter->wvbr & (1 << j) || | ||
| 3525 | adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { | ||
| 3526 | dev_warn(&adapter->pdev->dev, | ||
| 3527 | "Spoof event(s) detected on VF %d\n", j); | ||
| 3528 | adapter->wvbr &= | ||
| 3529 | ~((1 << j) | | ||
| 3530 | (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); | ||
| 3531 | } | ||
| 3532 | } | ||
| 3533 | } | ||
| 3534 | |||
| 3535 | /* Need to wait a few seconds after link up to get diagnostic information from | ||
| 3536 | * the phy */ | ||
| 3537 | static void igb_update_phy_info(unsigned long data) | ||
| 3538 | { | ||
| 3539 | struct igb_adapter *adapter = (struct igb_adapter *) data; | ||
| 3540 | igb_get_phy_info(&adapter->hw); | ||
| 3541 | } | ||
| 3542 | |||
| 3543 | /** | ||
| 3544 | * igb_has_link - check shared code for link and determine up/down | ||
| 3545 | * @adapter: pointer to driver private info | ||
| 3546 | **/ | ||
| 3547 | bool igb_has_link(struct igb_adapter *adapter) | ||
| 3548 | { | ||
| 3549 | struct e1000_hw *hw = &adapter->hw; | ||
| 3550 | bool link_active = false; | ||
| 3551 | s32 ret_val = 0; | ||
| 3552 | |||
| 3553 | /* get_link_status is set on LSC (link status) interrupt or | ||
| 3554 | * rx sequence error interrupt. get_link_status will stay | ||
| 3555 | * false until the e1000_check_for_link establishes link | ||
| 3556 | * for copper adapters ONLY | ||
| 3557 | */ | ||
| 3558 | switch (hw->phy.media_type) { | ||
| 3559 | case e1000_media_type_copper: | ||
| 3560 | if (hw->mac.get_link_status) { | ||
| 3561 | ret_val = hw->mac.ops.check_for_link(hw); | ||
| 3562 | link_active = !hw->mac.get_link_status; | ||
| 3563 | } else { | ||
| 3564 | link_active = true; | ||
| 3565 | } | ||
| 3566 | break; | ||
| 3567 | case e1000_media_type_internal_serdes: | ||
| 3568 | ret_val = hw->mac.ops.check_for_link(hw); | ||
| 3569 | link_active = hw->mac.serdes_has_link; | ||
| 3570 | break; | ||
| 3571 | default: | ||
| 3572 | case e1000_media_type_unknown: | ||
| 3573 | break; | ||
| 3574 | } | ||
| 3575 | |||
| 3576 | return link_active; | ||
| 3577 | } | ||
| 3578 | |||
| 3579 | static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) | ||
| 3580 | { | ||
| 3581 | bool ret = false; | ||
| 3582 | u32 ctrl_ext, thstat; | ||
| 3583 | |||
| 3584 | /* check for thermal sensor event on i350, copper only */ | ||
| 3585 | if (hw->mac.type == e1000_i350) { | ||
| 3586 | thstat = rd32(E1000_THSTAT); | ||
| 3587 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
| 3588 | |||
| 3589 | if ((hw->phy.media_type == e1000_media_type_copper) && | ||
| 3590 | !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) { | ||
| 3591 | ret = !!(thstat & event); | ||
| 3592 | } | ||
| 3593 | } | ||
| 3594 | |||
| 3595 | return ret; | ||
| 3596 | } | ||
| 3597 | |||
| 3598 | /** | ||
| 3599 | * igb_watchdog - Timer Call-back | ||
| 3600 | * @data: pointer to adapter cast into an unsigned long | ||
| 3601 | **/ | ||
| 3602 | static void igb_watchdog(unsigned long data) | ||
| 3603 | { | ||
| 3604 | struct igb_adapter *adapter = (struct igb_adapter *)data; | ||
| 3605 | /* Do the rest outside of interrupt context */ | ||
| 3606 | schedule_work(&adapter->watchdog_task); | ||
| 3607 | } | ||
| 3608 | |||
| 3609 | static void igb_watchdog_task(struct work_struct *work) | ||
| 3610 | { | ||
| 3611 | struct igb_adapter *adapter = container_of(work, | ||
| 3612 | struct igb_adapter, | ||
| 3613 | watchdog_task); | ||
| 3614 | struct e1000_hw *hw = &adapter->hw; | ||
| 3615 | struct net_device *netdev = adapter->netdev; | ||
| 3616 | u32 link; | ||
| 3617 | int i; | ||
| 3618 | |||
| 3619 | link = igb_has_link(adapter); | ||
| 3620 | if (link) { | ||
| 3621 | if (!netif_carrier_ok(netdev)) { | ||
| 3622 | u32 ctrl; | ||
| 3623 | hw->mac.ops.get_speed_and_duplex(hw, | ||
| 3624 | &adapter->link_speed, | ||
| 3625 | &adapter->link_duplex); | ||
| 3626 | |||
| 3627 | ctrl = rd32(E1000_CTRL); | ||
| 3628 | /* Links status message must follow this format */ | ||
| 3629 | printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, " | ||
| 3630 | "Flow Control: %s\n", | ||
| 3631 | netdev->name, | ||
| 3632 | adapter->link_speed, | ||
| 3633 | adapter->link_duplex == FULL_DUPLEX ? | ||
| 3634 | "Full Duplex" : "Half Duplex", | ||
| 3635 | ((ctrl & E1000_CTRL_TFCE) && | ||
| 3636 | (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" : | ||
| 3637 | ((ctrl & E1000_CTRL_RFCE) ? "RX" : | ||
| 3638 | ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None"))); | ||
| 3639 | |||
| 3640 | /* check for thermal sensor event */ | ||
| 3641 | if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) { | ||
| 3642 | printk(KERN_INFO "igb: %s The network adapter " | ||
| 3643 | "link speed was downshifted " | ||
| 3644 | "because it overheated.\n", | ||
| 3645 | netdev->name); | ||
| 3646 | } | ||
| 3647 | |||
| 3648 | /* adjust timeout factor according to speed/duplex */ | ||
| 3649 | adapter->tx_timeout_factor = 1; | ||
| 3650 | switch (adapter->link_speed) { | ||
| 3651 | case SPEED_10: | ||
| 3652 | adapter->tx_timeout_factor = 14; | ||
| 3653 | break; | ||
| 3654 | case SPEED_100: | ||
| 3655 | /* maybe add some timeout factor ? */ | ||
| 3656 | break; | ||
| 3657 | } | ||
| 3658 | |||
| 3659 | netif_carrier_on(netdev); | ||
| 3660 | |||
| 3661 | igb_ping_all_vfs(adapter); | ||
| 3662 | igb_check_vf_rate_limit(adapter); | ||
| 3663 | |||
| 3664 | /* link state has changed, schedule phy info update */ | ||
| 3665 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
| 3666 | mod_timer(&adapter->phy_info_timer, | ||
| 3667 | round_jiffies(jiffies + 2 * HZ)); | ||
| 3668 | } | ||
| 3669 | } else { | ||
| 3670 | if (netif_carrier_ok(netdev)) { | ||
| 3671 | adapter->link_speed = 0; | ||
| 3672 | adapter->link_duplex = 0; | ||
| 3673 | |||
| 3674 | /* check for thermal sensor event */ | ||
| 3675 | if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) { | ||
| 3676 | printk(KERN_ERR "igb: %s The network adapter " | ||
| 3677 | "was stopped because it " | ||
| 3678 | "overheated.\n", | ||
| 3679 | netdev->name); | ||
| 3680 | } | ||
| 3681 | |||
| 3682 | /* Links status message must follow this format */ | ||
| 3683 | printk(KERN_INFO "igb: %s NIC Link is Down\n", | ||
| 3684 | netdev->name); | ||
| 3685 | netif_carrier_off(netdev); | ||
| 3686 | |||
| 3687 | igb_ping_all_vfs(adapter); | ||
| 3688 | |||
| 3689 | /* link state has changed, schedule phy info update */ | ||
| 3690 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
| 3691 | mod_timer(&adapter->phy_info_timer, | ||
| 3692 | round_jiffies(jiffies + 2 * HZ)); | ||
| 3693 | } | ||
| 3694 | } | ||
| 3695 | |||
| 3696 | spin_lock(&adapter->stats64_lock); | ||
| 3697 | igb_update_stats(adapter, &adapter->stats64); | ||
| 3698 | spin_unlock(&adapter->stats64_lock); | ||
| 3699 | |||
| 3700 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
| 3701 | struct igb_ring *tx_ring = adapter->tx_ring[i]; | ||
| 3702 | if (!netif_carrier_ok(netdev)) { | ||
| 3703 | /* We've lost link, so the controller stops DMA, | ||
| 3704 | * but we've got queued Tx work that's never going | ||
| 3705 | * to get done, so reset controller to flush Tx. | ||
| 3706 | * (Do the reset outside of interrupt context). */ | ||
| 3707 | if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { | ||
| 3708 | adapter->tx_timeout_count++; | ||
| 3709 | schedule_work(&adapter->reset_task); | ||
| 3710 | /* return immediately since reset is imminent */ | ||
| 3711 | return; | ||
| 3712 | } | ||
| 3713 | } | ||
| 3714 | |||
| 3715 | /* Force detection of hung controller every watchdog period */ | ||
| 3716 | tx_ring->detect_tx_hung = true; | ||
| 3717 | } | ||
| 3718 | |||
| 3719 | /* Cause software interrupt to ensure rx ring is cleaned */ | ||
| 3720 | if (adapter->msix_entries) { | ||
| 3721 | u32 eics = 0; | ||
| 3722 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
| 3723 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
| 3724 | eics |= q_vector->eims_value; | ||
| 3725 | } | ||
| 3726 | wr32(E1000_EICS, eics); | ||
| 3727 | } else { | ||
| 3728 | wr32(E1000_ICS, E1000_ICS_RXDMT0); | ||
| 3729 | } | ||
| 3730 | |||
| 3731 | igb_spoof_check(adapter); | ||
| 3732 | |||
| 3733 | /* Reset the timer */ | ||
| 3734 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
| 3735 | mod_timer(&adapter->watchdog_timer, | ||
| 3736 | round_jiffies(jiffies + 2 * HZ)); | ||
| 3737 | } | ||
| 3738 | |||
| 3739 | enum latency_range { | ||
| 3740 | lowest_latency = 0, | ||
| 3741 | low_latency = 1, | ||
| 3742 | bulk_latency = 2, | ||
| 3743 | latency_invalid = 255 | ||
| 3744 | }; | ||
| 3745 | |||
| 3746 | /** | ||
| 3747 | * igb_update_ring_itr - update the dynamic ITR value based on packet size | ||
| 3748 | * | ||
| 3749 | * Stores a new ITR value based on strictly on packet size. This | ||
| 3750 | * algorithm is less sophisticated than that used in igb_update_itr, | ||
| 3751 | * due to the difficulty of synchronizing statistics across multiple | ||
| 3752 | * receive rings. The divisors and thresholds used by this function | ||
| 3753 | * were determined based on theoretical maximum wire speed and testing | ||
| 3754 | * data, in order to minimize response time while increasing bulk | ||
| 3755 | * throughput. | ||
| 3756 | * This functionality is controlled by the InterruptThrottleRate module | ||
| 3757 | * parameter (see igb_param.c) | ||
| 3758 | * NOTE: This function is called only when operating in a multiqueue | ||
| 3759 | * receive environment. | ||
| 3760 | * @q_vector: pointer to q_vector | ||
| 3761 | **/ | ||
| 3762 | static void igb_update_ring_itr(struct igb_q_vector *q_vector) | ||
| 3763 | { | ||
| 3764 | int new_val = q_vector->itr_val; | ||
| 3765 | int avg_wire_size = 0; | ||
| 3766 | struct igb_adapter *adapter = q_vector->adapter; | ||
| 3767 | struct igb_ring *ring; | ||
| 3768 | unsigned int packets; | ||
| 3769 | |||
| 3770 | /* For non-gigabit speeds, just fix the interrupt rate at 4000 | ||
| 3771 | * ints/sec - ITR timer value of 120 ticks. | ||
| 3772 | */ | ||
| 3773 | if (adapter->link_speed != SPEED_1000) { | ||
| 3774 | new_val = 976; | ||
| 3775 | goto set_itr_val; | ||
| 3776 | } | ||
| 3777 | |||
| 3778 | ring = q_vector->rx_ring; | ||
| 3779 | if (ring) { | ||
| 3780 | packets = ACCESS_ONCE(ring->total_packets); | ||
| 3781 | |||
| 3782 | if (packets) | ||
| 3783 | avg_wire_size = ring->total_bytes / packets; | ||
| 3784 | } | ||
| 3785 | |||
| 3786 | ring = q_vector->tx_ring; | ||
| 3787 | if (ring) { | ||
| 3788 | packets = ACCESS_ONCE(ring->total_packets); | ||
| 3789 | |||
| 3790 | if (packets) | ||
| 3791 | avg_wire_size = max_t(u32, avg_wire_size, | ||
| 3792 | ring->total_bytes / packets); | ||
| 3793 | } | ||
| 3794 | |||
| 3795 | /* if avg_wire_size isn't set no work was done */ | ||
| 3796 | if (!avg_wire_size) | ||
| 3797 | goto clear_counts; | ||
| 3798 | |||
| 3799 | /* Add 24 bytes to size to account for CRC, preamble, and gap */ | ||
| 3800 | avg_wire_size += 24; | ||
| 3801 | |||
| 3802 | /* Don't starve jumbo frames */ | ||
| 3803 | avg_wire_size = min(avg_wire_size, 3000); | ||
| 3804 | |||
| 3805 | /* Give a little boost to mid-size frames */ | ||
| 3806 | if ((avg_wire_size > 300) && (avg_wire_size < 1200)) | ||
| 3807 | new_val = avg_wire_size / 3; | ||
| 3808 | else | ||
| 3809 | new_val = avg_wire_size / 2; | ||
| 3810 | |||
| 3811 | /* when in itr mode 3 do not exceed 20K ints/sec */ | ||
| 3812 | if (adapter->rx_itr_setting == 3 && new_val < 196) | ||
| 3813 | new_val = 196; | ||
| 3814 | |||
| 3815 | set_itr_val: | ||
| 3816 | if (new_val != q_vector->itr_val) { | ||
| 3817 | q_vector->itr_val = new_val; | ||
| 3818 | q_vector->set_itr = 1; | ||
| 3819 | } | ||
| 3820 | clear_counts: | ||
| 3821 | if (q_vector->rx_ring) { | ||
| 3822 | q_vector->rx_ring->total_bytes = 0; | ||
| 3823 | q_vector->rx_ring->total_packets = 0; | ||
| 3824 | } | ||
| 3825 | if (q_vector->tx_ring) { | ||
| 3826 | q_vector->tx_ring->total_bytes = 0; | ||
| 3827 | q_vector->tx_ring->total_packets = 0; | ||
| 3828 | } | ||
| 3829 | } | ||
| 3830 | |||
| 3831 | /** | ||
| 3832 | * igb_update_itr - update the dynamic ITR value based on statistics | ||
| 3833 | * Stores a new ITR value based on packets and byte | ||
| 3834 | * counts during the last interrupt. The advantage of per interrupt | ||
| 3835 | * computation is faster updates and more accurate ITR for the current | ||
| 3836 | * traffic pattern. Constants in this function were computed | ||
| 3837 | * based on theoretical maximum wire speed and thresholds were set based | ||
| 3838 | * on testing data as well as attempting to minimize response time | ||
| 3839 | * while increasing bulk throughput. | ||
| 3840 | * this functionality is controlled by the InterruptThrottleRate module | ||
| 3841 | * parameter (see igb_param.c) | ||
| 3842 | * NOTE: These calculations are only valid when operating in a single- | ||
| 3843 | * queue environment. | ||
| 3844 | * @adapter: pointer to adapter | ||
| 3845 | * @itr_setting: current q_vector->itr_val | ||
| 3846 | * @packets: the number of packets during this measurement interval | ||
| 3847 | * @bytes: the number of bytes during this measurement interval | ||
| 3848 | **/ | ||
| 3849 | static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting, | ||
| 3850 | int packets, int bytes) | ||
| 3851 | { | ||
| 3852 | unsigned int retval = itr_setting; | ||
| 3853 | |||
| 3854 | if (packets == 0) | ||
| 3855 | goto update_itr_done; | ||
| 3856 | |||
| 3857 | switch (itr_setting) { | ||
| 3858 | case lowest_latency: | ||
| 3859 | /* handle TSO and jumbo frames */ | ||
| 3860 | if (bytes/packets > 8000) | ||
| 3861 | retval = bulk_latency; | ||
| 3862 | else if ((packets < 5) && (bytes > 512)) | ||
| 3863 | retval = low_latency; | ||
| 3864 | break; | ||
| 3865 | case low_latency: /* 50 usec aka 20000 ints/s */ | ||
| 3866 | if (bytes > 10000) { | ||
| 3867 | /* this if handles the TSO accounting */ | ||
| 3868 | if (bytes/packets > 8000) { | ||
| 3869 | retval = bulk_latency; | ||
| 3870 | } else if ((packets < 10) || ((bytes/packets) > 1200)) { | ||
| 3871 | retval = bulk_latency; | ||
| 3872 | } else if ((packets > 35)) { | ||
| 3873 | retval = lowest_latency; | ||
| 3874 | } | ||
| 3875 | } else if (bytes/packets > 2000) { | ||
| 3876 | retval = bulk_latency; | ||
| 3877 | } else if (packets <= 2 && bytes < 512) { | ||
| 3878 | retval = lowest_latency; | ||
| 3879 | } | ||
| 3880 | break; | ||
| 3881 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | ||
| 3882 | if (bytes > 25000) { | ||
| 3883 | if (packets > 35) | ||
| 3884 | retval = low_latency; | ||
| 3885 | } else if (bytes < 1500) { | ||
| 3886 | retval = low_latency; | ||
| 3887 | } | ||
| 3888 | break; | ||
| 3889 | } | ||
| 3890 | |||
| 3891 | update_itr_done: | ||
| 3892 | return retval; | ||
| 3893 | } | ||
| 3894 | |||
| 3895 | static void igb_set_itr(struct igb_adapter *adapter) | ||
| 3896 | { | ||
| 3897 | struct igb_q_vector *q_vector = adapter->q_vector[0]; | ||
| 3898 | u16 current_itr; | ||
| 3899 | u32 new_itr = q_vector->itr_val; | ||
| 3900 | |||
| 3901 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | ||
| 3902 | if (adapter->link_speed != SPEED_1000) { | ||
| 3903 | current_itr = 0; | ||
| 3904 | new_itr = 4000; | ||
| 3905 | goto set_itr_now; | ||
| 3906 | } | ||
| 3907 | |||
| 3908 | adapter->rx_itr = igb_update_itr(adapter, | ||
| 3909 | adapter->rx_itr, | ||
| 3910 | q_vector->rx_ring->total_packets, | ||
| 3911 | q_vector->rx_ring->total_bytes); | ||
| 3912 | |||
| 3913 | adapter->tx_itr = igb_update_itr(adapter, | ||
| 3914 | adapter->tx_itr, | ||
| 3915 | q_vector->tx_ring->total_packets, | ||
| 3916 | q_vector->tx_ring->total_bytes); | ||
| 3917 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | ||
| 3918 | |||
| 3919 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
| 3920 | if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency) | ||
| 3921 | current_itr = low_latency; | ||
| 3922 | |||
| 3923 | switch (current_itr) { | ||
| 3924 | /* counts and packets in update_itr are dependent on these numbers */ | ||
| 3925 | case lowest_latency: | ||
| 3926 | new_itr = 56; /* aka 70,000 ints/sec */ | ||
| 3927 | break; | ||
| 3928 | case low_latency: | ||
| 3929 | new_itr = 196; /* aka 20,000 ints/sec */ | ||
| 3930 | break; | ||
| 3931 | case bulk_latency: | ||
| 3932 | new_itr = 980; /* aka 4,000 ints/sec */ | ||
| 3933 | break; | ||
| 3934 | default: | ||
| 3935 | break; | ||
| 3936 | } | ||
| 3937 | |||
| 3938 | set_itr_now: | ||
| 3939 | q_vector->rx_ring->total_bytes = 0; | ||
| 3940 | q_vector->rx_ring->total_packets = 0; | ||
| 3941 | q_vector->tx_ring->total_bytes = 0; | ||
| 3942 | q_vector->tx_ring->total_packets = 0; | ||
| 3943 | |||
| 3944 | if (new_itr != q_vector->itr_val) { | ||
| 3945 | /* this attempts to bias the interrupt rate towards Bulk | ||
| 3946 | * by adding intermediate steps when interrupt rate is | ||
| 3947 | * increasing */ | ||
| 3948 | new_itr = new_itr > q_vector->itr_val ? | ||
| 3949 | max((new_itr * q_vector->itr_val) / | ||
| 3950 | (new_itr + (q_vector->itr_val >> 2)), | ||
| 3951 | new_itr) : | ||
| 3952 | new_itr; | ||
| 3953 | /* Don't write the value here; it resets the adapter's | ||
| 3954 | * internal timer, and causes us to delay far longer than | ||
| 3955 | * we should between interrupts. Instead, we write the ITR | ||
| 3956 | * value at the beginning of the next interrupt so the timing | ||
| 3957 | * ends up being correct. | ||
| 3958 | */ | ||
| 3959 | q_vector->itr_val = new_itr; | ||
| 3960 | q_vector->set_itr = 1; | ||
| 3961 | } | ||
| 3962 | } | ||
| 3963 | |||
| 3964 | #define IGB_TX_FLAGS_CSUM 0x00000001 | ||
| 3965 | #define IGB_TX_FLAGS_VLAN 0x00000002 | ||
| 3966 | #define IGB_TX_FLAGS_TSO 0x00000004 | ||
| 3967 | #define IGB_TX_FLAGS_IPV4 0x00000008 | ||
| 3968 | #define IGB_TX_FLAGS_TSTAMP 0x00000010 | ||
| 3969 | #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
| 3970 | #define IGB_TX_FLAGS_VLAN_SHIFT 16 | ||
| 3971 | |||
| 3972 | static inline int igb_tso_adv(struct igb_ring *tx_ring, | ||
| 3973 | struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) | ||
| 3974 | { | ||
| 3975 | struct e1000_adv_tx_context_desc *context_desc; | ||
| 3976 | unsigned int i; | ||
| 3977 | int err; | ||
| 3978 | struct igb_buffer *buffer_info; | ||
| 3979 | u32 info = 0, tu_cmd = 0; | ||
| 3980 | u32 mss_l4len_idx; | ||
| 3981 | u8 l4len; | ||
| 3982 | |||
| 3983 | if (skb_header_cloned(skb)) { | ||
| 3984 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
| 3985 | if (err) | ||
| 3986 | return err; | ||
| 3987 | } | ||
| 3988 | |||
| 3989 | l4len = tcp_hdrlen(skb); | ||
| 3990 | *hdr_len += l4len; | ||
| 3991 | |||
| 3992 | if (skb->protocol == htons(ETH_P_IP)) { | ||
| 3993 | struct iphdr *iph = ip_hdr(skb); | ||
| 3994 | iph->tot_len = 0; | ||
| 3995 | iph->check = 0; | ||
| 3996 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | ||
| 3997 | iph->daddr, 0, | ||
| 3998 | IPPROTO_TCP, | ||
| 3999 | 0); | ||
| 4000 | } else if (skb_is_gso_v6(skb)) { | ||
| 4001 | ipv6_hdr(skb)->payload_len = 0; | ||
| 4002 | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
| 4003 | &ipv6_hdr(skb)->daddr, | ||
| 4004 | 0, IPPROTO_TCP, 0); | ||
| 4005 | } | ||
| 4006 | |||
| 4007 | i = tx_ring->next_to_use; | ||
| 4008 | |||
| 4009 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 4010 | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); | ||
| 4011 | /* VLAN MACLEN IPLEN */ | ||
| 4012 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
| 4013 | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); | ||
| 4014 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
| 4015 | *hdr_len += skb_network_offset(skb); | ||
| 4016 | info |= skb_network_header_len(skb); | ||
| 4017 | *hdr_len += skb_network_header_len(skb); | ||
| 4018 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
| 4019 | |||
| 4020 | /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ | ||
| 4021 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
| 4022 | |||
| 4023 | if (skb->protocol == htons(ETH_P_IP)) | ||
| 4024 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
| 4025 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
| 4026 | |||
| 4027 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
| 4028 | |||
| 4029 | /* MSS L4LEN IDX */ | ||
| 4030 | mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); | ||
| 4031 | mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); | ||
| 4032 | |||
| 4033 | /* For 82575, context index must be unique per ring. */ | ||
| 4034 | if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) | ||
| 4035 | mss_l4len_idx |= tx_ring->reg_idx << 4; | ||
| 4036 | |||
| 4037 | context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); | ||
| 4038 | context_desc->seqnum_seed = 0; | ||
| 4039 | |||
| 4040 | buffer_info->time_stamp = jiffies; | ||
| 4041 | buffer_info->next_to_watch = i; | ||
| 4042 | buffer_info->dma = 0; | ||
| 4043 | i++; | ||
| 4044 | if (i == tx_ring->count) | ||
| 4045 | i = 0; | ||
| 4046 | |||
| 4047 | tx_ring->next_to_use = i; | ||
| 4048 | |||
| 4049 | return true; | ||
| 4050 | } | ||
| 4051 | |||
| 4052 | static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring, | ||
| 4053 | struct sk_buff *skb, u32 tx_flags) | ||
| 4054 | { | ||
| 4055 | struct e1000_adv_tx_context_desc *context_desc; | ||
| 4056 | struct device *dev = tx_ring->dev; | ||
| 4057 | struct igb_buffer *buffer_info; | ||
| 4058 | u32 info = 0, tu_cmd = 0; | ||
| 4059 | unsigned int i; | ||
| 4060 | |||
| 4061 | if ((skb->ip_summed == CHECKSUM_PARTIAL) || | ||
| 4062 | (tx_flags & IGB_TX_FLAGS_VLAN)) { | ||
| 4063 | i = tx_ring->next_to_use; | ||
| 4064 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 4065 | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); | ||
| 4066 | |||
| 4067 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
| 4068 | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); | ||
| 4069 | |||
| 4070 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
| 4071 | if (skb->ip_summed == CHECKSUM_PARTIAL) | ||
| 4072 | info |= skb_network_header_len(skb); | ||
| 4073 | |||
| 4074 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
| 4075 | |||
| 4076 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
| 4077 | |||
| 4078 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
| 4079 | __be16 protocol; | ||
| 4080 | |||
| 4081 | if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { | ||
| 4082 | const struct vlan_ethhdr *vhdr = | ||
| 4083 | (const struct vlan_ethhdr*)skb->data; | ||
| 4084 | |||
| 4085 | protocol = vhdr->h_vlan_encapsulated_proto; | ||
| 4086 | } else { | ||
| 4087 | protocol = skb->protocol; | ||
| 4088 | } | ||
| 4089 | |||
| 4090 | switch (protocol) { | ||
| 4091 | case cpu_to_be16(ETH_P_IP): | ||
| 4092 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
| 4093 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | ||
| 4094 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
| 4095 | else if (ip_hdr(skb)->protocol == IPPROTO_SCTP) | ||
| 4096 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; | ||
| 4097 | break; | ||
| 4098 | case cpu_to_be16(ETH_P_IPV6): | ||
| 4099 | /* XXX what about other V6 headers?? */ | ||
| 4100 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | ||
| 4101 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
| 4102 | else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP) | ||
| 4103 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; | ||
| 4104 | break; | ||
| 4105 | default: | ||
| 4106 | if (unlikely(net_ratelimit())) | ||
| 4107 | dev_warn(dev, | ||
| 4108 | "partial checksum but proto=%x!\n", | ||
| 4109 | skb->protocol); | ||
| 4110 | break; | ||
| 4111 | } | ||
| 4112 | } | ||
| 4113 | |||
| 4114 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
| 4115 | context_desc->seqnum_seed = 0; | ||
| 4116 | if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) | ||
| 4117 | context_desc->mss_l4len_idx = | ||
| 4118 | cpu_to_le32(tx_ring->reg_idx << 4); | ||
| 4119 | |||
| 4120 | buffer_info->time_stamp = jiffies; | ||
| 4121 | buffer_info->next_to_watch = i; | ||
| 4122 | buffer_info->dma = 0; | ||
| 4123 | |||
| 4124 | i++; | ||
| 4125 | if (i == tx_ring->count) | ||
| 4126 | i = 0; | ||
| 4127 | tx_ring->next_to_use = i; | ||
| 4128 | |||
| 4129 | return true; | ||
| 4130 | } | ||
| 4131 | return false; | ||
| 4132 | } | ||
| 4133 | |||
| 4134 | #define IGB_MAX_TXD_PWR 16 | ||
| 4135 | #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR) | ||
| 4136 | |||
| 4137 | static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb, | ||
| 4138 | unsigned int first) | ||
| 4139 | { | ||
| 4140 | struct igb_buffer *buffer_info; | ||
| 4141 | struct device *dev = tx_ring->dev; | ||
| 4142 | unsigned int hlen = skb_headlen(skb); | ||
| 4143 | unsigned int count = 0, i; | ||
| 4144 | unsigned int f; | ||
| 4145 | u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1; | ||
| 4146 | |||
| 4147 | i = tx_ring->next_to_use; | ||
| 4148 | |||
| 4149 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 4150 | BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD); | ||
| 4151 | buffer_info->length = hlen; | ||
| 4152 | /* set time_stamp *before* dma to help avoid a possible race */ | ||
| 4153 | buffer_info->time_stamp = jiffies; | ||
| 4154 | buffer_info->next_to_watch = i; | ||
| 4155 | buffer_info->dma = dma_map_single(dev, skb->data, hlen, | ||
| 4156 | DMA_TO_DEVICE); | ||
| 4157 | if (dma_mapping_error(dev, buffer_info->dma)) | ||
| 4158 | goto dma_error; | ||
| 4159 | |||
| 4160 | for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { | ||
| 4161 | struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f]; | ||
| 4162 | unsigned int len = frag->size; | ||
| 4163 | |||
| 4164 | count++; | ||
| 4165 | i++; | ||
| 4166 | if (i == tx_ring->count) | ||
| 4167 | i = 0; | ||
| 4168 | |||
| 4169 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 4170 | BUG_ON(len >= IGB_MAX_DATA_PER_TXD); | ||
| 4171 | buffer_info->length = len; | ||
| 4172 | buffer_info->time_stamp = jiffies; | ||
| 4173 | buffer_info->next_to_watch = i; | ||
| 4174 | buffer_info->mapped_as_page = true; | ||
| 4175 | buffer_info->dma = dma_map_page(dev, | ||
| 4176 | frag->page, | ||
| 4177 | frag->page_offset, | ||
| 4178 | len, | ||
| 4179 | DMA_TO_DEVICE); | ||
| 4180 | if (dma_mapping_error(dev, buffer_info->dma)) | ||
| 4181 | goto dma_error; | ||
| 4182 | |||
| 4183 | } | ||
| 4184 | |||
| 4185 | tx_ring->buffer_info[i].skb = skb; | ||
| 4186 | tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags; | ||
| 4187 | /* multiply data chunks by size of headers */ | ||
| 4188 | tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len; | ||
| 4189 | tx_ring->buffer_info[i].gso_segs = gso_segs; | ||
| 4190 | tx_ring->buffer_info[first].next_to_watch = i; | ||
| 4191 | |||
| 4192 | return ++count; | ||
| 4193 | |||
| 4194 | dma_error: | ||
| 4195 | dev_err(dev, "TX DMA map failed\n"); | ||
| 4196 | |||
| 4197 | /* clear timestamp and dma mappings for failed buffer_info mapping */ | ||
| 4198 | buffer_info->dma = 0; | ||
| 4199 | buffer_info->time_stamp = 0; | ||
| 4200 | buffer_info->length = 0; | ||
| 4201 | buffer_info->next_to_watch = 0; | ||
| 4202 | buffer_info->mapped_as_page = false; | ||
| 4203 | |||
| 4204 | /* clear timestamp and dma mappings for remaining portion of packet */ | ||
| 4205 | while (count--) { | ||
| 4206 | if (i == 0) | ||
| 4207 | i = tx_ring->count; | ||
| 4208 | i--; | ||
| 4209 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 4210 | igb_unmap_and_free_tx_resource(tx_ring, buffer_info); | ||
| 4211 | } | ||
| 4212 | |||
| 4213 | return 0; | ||
| 4214 | } | ||
| 4215 | |||
| 4216 | static inline void igb_tx_queue_adv(struct igb_ring *tx_ring, | ||
| 4217 | u32 tx_flags, int count, u32 paylen, | ||
| 4218 | u8 hdr_len) | ||
| 4219 | { | ||
| 4220 | union e1000_adv_tx_desc *tx_desc; | ||
| 4221 | struct igb_buffer *buffer_info; | ||
| 4222 | u32 olinfo_status = 0, cmd_type_len; | ||
| 4223 | unsigned int i = tx_ring->next_to_use; | ||
| 4224 | |||
| 4225 | cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | | ||
| 4226 | E1000_ADVTXD_DCMD_DEXT); | ||
| 4227 | |||
| 4228 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
| 4229 | cmd_type_len |= E1000_ADVTXD_DCMD_VLE; | ||
| 4230 | |||
| 4231 | if (tx_flags & IGB_TX_FLAGS_TSTAMP) | ||
| 4232 | cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP; | ||
| 4233 | |||
| 4234 | if (tx_flags & IGB_TX_FLAGS_TSO) { | ||
| 4235 | cmd_type_len |= E1000_ADVTXD_DCMD_TSE; | ||
| 4236 | |||
| 4237 | /* insert tcp checksum */ | ||
| 4238 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
| 4239 | |||
| 4240 | /* insert ip checksum */ | ||
| 4241 | if (tx_flags & IGB_TX_FLAGS_IPV4) | ||
| 4242 | olinfo_status |= E1000_TXD_POPTS_IXSM << 8; | ||
| 4243 | |||
| 4244 | } else if (tx_flags & IGB_TX_FLAGS_CSUM) { | ||
| 4245 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
| 4246 | } | ||
| 4247 | |||
| 4248 | if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) && | ||
| 4249 | (tx_flags & (IGB_TX_FLAGS_CSUM | | ||
| 4250 | IGB_TX_FLAGS_TSO | | ||
| 4251 | IGB_TX_FLAGS_VLAN))) | ||
| 4252 | olinfo_status |= tx_ring->reg_idx << 4; | ||
| 4253 | |||
| 4254 | olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); | ||
| 4255 | |||
| 4256 | do { | ||
| 4257 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 4258 | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | ||
| 4259 | tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); | ||
| 4260 | tx_desc->read.cmd_type_len = | ||
| 4261 | cpu_to_le32(cmd_type_len | buffer_info->length); | ||
| 4262 | tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); | ||
| 4263 | count--; | ||
| 4264 | i++; | ||
| 4265 | if (i == tx_ring->count) | ||
| 4266 | i = 0; | ||
| 4267 | } while (count > 0); | ||
| 4268 | |||
| 4269 | tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD); | ||
| 4270 | /* Force memory writes to complete before letting h/w | ||
| 4271 | * know there are new descriptors to fetch. (Only | ||
| 4272 | * applicable for weak-ordered memory model archs, | ||
| 4273 | * such as IA-64). */ | ||
| 4274 | wmb(); | ||
| 4275 | |||
| 4276 | tx_ring->next_to_use = i; | ||
| 4277 | writel(i, tx_ring->tail); | ||
| 4278 | /* we need this if more than one processor can write to our tail | ||
| 4279 | * at a time, it syncronizes IO on IA64/Altix systems */ | ||
| 4280 | mmiowb(); | ||
| 4281 | } | ||
| 4282 | |||
| 4283 | static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size) | ||
| 4284 | { | ||
| 4285 | struct net_device *netdev = tx_ring->netdev; | ||
| 4286 | |||
| 4287 | netif_stop_subqueue(netdev, tx_ring->queue_index); | ||
| 4288 | |||
| 4289 | /* Herbert's original patch had: | ||
| 4290 | * smp_mb__after_netif_stop_queue(); | ||
| 4291 | * but since that doesn't exist yet, just open code it. */ | ||
| 4292 | smp_mb(); | ||
| 4293 | |||
| 4294 | /* We need to check again in a case another CPU has just | ||
| 4295 | * made room available. */ | ||
| 4296 | if (igb_desc_unused(tx_ring) < size) | ||
| 4297 | return -EBUSY; | ||
| 4298 | |||
| 4299 | /* A reprieve! */ | ||
| 4300 | netif_wake_subqueue(netdev, tx_ring->queue_index); | ||
| 4301 | |||
| 4302 | u64_stats_update_begin(&tx_ring->tx_syncp2); | ||
| 4303 | tx_ring->tx_stats.restart_queue2++; | ||
| 4304 | u64_stats_update_end(&tx_ring->tx_syncp2); | ||
| 4305 | |||
| 4306 | return 0; | ||
| 4307 | } | ||
| 4308 | |||
| 4309 | static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size) | ||
| 4310 | { | ||
| 4311 | if (igb_desc_unused(tx_ring) >= size) | ||
| 4312 | return 0; | ||
| 4313 | return __igb_maybe_stop_tx(tx_ring, size); | ||
| 4314 | } | ||
| 4315 | |||
| 4316 | netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb, | ||
| 4317 | struct igb_ring *tx_ring) | ||
| 4318 | { | ||
| 4319 | int tso = 0, count; | ||
| 4320 | u32 tx_flags = 0; | ||
| 4321 | u16 first; | ||
| 4322 | u8 hdr_len = 0; | ||
| 4323 | |||
| 4324 | /* need: 1 descriptor per page, | ||
| 4325 | * + 2 desc gap to keep tail from touching head, | ||
| 4326 | * + 1 desc for skb->data, | ||
| 4327 | * + 1 desc for context descriptor, | ||
| 4328 | * otherwise try next time */ | ||
| 4329 | if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) { | ||
| 4330 | /* this is a hard error */ | ||
| 4331 | return NETDEV_TX_BUSY; | ||
| 4332 | } | ||
| 4333 | |||
| 4334 | if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { | ||
| 4335 | skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; | ||
| 4336 | tx_flags |= IGB_TX_FLAGS_TSTAMP; | ||
| 4337 | } | ||
| 4338 | |||
| 4339 | if (vlan_tx_tag_present(skb)) { | ||
| 4340 | tx_flags |= IGB_TX_FLAGS_VLAN; | ||
| 4341 | tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); | ||
| 4342 | } | ||
| 4343 | |||
| 4344 | if (skb->protocol == htons(ETH_P_IP)) | ||
| 4345 | tx_flags |= IGB_TX_FLAGS_IPV4; | ||
| 4346 | |||
| 4347 | first = tx_ring->next_to_use; | ||
| 4348 | if (skb_is_gso(skb)) { | ||
| 4349 | tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len); | ||
| 4350 | |||
| 4351 | if (tso < 0) { | ||
| 4352 | dev_kfree_skb_any(skb); | ||
| 4353 | return NETDEV_TX_OK; | ||
| 4354 | } | ||
| 4355 | } | ||
| 4356 | |||
| 4357 | if (tso) | ||
| 4358 | tx_flags |= IGB_TX_FLAGS_TSO; | ||
| 4359 | else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) && | ||
| 4360 | (skb->ip_summed == CHECKSUM_PARTIAL)) | ||
| 4361 | tx_flags |= IGB_TX_FLAGS_CSUM; | ||
| 4362 | |||
| 4363 | /* | ||
| 4364 | * count reflects descriptors mapped, if 0 or less then mapping error | ||
| 4365 | * has occurred and we need to rewind the descriptor queue | ||
| 4366 | */ | ||
| 4367 | count = igb_tx_map_adv(tx_ring, skb, first); | ||
| 4368 | if (!count) { | ||
| 4369 | dev_kfree_skb_any(skb); | ||
| 4370 | tx_ring->buffer_info[first].time_stamp = 0; | ||
| 4371 | tx_ring->next_to_use = first; | ||
| 4372 | return NETDEV_TX_OK; | ||
| 4373 | } | ||
| 4374 | |||
| 4375 | igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len); | ||
| 4376 | |||
| 4377 | /* Make sure there is space in the ring for the next send. */ | ||
| 4378 | igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4); | ||
| 4379 | |||
| 4380 | return NETDEV_TX_OK; | ||
| 4381 | } | ||
| 4382 | |||
| 4383 | static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, | ||
| 4384 | struct net_device *netdev) | ||
| 4385 | { | ||
| 4386 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 4387 | struct igb_ring *tx_ring; | ||
| 4388 | int r_idx = 0; | ||
| 4389 | |||
| 4390 | if (test_bit(__IGB_DOWN, &adapter->state)) { | ||
| 4391 | dev_kfree_skb_any(skb); | ||
| 4392 | return NETDEV_TX_OK; | ||
| 4393 | } | ||
| 4394 | |||
| 4395 | if (skb->len <= 0) { | ||
| 4396 | dev_kfree_skb_any(skb); | ||
| 4397 | return NETDEV_TX_OK; | ||
| 4398 | } | ||
| 4399 | |||
| 4400 | r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1); | ||
| 4401 | tx_ring = adapter->multi_tx_table[r_idx]; | ||
| 4402 | |||
| 4403 | /* This goes back to the question of how to logically map a tx queue | ||
| 4404 | * to a flow. Right now, performance is impacted slightly negatively | ||
| 4405 | * if using multiple tx queues. If the stack breaks away from a | ||
| 4406 | * single qdisc implementation, we can look at this again. */ | ||
| 4407 | return igb_xmit_frame_ring_adv(skb, tx_ring); | ||
| 4408 | } | ||
| 4409 | |||
| 4410 | /** | ||
| 4411 | * igb_tx_timeout - Respond to a Tx Hang | ||
| 4412 | * @netdev: network interface device structure | ||
| 4413 | **/ | ||
| 4414 | static void igb_tx_timeout(struct net_device *netdev) | ||
| 4415 | { | ||
| 4416 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 4417 | struct e1000_hw *hw = &adapter->hw; | ||
| 4418 | |||
| 4419 | /* Do the reset outside of interrupt context */ | ||
| 4420 | adapter->tx_timeout_count++; | ||
| 4421 | |||
| 4422 | if (hw->mac.type == e1000_82580) | ||
| 4423 | hw->dev_spec._82575.global_device_reset = true; | ||
| 4424 | |||
| 4425 | schedule_work(&adapter->reset_task); | ||
| 4426 | wr32(E1000_EICS, | ||
| 4427 | (adapter->eims_enable_mask & ~adapter->eims_other)); | ||
| 4428 | } | ||
| 4429 | |||
| 4430 | static void igb_reset_task(struct work_struct *work) | ||
| 4431 | { | ||
| 4432 | struct igb_adapter *adapter; | ||
| 4433 | adapter = container_of(work, struct igb_adapter, reset_task); | ||
| 4434 | |||
| 4435 | igb_dump(adapter); | ||
| 4436 | netdev_err(adapter->netdev, "Reset adapter\n"); | ||
| 4437 | igb_reinit_locked(adapter); | ||
| 4438 | } | ||
| 4439 | |||
| 4440 | /** | ||
| 4441 | * igb_get_stats64 - Get System Network Statistics | ||
| 4442 | * @netdev: network interface device structure | ||
| 4443 | * @stats: rtnl_link_stats64 pointer | ||
| 4444 | * | ||
| 4445 | **/ | ||
| 4446 | static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, | ||
| 4447 | struct rtnl_link_stats64 *stats) | ||
| 4448 | { | ||
| 4449 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 4450 | |||
| 4451 | spin_lock(&adapter->stats64_lock); | ||
| 4452 | igb_update_stats(adapter, &adapter->stats64); | ||
| 4453 | memcpy(stats, &adapter->stats64, sizeof(*stats)); | ||
| 4454 | spin_unlock(&adapter->stats64_lock); | ||
| 4455 | |||
| 4456 | return stats; | ||
| 4457 | } | ||
| 4458 | |||
| 4459 | /** | ||
| 4460 | * igb_change_mtu - Change the Maximum Transfer Unit | ||
| 4461 | * @netdev: network interface device structure | ||
| 4462 | * @new_mtu: new value for maximum frame size | ||
| 4463 | * | ||
| 4464 | * Returns 0 on success, negative on failure | ||
| 4465 | **/ | ||
| 4466 | static int igb_change_mtu(struct net_device *netdev, int new_mtu) | ||
| 4467 | { | ||
| 4468 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 4469 | struct pci_dev *pdev = adapter->pdev; | ||
| 4470 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | ||
| 4471 | u32 rx_buffer_len, i; | ||
| 4472 | |||
| 4473 | if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { | ||
| 4474 | dev_err(&pdev->dev, "Invalid MTU setting\n"); | ||
| 4475 | return -EINVAL; | ||
| 4476 | } | ||
| 4477 | |||
| 4478 | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | ||
| 4479 | dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); | ||
| 4480 | return -EINVAL; | ||
| 4481 | } | ||
| 4482 | |||
| 4483 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
| 4484 | msleep(1); | ||
| 4485 | |||
| 4486 | /* igb_down has a dependency on max_frame_size */ | ||
| 4487 | adapter->max_frame_size = max_frame; | ||
| 4488 | |||
| 4489 | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | ||
| 4490 | * means we reserve 2 more, this pushes us to allocate from the next | ||
| 4491 | * larger slab size. | ||
| 4492 | * i.e. RXBUFFER_2048 --> size-4096 slab | ||
| 4493 | */ | ||
| 4494 | |||
| 4495 | if (adapter->hw.mac.type == e1000_82580) | ||
| 4496 | max_frame += IGB_TS_HDR_LEN; | ||
| 4497 | |||
| 4498 | if (max_frame <= IGB_RXBUFFER_1024) | ||
| 4499 | rx_buffer_len = IGB_RXBUFFER_1024; | ||
| 4500 | else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE) | ||
| 4501 | rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
| 4502 | else | ||
| 4503 | rx_buffer_len = IGB_RXBUFFER_128; | ||
| 4504 | |||
| 4505 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) || | ||
| 4506 | (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN)) | ||
| 4507 | rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN; | ||
| 4508 | |||
| 4509 | if ((adapter->hw.mac.type == e1000_82580) && | ||
| 4510 | (rx_buffer_len == IGB_RXBUFFER_128)) | ||
| 4511 | rx_buffer_len += IGB_RXBUFFER_64; | ||
| 4512 | |||
| 4513 | if (netif_running(netdev)) | ||
| 4514 | igb_down(adapter); | ||
| 4515 | |||
| 4516 | dev_info(&pdev->dev, "changing MTU from %d to %d\n", | ||
| 4517 | netdev->mtu, new_mtu); | ||
| 4518 | netdev->mtu = new_mtu; | ||
| 4519 | |||
| 4520 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
| 4521 | adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len; | ||
| 4522 | |||
| 4523 | if (netif_running(netdev)) | ||
| 4524 | igb_up(adapter); | ||
| 4525 | else | ||
| 4526 | igb_reset(adapter); | ||
| 4527 | |||
| 4528 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
| 4529 | |||
| 4530 | return 0; | ||
| 4531 | } | ||
| 4532 | |||
| 4533 | /** | ||
| 4534 | * igb_update_stats - Update the board statistics counters | ||
| 4535 | * @adapter: board private structure | ||
| 4536 | **/ | ||
| 4537 | |||
| 4538 | void igb_update_stats(struct igb_adapter *adapter, | ||
| 4539 | struct rtnl_link_stats64 *net_stats) | ||
| 4540 | { | ||
| 4541 | struct e1000_hw *hw = &adapter->hw; | ||
| 4542 | struct pci_dev *pdev = adapter->pdev; | ||
| 4543 | u32 reg, mpc; | ||
| 4544 | u16 phy_tmp; | ||
| 4545 | int i; | ||
| 4546 | u64 bytes, packets; | ||
| 4547 | unsigned int start; | ||
| 4548 | u64 _bytes, _packets; | ||
| 4549 | |||
| 4550 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | ||
| 4551 | |||
| 4552 | /* | ||
| 4553 | * Prevent stats update while adapter is being reset, or if the pci | ||
| 4554 | * connection is down. | ||
| 4555 | */ | ||
| 4556 | if (adapter->link_speed == 0) | ||
| 4557 | return; | ||
| 4558 | if (pci_channel_offline(pdev)) | ||
| 4559 | return; | ||
| 4560 | |||
| 4561 | bytes = 0; | ||
| 4562 | packets = 0; | ||
| 4563 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
| 4564 | u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF; | ||
| 4565 | struct igb_ring *ring = adapter->rx_ring[i]; | ||
| 4566 | |||
| 4567 | ring->rx_stats.drops += rqdpc_tmp; | ||
| 4568 | net_stats->rx_fifo_errors += rqdpc_tmp; | ||
| 4569 | |||
| 4570 | do { | ||
| 4571 | start = u64_stats_fetch_begin_bh(&ring->rx_syncp); | ||
| 4572 | _bytes = ring->rx_stats.bytes; | ||
| 4573 | _packets = ring->rx_stats.packets; | ||
| 4574 | } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); | ||
| 4575 | bytes += _bytes; | ||
| 4576 | packets += _packets; | ||
| 4577 | } | ||
| 4578 | |||
| 4579 | net_stats->rx_bytes = bytes; | ||
| 4580 | net_stats->rx_packets = packets; | ||
| 4581 | |||
| 4582 | bytes = 0; | ||
| 4583 | packets = 0; | ||
| 4584 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
| 4585 | struct igb_ring *ring = adapter->tx_ring[i]; | ||
| 4586 | do { | ||
| 4587 | start = u64_stats_fetch_begin_bh(&ring->tx_syncp); | ||
| 4588 | _bytes = ring->tx_stats.bytes; | ||
| 4589 | _packets = ring->tx_stats.packets; | ||
| 4590 | } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); | ||
| 4591 | bytes += _bytes; | ||
| 4592 | packets += _packets; | ||
| 4593 | } | ||
| 4594 | net_stats->tx_bytes = bytes; | ||
| 4595 | net_stats->tx_packets = packets; | ||
| 4596 | |||
| 4597 | /* read stats registers */ | ||
| 4598 | adapter->stats.crcerrs += rd32(E1000_CRCERRS); | ||
| 4599 | adapter->stats.gprc += rd32(E1000_GPRC); | ||
| 4600 | adapter->stats.gorc += rd32(E1000_GORCL); | ||
| 4601 | rd32(E1000_GORCH); /* clear GORCL */ | ||
| 4602 | adapter->stats.bprc += rd32(E1000_BPRC); | ||
| 4603 | adapter->stats.mprc += rd32(E1000_MPRC); | ||
| 4604 | adapter->stats.roc += rd32(E1000_ROC); | ||
| 4605 | |||
| 4606 | adapter->stats.prc64 += rd32(E1000_PRC64); | ||
| 4607 | adapter->stats.prc127 += rd32(E1000_PRC127); | ||
| 4608 | adapter->stats.prc255 += rd32(E1000_PRC255); | ||
| 4609 | adapter->stats.prc511 += rd32(E1000_PRC511); | ||
| 4610 | adapter->stats.prc1023 += rd32(E1000_PRC1023); | ||
| 4611 | adapter->stats.prc1522 += rd32(E1000_PRC1522); | ||
| 4612 | adapter->stats.symerrs += rd32(E1000_SYMERRS); | ||
| 4613 | adapter->stats.sec += rd32(E1000_SEC); | ||
| 4614 | |||
| 4615 | mpc = rd32(E1000_MPC); | ||
| 4616 | adapter->stats.mpc += mpc; | ||
| 4617 | net_stats->rx_fifo_errors += mpc; | ||
| 4618 | adapter->stats.scc += rd32(E1000_SCC); | ||
| 4619 | adapter->stats.ecol += rd32(E1000_ECOL); | ||
| 4620 | adapter->stats.mcc += rd32(E1000_MCC); | ||
| 4621 | adapter->stats.latecol += rd32(E1000_LATECOL); | ||
| 4622 | adapter->stats.dc += rd32(E1000_DC); | ||
| 4623 | adapter->stats.rlec += rd32(E1000_RLEC); | ||
| 4624 | adapter->stats.xonrxc += rd32(E1000_XONRXC); | ||
| 4625 | adapter->stats.xontxc += rd32(E1000_XONTXC); | ||
| 4626 | adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); | ||
| 4627 | adapter->stats.xofftxc += rd32(E1000_XOFFTXC); | ||
| 4628 | adapter->stats.fcruc += rd32(E1000_FCRUC); | ||
| 4629 | adapter->stats.gptc += rd32(E1000_GPTC); | ||
| 4630 | adapter->stats.gotc += rd32(E1000_GOTCL); | ||
| 4631 | rd32(E1000_GOTCH); /* clear GOTCL */ | ||
| 4632 | adapter->stats.rnbc += rd32(E1000_RNBC); | ||
| 4633 | adapter->stats.ruc += rd32(E1000_RUC); | ||
| 4634 | adapter->stats.rfc += rd32(E1000_RFC); | ||
| 4635 | adapter->stats.rjc += rd32(E1000_RJC); | ||
| 4636 | adapter->stats.tor += rd32(E1000_TORH); | ||
| 4637 | adapter->stats.tot += rd32(E1000_TOTH); | ||
| 4638 | adapter->stats.tpr += rd32(E1000_TPR); | ||
| 4639 | |||
| 4640 | adapter->stats.ptc64 += rd32(E1000_PTC64); | ||
| 4641 | adapter->stats.ptc127 += rd32(E1000_PTC127); | ||
| 4642 | adapter->stats.ptc255 += rd32(E1000_PTC255); | ||
| 4643 | adapter->stats.ptc511 += rd32(E1000_PTC511); | ||
| 4644 | adapter->stats.ptc1023 += rd32(E1000_PTC1023); | ||
| 4645 | adapter->stats.ptc1522 += rd32(E1000_PTC1522); | ||
| 4646 | |||
| 4647 | adapter->stats.mptc += rd32(E1000_MPTC); | ||
| 4648 | adapter->stats.bptc += rd32(E1000_BPTC); | ||
| 4649 | |||
| 4650 | adapter->stats.tpt += rd32(E1000_TPT); | ||
| 4651 | adapter->stats.colc += rd32(E1000_COLC); | ||
| 4652 | |||
| 4653 | adapter->stats.algnerrc += rd32(E1000_ALGNERRC); | ||
| 4654 | /* read internal phy specific stats */ | ||
| 4655 | reg = rd32(E1000_CTRL_EXT); | ||
| 4656 | if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { | ||
| 4657 | adapter->stats.rxerrc += rd32(E1000_RXERRC); | ||
| 4658 | adapter->stats.tncrs += rd32(E1000_TNCRS); | ||
| 4659 | } | ||
| 4660 | |||
| 4661 | adapter->stats.tsctc += rd32(E1000_TSCTC); | ||
| 4662 | adapter->stats.tsctfc += rd32(E1000_TSCTFC); | ||
| 4663 | |||
| 4664 | adapter->stats.iac += rd32(E1000_IAC); | ||
| 4665 | adapter->stats.icrxoc += rd32(E1000_ICRXOC); | ||
| 4666 | adapter->stats.icrxptc += rd32(E1000_ICRXPTC); | ||
| 4667 | adapter->stats.icrxatc += rd32(E1000_ICRXATC); | ||
| 4668 | adapter->stats.ictxptc += rd32(E1000_ICTXPTC); | ||
| 4669 | adapter->stats.ictxatc += rd32(E1000_ICTXATC); | ||
| 4670 | adapter->stats.ictxqec += rd32(E1000_ICTXQEC); | ||
| 4671 | adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); | ||
| 4672 | adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); | ||
| 4673 | |||
| 4674 | /* Fill out the OS statistics structure */ | ||
| 4675 | net_stats->multicast = adapter->stats.mprc; | ||
| 4676 | net_stats->collisions = adapter->stats.colc; | ||
| 4677 | |||
| 4678 | /* Rx Errors */ | ||
| 4679 | |||
| 4680 | /* RLEC on some newer hardware can be incorrect so build | ||
| 4681 | * our own version based on RUC and ROC */ | ||
| 4682 | net_stats->rx_errors = adapter->stats.rxerrc + | ||
| 4683 | adapter->stats.crcerrs + adapter->stats.algnerrc + | ||
| 4684 | adapter->stats.ruc + adapter->stats.roc + | ||
| 4685 | adapter->stats.cexterr; | ||
| 4686 | net_stats->rx_length_errors = adapter->stats.ruc + | ||
| 4687 | adapter->stats.roc; | ||
| 4688 | net_stats->rx_crc_errors = adapter->stats.crcerrs; | ||
| 4689 | net_stats->rx_frame_errors = adapter->stats.algnerrc; | ||
| 4690 | net_stats->rx_missed_errors = adapter->stats.mpc; | ||
| 4691 | |||
| 4692 | /* Tx Errors */ | ||
| 4693 | net_stats->tx_errors = adapter->stats.ecol + | ||
| 4694 | adapter->stats.latecol; | ||
| 4695 | net_stats->tx_aborted_errors = adapter->stats.ecol; | ||
| 4696 | net_stats->tx_window_errors = adapter->stats.latecol; | ||
| 4697 | net_stats->tx_carrier_errors = adapter->stats.tncrs; | ||
| 4698 | |||
| 4699 | /* Tx Dropped needs to be maintained elsewhere */ | ||
| 4700 | |||
| 4701 | /* Phy Stats */ | ||
| 4702 | if (hw->phy.media_type == e1000_media_type_copper) { | ||
| 4703 | if ((adapter->link_speed == SPEED_1000) && | ||
| 4704 | (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { | ||
| 4705 | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | ||
| 4706 | adapter->phy_stats.idle_errors += phy_tmp; | ||
| 4707 | } | ||
| 4708 | } | ||
| 4709 | |||
| 4710 | /* Management Stats */ | ||
| 4711 | adapter->stats.mgptc += rd32(E1000_MGTPTC); | ||
| 4712 | adapter->stats.mgprc += rd32(E1000_MGTPRC); | ||
| 4713 | adapter->stats.mgpdc += rd32(E1000_MGTPDC); | ||
| 4714 | |||
| 4715 | /* OS2BMC Stats */ | ||
| 4716 | reg = rd32(E1000_MANC); | ||
| 4717 | if (reg & E1000_MANC_EN_BMC2OS) { | ||
| 4718 | adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); | ||
| 4719 | adapter->stats.o2bspc += rd32(E1000_O2BSPC); | ||
| 4720 | adapter->stats.b2ospc += rd32(E1000_B2OSPC); | ||
| 4721 | adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); | ||
| 4722 | } | ||
| 4723 | } | ||
| 4724 | |||
| 4725 | static irqreturn_t igb_msix_other(int irq, void *data) | ||
| 4726 | { | ||
| 4727 | struct igb_adapter *adapter = data; | ||
| 4728 | struct e1000_hw *hw = &adapter->hw; | ||
| 4729 | u32 icr = rd32(E1000_ICR); | ||
| 4730 | /* reading ICR causes bit 31 of EICR to be cleared */ | ||
| 4731 | |||
| 4732 | if (icr & E1000_ICR_DRSTA) | ||
| 4733 | schedule_work(&adapter->reset_task); | ||
| 4734 | |||
| 4735 | if (icr & E1000_ICR_DOUTSYNC) { | ||
| 4736 | /* HW is reporting DMA is out of sync */ | ||
| 4737 | adapter->stats.doosync++; | ||
| 4738 | /* The DMA Out of Sync is also indication of a spoof event | ||
| 4739 | * in IOV mode. Check the Wrong VM Behavior register to | ||
| 4740 | * see if it is really a spoof event. */ | ||
| 4741 | igb_check_wvbr(adapter); | ||
| 4742 | } | ||
| 4743 | |||
| 4744 | /* Check for a mailbox event */ | ||
| 4745 | if (icr & E1000_ICR_VMMB) | ||
| 4746 | igb_msg_task(adapter); | ||
| 4747 | |||
| 4748 | if (icr & E1000_ICR_LSC) { | ||
| 4749 | hw->mac.get_link_status = 1; | ||
| 4750 | /* guard against interrupt when we're going down */ | ||
| 4751 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
| 4752 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
| 4753 | } | ||
| 4754 | |||
| 4755 | if (adapter->vfs_allocated_count) | ||
| 4756 | wr32(E1000_IMS, E1000_IMS_LSC | | ||
| 4757 | E1000_IMS_VMMB | | ||
| 4758 | E1000_IMS_DOUTSYNC); | ||
| 4759 | else | ||
| 4760 | wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC); | ||
| 4761 | wr32(E1000_EIMS, adapter->eims_other); | ||
| 4762 | |||
| 4763 | return IRQ_HANDLED; | ||
| 4764 | } | ||
| 4765 | |||
| 4766 | static void igb_write_itr(struct igb_q_vector *q_vector) | ||
| 4767 | { | ||
| 4768 | struct igb_adapter *adapter = q_vector->adapter; | ||
| 4769 | u32 itr_val = q_vector->itr_val & 0x7FFC; | ||
| 4770 | |||
| 4771 | if (!q_vector->set_itr) | ||
| 4772 | return; | ||
| 4773 | |||
| 4774 | if (!itr_val) | ||
| 4775 | itr_val = 0x4; | ||
| 4776 | |||
| 4777 | if (adapter->hw.mac.type == e1000_82575) | ||
| 4778 | itr_val |= itr_val << 16; | ||
| 4779 | else | ||
| 4780 | itr_val |= 0x8000000; | ||
| 4781 | |||
| 4782 | writel(itr_val, q_vector->itr_register); | ||
| 4783 | q_vector->set_itr = 0; | ||
| 4784 | } | ||
| 4785 | |||
| 4786 | static irqreturn_t igb_msix_ring(int irq, void *data) | ||
| 4787 | { | ||
| 4788 | struct igb_q_vector *q_vector = data; | ||
| 4789 | |||
| 4790 | /* Write the ITR value calculated from the previous interrupt. */ | ||
| 4791 | igb_write_itr(q_vector); | ||
| 4792 | |||
| 4793 | napi_schedule(&q_vector->napi); | ||
| 4794 | |||
| 4795 | return IRQ_HANDLED; | ||
| 4796 | } | ||
| 4797 | |||
| 4798 | #ifdef CONFIG_IGB_DCA | ||
| 4799 | static void igb_update_dca(struct igb_q_vector *q_vector) | ||
| 4800 | { | ||
| 4801 | struct igb_adapter *adapter = q_vector->adapter; | ||
| 4802 | struct e1000_hw *hw = &adapter->hw; | ||
| 4803 | int cpu = get_cpu(); | ||
| 4804 | |||
| 4805 | if (q_vector->cpu == cpu) | ||
| 4806 | goto out_no_update; | ||
| 4807 | |||
| 4808 | if (q_vector->tx_ring) { | ||
| 4809 | int q = q_vector->tx_ring->reg_idx; | ||
| 4810 | u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q)); | ||
| 4811 | if (hw->mac.type == e1000_82575) { | ||
| 4812 | dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK; | ||
| 4813 | dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu); | ||
| 4814 | } else { | ||
| 4815 | dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576; | ||
| 4816 | dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) << | ||
| 4817 | E1000_DCA_TXCTRL_CPUID_SHIFT; | ||
| 4818 | } | ||
| 4819 | dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN; | ||
| 4820 | wr32(E1000_DCA_TXCTRL(q), dca_txctrl); | ||
| 4821 | } | ||
| 4822 | if (q_vector->rx_ring) { | ||
| 4823 | int q = q_vector->rx_ring->reg_idx; | ||
| 4824 | u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q)); | ||
| 4825 | if (hw->mac.type == e1000_82575) { | ||
| 4826 | dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK; | ||
| 4827 | dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu); | ||
| 4828 | } else { | ||
| 4829 | dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576; | ||
| 4830 | dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) << | ||
| 4831 | E1000_DCA_RXCTRL_CPUID_SHIFT; | ||
| 4832 | } | ||
| 4833 | dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN; | ||
| 4834 | dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN; | ||
| 4835 | dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN; | ||
| 4836 | wr32(E1000_DCA_RXCTRL(q), dca_rxctrl); | ||
| 4837 | } | ||
| 4838 | q_vector->cpu = cpu; | ||
| 4839 | out_no_update: | ||
| 4840 | put_cpu(); | ||
| 4841 | } | ||
| 4842 | |||
| 4843 | static void igb_setup_dca(struct igb_adapter *adapter) | ||
| 4844 | { | ||
| 4845 | struct e1000_hw *hw = &adapter->hw; | ||
| 4846 | int i; | ||
| 4847 | |||
| 4848 | if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) | ||
| 4849 | return; | ||
| 4850 | |||
| 4851 | /* Always use CB2 mode, difference is masked in the CB driver. */ | ||
| 4852 | wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); | ||
| 4853 | |||
| 4854 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
| 4855 | adapter->q_vector[i]->cpu = -1; | ||
| 4856 | igb_update_dca(adapter->q_vector[i]); | ||
| 4857 | } | ||
| 4858 | } | ||
| 4859 | |||
| 4860 | static int __igb_notify_dca(struct device *dev, void *data) | ||
| 4861 | { | ||
| 4862 | struct net_device *netdev = dev_get_drvdata(dev); | ||
| 4863 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 4864 | struct pci_dev *pdev = adapter->pdev; | ||
| 4865 | struct e1000_hw *hw = &adapter->hw; | ||
| 4866 | unsigned long event = *(unsigned long *)data; | ||
| 4867 | |||
| 4868 | switch (event) { | ||
| 4869 | case DCA_PROVIDER_ADD: | ||
| 4870 | /* if already enabled, don't do it again */ | ||
| 4871 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) | ||
| 4872 | break; | ||
| 4873 | if (dca_add_requester(dev) == 0) { | ||
| 4874 | adapter->flags |= IGB_FLAG_DCA_ENABLED; | ||
| 4875 | dev_info(&pdev->dev, "DCA enabled\n"); | ||
| 4876 | igb_setup_dca(adapter); | ||
| 4877 | break; | ||
| 4878 | } | ||
| 4879 | /* Fall Through since DCA is disabled. */ | ||
| 4880 | case DCA_PROVIDER_REMOVE: | ||
| 4881 | if (adapter->flags & IGB_FLAG_DCA_ENABLED) { | ||
| 4882 | /* without this a class_device is left | ||
| 4883 | * hanging around in the sysfs model */ | ||
| 4884 | dca_remove_requester(dev); | ||
| 4885 | dev_info(&pdev->dev, "DCA disabled\n"); | ||
| 4886 | adapter->flags &= ~IGB_FLAG_DCA_ENABLED; | ||
| 4887 | wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); | ||
| 4888 | } | ||
| 4889 | break; | ||
| 4890 | } | ||
| 4891 | |||
| 4892 | return 0; | ||
| 4893 | } | ||
| 4894 | |||
| 4895 | static int igb_notify_dca(struct notifier_block *nb, unsigned long event, | ||
| 4896 | void *p) | ||
| 4897 | { | ||
| 4898 | int ret_val; | ||
| 4899 | |||
| 4900 | ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, | ||
| 4901 | __igb_notify_dca); | ||
| 4902 | |||
| 4903 | return ret_val ? NOTIFY_BAD : NOTIFY_DONE; | ||
| 4904 | } | ||
| 4905 | #endif /* CONFIG_IGB_DCA */ | ||
| 4906 | |||
| 4907 | static void igb_ping_all_vfs(struct igb_adapter *adapter) | ||
| 4908 | { | ||
| 4909 | struct e1000_hw *hw = &adapter->hw; | ||
| 4910 | u32 ping; | ||
| 4911 | int i; | ||
| 4912 | |||
| 4913 | for (i = 0 ; i < adapter->vfs_allocated_count; i++) { | ||
| 4914 | ping = E1000_PF_CONTROL_MSG; | ||
| 4915 | if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) | ||
| 4916 | ping |= E1000_VT_MSGTYPE_CTS; | ||
| 4917 | igb_write_mbx(hw, &ping, 1, i); | ||
| 4918 | } | ||
| 4919 | } | ||
| 4920 | |||
| 4921 | static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) | ||
| 4922 | { | ||
| 4923 | struct e1000_hw *hw = &adapter->hw; | ||
| 4924 | u32 vmolr = rd32(E1000_VMOLR(vf)); | ||
| 4925 | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | ||
| 4926 | |||
| 4927 | vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | | ||
| 4928 | IGB_VF_FLAG_MULTI_PROMISC); | ||
| 4929 | vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); | ||
| 4930 | |||
| 4931 | if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { | ||
| 4932 | vmolr |= E1000_VMOLR_MPME; | ||
| 4933 | vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; | ||
| 4934 | *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; | ||
| 4935 | } else { | ||
| 4936 | /* | ||
| 4937 | * if we have hashes and we are clearing a multicast promisc | ||
| 4938 | * flag we need to write the hashes to the MTA as this step | ||
| 4939 | * was previously skipped | ||
| 4940 | */ | ||
| 4941 | if (vf_data->num_vf_mc_hashes > 30) { | ||
| 4942 | vmolr |= E1000_VMOLR_MPME; | ||
| 4943 | } else if (vf_data->num_vf_mc_hashes) { | ||
| 4944 | int j; | ||
| 4945 | vmolr |= E1000_VMOLR_ROMPE; | ||
| 4946 | for (j = 0; j < vf_data->num_vf_mc_hashes; j++) | ||
| 4947 | igb_mta_set(hw, vf_data->vf_mc_hashes[j]); | ||
| 4948 | } | ||
| 4949 | } | ||
| 4950 | |||
| 4951 | wr32(E1000_VMOLR(vf), vmolr); | ||
| 4952 | |||
| 4953 | /* there are flags left unprocessed, likely not supported */ | ||
| 4954 | if (*msgbuf & E1000_VT_MSGINFO_MASK) | ||
| 4955 | return -EINVAL; | ||
| 4956 | |||
| 4957 | return 0; | ||
| 4958 | |||
| 4959 | } | ||
| 4960 | |||
| 4961 | static int igb_set_vf_multicasts(struct igb_adapter *adapter, | ||
| 4962 | u32 *msgbuf, u32 vf) | ||
| 4963 | { | ||
| 4964 | int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; | ||
| 4965 | u16 *hash_list = (u16 *)&msgbuf[1]; | ||
| 4966 | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | ||
| 4967 | int i; | ||
| 4968 | |||
| 4969 | /* salt away the number of multicast addresses assigned | ||
| 4970 | * to this VF for later use to restore when the PF multi cast | ||
| 4971 | * list changes | ||
| 4972 | */ | ||
| 4973 | vf_data->num_vf_mc_hashes = n; | ||
| 4974 | |||
| 4975 | /* only up to 30 hash values supported */ | ||
| 4976 | if (n > 30) | ||
| 4977 | n = 30; | ||
| 4978 | |||
| 4979 | /* store the hashes for later use */ | ||
| 4980 | for (i = 0; i < n; i++) | ||
| 4981 | vf_data->vf_mc_hashes[i] = hash_list[i]; | ||
| 4982 | |||
| 4983 | /* Flush and reset the mta with the new values */ | ||
| 4984 | igb_set_rx_mode(adapter->netdev); | ||
| 4985 | |||
| 4986 | return 0; | ||
| 4987 | } | ||
| 4988 | |||
| 4989 | static void igb_restore_vf_multicasts(struct igb_adapter *adapter) | ||
| 4990 | { | ||
| 4991 | struct e1000_hw *hw = &adapter->hw; | ||
| 4992 | struct vf_data_storage *vf_data; | ||
| 4993 | int i, j; | ||
| 4994 | |||
| 4995 | for (i = 0; i < adapter->vfs_allocated_count; i++) { | ||
| 4996 | u32 vmolr = rd32(E1000_VMOLR(i)); | ||
| 4997 | vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); | ||
| 4998 | |||
| 4999 | vf_data = &adapter->vf_data[i]; | ||
| 5000 | |||
| 5001 | if ((vf_data->num_vf_mc_hashes > 30) || | ||
| 5002 | (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { | ||
| 5003 | vmolr |= E1000_VMOLR_MPME; | ||
| 5004 | } else if (vf_data->num_vf_mc_hashes) { | ||
| 5005 | vmolr |= E1000_VMOLR_ROMPE; | ||
| 5006 | for (j = 0; j < vf_data->num_vf_mc_hashes; j++) | ||
| 5007 | igb_mta_set(hw, vf_data->vf_mc_hashes[j]); | ||
| 5008 | } | ||
| 5009 | wr32(E1000_VMOLR(i), vmolr); | ||
| 5010 | } | ||
| 5011 | } | ||
| 5012 | |||
| 5013 | static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) | ||
| 5014 | { | ||
| 5015 | struct e1000_hw *hw = &adapter->hw; | ||
| 5016 | u32 pool_mask, reg, vid; | ||
| 5017 | int i; | ||
| 5018 | |||
| 5019 | pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); | ||
| 5020 | |||
| 5021 | /* Find the vlan filter for this id */ | ||
| 5022 | for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { | ||
| 5023 | reg = rd32(E1000_VLVF(i)); | ||
| 5024 | |||
| 5025 | /* remove the vf from the pool */ | ||
| 5026 | reg &= ~pool_mask; | ||
| 5027 | |||
| 5028 | /* if pool is empty then remove entry from vfta */ | ||
| 5029 | if (!(reg & E1000_VLVF_POOLSEL_MASK) && | ||
| 5030 | (reg & E1000_VLVF_VLANID_ENABLE)) { | ||
| 5031 | reg = 0; | ||
| 5032 | vid = reg & E1000_VLVF_VLANID_MASK; | ||
| 5033 | igb_vfta_set(hw, vid, false); | ||
| 5034 | } | ||
| 5035 | |||
| 5036 | wr32(E1000_VLVF(i), reg); | ||
| 5037 | } | ||
| 5038 | |||
| 5039 | adapter->vf_data[vf].vlans_enabled = 0; | ||
| 5040 | } | ||
| 5041 | |||
| 5042 | static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) | ||
| 5043 | { | ||
| 5044 | struct e1000_hw *hw = &adapter->hw; | ||
| 5045 | u32 reg, i; | ||
| 5046 | |||
| 5047 | /* The vlvf table only exists on 82576 hardware and newer */ | ||
| 5048 | if (hw->mac.type < e1000_82576) | ||
| 5049 | return -1; | ||
| 5050 | |||
| 5051 | /* we only need to do this if VMDq is enabled */ | ||
| 5052 | if (!adapter->vfs_allocated_count) | ||
| 5053 | return -1; | ||
| 5054 | |||
| 5055 | /* Find the vlan filter for this id */ | ||
| 5056 | for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { | ||
| 5057 | reg = rd32(E1000_VLVF(i)); | ||
| 5058 | if ((reg & E1000_VLVF_VLANID_ENABLE) && | ||
| 5059 | vid == (reg & E1000_VLVF_VLANID_MASK)) | ||
| 5060 | break; | ||
| 5061 | } | ||
| 5062 | |||
| 5063 | if (add) { | ||
| 5064 | if (i == E1000_VLVF_ARRAY_SIZE) { | ||
| 5065 | /* Did not find a matching VLAN ID entry that was | ||
| 5066 | * enabled. Search for a free filter entry, i.e. | ||
| 5067 | * one without the enable bit set | ||
| 5068 | */ | ||
| 5069 | for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { | ||
| 5070 | reg = rd32(E1000_VLVF(i)); | ||
| 5071 | if (!(reg & E1000_VLVF_VLANID_ENABLE)) | ||
| 5072 | break; | ||
| 5073 | } | ||
| 5074 | } | ||
| 5075 | if (i < E1000_VLVF_ARRAY_SIZE) { | ||
| 5076 | /* Found an enabled/available entry */ | ||
| 5077 | reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); | ||
| 5078 | |||
| 5079 | /* if !enabled we need to set this up in vfta */ | ||
| 5080 | if (!(reg & E1000_VLVF_VLANID_ENABLE)) { | ||
| 5081 | /* add VID to filter table */ | ||
| 5082 | igb_vfta_set(hw, vid, true); | ||
| 5083 | reg |= E1000_VLVF_VLANID_ENABLE; | ||
| 5084 | } | ||
| 5085 | reg &= ~E1000_VLVF_VLANID_MASK; | ||
| 5086 | reg |= vid; | ||
| 5087 | wr32(E1000_VLVF(i), reg); | ||
| 5088 | |||
| 5089 | /* do not modify RLPML for PF devices */ | ||
| 5090 | if (vf >= adapter->vfs_allocated_count) | ||
| 5091 | return 0; | ||
| 5092 | |||
| 5093 | if (!adapter->vf_data[vf].vlans_enabled) { | ||
| 5094 | u32 size; | ||
| 5095 | reg = rd32(E1000_VMOLR(vf)); | ||
| 5096 | size = reg & E1000_VMOLR_RLPML_MASK; | ||
| 5097 | size += 4; | ||
| 5098 | reg &= ~E1000_VMOLR_RLPML_MASK; | ||
| 5099 | reg |= size; | ||
| 5100 | wr32(E1000_VMOLR(vf), reg); | ||
| 5101 | } | ||
| 5102 | |||
| 5103 | adapter->vf_data[vf].vlans_enabled++; | ||
| 5104 | return 0; | ||
| 5105 | } | ||
| 5106 | } else { | ||
| 5107 | if (i < E1000_VLVF_ARRAY_SIZE) { | ||
| 5108 | /* remove vf from the pool */ | ||
| 5109 | reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); | ||
| 5110 | /* if pool is empty then remove entry from vfta */ | ||
| 5111 | if (!(reg & E1000_VLVF_POOLSEL_MASK)) { | ||
| 5112 | reg = 0; | ||
| 5113 | igb_vfta_set(hw, vid, false); | ||
| 5114 | } | ||
| 5115 | wr32(E1000_VLVF(i), reg); | ||
| 5116 | |||
| 5117 | /* do not modify RLPML for PF devices */ | ||
| 5118 | if (vf >= adapter->vfs_allocated_count) | ||
| 5119 | return 0; | ||
| 5120 | |||
| 5121 | adapter->vf_data[vf].vlans_enabled--; | ||
| 5122 | if (!adapter->vf_data[vf].vlans_enabled) { | ||
| 5123 | u32 size; | ||
| 5124 | reg = rd32(E1000_VMOLR(vf)); | ||
| 5125 | size = reg & E1000_VMOLR_RLPML_MASK; | ||
| 5126 | size -= 4; | ||
| 5127 | reg &= ~E1000_VMOLR_RLPML_MASK; | ||
| 5128 | reg |= size; | ||
| 5129 | wr32(E1000_VMOLR(vf), reg); | ||
| 5130 | } | ||
| 5131 | } | ||
| 5132 | } | ||
| 5133 | return 0; | ||
| 5134 | } | ||
| 5135 | |||
| 5136 | static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) | ||
| 5137 | { | ||
| 5138 | struct e1000_hw *hw = &adapter->hw; | ||
| 5139 | |||
| 5140 | if (vid) | ||
| 5141 | wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); | ||
| 5142 | else | ||
| 5143 | wr32(E1000_VMVIR(vf), 0); | ||
| 5144 | } | ||
| 5145 | |||
| 5146 | static int igb_ndo_set_vf_vlan(struct net_device *netdev, | ||
| 5147 | int vf, u16 vlan, u8 qos) | ||
| 5148 | { | ||
| 5149 | int err = 0; | ||
| 5150 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 5151 | |||
| 5152 | if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) | ||
| 5153 | return -EINVAL; | ||
| 5154 | if (vlan || qos) { | ||
| 5155 | err = igb_vlvf_set(adapter, vlan, !!vlan, vf); | ||
| 5156 | if (err) | ||
| 5157 | goto out; | ||
| 5158 | igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); | ||
| 5159 | igb_set_vmolr(adapter, vf, !vlan); | ||
| 5160 | adapter->vf_data[vf].pf_vlan = vlan; | ||
| 5161 | adapter->vf_data[vf].pf_qos = qos; | ||
| 5162 | dev_info(&adapter->pdev->dev, | ||
| 5163 | "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); | ||
| 5164 | if (test_bit(__IGB_DOWN, &adapter->state)) { | ||
| 5165 | dev_warn(&adapter->pdev->dev, | ||
| 5166 | "The VF VLAN has been set," | ||
| 5167 | " but the PF device is not up.\n"); | ||
| 5168 | dev_warn(&adapter->pdev->dev, | ||
| 5169 | "Bring the PF device up before" | ||
| 5170 | " attempting to use the VF device.\n"); | ||
| 5171 | } | ||
| 5172 | } else { | ||
| 5173 | igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, | ||
| 5174 | false, vf); | ||
| 5175 | igb_set_vmvir(adapter, vlan, vf); | ||
| 5176 | igb_set_vmolr(adapter, vf, true); | ||
| 5177 | adapter->vf_data[vf].pf_vlan = 0; | ||
| 5178 | adapter->vf_data[vf].pf_qos = 0; | ||
| 5179 | } | ||
| 5180 | out: | ||
| 5181 | return err; | ||
| 5182 | } | ||
| 5183 | |||
| 5184 | static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) | ||
| 5185 | { | ||
| 5186 | int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; | ||
| 5187 | int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); | ||
| 5188 | |||
| 5189 | return igb_vlvf_set(adapter, vid, add, vf); | ||
| 5190 | } | ||
| 5191 | |||
| 5192 | static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) | ||
| 5193 | { | ||
| 5194 | /* clear flags - except flag that indicates PF has set the MAC */ | ||
| 5195 | adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; | ||
| 5196 | adapter->vf_data[vf].last_nack = jiffies; | ||
| 5197 | |||
| 5198 | /* reset offloads to defaults */ | ||
| 5199 | igb_set_vmolr(adapter, vf, true); | ||
| 5200 | |||
| 5201 | /* reset vlans for device */ | ||
| 5202 | igb_clear_vf_vfta(adapter, vf); | ||
| 5203 | if (adapter->vf_data[vf].pf_vlan) | ||
| 5204 | igb_ndo_set_vf_vlan(adapter->netdev, vf, | ||
| 5205 | adapter->vf_data[vf].pf_vlan, | ||
| 5206 | adapter->vf_data[vf].pf_qos); | ||
| 5207 | else | ||
| 5208 | igb_clear_vf_vfta(adapter, vf); | ||
| 5209 | |||
| 5210 | /* reset multicast table array for vf */ | ||
| 5211 | adapter->vf_data[vf].num_vf_mc_hashes = 0; | ||
| 5212 | |||
| 5213 | /* Flush and reset the mta with the new values */ | ||
| 5214 | igb_set_rx_mode(adapter->netdev); | ||
| 5215 | } | ||
| 5216 | |||
| 5217 | static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) | ||
| 5218 | { | ||
| 5219 | unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; | ||
| 5220 | |||
| 5221 | /* generate a new mac address as we were hotplug removed/added */ | ||
| 5222 | if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) | ||
| 5223 | random_ether_addr(vf_mac); | ||
| 5224 | |||
| 5225 | /* process remaining reset events */ | ||
| 5226 | igb_vf_reset(adapter, vf); | ||
| 5227 | } | ||
| 5228 | |||
| 5229 | static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) | ||
| 5230 | { | ||
| 5231 | struct e1000_hw *hw = &adapter->hw; | ||
| 5232 | unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; | ||
| 5233 | int rar_entry = hw->mac.rar_entry_count - (vf + 1); | ||
| 5234 | u32 reg, msgbuf[3]; | ||
| 5235 | u8 *addr = (u8 *)(&msgbuf[1]); | ||
| 5236 | |||
| 5237 | /* process all the same items cleared in a function level reset */ | ||
| 5238 | igb_vf_reset(adapter, vf); | ||
| 5239 | |||
| 5240 | /* set vf mac address */ | ||
| 5241 | igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); | ||
| 5242 | |||
| 5243 | /* enable transmit and receive for vf */ | ||
| 5244 | reg = rd32(E1000_VFTE); | ||
| 5245 | wr32(E1000_VFTE, reg | (1 << vf)); | ||
| 5246 | reg = rd32(E1000_VFRE); | ||
| 5247 | wr32(E1000_VFRE, reg | (1 << vf)); | ||
| 5248 | |||
| 5249 | adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; | ||
| 5250 | |||
| 5251 | /* reply to reset with ack and vf mac address */ | ||
| 5252 | msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; | ||
| 5253 | memcpy(addr, vf_mac, 6); | ||
| 5254 | igb_write_mbx(hw, msgbuf, 3, vf); | ||
| 5255 | } | ||
| 5256 | |||
| 5257 | static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) | ||
| 5258 | { | ||
| 5259 | /* | ||
| 5260 | * The VF MAC Address is stored in a packed array of bytes | ||
| 5261 | * starting at the second 32 bit word of the msg array | ||
| 5262 | */ | ||
| 5263 | unsigned char *addr = (char *)&msg[1]; | ||
| 5264 | int err = -1; | ||
| 5265 | |||
| 5266 | if (is_valid_ether_addr(addr)) | ||
| 5267 | err = igb_set_vf_mac(adapter, vf, addr); | ||
| 5268 | |||
| 5269 | return err; | ||
| 5270 | } | ||
| 5271 | |||
| 5272 | static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) | ||
| 5273 | { | ||
| 5274 | struct e1000_hw *hw = &adapter->hw; | ||
| 5275 | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | ||
| 5276 | u32 msg = E1000_VT_MSGTYPE_NACK; | ||
| 5277 | |||
| 5278 | /* if device isn't clear to send it shouldn't be reading either */ | ||
| 5279 | if (!(vf_data->flags & IGB_VF_FLAG_CTS) && | ||
| 5280 | time_after(jiffies, vf_data->last_nack + (2 * HZ))) { | ||
| 5281 | igb_write_mbx(hw, &msg, 1, vf); | ||
| 5282 | vf_data->last_nack = jiffies; | ||
| 5283 | } | ||
| 5284 | } | ||
| 5285 | |||
| 5286 | static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) | ||
| 5287 | { | ||
| 5288 | struct pci_dev *pdev = adapter->pdev; | ||
| 5289 | u32 msgbuf[E1000_VFMAILBOX_SIZE]; | ||
| 5290 | struct e1000_hw *hw = &adapter->hw; | ||
| 5291 | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | ||
| 5292 | s32 retval; | ||
| 5293 | |||
| 5294 | retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); | ||
| 5295 | |||
| 5296 | if (retval) { | ||
| 5297 | /* if receive failed revoke VF CTS stats and restart init */ | ||
| 5298 | dev_err(&pdev->dev, "Error receiving message from VF\n"); | ||
| 5299 | vf_data->flags &= ~IGB_VF_FLAG_CTS; | ||
| 5300 | if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) | ||
| 5301 | return; | ||
| 5302 | goto out; | ||
| 5303 | } | ||
| 5304 | |||
| 5305 | /* this is a message we already processed, do nothing */ | ||
| 5306 | if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) | ||
| 5307 | return; | ||
| 5308 | |||
| 5309 | /* | ||
| 5310 | * until the vf completes a reset it should not be | ||
| 5311 | * allowed to start any configuration. | ||
| 5312 | */ | ||
| 5313 | |||
| 5314 | if (msgbuf[0] == E1000_VF_RESET) { | ||
| 5315 | igb_vf_reset_msg(adapter, vf); | ||
| 5316 | return; | ||
| 5317 | } | ||
| 5318 | |||
| 5319 | if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { | ||
| 5320 | if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) | ||
| 5321 | return; | ||
| 5322 | retval = -1; | ||
| 5323 | goto out; | ||
| 5324 | } | ||
| 5325 | |||
| 5326 | switch ((msgbuf[0] & 0xFFFF)) { | ||
| 5327 | case E1000_VF_SET_MAC_ADDR: | ||
| 5328 | retval = -EINVAL; | ||
| 5329 | if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) | ||
| 5330 | retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); | ||
| 5331 | else | ||
| 5332 | dev_warn(&pdev->dev, | ||
| 5333 | "VF %d attempted to override administratively " | ||
| 5334 | "set MAC address\nReload the VF driver to " | ||
| 5335 | "resume operations\n", vf); | ||
| 5336 | break; | ||
| 5337 | case E1000_VF_SET_PROMISC: | ||
| 5338 | retval = igb_set_vf_promisc(adapter, msgbuf, vf); | ||
| 5339 | break; | ||
| 5340 | case E1000_VF_SET_MULTICAST: | ||
| 5341 | retval = igb_set_vf_multicasts(adapter, msgbuf, vf); | ||
| 5342 | break; | ||
| 5343 | case E1000_VF_SET_LPE: | ||
| 5344 | retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); | ||
| 5345 | break; | ||
| 5346 | case E1000_VF_SET_VLAN: | ||
| 5347 | retval = -1; | ||
| 5348 | if (vf_data->pf_vlan) | ||
| 5349 | dev_warn(&pdev->dev, | ||
| 5350 | "VF %d attempted to override administratively " | ||
| 5351 | "set VLAN tag\nReload the VF driver to " | ||
| 5352 | "resume operations\n", vf); | ||
| 5353 | else | ||
| 5354 | retval = igb_set_vf_vlan(adapter, msgbuf, vf); | ||
| 5355 | break; | ||
| 5356 | default: | ||
| 5357 | dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); | ||
| 5358 | retval = -1; | ||
| 5359 | break; | ||
| 5360 | } | ||
| 5361 | |||
| 5362 | msgbuf[0] |= E1000_VT_MSGTYPE_CTS; | ||
| 5363 | out: | ||
| 5364 | /* notify the VF of the results of what it sent us */ | ||
| 5365 | if (retval) | ||
| 5366 | msgbuf[0] |= E1000_VT_MSGTYPE_NACK; | ||
| 5367 | else | ||
| 5368 | msgbuf[0] |= E1000_VT_MSGTYPE_ACK; | ||
| 5369 | |||
| 5370 | igb_write_mbx(hw, msgbuf, 1, vf); | ||
| 5371 | } | ||
| 5372 | |||
| 5373 | static void igb_msg_task(struct igb_adapter *adapter) | ||
| 5374 | { | ||
| 5375 | struct e1000_hw *hw = &adapter->hw; | ||
| 5376 | u32 vf; | ||
| 5377 | |||
| 5378 | for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { | ||
| 5379 | /* process any reset requests */ | ||
| 5380 | if (!igb_check_for_rst(hw, vf)) | ||
| 5381 | igb_vf_reset_event(adapter, vf); | ||
| 5382 | |||
| 5383 | /* process any messages pending */ | ||
| 5384 | if (!igb_check_for_msg(hw, vf)) | ||
| 5385 | igb_rcv_msg_from_vf(adapter, vf); | ||
| 5386 | |||
| 5387 | /* process any acks */ | ||
| 5388 | if (!igb_check_for_ack(hw, vf)) | ||
| 5389 | igb_rcv_ack_from_vf(adapter, vf); | ||
| 5390 | } | ||
| 5391 | } | ||
| 5392 | |||
| 5393 | /** | ||
| 5394 | * igb_set_uta - Set unicast filter table address | ||
| 5395 | * @adapter: board private structure | ||
| 5396 | * | ||
| 5397 | * The unicast table address is a register array of 32-bit registers. | ||
| 5398 | * The table is meant to be used in a way similar to how the MTA is used | ||
| 5399 | * however due to certain limitations in the hardware it is necessary to | ||
| 5400 | * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous | ||
| 5401 | * enable bit to allow vlan tag stripping when promiscuous mode is enabled | ||
| 5402 | **/ | ||
| 5403 | static void igb_set_uta(struct igb_adapter *adapter) | ||
| 5404 | { | ||
| 5405 | struct e1000_hw *hw = &adapter->hw; | ||
| 5406 | int i; | ||
| 5407 | |||
| 5408 | /* The UTA table only exists on 82576 hardware and newer */ | ||
| 5409 | if (hw->mac.type < e1000_82576) | ||
| 5410 | return; | ||
| 5411 | |||
| 5412 | /* we only need to do this if VMDq is enabled */ | ||
| 5413 | if (!adapter->vfs_allocated_count) | ||
| 5414 | return; | ||
| 5415 | |||
| 5416 | for (i = 0; i < hw->mac.uta_reg_count; i++) | ||
| 5417 | array_wr32(E1000_UTA, i, ~0); | ||
| 5418 | } | ||
| 5419 | |||
| 5420 | /** | ||
| 5421 | * igb_intr_msi - Interrupt Handler | ||
| 5422 | * @irq: interrupt number | ||
| 5423 | * @data: pointer to a network interface device structure | ||
| 5424 | **/ | ||
| 5425 | static irqreturn_t igb_intr_msi(int irq, void *data) | ||
| 5426 | { | ||
| 5427 | struct igb_adapter *adapter = data; | ||
| 5428 | struct igb_q_vector *q_vector = adapter->q_vector[0]; | ||
| 5429 | struct e1000_hw *hw = &adapter->hw; | ||
| 5430 | /* read ICR disables interrupts using IAM */ | ||
| 5431 | u32 icr = rd32(E1000_ICR); | ||
| 5432 | |||
| 5433 | igb_write_itr(q_vector); | ||
| 5434 | |||
| 5435 | if (icr & E1000_ICR_DRSTA) | ||
| 5436 | schedule_work(&adapter->reset_task); | ||
| 5437 | |||
| 5438 | if (icr & E1000_ICR_DOUTSYNC) { | ||
| 5439 | /* HW is reporting DMA is out of sync */ | ||
| 5440 | adapter->stats.doosync++; | ||
| 5441 | } | ||
| 5442 | |||
| 5443 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
| 5444 | hw->mac.get_link_status = 1; | ||
| 5445 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
| 5446 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
| 5447 | } | ||
| 5448 | |||
| 5449 | napi_schedule(&q_vector->napi); | ||
| 5450 | |||
| 5451 | return IRQ_HANDLED; | ||
| 5452 | } | ||
| 5453 | |||
| 5454 | /** | ||
| 5455 | * igb_intr - Legacy Interrupt Handler | ||
| 5456 | * @irq: interrupt number | ||
| 5457 | * @data: pointer to a network interface device structure | ||
| 5458 | **/ | ||
| 5459 | static irqreturn_t igb_intr(int irq, void *data) | ||
| 5460 | { | ||
| 5461 | struct igb_adapter *adapter = data; | ||
| 5462 | struct igb_q_vector *q_vector = adapter->q_vector[0]; | ||
| 5463 | struct e1000_hw *hw = &adapter->hw; | ||
| 5464 | /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No | ||
| 5465 | * need for the IMC write */ | ||
| 5466 | u32 icr = rd32(E1000_ICR); | ||
| 5467 | if (!icr) | ||
| 5468 | return IRQ_NONE; /* Not our interrupt */ | ||
| 5469 | |||
| 5470 | igb_write_itr(q_vector); | ||
| 5471 | |||
| 5472 | /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is | ||
| 5473 | * not set, then the adapter didn't send an interrupt */ | ||
| 5474 | if (!(icr & E1000_ICR_INT_ASSERTED)) | ||
| 5475 | return IRQ_NONE; | ||
| 5476 | |||
| 5477 | if (icr & E1000_ICR_DRSTA) | ||
| 5478 | schedule_work(&adapter->reset_task); | ||
| 5479 | |||
| 5480 | if (icr & E1000_ICR_DOUTSYNC) { | ||
| 5481 | /* HW is reporting DMA is out of sync */ | ||
| 5482 | adapter->stats.doosync++; | ||
| 5483 | } | ||
| 5484 | |||
| 5485 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
| 5486 | hw->mac.get_link_status = 1; | ||
| 5487 | /* guard against interrupt when we're going down */ | ||
| 5488 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
| 5489 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
| 5490 | } | ||
| 5491 | |||
| 5492 | napi_schedule(&q_vector->napi); | ||
| 5493 | |||
| 5494 | return IRQ_HANDLED; | ||
| 5495 | } | ||
| 5496 | |||
| 5497 | static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector) | ||
| 5498 | { | ||
| 5499 | struct igb_adapter *adapter = q_vector->adapter; | ||
| 5500 | struct e1000_hw *hw = &adapter->hw; | ||
| 5501 | |||
| 5502 | if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) || | ||
| 5503 | (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) { | ||
| 5504 | if (!adapter->msix_entries) | ||
| 5505 | igb_set_itr(adapter); | ||
| 5506 | else | ||
| 5507 | igb_update_ring_itr(q_vector); | ||
| 5508 | } | ||
| 5509 | |||
| 5510 | if (!test_bit(__IGB_DOWN, &adapter->state)) { | ||
| 5511 | if (adapter->msix_entries) | ||
| 5512 | wr32(E1000_EIMS, q_vector->eims_value); | ||
| 5513 | else | ||
| 5514 | igb_irq_enable(adapter); | ||
| 5515 | } | ||
| 5516 | } | ||
| 5517 | |||
| 5518 | /** | ||
| 5519 | * igb_poll - NAPI Rx polling callback | ||
| 5520 | * @napi: napi polling structure | ||
| 5521 | * @budget: count of how many packets we should handle | ||
| 5522 | **/ | ||
| 5523 | static int igb_poll(struct napi_struct *napi, int budget) | ||
| 5524 | { | ||
| 5525 | struct igb_q_vector *q_vector = container_of(napi, | ||
| 5526 | struct igb_q_vector, | ||
| 5527 | napi); | ||
| 5528 | int tx_clean_complete = 1, work_done = 0; | ||
| 5529 | |||
| 5530 | #ifdef CONFIG_IGB_DCA | ||
| 5531 | if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) | ||
| 5532 | igb_update_dca(q_vector); | ||
| 5533 | #endif | ||
| 5534 | if (q_vector->tx_ring) | ||
| 5535 | tx_clean_complete = igb_clean_tx_irq(q_vector); | ||
| 5536 | |||
| 5537 | if (q_vector->rx_ring) | ||
| 5538 | igb_clean_rx_irq_adv(q_vector, &work_done, budget); | ||
| 5539 | |||
| 5540 | if (!tx_clean_complete) | ||
| 5541 | work_done = budget; | ||
| 5542 | |||
| 5543 | /* If not enough Rx work done, exit the polling mode */ | ||
| 5544 | if (work_done < budget) { | ||
| 5545 | napi_complete(napi); | ||
| 5546 | igb_ring_irq_enable(q_vector); | ||
| 5547 | } | ||
| 5548 | |||
| 5549 | return work_done; | ||
| 5550 | } | ||
| 5551 | |||
| 5552 | /** | ||
| 5553 | * igb_systim_to_hwtstamp - convert system time value to hw timestamp | ||
| 5554 | * @adapter: board private structure | ||
| 5555 | * @shhwtstamps: timestamp structure to update | ||
| 5556 | * @regval: unsigned 64bit system time value. | ||
| 5557 | * | ||
| 5558 | * We need to convert the system time value stored in the RX/TXSTMP registers | ||
| 5559 | * into a hwtstamp which can be used by the upper level timestamping functions | ||
| 5560 | */ | ||
| 5561 | static void igb_systim_to_hwtstamp(struct igb_adapter *adapter, | ||
| 5562 | struct skb_shared_hwtstamps *shhwtstamps, | ||
| 5563 | u64 regval) | ||
| 5564 | { | ||
| 5565 | u64 ns; | ||
| 5566 | |||
| 5567 | /* | ||
| 5568 | * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to | ||
| 5569 | * 24 to match clock shift we setup earlier. | ||
| 5570 | */ | ||
| 5571 | if (adapter->hw.mac.type == e1000_82580) | ||
| 5572 | regval <<= IGB_82580_TSYNC_SHIFT; | ||
| 5573 | |||
| 5574 | ns = timecounter_cyc2time(&adapter->clock, regval); | ||
| 5575 | timecompare_update(&adapter->compare, ns); | ||
| 5576 | memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps)); | ||
| 5577 | shhwtstamps->hwtstamp = ns_to_ktime(ns); | ||
| 5578 | shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns); | ||
| 5579 | } | ||
| 5580 | |||
| 5581 | /** | ||
| 5582 | * igb_tx_hwtstamp - utility function which checks for TX time stamp | ||
| 5583 | * @q_vector: pointer to q_vector containing needed info | ||
| 5584 | * @buffer: pointer to igb_buffer structure | ||
| 5585 | * | ||
| 5586 | * If we were asked to do hardware stamping and such a time stamp is | ||
| 5587 | * available, then it must have been for this skb here because we only | ||
| 5588 | * allow only one such packet into the queue. | ||
| 5589 | */ | ||
| 5590 | static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info) | ||
| 5591 | { | ||
| 5592 | struct igb_adapter *adapter = q_vector->adapter; | ||
| 5593 | struct e1000_hw *hw = &adapter->hw; | ||
| 5594 | struct skb_shared_hwtstamps shhwtstamps; | ||
| 5595 | u64 regval; | ||
| 5596 | |||
| 5597 | /* if skb does not support hw timestamp or TX stamp not valid exit */ | ||
| 5598 | if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) || | ||
| 5599 | !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID)) | ||
| 5600 | return; | ||
| 5601 | |||
| 5602 | regval = rd32(E1000_TXSTMPL); | ||
| 5603 | regval |= (u64)rd32(E1000_TXSTMPH) << 32; | ||
| 5604 | |||
| 5605 | igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval); | ||
| 5606 | skb_tstamp_tx(buffer_info->skb, &shhwtstamps); | ||
| 5607 | } | ||
| 5608 | |||
| 5609 | /** | ||
| 5610 | * igb_clean_tx_irq - Reclaim resources after transmit completes | ||
| 5611 | * @q_vector: pointer to q_vector containing needed info | ||
| 5612 | * returns true if ring is completely cleaned | ||
| 5613 | **/ | ||
| 5614 | static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) | ||
| 5615 | { | ||
| 5616 | struct igb_adapter *adapter = q_vector->adapter; | ||
| 5617 | struct igb_ring *tx_ring = q_vector->tx_ring; | ||
| 5618 | struct net_device *netdev = tx_ring->netdev; | ||
| 5619 | struct e1000_hw *hw = &adapter->hw; | ||
| 5620 | struct igb_buffer *buffer_info; | ||
| 5621 | union e1000_adv_tx_desc *tx_desc, *eop_desc; | ||
| 5622 | unsigned int total_bytes = 0, total_packets = 0; | ||
| 5623 | unsigned int i, eop, count = 0; | ||
| 5624 | bool cleaned = false; | ||
| 5625 | |||
| 5626 | i = tx_ring->next_to_clean; | ||
| 5627 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
| 5628 | eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop); | ||
| 5629 | |||
| 5630 | while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) && | ||
| 5631 | (count < tx_ring->count)) { | ||
| 5632 | rmb(); /* read buffer_info after eop_desc status */ | ||
| 5633 | for (cleaned = false; !cleaned; count++) { | ||
| 5634 | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | ||
| 5635 | buffer_info = &tx_ring->buffer_info[i]; | ||
| 5636 | cleaned = (i == eop); | ||
| 5637 | |||
| 5638 | if (buffer_info->skb) { | ||
| 5639 | total_bytes += buffer_info->bytecount; | ||
| 5640 | /* gso_segs is currently only valid for tcp */ | ||
| 5641 | total_packets += buffer_info->gso_segs; | ||
| 5642 | igb_tx_hwtstamp(q_vector, buffer_info); | ||
| 5643 | } | ||
| 5644 | |||
| 5645 | igb_unmap_and_free_tx_resource(tx_ring, buffer_info); | ||
| 5646 | tx_desc->wb.status = 0; | ||
| 5647 | |||
| 5648 | i++; | ||
| 5649 | if (i == tx_ring->count) | ||
| 5650 | i = 0; | ||
| 5651 | } | ||
| 5652 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
| 5653 | eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop); | ||
| 5654 | } | ||
| 5655 | |||
| 5656 | tx_ring->next_to_clean = i; | ||
| 5657 | |||
| 5658 | if (unlikely(count && | ||
| 5659 | netif_carrier_ok(netdev) && | ||
| 5660 | igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) { | ||
| 5661 | /* Make sure that anybody stopping the queue after this | ||
| 5662 | * sees the new next_to_clean. | ||
| 5663 | */ | ||
| 5664 | smp_mb(); | ||
| 5665 | if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) && | ||
| 5666 | !(test_bit(__IGB_DOWN, &adapter->state))) { | ||
| 5667 | netif_wake_subqueue(netdev, tx_ring->queue_index); | ||
| 5668 | |||
| 5669 | u64_stats_update_begin(&tx_ring->tx_syncp); | ||
| 5670 | tx_ring->tx_stats.restart_queue++; | ||
| 5671 | u64_stats_update_end(&tx_ring->tx_syncp); | ||
| 5672 | } | ||
| 5673 | } | ||
| 5674 | |||
| 5675 | if (tx_ring->detect_tx_hung) { | ||
| 5676 | /* Detect a transmit hang in hardware, this serializes the | ||
| 5677 | * check with the clearing of time_stamp and movement of i */ | ||
| 5678 | tx_ring->detect_tx_hung = false; | ||
| 5679 | if (tx_ring->buffer_info[i].time_stamp && | ||
| 5680 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp + | ||
| 5681 | (adapter->tx_timeout_factor * HZ)) && | ||
| 5682 | !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { | ||
| 5683 | |||
| 5684 | /* detected Tx unit hang */ | ||
| 5685 | dev_err(tx_ring->dev, | ||
| 5686 | "Detected Tx Unit Hang\n" | ||
| 5687 | " Tx Queue <%d>\n" | ||
| 5688 | " TDH <%x>\n" | ||
| 5689 | " TDT <%x>\n" | ||
| 5690 | " next_to_use <%x>\n" | ||
| 5691 | " next_to_clean <%x>\n" | ||
| 5692 | "buffer_info[next_to_clean]\n" | ||
| 5693 | " time_stamp <%lx>\n" | ||
| 5694 | " next_to_watch <%x>\n" | ||
| 5695 | " jiffies <%lx>\n" | ||
| 5696 | " desc.status <%x>\n", | ||
| 5697 | tx_ring->queue_index, | ||
| 5698 | readl(tx_ring->head), | ||
| 5699 | readl(tx_ring->tail), | ||
| 5700 | tx_ring->next_to_use, | ||
| 5701 | tx_ring->next_to_clean, | ||
| 5702 | tx_ring->buffer_info[eop].time_stamp, | ||
| 5703 | eop, | ||
| 5704 | jiffies, | ||
| 5705 | eop_desc->wb.status); | ||
| 5706 | netif_stop_subqueue(netdev, tx_ring->queue_index); | ||
| 5707 | } | ||
| 5708 | } | ||
| 5709 | tx_ring->total_bytes += total_bytes; | ||
| 5710 | tx_ring->total_packets += total_packets; | ||
| 5711 | u64_stats_update_begin(&tx_ring->tx_syncp); | ||
| 5712 | tx_ring->tx_stats.bytes += total_bytes; | ||
| 5713 | tx_ring->tx_stats.packets += total_packets; | ||
| 5714 | u64_stats_update_end(&tx_ring->tx_syncp); | ||
| 5715 | return count < tx_ring->count; | ||
| 5716 | } | ||
| 5717 | |||
| 5718 | static inline void igb_rx_checksum_adv(struct igb_ring *ring, | ||
| 5719 | u32 status_err, struct sk_buff *skb) | ||
| 5720 | { | ||
| 5721 | skb_checksum_none_assert(skb); | ||
| 5722 | |||
| 5723 | /* Ignore Checksum bit is set or checksum is disabled through ethtool */ | ||
| 5724 | if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) || | ||
| 5725 | (status_err & E1000_RXD_STAT_IXSM)) | ||
| 5726 | return; | ||
| 5727 | |||
| 5728 | /* TCP/UDP checksum error bit is set */ | ||
| 5729 | if (status_err & | ||
| 5730 | (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { | ||
| 5731 | /* | ||
| 5732 | * work around errata with sctp packets where the TCPE aka | ||
| 5733 | * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) | ||
| 5734 | * packets, (aka let the stack check the crc32c) | ||
| 5735 | */ | ||
| 5736 | if ((skb->len == 60) && | ||
| 5737 | (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) { | ||
| 5738 | u64_stats_update_begin(&ring->rx_syncp); | ||
| 5739 | ring->rx_stats.csum_err++; | ||
| 5740 | u64_stats_update_end(&ring->rx_syncp); | ||
| 5741 | } | ||
| 5742 | /* let the stack verify checksum errors */ | ||
| 5743 | return; | ||
| 5744 | } | ||
| 5745 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
| 5746 | if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) | ||
| 5747 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
| 5748 | |||
| 5749 | dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err); | ||
| 5750 | } | ||
| 5751 | |||
| 5752 | static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr, | ||
| 5753 | struct sk_buff *skb) | ||
| 5754 | { | ||
| 5755 | struct igb_adapter *adapter = q_vector->adapter; | ||
| 5756 | struct e1000_hw *hw = &adapter->hw; | ||
| 5757 | u64 regval; | ||
| 5758 | |||
| 5759 | /* | ||
| 5760 | * If this bit is set, then the RX registers contain the time stamp. No | ||
| 5761 | * other packet will be time stamped until we read these registers, so | ||
| 5762 | * read the registers to make them available again. Because only one | ||
| 5763 | * packet can be time stamped at a time, we know that the register | ||
| 5764 | * values must belong to this one here and therefore we don't need to | ||
| 5765 | * compare any of the additional attributes stored for it. | ||
| 5766 | * | ||
| 5767 | * If nothing went wrong, then it should have a shared tx_flags that we | ||
| 5768 | * can turn into a skb_shared_hwtstamps. | ||
| 5769 | */ | ||
| 5770 | if (staterr & E1000_RXDADV_STAT_TSIP) { | ||
| 5771 | u32 *stamp = (u32 *)skb->data; | ||
| 5772 | regval = le32_to_cpu(*(stamp + 2)); | ||
| 5773 | regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32; | ||
| 5774 | skb_pull(skb, IGB_TS_HDR_LEN); | ||
| 5775 | } else { | ||
| 5776 | if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) | ||
| 5777 | return; | ||
| 5778 | |||
| 5779 | regval = rd32(E1000_RXSTMPL); | ||
| 5780 | regval |= (u64)rd32(E1000_RXSTMPH) << 32; | ||
| 5781 | } | ||
| 5782 | |||
| 5783 | igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); | ||
| 5784 | } | ||
| 5785 | static inline u16 igb_get_hlen(struct igb_ring *rx_ring, | ||
| 5786 | union e1000_adv_rx_desc *rx_desc) | ||
| 5787 | { | ||
| 5788 | /* HW will not DMA in data larger than the given buffer, even if it | ||
| 5789 | * parses the (NFS, of course) header to be larger. In that case, it | ||
| 5790 | * fills the header buffer and spills the rest into the page. | ||
| 5791 | */ | ||
| 5792 | u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) & | ||
| 5793 | E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT; | ||
| 5794 | if (hlen > rx_ring->rx_buffer_len) | ||
| 5795 | hlen = rx_ring->rx_buffer_len; | ||
| 5796 | return hlen; | ||
| 5797 | } | ||
| 5798 | |||
| 5799 | static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector, | ||
| 5800 | int *work_done, int budget) | ||
| 5801 | { | ||
| 5802 | struct igb_ring *rx_ring = q_vector->rx_ring; | ||
| 5803 | struct net_device *netdev = rx_ring->netdev; | ||
| 5804 | struct device *dev = rx_ring->dev; | ||
| 5805 | union e1000_adv_rx_desc *rx_desc , *next_rxd; | ||
| 5806 | struct igb_buffer *buffer_info , *next_buffer; | ||
| 5807 | struct sk_buff *skb; | ||
| 5808 | bool cleaned = false; | ||
| 5809 | int cleaned_count = 0; | ||
| 5810 | int current_node = numa_node_id(); | ||
| 5811 | unsigned int total_bytes = 0, total_packets = 0; | ||
| 5812 | unsigned int i; | ||
| 5813 | u32 staterr; | ||
| 5814 | u16 length; | ||
| 5815 | |||
| 5816 | i = rx_ring->next_to_clean; | ||
| 5817 | buffer_info = &rx_ring->buffer_info[i]; | ||
| 5818 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
| 5819 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
| 5820 | |||
| 5821 | while (staterr & E1000_RXD_STAT_DD) { | ||
| 5822 | if (*work_done >= budget) | ||
| 5823 | break; | ||
| 5824 | (*work_done)++; | ||
| 5825 | rmb(); /* read descriptor and rx_buffer_info after status DD */ | ||
| 5826 | |||
| 5827 | skb = buffer_info->skb; | ||
| 5828 | prefetch(skb->data - NET_IP_ALIGN); | ||
| 5829 | buffer_info->skb = NULL; | ||
| 5830 | |||
| 5831 | i++; | ||
| 5832 | if (i == rx_ring->count) | ||
| 5833 | i = 0; | ||
| 5834 | |||
| 5835 | next_rxd = E1000_RX_DESC_ADV(*rx_ring, i); | ||
| 5836 | prefetch(next_rxd); | ||
| 5837 | next_buffer = &rx_ring->buffer_info[i]; | ||
| 5838 | |||
| 5839 | length = le16_to_cpu(rx_desc->wb.upper.length); | ||
| 5840 | cleaned = true; | ||
| 5841 | cleaned_count++; | ||
| 5842 | |||
| 5843 | if (buffer_info->dma) { | ||
| 5844 | dma_unmap_single(dev, buffer_info->dma, | ||
| 5845 | rx_ring->rx_buffer_len, | ||
| 5846 | DMA_FROM_DEVICE); | ||
| 5847 | buffer_info->dma = 0; | ||
| 5848 | if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) { | ||
| 5849 | skb_put(skb, length); | ||
| 5850 | goto send_up; | ||
| 5851 | } | ||
| 5852 | skb_put(skb, igb_get_hlen(rx_ring, rx_desc)); | ||
| 5853 | } | ||
| 5854 | |||
| 5855 | if (length) { | ||
| 5856 | dma_unmap_page(dev, buffer_info->page_dma, | ||
| 5857 | PAGE_SIZE / 2, DMA_FROM_DEVICE); | ||
| 5858 | buffer_info->page_dma = 0; | ||
| 5859 | |||
| 5860 | skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, | ||
| 5861 | buffer_info->page, | ||
| 5862 | buffer_info->page_offset, | ||
| 5863 | length); | ||
| 5864 | |||
| 5865 | if ((page_count(buffer_info->page) != 1) || | ||
| 5866 | (page_to_nid(buffer_info->page) != current_node)) | ||
| 5867 | buffer_info->page = NULL; | ||
| 5868 | else | ||
| 5869 | get_page(buffer_info->page); | ||
| 5870 | |||
| 5871 | skb->len += length; | ||
| 5872 | skb->data_len += length; | ||
| 5873 | skb->truesize += length; | ||
| 5874 | } | ||
| 5875 | |||
| 5876 | if (!(staterr & E1000_RXD_STAT_EOP)) { | ||
| 5877 | buffer_info->skb = next_buffer->skb; | ||
| 5878 | buffer_info->dma = next_buffer->dma; | ||
| 5879 | next_buffer->skb = skb; | ||
| 5880 | next_buffer->dma = 0; | ||
| 5881 | goto next_desc; | ||
| 5882 | } | ||
| 5883 | send_up: | ||
| 5884 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | ||
| 5885 | dev_kfree_skb_irq(skb); | ||
| 5886 | goto next_desc; | ||
| 5887 | } | ||
| 5888 | |||
| 5889 | if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS)) | ||
| 5890 | igb_rx_hwtstamp(q_vector, staterr, skb); | ||
| 5891 | total_bytes += skb->len; | ||
| 5892 | total_packets++; | ||
| 5893 | |||
| 5894 | igb_rx_checksum_adv(rx_ring, staterr, skb); | ||
| 5895 | |||
| 5896 | skb->protocol = eth_type_trans(skb, netdev); | ||
| 5897 | skb_record_rx_queue(skb, rx_ring->queue_index); | ||
| 5898 | |||
| 5899 | if (staterr & E1000_RXD_STAT_VP) { | ||
| 5900 | u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); | ||
| 5901 | |||
| 5902 | __vlan_hwaccel_put_tag(skb, vid); | ||
| 5903 | } | ||
| 5904 | napi_gro_receive(&q_vector->napi, skb); | ||
| 5905 | |||
| 5906 | next_desc: | ||
| 5907 | rx_desc->wb.upper.status_error = 0; | ||
| 5908 | |||
| 5909 | /* return some buffers to hardware, one at a time is too slow */ | ||
| 5910 | if (cleaned_count >= IGB_RX_BUFFER_WRITE) { | ||
| 5911 | igb_alloc_rx_buffers_adv(rx_ring, cleaned_count); | ||
| 5912 | cleaned_count = 0; | ||
| 5913 | } | ||
| 5914 | |||
| 5915 | /* use prefetched values */ | ||
| 5916 | rx_desc = next_rxd; | ||
| 5917 | buffer_info = next_buffer; | ||
| 5918 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
| 5919 | } | ||
| 5920 | |||
| 5921 | rx_ring->next_to_clean = i; | ||
| 5922 | cleaned_count = igb_desc_unused(rx_ring); | ||
| 5923 | |||
| 5924 | if (cleaned_count) | ||
| 5925 | igb_alloc_rx_buffers_adv(rx_ring, cleaned_count); | ||
| 5926 | |||
| 5927 | rx_ring->total_packets += total_packets; | ||
| 5928 | rx_ring->total_bytes += total_bytes; | ||
| 5929 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
| 5930 | rx_ring->rx_stats.packets += total_packets; | ||
| 5931 | rx_ring->rx_stats.bytes += total_bytes; | ||
| 5932 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
| 5933 | return cleaned; | ||
| 5934 | } | ||
| 5935 | |||
| 5936 | /** | ||
| 5937 | * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split | ||
| 5938 | * @adapter: address of board private structure | ||
| 5939 | **/ | ||
| 5940 | void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count) | ||
| 5941 | { | ||
| 5942 | struct net_device *netdev = rx_ring->netdev; | ||
| 5943 | union e1000_adv_rx_desc *rx_desc; | ||
| 5944 | struct igb_buffer *buffer_info; | ||
| 5945 | struct sk_buff *skb; | ||
| 5946 | unsigned int i; | ||
| 5947 | int bufsz; | ||
| 5948 | |||
| 5949 | i = rx_ring->next_to_use; | ||
| 5950 | buffer_info = &rx_ring->buffer_info[i]; | ||
| 5951 | |||
| 5952 | bufsz = rx_ring->rx_buffer_len; | ||
| 5953 | |||
| 5954 | while (cleaned_count--) { | ||
| 5955 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
| 5956 | |||
| 5957 | if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) { | ||
| 5958 | if (!buffer_info->page) { | ||
| 5959 | buffer_info->page = netdev_alloc_page(netdev); | ||
| 5960 | if (unlikely(!buffer_info->page)) { | ||
| 5961 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
| 5962 | rx_ring->rx_stats.alloc_failed++; | ||
| 5963 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
| 5964 | goto no_buffers; | ||
| 5965 | } | ||
| 5966 | buffer_info->page_offset = 0; | ||
| 5967 | } else { | ||
| 5968 | buffer_info->page_offset ^= PAGE_SIZE / 2; | ||
| 5969 | } | ||
| 5970 | buffer_info->page_dma = | ||
| 5971 | dma_map_page(rx_ring->dev, buffer_info->page, | ||
| 5972 | buffer_info->page_offset, | ||
| 5973 | PAGE_SIZE / 2, | ||
| 5974 | DMA_FROM_DEVICE); | ||
| 5975 | if (dma_mapping_error(rx_ring->dev, | ||
| 5976 | buffer_info->page_dma)) { | ||
| 5977 | buffer_info->page_dma = 0; | ||
| 5978 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
| 5979 | rx_ring->rx_stats.alloc_failed++; | ||
| 5980 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
| 5981 | goto no_buffers; | ||
| 5982 | } | ||
| 5983 | } | ||
| 5984 | |||
| 5985 | skb = buffer_info->skb; | ||
| 5986 | if (!skb) { | ||
| 5987 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); | ||
| 5988 | if (unlikely(!skb)) { | ||
| 5989 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
| 5990 | rx_ring->rx_stats.alloc_failed++; | ||
| 5991 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
| 5992 | goto no_buffers; | ||
| 5993 | } | ||
| 5994 | |||
| 5995 | buffer_info->skb = skb; | ||
| 5996 | } | ||
| 5997 | if (!buffer_info->dma) { | ||
| 5998 | buffer_info->dma = dma_map_single(rx_ring->dev, | ||
| 5999 | skb->data, | ||
| 6000 | bufsz, | ||
| 6001 | DMA_FROM_DEVICE); | ||
| 6002 | if (dma_mapping_error(rx_ring->dev, | ||
| 6003 | buffer_info->dma)) { | ||
| 6004 | buffer_info->dma = 0; | ||
| 6005 | u64_stats_update_begin(&rx_ring->rx_syncp); | ||
| 6006 | rx_ring->rx_stats.alloc_failed++; | ||
| 6007 | u64_stats_update_end(&rx_ring->rx_syncp); | ||
| 6008 | goto no_buffers; | ||
| 6009 | } | ||
| 6010 | } | ||
| 6011 | /* Refresh the desc even if buffer_addrs didn't change because | ||
| 6012 | * each write-back erases this info. */ | ||
| 6013 | if (bufsz < IGB_RXBUFFER_1024) { | ||
| 6014 | rx_desc->read.pkt_addr = | ||
| 6015 | cpu_to_le64(buffer_info->page_dma); | ||
| 6016 | rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); | ||
| 6017 | } else { | ||
| 6018 | rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma); | ||
| 6019 | rx_desc->read.hdr_addr = 0; | ||
| 6020 | } | ||
| 6021 | |||
| 6022 | i++; | ||
| 6023 | if (i == rx_ring->count) | ||
| 6024 | i = 0; | ||
| 6025 | buffer_info = &rx_ring->buffer_info[i]; | ||
| 6026 | } | ||
| 6027 | |||
| 6028 | no_buffers: | ||
| 6029 | if (rx_ring->next_to_use != i) { | ||
| 6030 | rx_ring->next_to_use = i; | ||
| 6031 | if (i == 0) | ||
| 6032 | i = (rx_ring->count - 1); | ||
| 6033 | else | ||
| 6034 | i--; | ||
| 6035 | |||
| 6036 | /* Force memory writes to complete before letting h/w | ||
| 6037 | * know there are new descriptors to fetch. (Only | ||
| 6038 | * applicable for weak-ordered memory model archs, | ||
| 6039 | * such as IA-64). */ | ||
| 6040 | wmb(); | ||
| 6041 | writel(i, rx_ring->tail); | ||
| 6042 | } | ||
| 6043 | } | ||
| 6044 | |||
| 6045 | /** | ||
| 6046 | * igb_mii_ioctl - | ||
| 6047 | * @netdev: | ||
| 6048 | * @ifreq: | ||
| 6049 | * @cmd: | ||
| 6050 | **/ | ||
| 6051 | static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
| 6052 | { | ||
| 6053 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6054 | struct mii_ioctl_data *data = if_mii(ifr); | ||
| 6055 | |||
| 6056 | if (adapter->hw.phy.media_type != e1000_media_type_copper) | ||
| 6057 | return -EOPNOTSUPP; | ||
| 6058 | |||
| 6059 | switch (cmd) { | ||
| 6060 | case SIOCGMIIPHY: | ||
| 6061 | data->phy_id = adapter->hw.phy.addr; | ||
| 6062 | break; | ||
| 6063 | case SIOCGMIIREG: | ||
| 6064 | if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, | ||
| 6065 | &data->val_out)) | ||
| 6066 | return -EIO; | ||
| 6067 | break; | ||
| 6068 | case SIOCSMIIREG: | ||
| 6069 | default: | ||
| 6070 | return -EOPNOTSUPP; | ||
| 6071 | } | ||
| 6072 | return 0; | ||
| 6073 | } | ||
| 6074 | |||
| 6075 | /** | ||
| 6076 | * igb_hwtstamp_ioctl - control hardware time stamping | ||
| 6077 | * @netdev: | ||
| 6078 | * @ifreq: | ||
| 6079 | * @cmd: | ||
| 6080 | * | ||
| 6081 | * Outgoing time stamping can be enabled and disabled. Play nice and | ||
| 6082 | * disable it when requested, although it shouldn't case any overhead | ||
| 6083 | * when no packet needs it. At most one packet in the queue may be | ||
| 6084 | * marked for time stamping, otherwise it would be impossible to tell | ||
| 6085 | * for sure to which packet the hardware time stamp belongs. | ||
| 6086 | * | ||
| 6087 | * Incoming time stamping has to be configured via the hardware | ||
| 6088 | * filters. Not all combinations are supported, in particular event | ||
| 6089 | * type has to be specified. Matching the kind of event packet is | ||
| 6090 | * not supported, with the exception of "all V2 events regardless of | ||
| 6091 | * level 2 or 4". | ||
| 6092 | * | ||
| 6093 | **/ | ||
| 6094 | static int igb_hwtstamp_ioctl(struct net_device *netdev, | ||
| 6095 | struct ifreq *ifr, int cmd) | ||
| 6096 | { | ||
| 6097 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6098 | struct e1000_hw *hw = &adapter->hw; | ||
| 6099 | struct hwtstamp_config config; | ||
| 6100 | u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; | ||
| 6101 | u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; | ||
| 6102 | u32 tsync_rx_cfg = 0; | ||
| 6103 | bool is_l4 = false; | ||
| 6104 | bool is_l2 = false; | ||
| 6105 | u32 regval; | ||
| 6106 | |||
| 6107 | if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) | ||
| 6108 | return -EFAULT; | ||
| 6109 | |||
| 6110 | /* reserved for future extensions */ | ||
| 6111 | if (config.flags) | ||
| 6112 | return -EINVAL; | ||
| 6113 | |||
| 6114 | switch (config.tx_type) { | ||
| 6115 | case HWTSTAMP_TX_OFF: | ||
| 6116 | tsync_tx_ctl = 0; | ||
| 6117 | case HWTSTAMP_TX_ON: | ||
| 6118 | break; | ||
| 6119 | default: | ||
| 6120 | return -ERANGE; | ||
| 6121 | } | ||
| 6122 | |||
| 6123 | switch (config.rx_filter) { | ||
| 6124 | case HWTSTAMP_FILTER_NONE: | ||
| 6125 | tsync_rx_ctl = 0; | ||
| 6126 | break; | ||
| 6127 | case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: | ||
| 6128 | case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: | ||
| 6129 | case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: | ||
| 6130 | case HWTSTAMP_FILTER_ALL: | ||
| 6131 | /* | ||
| 6132 | * register TSYNCRXCFG must be set, therefore it is not | ||
| 6133 | * possible to time stamp both Sync and Delay_Req messages | ||
| 6134 | * => fall back to time stamping all packets | ||
| 6135 | */ | ||
| 6136 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; | ||
| 6137 | config.rx_filter = HWTSTAMP_FILTER_ALL; | ||
| 6138 | break; | ||
| 6139 | case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: | ||
| 6140 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; | ||
| 6141 | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; | ||
| 6142 | is_l4 = true; | ||
| 6143 | break; | ||
| 6144 | case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: | ||
| 6145 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; | ||
| 6146 | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; | ||
| 6147 | is_l4 = true; | ||
| 6148 | break; | ||
| 6149 | case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: | ||
| 6150 | case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: | ||
| 6151 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; | ||
| 6152 | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE; | ||
| 6153 | is_l2 = true; | ||
| 6154 | is_l4 = true; | ||
| 6155 | config.rx_filter = HWTSTAMP_FILTER_SOME; | ||
| 6156 | break; | ||
| 6157 | case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: | ||
| 6158 | case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: | ||
| 6159 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; | ||
| 6160 | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE; | ||
| 6161 | is_l2 = true; | ||
| 6162 | is_l4 = true; | ||
| 6163 | config.rx_filter = HWTSTAMP_FILTER_SOME; | ||
| 6164 | break; | ||
| 6165 | case HWTSTAMP_FILTER_PTP_V2_EVENT: | ||
| 6166 | case HWTSTAMP_FILTER_PTP_V2_SYNC: | ||
| 6167 | case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: | ||
| 6168 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; | ||
| 6169 | config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; | ||
| 6170 | is_l2 = true; | ||
| 6171 | break; | ||
| 6172 | default: | ||
| 6173 | return -ERANGE; | ||
| 6174 | } | ||
| 6175 | |||
| 6176 | if (hw->mac.type == e1000_82575) { | ||
| 6177 | if (tsync_rx_ctl | tsync_tx_ctl) | ||
| 6178 | return -EINVAL; | ||
| 6179 | return 0; | ||
| 6180 | } | ||
| 6181 | |||
| 6182 | /* | ||
| 6183 | * Per-packet timestamping only works if all packets are | ||
| 6184 | * timestamped, so enable timestamping in all packets as | ||
| 6185 | * long as one rx filter was configured. | ||
| 6186 | */ | ||
| 6187 | if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) { | ||
| 6188 | tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; | ||
| 6189 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; | ||
| 6190 | } | ||
| 6191 | |||
| 6192 | /* enable/disable TX */ | ||
| 6193 | regval = rd32(E1000_TSYNCTXCTL); | ||
| 6194 | regval &= ~E1000_TSYNCTXCTL_ENABLED; | ||
| 6195 | regval |= tsync_tx_ctl; | ||
| 6196 | wr32(E1000_TSYNCTXCTL, regval); | ||
| 6197 | |||
| 6198 | /* enable/disable RX */ | ||
| 6199 | regval = rd32(E1000_TSYNCRXCTL); | ||
| 6200 | regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); | ||
| 6201 | regval |= tsync_rx_ctl; | ||
| 6202 | wr32(E1000_TSYNCRXCTL, regval); | ||
| 6203 | |||
| 6204 | /* define which PTP packets are time stamped */ | ||
| 6205 | wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); | ||
| 6206 | |||
| 6207 | /* define ethertype filter for timestamped packets */ | ||
| 6208 | if (is_l2) | ||
| 6209 | wr32(E1000_ETQF(3), | ||
| 6210 | (E1000_ETQF_FILTER_ENABLE | /* enable filter */ | ||
| 6211 | E1000_ETQF_1588 | /* enable timestamping */ | ||
| 6212 | ETH_P_1588)); /* 1588 eth protocol type */ | ||
| 6213 | else | ||
| 6214 | wr32(E1000_ETQF(3), 0); | ||
| 6215 | |||
| 6216 | #define PTP_PORT 319 | ||
| 6217 | /* L4 Queue Filter[3]: filter by destination port and protocol */ | ||
| 6218 | if (is_l4) { | ||
| 6219 | u32 ftqf = (IPPROTO_UDP /* UDP */ | ||
| 6220 | | E1000_FTQF_VF_BP /* VF not compared */ | ||
| 6221 | | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ | ||
| 6222 | | E1000_FTQF_MASK); /* mask all inputs */ | ||
| 6223 | ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ | ||
| 6224 | |||
| 6225 | wr32(E1000_IMIR(3), htons(PTP_PORT)); | ||
| 6226 | wr32(E1000_IMIREXT(3), | ||
| 6227 | (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); | ||
| 6228 | if (hw->mac.type == e1000_82576) { | ||
| 6229 | /* enable source port check */ | ||
| 6230 | wr32(E1000_SPQF(3), htons(PTP_PORT)); | ||
| 6231 | ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; | ||
| 6232 | } | ||
| 6233 | wr32(E1000_FTQF(3), ftqf); | ||
| 6234 | } else { | ||
| 6235 | wr32(E1000_FTQF(3), E1000_FTQF_MASK); | ||
| 6236 | } | ||
| 6237 | wrfl(); | ||
| 6238 | |||
| 6239 | adapter->hwtstamp_config = config; | ||
| 6240 | |||
| 6241 | /* clear TX/RX time stamp registers, just to be sure */ | ||
| 6242 | regval = rd32(E1000_TXSTMPH); | ||
| 6243 | regval = rd32(E1000_RXSTMPH); | ||
| 6244 | |||
| 6245 | return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? | ||
| 6246 | -EFAULT : 0; | ||
| 6247 | } | ||
| 6248 | |||
| 6249 | /** | ||
| 6250 | * igb_ioctl - | ||
| 6251 | * @netdev: | ||
| 6252 | * @ifreq: | ||
| 6253 | * @cmd: | ||
| 6254 | **/ | ||
| 6255 | static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
| 6256 | { | ||
| 6257 | switch (cmd) { | ||
| 6258 | case SIOCGMIIPHY: | ||
| 6259 | case SIOCGMIIREG: | ||
| 6260 | case SIOCSMIIREG: | ||
| 6261 | return igb_mii_ioctl(netdev, ifr, cmd); | ||
| 6262 | case SIOCSHWTSTAMP: | ||
| 6263 | return igb_hwtstamp_ioctl(netdev, ifr, cmd); | ||
| 6264 | default: | ||
| 6265 | return -EOPNOTSUPP; | ||
| 6266 | } | ||
| 6267 | } | ||
| 6268 | |||
| 6269 | s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) | ||
| 6270 | { | ||
| 6271 | struct igb_adapter *adapter = hw->back; | ||
| 6272 | u16 cap_offset; | ||
| 6273 | |||
| 6274 | cap_offset = adapter->pdev->pcie_cap; | ||
| 6275 | if (!cap_offset) | ||
| 6276 | return -E1000_ERR_CONFIG; | ||
| 6277 | |||
| 6278 | pci_read_config_word(adapter->pdev, cap_offset + reg, value); | ||
| 6279 | |||
| 6280 | return 0; | ||
| 6281 | } | ||
| 6282 | |||
| 6283 | s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) | ||
| 6284 | { | ||
| 6285 | struct igb_adapter *adapter = hw->back; | ||
| 6286 | u16 cap_offset; | ||
| 6287 | |||
| 6288 | cap_offset = adapter->pdev->pcie_cap; | ||
| 6289 | if (!cap_offset) | ||
| 6290 | return -E1000_ERR_CONFIG; | ||
| 6291 | |||
| 6292 | pci_write_config_word(adapter->pdev, cap_offset + reg, *value); | ||
| 6293 | |||
| 6294 | return 0; | ||
| 6295 | } | ||
| 6296 | |||
| 6297 | static void igb_vlan_mode(struct net_device *netdev, u32 features) | ||
| 6298 | { | ||
| 6299 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6300 | struct e1000_hw *hw = &adapter->hw; | ||
| 6301 | u32 ctrl, rctl; | ||
| 6302 | |||
| 6303 | igb_irq_disable(adapter); | ||
| 6304 | |||
| 6305 | if (features & NETIF_F_HW_VLAN_RX) { | ||
| 6306 | /* enable VLAN tag insert/strip */ | ||
| 6307 | ctrl = rd32(E1000_CTRL); | ||
| 6308 | ctrl |= E1000_CTRL_VME; | ||
| 6309 | wr32(E1000_CTRL, ctrl); | ||
| 6310 | |||
| 6311 | /* Disable CFI check */ | ||
| 6312 | rctl = rd32(E1000_RCTL); | ||
| 6313 | rctl &= ~E1000_RCTL_CFIEN; | ||
| 6314 | wr32(E1000_RCTL, rctl); | ||
| 6315 | } else { | ||
| 6316 | /* disable VLAN tag insert/strip */ | ||
| 6317 | ctrl = rd32(E1000_CTRL); | ||
| 6318 | ctrl &= ~E1000_CTRL_VME; | ||
| 6319 | wr32(E1000_CTRL, ctrl); | ||
| 6320 | } | ||
| 6321 | |||
| 6322 | igb_rlpml_set(adapter); | ||
| 6323 | |||
| 6324 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
| 6325 | igb_irq_enable(adapter); | ||
| 6326 | } | ||
| 6327 | |||
| 6328 | static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | ||
| 6329 | { | ||
| 6330 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6331 | struct e1000_hw *hw = &adapter->hw; | ||
| 6332 | int pf_id = adapter->vfs_allocated_count; | ||
| 6333 | |||
| 6334 | /* attempt to add filter to vlvf array */ | ||
| 6335 | igb_vlvf_set(adapter, vid, true, pf_id); | ||
| 6336 | |||
| 6337 | /* add the filter since PF can receive vlans w/o entry in vlvf */ | ||
| 6338 | igb_vfta_set(hw, vid, true); | ||
| 6339 | |||
| 6340 | set_bit(vid, adapter->active_vlans); | ||
| 6341 | } | ||
| 6342 | |||
| 6343 | static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | ||
| 6344 | { | ||
| 6345 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6346 | struct e1000_hw *hw = &adapter->hw; | ||
| 6347 | int pf_id = adapter->vfs_allocated_count; | ||
| 6348 | s32 err; | ||
| 6349 | |||
| 6350 | igb_irq_disable(adapter); | ||
| 6351 | |||
| 6352 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
| 6353 | igb_irq_enable(adapter); | ||
| 6354 | |||
| 6355 | /* remove vlan from VLVF table array */ | ||
| 6356 | err = igb_vlvf_set(adapter, vid, false, pf_id); | ||
| 6357 | |||
| 6358 | /* if vid was not present in VLVF just remove it from table */ | ||
| 6359 | if (err) | ||
| 6360 | igb_vfta_set(hw, vid, false); | ||
| 6361 | |||
| 6362 | clear_bit(vid, adapter->active_vlans); | ||
| 6363 | } | ||
| 6364 | |||
| 6365 | static void igb_restore_vlan(struct igb_adapter *adapter) | ||
| 6366 | { | ||
| 6367 | u16 vid; | ||
| 6368 | |||
| 6369 | for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) | ||
| 6370 | igb_vlan_rx_add_vid(adapter->netdev, vid); | ||
| 6371 | } | ||
| 6372 | |||
| 6373 | int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) | ||
| 6374 | { | ||
| 6375 | struct pci_dev *pdev = adapter->pdev; | ||
| 6376 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
| 6377 | |||
| 6378 | mac->autoneg = 0; | ||
| 6379 | |||
| 6380 | /* Make sure dplx is at most 1 bit and lsb of speed is not set | ||
| 6381 | * for the switch() below to work */ | ||
| 6382 | if ((spd & 1) || (dplx & ~1)) | ||
| 6383 | goto err_inval; | ||
| 6384 | |||
| 6385 | /* Fiber NIC's only allow 1000 Gbps Full duplex */ | ||
| 6386 | if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) && | ||
| 6387 | spd != SPEED_1000 && | ||
| 6388 | dplx != DUPLEX_FULL) | ||
| 6389 | goto err_inval; | ||
| 6390 | |||
| 6391 | switch (spd + dplx) { | ||
| 6392 | case SPEED_10 + DUPLEX_HALF: | ||
| 6393 | mac->forced_speed_duplex = ADVERTISE_10_HALF; | ||
| 6394 | break; | ||
| 6395 | case SPEED_10 + DUPLEX_FULL: | ||
| 6396 | mac->forced_speed_duplex = ADVERTISE_10_FULL; | ||
| 6397 | break; | ||
| 6398 | case SPEED_100 + DUPLEX_HALF: | ||
| 6399 | mac->forced_speed_duplex = ADVERTISE_100_HALF; | ||
| 6400 | break; | ||
| 6401 | case SPEED_100 + DUPLEX_FULL: | ||
| 6402 | mac->forced_speed_duplex = ADVERTISE_100_FULL; | ||
| 6403 | break; | ||
| 6404 | case SPEED_1000 + DUPLEX_FULL: | ||
| 6405 | mac->autoneg = 1; | ||
| 6406 | adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; | ||
| 6407 | break; | ||
| 6408 | case SPEED_1000 + DUPLEX_HALF: /* not supported */ | ||
| 6409 | default: | ||
| 6410 | goto err_inval; | ||
| 6411 | } | ||
| 6412 | return 0; | ||
| 6413 | |||
| 6414 | err_inval: | ||
| 6415 | dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); | ||
| 6416 | return -EINVAL; | ||
| 6417 | } | ||
| 6418 | |||
| 6419 | static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake) | ||
| 6420 | { | ||
| 6421 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
| 6422 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6423 | struct e1000_hw *hw = &adapter->hw; | ||
| 6424 | u32 ctrl, rctl, status; | ||
| 6425 | u32 wufc = adapter->wol; | ||
| 6426 | #ifdef CONFIG_PM | ||
| 6427 | int retval = 0; | ||
| 6428 | #endif | ||
| 6429 | |||
| 6430 | netif_device_detach(netdev); | ||
| 6431 | |||
| 6432 | if (netif_running(netdev)) | ||
| 6433 | igb_close(netdev); | ||
| 6434 | |||
| 6435 | igb_clear_interrupt_scheme(adapter); | ||
| 6436 | |||
| 6437 | #ifdef CONFIG_PM | ||
| 6438 | retval = pci_save_state(pdev); | ||
| 6439 | if (retval) | ||
| 6440 | return retval; | ||
| 6441 | #endif | ||
| 6442 | |||
| 6443 | status = rd32(E1000_STATUS); | ||
| 6444 | if (status & E1000_STATUS_LU) | ||
| 6445 | wufc &= ~E1000_WUFC_LNKC; | ||
| 6446 | |||
| 6447 | if (wufc) { | ||
| 6448 | igb_setup_rctl(adapter); | ||
| 6449 | igb_set_rx_mode(netdev); | ||
| 6450 | |||
| 6451 | /* turn on all-multi mode if wake on multicast is enabled */ | ||
| 6452 | if (wufc & E1000_WUFC_MC) { | ||
| 6453 | rctl = rd32(E1000_RCTL); | ||
| 6454 | rctl |= E1000_RCTL_MPE; | ||
| 6455 | wr32(E1000_RCTL, rctl); | ||
| 6456 | } | ||
| 6457 | |||
| 6458 | ctrl = rd32(E1000_CTRL); | ||
| 6459 | /* advertise wake from D3Cold */ | ||
| 6460 | #define E1000_CTRL_ADVD3WUC 0x00100000 | ||
| 6461 | /* phy power management enable */ | ||
| 6462 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | ||
| 6463 | ctrl |= E1000_CTRL_ADVD3WUC; | ||
| 6464 | wr32(E1000_CTRL, ctrl); | ||
| 6465 | |||
| 6466 | /* Allow time for pending master requests to run */ | ||
| 6467 | igb_disable_pcie_master(hw); | ||
| 6468 | |||
| 6469 | wr32(E1000_WUC, E1000_WUC_PME_EN); | ||
| 6470 | wr32(E1000_WUFC, wufc); | ||
| 6471 | } else { | ||
| 6472 | wr32(E1000_WUC, 0); | ||
| 6473 | wr32(E1000_WUFC, 0); | ||
| 6474 | } | ||
| 6475 | |||
| 6476 | *enable_wake = wufc || adapter->en_mng_pt; | ||
| 6477 | if (!*enable_wake) | ||
| 6478 | igb_power_down_link(adapter); | ||
| 6479 | else | ||
| 6480 | igb_power_up_link(adapter); | ||
| 6481 | |||
| 6482 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
| 6483 | * would have already happened in close and is redundant. */ | ||
| 6484 | igb_release_hw_control(adapter); | ||
| 6485 | |||
| 6486 | pci_disable_device(pdev); | ||
| 6487 | |||
| 6488 | return 0; | ||
| 6489 | } | ||
| 6490 | |||
| 6491 | #ifdef CONFIG_PM | ||
| 6492 | static int igb_suspend(struct pci_dev *pdev, pm_message_t state) | ||
| 6493 | { | ||
| 6494 | int retval; | ||
| 6495 | bool wake; | ||
| 6496 | |||
| 6497 | retval = __igb_shutdown(pdev, &wake); | ||
| 6498 | if (retval) | ||
| 6499 | return retval; | ||
| 6500 | |||
| 6501 | if (wake) { | ||
| 6502 | pci_prepare_to_sleep(pdev); | ||
| 6503 | } else { | ||
| 6504 | pci_wake_from_d3(pdev, false); | ||
| 6505 | pci_set_power_state(pdev, PCI_D3hot); | ||
| 6506 | } | ||
| 6507 | |||
| 6508 | return 0; | ||
| 6509 | } | ||
| 6510 | |||
| 6511 | static int igb_resume(struct pci_dev *pdev) | ||
| 6512 | { | ||
| 6513 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
| 6514 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6515 | struct e1000_hw *hw = &adapter->hw; | ||
| 6516 | u32 err; | ||
| 6517 | |||
| 6518 | pci_set_power_state(pdev, PCI_D0); | ||
| 6519 | pci_restore_state(pdev); | ||
| 6520 | pci_save_state(pdev); | ||
| 6521 | |||
| 6522 | err = pci_enable_device_mem(pdev); | ||
| 6523 | if (err) { | ||
| 6524 | dev_err(&pdev->dev, | ||
| 6525 | "igb: Cannot enable PCI device from suspend\n"); | ||
| 6526 | return err; | ||
| 6527 | } | ||
| 6528 | pci_set_master(pdev); | ||
| 6529 | |||
| 6530 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
| 6531 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
| 6532 | |||
| 6533 | if (igb_init_interrupt_scheme(adapter)) { | ||
| 6534 | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | ||
| 6535 | return -ENOMEM; | ||
| 6536 | } | ||
| 6537 | |||
| 6538 | igb_reset(adapter); | ||
| 6539 | |||
| 6540 | /* let the f/w know that the h/w is now under the control of the | ||
| 6541 | * driver. */ | ||
| 6542 | igb_get_hw_control(adapter); | ||
| 6543 | |||
| 6544 | wr32(E1000_WUS, ~0); | ||
| 6545 | |||
| 6546 | if (netif_running(netdev)) { | ||
| 6547 | err = igb_open(netdev); | ||
| 6548 | if (err) | ||
| 6549 | return err; | ||
| 6550 | } | ||
| 6551 | |||
| 6552 | netif_device_attach(netdev); | ||
| 6553 | |||
| 6554 | return 0; | ||
| 6555 | } | ||
| 6556 | #endif | ||
| 6557 | |||
| 6558 | static void igb_shutdown(struct pci_dev *pdev) | ||
| 6559 | { | ||
| 6560 | bool wake; | ||
| 6561 | |||
| 6562 | __igb_shutdown(pdev, &wake); | ||
| 6563 | |||
| 6564 | if (system_state == SYSTEM_POWER_OFF) { | ||
| 6565 | pci_wake_from_d3(pdev, wake); | ||
| 6566 | pci_set_power_state(pdev, PCI_D3hot); | ||
| 6567 | } | ||
| 6568 | } | ||
| 6569 | |||
| 6570 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
| 6571 | /* | ||
| 6572 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
| 6573 | * without having to re-enable interrupts. It's not called while | ||
| 6574 | * the interrupt routine is executing. | ||
| 6575 | */ | ||
| 6576 | static void igb_netpoll(struct net_device *netdev) | ||
| 6577 | { | ||
| 6578 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6579 | struct e1000_hw *hw = &adapter->hw; | ||
| 6580 | int i; | ||
| 6581 | |||
| 6582 | if (!adapter->msix_entries) { | ||
| 6583 | struct igb_q_vector *q_vector = adapter->q_vector[0]; | ||
| 6584 | igb_irq_disable(adapter); | ||
| 6585 | napi_schedule(&q_vector->napi); | ||
| 6586 | return; | ||
| 6587 | } | ||
| 6588 | |||
| 6589 | for (i = 0; i < adapter->num_q_vectors; i++) { | ||
| 6590 | struct igb_q_vector *q_vector = adapter->q_vector[i]; | ||
| 6591 | wr32(E1000_EIMC, q_vector->eims_value); | ||
| 6592 | napi_schedule(&q_vector->napi); | ||
| 6593 | } | ||
| 6594 | } | ||
| 6595 | #endif /* CONFIG_NET_POLL_CONTROLLER */ | ||
| 6596 | |||
| 6597 | /** | ||
| 6598 | * igb_io_error_detected - called when PCI error is detected | ||
| 6599 | * @pdev: Pointer to PCI device | ||
| 6600 | * @state: The current pci connection state | ||
| 6601 | * | ||
| 6602 | * This function is called after a PCI bus error affecting | ||
| 6603 | * this device has been detected. | ||
| 6604 | */ | ||
| 6605 | static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, | ||
| 6606 | pci_channel_state_t state) | ||
| 6607 | { | ||
| 6608 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
| 6609 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6610 | |||
| 6611 | netif_device_detach(netdev); | ||
| 6612 | |||
| 6613 | if (state == pci_channel_io_perm_failure) | ||
| 6614 | return PCI_ERS_RESULT_DISCONNECT; | ||
| 6615 | |||
| 6616 | if (netif_running(netdev)) | ||
| 6617 | igb_down(adapter); | ||
| 6618 | pci_disable_device(pdev); | ||
| 6619 | |||
| 6620 | /* Request a slot slot reset. */ | ||
| 6621 | return PCI_ERS_RESULT_NEED_RESET; | ||
| 6622 | } | ||
| 6623 | |||
| 6624 | /** | ||
| 6625 | * igb_io_slot_reset - called after the pci bus has been reset. | ||
| 6626 | * @pdev: Pointer to PCI device | ||
| 6627 | * | ||
| 6628 | * Restart the card from scratch, as if from a cold-boot. Implementation | ||
| 6629 | * resembles the first-half of the igb_resume routine. | ||
| 6630 | */ | ||
| 6631 | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) | ||
| 6632 | { | ||
| 6633 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
| 6634 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6635 | struct e1000_hw *hw = &adapter->hw; | ||
| 6636 | pci_ers_result_t result; | ||
| 6637 | int err; | ||
| 6638 | |||
| 6639 | if (pci_enable_device_mem(pdev)) { | ||
| 6640 | dev_err(&pdev->dev, | ||
| 6641 | "Cannot re-enable PCI device after reset.\n"); | ||
| 6642 | result = PCI_ERS_RESULT_DISCONNECT; | ||
| 6643 | } else { | ||
| 6644 | pci_set_master(pdev); | ||
| 6645 | pci_restore_state(pdev); | ||
| 6646 | pci_save_state(pdev); | ||
| 6647 | |||
| 6648 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
| 6649 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
| 6650 | |||
| 6651 | igb_reset(adapter); | ||
| 6652 | wr32(E1000_WUS, ~0); | ||
| 6653 | result = PCI_ERS_RESULT_RECOVERED; | ||
| 6654 | } | ||
| 6655 | |||
| 6656 | err = pci_cleanup_aer_uncorrect_error_status(pdev); | ||
| 6657 | if (err) { | ||
| 6658 | dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status " | ||
| 6659 | "failed 0x%0x\n", err); | ||
| 6660 | /* non-fatal, continue */ | ||
| 6661 | } | ||
| 6662 | |||
| 6663 | return result; | ||
| 6664 | } | ||
| 6665 | |||
| 6666 | /** | ||
| 6667 | * igb_io_resume - called when traffic can start flowing again. | ||
| 6668 | * @pdev: Pointer to PCI device | ||
| 6669 | * | ||
| 6670 | * This callback is called when the error recovery driver tells us that | ||
| 6671 | * its OK to resume normal operation. Implementation resembles the | ||
| 6672 | * second-half of the igb_resume routine. | ||
| 6673 | */ | ||
| 6674 | static void igb_io_resume(struct pci_dev *pdev) | ||
| 6675 | { | ||
| 6676 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
| 6677 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6678 | |||
| 6679 | if (netif_running(netdev)) { | ||
| 6680 | if (igb_up(adapter)) { | ||
| 6681 | dev_err(&pdev->dev, "igb_up failed after reset\n"); | ||
| 6682 | return; | ||
| 6683 | } | ||
| 6684 | } | ||
| 6685 | |||
| 6686 | netif_device_attach(netdev); | ||
| 6687 | |||
| 6688 | /* let the f/w know that the h/w is now under the control of the | ||
| 6689 | * driver. */ | ||
| 6690 | igb_get_hw_control(adapter); | ||
| 6691 | } | ||
| 6692 | |||
| 6693 | static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, | ||
| 6694 | u8 qsel) | ||
| 6695 | { | ||
| 6696 | u32 rar_low, rar_high; | ||
| 6697 | struct e1000_hw *hw = &adapter->hw; | ||
| 6698 | |||
| 6699 | /* HW expects these in little endian so we reverse the byte order | ||
| 6700 | * from network order (big endian) to little endian | ||
| 6701 | */ | ||
| 6702 | rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | | ||
| 6703 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | ||
| 6704 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | ||
| 6705 | |||
| 6706 | /* Indicate to hardware the Address is Valid. */ | ||
| 6707 | rar_high |= E1000_RAH_AV; | ||
| 6708 | |||
| 6709 | if (hw->mac.type == e1000_82575) | ||
| 6710 | rar_high |= E1000_RAH_POOL_1 * qsel; | ||
| 6711 | else | ||
| 6712 | rar_high |= E1000_RAH_POOL_1 << qsel; | ||
| 6713 | |||
| 6714 | wr32(E1000_RAL(index), rar_low); | ||
| 6715 | wrfl(); | ||
| 6716 | wr32(E1000_RAH(index), rar_high); | ||
| 6717 | wrfl(); | ||
| 6718 | } | ||
| 6719 | |||
| 6720 | static int igb_set_vf_mac(struct igb_adapter *adapter, | ||
| 6721 | int vf, unsigned char *mac_addr) | ||
| 6722 | { | ||
| 6723 | struct e1000_hw *hw = &adapter->hw; | ||
| 6724 | /* VF MAC addresses start at end of receive addresses and moves | ||
| 6725 | * torwards the first, as a result a collision should not be possible */ | ||
| 6726 | int rar_entry = hw->mac.rar_entry_count - (vf + 1); | ||
| 6727 | |||
| 6728 | memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); | ||
| 6729 | |||
| 6730 | igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); | ||
| 6731 | |||
| 6732 | return 0; | ||
| 6733 | } | ||
| 6734 | |||
| 6735 | static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) | ||
| 6736 | { | ||
| 6737 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6738 | if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) | ||
| 6739 | return -EINVAL; | ||
| 6740 | adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; | ||
| 6741 | dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); | ||
| 6742 | dev_info(&adapter->pdev->dev, "Reload the VF driver to make this" | ||
| 6743 | " change effective."); | ||
| 6744 | if (test_bit(__IGB_DOWN, &adapter->state)) { | ||
| 6745 | dev_warn(&adapter->pdev->dev, "The VF MAC address has been set," | ||
| 6746 | " but the PF device is not up.\n"); | ||
| 6747 | dev_warn(&adapter->pdev->dev, "Bring the PF device up before" | ||
| 6748 | " attempting to use the VF device.\n"); | ||
| 6749 | } | ||
| 6750 | return igb_set_vf_mac(adapter, vf, mac); | ||
| 6751 | } | ||
| 6752 | |||
| 6753 | static int igb_link_mbps(int internal_link_speed) | ||
| 6754 | { | ||
| 6755 | switch (internal_link_speed) { | ||
| 6756 | case SPEED_100: | ||
| 6757 | return 100; | ||
| 6758 | case SPEED_1000: | ||
| 6759 | return 1000; | ||
| 6760 | default: | ||
| 6761 | return 0; | ||
| 6762 | } | ||
| 6763 | } | ||
| 6764 | |||
| 6765 | static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, | ||
| 6766 | int link_speed) | ||
| 6767 | { | ||
| 6768 | int rf_dec, rf_int; | ||
| 6769 | u32 bcnrc_val; | ||
| 6770 | |||
| 6771 | if (tx_rate != 0) { | ||
| 6772 | /* Calculate the rate factor values to set */ | ||
| 6773 | rf_int = link_speed / tx_rate; | ||
| 6774 | rf_dec = (link_speed - (rf_int * tx_rate)); | ||
| 6775 | rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate; | ||
| 6776 | |||
| 6777 | bcnrc_val = E1000_RTTBCNRC_RS_ENA; | ||
| 6778 | bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) & | ||
| 6779 | E1000_RTTBCNRC_RF_INT_MASK); | ||
| 6780 | bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); | ||
| 6781 | } else { | ||
| 6782 | bcnrc_val = 0; | ||
| 6783 | } | ||
| 6784 | |||
| 6785 | wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ | ||
| 6786 | wr32(E1000_RTTBCNRC, bcnrc_val); | ||
| 6787 | } | ||
| 6788 | |||
| 6789 | static void igb_check_vf_rate_limit(struct igb_adapter *adapter) | ||
| 6790 | { | ||
| 6791 | int actual_link_speed, i; | ||
| 6792 | bool reset_rate = false; | ||
| 6793 | |||
| 6794 | /* VF TX rate limit was not set or not supported */ | ||
| 6795 | if ((adapter->vf_rate_link_speed == 0) || | ||
| 6796 | (adapter->hw.mac.type != e1000_82576)) | ||
| 6797 | return; | ||
| 6798 | |||
| 6799 | actual_link_speed = igb_link_mbps(adapter->link_speed); | ||
| 6800 | if (actual_link_speed != adapter->vf_rate_link_speed) { | ||
| 6801 | reset_rate = true; | ||
| 6802 | adapter->vf_rate_link_speed = 0; | ||
| 6803 | dev_info(&adapter->pdev->dev, | ||
| 6804 | "Link speed has been changed. VF Transmit " | ||
| 6805 | "rate is disabled\n"); | ||
| 6806 | } | ||
| 6807 | |||
| 6808 | for (i = 0; i < adapter->vfs_allocated_count; i++) { | ||
| 6809 | if (reset_rate) | ||
| 6810 | adapter->vf_data[i].tx_rate = 0; | ||
| 6811 | |||
| 6812 | igb_set_vf_rate_limit(&adapter->hw, i, | ||
| 6813 | adapter->vf_data[i].tx_rate, | ||
| 6814 | actual_link_speed); | ||
| 6815 | } | ||
| 6816 | } | ||
| 6817 | |||
| 6818 | static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate) | ||
| 6819 | { | ||
| 6820 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6821 | struct e1000_hw *hw = &adapter->hw; | ||
| 6822 | int actual_link_speed; | ||
| 6823 | |||
| 6824 | if (hw->mac.type != e1000_82576) | ||
| 6825 | return -EOPNOTSUPP; | ||
| 6826 | |||
| 6827 | actual_link_speed = igb_link_mbps(adapter->link_speed); | ||
| 6828 | if ((vf >= adapter->vfs_allocated_count) || | ||
| 6829 | (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || | ||
| 6830 | (tx_rate < 0) || (tx_rate > actual_link_speed)) | ||
| 6831 | return -EINVAL; | ||
| 6832 | |||
| 6833 | adapter->vf_rate_link_speed = actual_link_speed; | ||
| 6834 | adapter->vf_data[vf].tx_rate = (u16)tx_rate; | ||
| 6835 | igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed); | ||
| 6836 | |||
| 6837 | return 0; | ||
| 6838 | } | ||
| 6839 | |||
| 6840 | static int igb_ndo_get_vf_config(struct net_device *netdev, | ||
| 6841 | int vf, struct ifla_vf_info *ivi) | ||
| 6842 | { | ||
| 6843 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
| 6844 | if (vf >= adapter->vfs_allocated_count) | ||
| 6845 | return -EINVAL; | ||
| 6846 | ivi->vf = vf; | ||
| 6847 | memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); | ||
| 6848 | ivi->tx_rate = adapter->vf_data[vf].tx_rate; | ||
| 6849 | ivi->vlan = adapter->vf_data[vf].pf_vlan; | ||
| 6850 | ivi->qos = adapter->vf_data[vf].pf_qos; | ||
| 6851 | return 0; | ||
| 6852 | } | ||
| 6853 | |||
| 6854 | static void igb_vmm_control(struct igb_adapter *adapter) | ||
| 6855 | { | ||
| 6856 | struct e1000_hw *hw = &adapter->hw; | ||
| 6857 | u32 reg; | ||
| 6858 | |||
| 6859 | switch (hw->mac.type) { | ||
| 6860 | case e1000_82575: | ||
| 6861 | default: | ||
| 6862 | /* replication is not supported for 82575 */ | ||
| 6863 | return; | ||
| 6864 | case e1000_82576: | ||
| 6865 | /* notify HW that the MAC is adding vlan tags */ | ||
| 6866 | reg = rd32(E1000_DTXCTL); | ||
| 6867 | reg |= E1000_DTXCTL_VLAN_ADDED; | ||
| 6868 | wr32(E1000_DTXCTL, reg); | ||
| 6869 | case e1000_82580: | ||
| 6870 | /* enable replication vlan tag stripping */ | ||
| 6871 | reg = rd32(E1000_RPLOLR); | ||
| 6872 | reg |= E1000_RPLOLR_STRVLAN; | ||
| 6873 | wr32(E1000_RPLOLR, reg); | ||
| 6874 | case e1000_i350: | ||
| 6875 | /* none of the above registers are supported by i350 */ | ||
| 6876 | break; | ||
| 6877 | } | ||
| 6878 | |||
| 6879 | if (adapter->vfs_allocated_count) { | ||
| 6880 | igb_vmdq_set_loopback_pf(hw, true); | ||
| 6881 | igb_vmdq_set_replication_pf(hw, true); | ||
| 6882 | igb_vmdq_set_anti_spoofing_pf(hw, true, | ||
| 6883 | adapter->vfs_allocated_count); | ||
| 6884 | } else { | ||
| 6885 | igb_vmdq_set_loopback_pf(hw, false); | ||
| 6886 | igb_vmdq_set_replication_pf(hw, false); | ||
| 6887 | } | ||
| 6888 | } | ||
| 6889 | |||
| 6890 | /* igb_main.c */ | ||
