diff options
Diffstat (limited to 'drivers/net/igb/e1000_mac.c')
-rw-r--r-- | drivers/net/igb/e1000_mac.c | 1421 |
1 files changed, 1421 insertions, 0 deletions
diff --git a/drivers/net/igb/e1000_mac.c b/drivers/net/igb/e1000_mac.c new file mode 100644 index 00000000000..2b5ef761d2a --- /dev/null +++ b/drivers/net/igb/e1000_mac.c | |||
@@ -0,0 +1,1421 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007-2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/if_ether.h> | ||
29 | #include <linux/delay.h> | ||
30 | #include <linux/pci.h> | ||
31 | #include <linux/netdevice.h> | ||
32 | #include <linux/etherdevice.h> | ||
33 | |||
34 | #include "e1000_mac.h" | ||
35 | |||
36 | #include "igb.h" | ||
37 | |||
38 | static s32 igb_set_default_fc(struct e1000_hw *hw); | ||
39 | static s32 igb_set_fc_watermarks(struct e1000_hw *hw); | ||
40 | |||
41 | /** | ||
42 | * igb_get_bus_info_pcie - Get PCIe bus information | ||
43 | * @hw: pointer to the HW structure | ||
44 | * | ||
45 | * Determines and stores the system bus information for a particular | ||
46 | * network interface. The following bus information is determined and stored: | ||
47 | * bus speed, bus width, type (PCIe), and PCIe function. | ||
48 | **/ | ||
49 | s32 igb_get_bus_info_pcie(struct e1000_hw *hw) | ||
50 | { | ||
51 | struct e1000_bus_info *bus = &hw->bus; | ||
52 | s32 ret_val; | ||
53 | u32 reg; | ||
54 | u16 pcie_link_status; | ||
55 | |||
56 | bus->type = e1000_bus_type_pci_express; | ||
57 | |||
58 | ret_val = igb_read_pcie_cap_reg(hw, | ||
59 | PCI_EXP_LNKSTA, | ||
60 | &pcie_link_status); | ||
61 | if (ret_val) { | ||
62 | bus->width = e1000_bus_width_unknown; | ||
63 | bus->speed = e1000_bus_speed_unknown; | ||
64 | } else { | ||
65 | switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) { | ||
66 | case PCI_EXP_LNKSTA_CLS_2_5GB: | ||
67 | bus->speed = e1000_bus_speed_2500; | ||
68 | break; | ||
69 | case PCI_EXP_LNKSTA_CLS_5_0GB: | ||
70 | bus->speed = e1000_bus_speed_5000; | ||
71 | break; | ||
72 | default: | ||
73 | bus->speed = e1000_bus_speed_unknown; | ||
74 | break; | ||
75 | } | ||
76 | |||
77 | bus->width = (enum e1000_bus_width)((pcie_link_status & | ||
78 | PCI_EXP_LNKSTA_NLW) >> | ||
79 | PCI_EXP_LNKSTA_NLW_SHIFT); | ||
80 | } | ||
81 | |||
82 | reg = rd32(E1000_STATUS); | ||
83 | bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; | ||
84 | |||
85 | return 0; | ||
86 | } | ||
87 | |||
88 | /** | ||
89 | * igb_clear_vfta - Clear VLAN filter table | ||
90 | * @hw: pointer to the HW structure | ||
91 | * | ||
92 | * Clears the register array which contains the VLAN filter table by | ||
93 | * setting all the values to 0. | ||
94 | **/ | ||
95 | void igb_clear_vfta(struct e1000_hw *hw) | ||
96 | { | ||
97 | u32 offset; | ||
98 | |||
99 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
100 | array_wr32(E1000_VFTA, offset, 0); | ||
101 | wrfl(); | ||
102 | } | ||
103 | } | ||
104 | |||
105 | /** | ||
106 | * igb_write_vfta - Write value to VLAN filter table | ||
107 | * @hw: pointer to the HW structure | ||
108 | * @offset: register offset in VLAN filter table | ||
109 | * @value: register value written to VLAN filter table | ||
110 | * | ||
111 | * Writes value at the given offset in the register array which stores | ||
112 | * the VLAN filter table. | ||
113 | **/ | ||
114 | static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | ||
115 | { | ||
116 | array_wr32(E1000_VFTA, offset, value); | ||
117 | wrfl(); | ||
118 | } | ||
119 | |||
120 | /** | ||
121 | * igb_init_rx_addrs - Initialize receive address's | ||
122 | * @hw: pointer to the HW structure | ||
123 | * @rar_count: receive address registers | ||
124 | * | ||
125 | * Setups the receive address registers by setting the base receive address | ||
126 | * register to the devices MAC address and clearing all the other receive | ||
127 | * address registers to 0. | ||
128 | **/ | ||
129 | void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) | ||
130 | { | ||
131 | u32 i; | ||
132 | u8 mac_addr[ETH_ALEN] = {0}; | ||
133 | |||
134 | /* Setup the receive address */ | ||
135 | hw_dbg("Programming MAC Address into RAR[0]\n"); | ||
136 | |||
137 | hw->mac.ops.rar_set(hw, hw->mac.addr, 0); | ||
138 | |||
139 | /* Zero out the other (rar_entry_count - 1) receive addresses */ | ||
140 | hw_dbg("Clearing RAR[1-%u]\n", rar_count-1); | ||
141 | for (i = 1; i < rar_count; i++) | ||
142 | hw->mac.ops.rar_set(hw, mac_addr, i); | ||
143 | } | ||
144 | |||
145 | /** | ||
146 | * igb_vfta_set - enable or disable vlan in VLAN filter table | ||
147 | * @hw: pointer to the HW structure | ||
148 | * @vid: VLAN id to add or remove | ||
149 | * @add: if true add filter, if false remove | ||
150 | * | ||
151 | * Sets or clears a bit in the VLAN filter table array based on VLAN id | ||
152 | * and if we are adding or removing the filter | ||
153 | **/ | ||
154 | s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add) | ||
155 | { | ||
156 | u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; | ||
157 | u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | ||
158 | u32 vfta = array_rd32(E1000_VFTA, index); | ||
159 | s32 ret_val = 0; | ||
160 | |||
161 | /* bit was set/cleared before we started */ | ||
162 | if ((!!(vfta & mask)) == add) { | ||
163 | ret_val = -E1000_ERR_CONFIG; | ||
164 | } else { | ||
165 | if (add) | ||
166 | vfta |= mask; | ||
167 | else | ||
168 | vfta &= ~mask; | ||
169 | } | ||
170 | |||
171 | igb_write_vfta(hw, index, vfta); | ||
172 | |||
173 | return ret_val; | ||
174 | } | ||
175 | |||
176 | /** | ||
177 | * igb_check_alt_mac_addr - Check for alternate MAC addr | ||
178 | * @hw: pointer to the HW structure | ||
179 | * | ||
180 | * Checks the nvm for an alternate MAC address. An alternate MAC address | ||
181 | * can be setup by pre-boot software and must be treated like a permanent | ||
182 | * address and must override the actual permanent MAC address. If an | ||
183 | * alternate MAC address is fopund it is saved in the hw struct and | ||
184 | * prgrammed into RAR0 and the cuntion returns success, otherwise the | ||
185 | * function returns an error. | ||
186 | **/ | ||
187 | s32 igb_check_alt_mac_addr(struct e1000_hw *hw) | ||
188 | { | ||
189 | u32 i; | ||
190 | s32 ret_val = 0; | ||
191 | u16 offset, nvm_alt_mac_addr_offset, nvm_data; | ||
192 | u8 alt_mac_addr[ETH_ALEN]; | ||
193 | |||
194 | ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, | ||
195 | &nvm_alt_mac_addr_offset); | ||
196 | if (ret_val) { | ||
197 | hw_dbg("NVM Read Error\n"); | ||
198 | goto out; | ||
199 | } | ||
200 | |||
201 | if (nvm_alt_mac_addr_offset == 0xFFFF) { | ||
202 | /* There is no Alternate MAC Address */ | ||
203 | goto out; | ||
204 | } | ||
205 | |||
206 | if (hw->bus.func == E1000_FUNC_1) | ||
207 | nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; | ||
208 | for (i = 0; i < ETH_ALEN; i += 2) { | ||
209 | offset = nvm_alt_mac_addr_offset + (i >> 1); | ||
210 | ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); | ||
211 | if (ret_val) { | ||
212 | hw_dbg("NVM Read Error\n"); | ||
213 | goto out; | ||
214 | } | ||
215 | |||
216 | alt_mac_addr[i] = (u8)(nvm_data & 0xFF); | ||
217 | alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); | ||
218 | } | ||
219 | |||
220 | /* if multicast bit is set, the alternate address will not be used */ | ||
221 | if (is_multicast_ether_addr(alt_mac_addr)) { | ||
222 | hw_dbg("Ignoring Alternate Mac Address with MC bit set\n"); | ||
223 | goto out; | ||
224 | } | ||
225 | |||
226 | /* | ||
227 | * We have a valid alternate MAC address, and we want to treat it the | ||
228 | * same as the normal permanent MAC address stored by the HW into the | ||
229 | * RAR. Do this by mapping this address into RAR0. | ||
230 | */ | ||
231 | hw->mac.ops.rar_set(hw, alt_mac_addr, 0); | ||
232 | |||
233 | out: | ||
234 | return ret_val; | ||
235 | } | ||
236 | |||
237 | /** | ||
238 | * igb_rar_set - Set receive address register | ||
239 | * @hw: pointer to the HW structure | ||
240 | * @addr: pointer to the receive address | ||
241 | * @index: receive address array register | ||
242 | * | ||
243 | * Sets the receive address array register at index to the address passed | ||
244 | * in by addr. | ||
245 | **/ | ||
246 | void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | ||
247 | { | ||
248 | u32 rar_low, rar_high; | ||
249 | |||
250 | /* | ||
251 | * HW expects these in little endian so we reverse the byte order | ||
252 | * from network order (big endian) to little endian | ||
253 | */ | ||
254 | rar_low = ((u32) addr[0] | | ||
255 | ((u32) addr[1] << 8) | | ||
256 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | ||
257 | |||
258 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | ||
259 | |||
260 | /* If MAC address zero, no need to set the AV bit */ | ||
261 | if (rar_low || rar_high) | ||
262 | rar_high |= E1000_RAH_AV; | ||
263 | |||
264 | /* | ||
265 | * Some bridges will combine consecutive 32-bit writes into | ||
266 | * a single burst write, which will malfunction on some parts. | ||
267 | * The flushes avoid this. | ||
268 | */ | ||
269 | wr32(E1000_RAL(index), rar_low); | ||
270 | wrfl(); | ||
271 | wr32(E1000_RAH(index), rar_high); | ||
272 | wrfl(); | ||
273 | } | ||
274 | |||
275 | /** | ||
276 | * igb_mta_set - Set multicast filter table address | ||
277 | * @hw: pointer to the HW structure | ||
278 | * @hash_value: determines the MTA register and bit to set | ||
279 | * | ||
280 | * The multicast table address is a register array of 32-bit registers. | ||
281 | * The hash_value is used to determine what register the bit is in, the | ||
282 | * current value is read, the new bit is OR'd in and the new value is | ||
283 | * written back into the register. | ||
284 | **/ | ||
285 | void igb_mta_set(struct e1000_hw *hw, u32 hash_value) | ||
286 | { | ||
287 | u32 hash_bit, hash_reg, mta; | ||
288 | |||
289 | /* | ||
290 | * The MTA is a register array of 32-bit registers. It is | ||
291 | * treated like an array of (32*mta_reg_count) bits. We want to | ||
292 | * set bit BitArray[hash_value]. So we figure out what register | ||
293 | * the bit is in, read it, OR in the new bit, then write | ||
294 | * back the new value. The (hw->mac.mta_reg_count - 1) serves as a | ||
295 | * mask to bits 31:5 of the hash value which gives us the | ||
296 | * register we're modifying. The hash bit within that register | ||
297 | * is determined by the lower 5 bits of the hash value. | ||
298 | */ | ||
299 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | ||
300 | hash_bit = hash_value & 0x1F; | ||
301 | |||
302 | mta = array_rd32(E1000_MTA, hash_reg); | ||
303 | |||
304 | mta |= (1 << hash_bit); | ||
305 | |||
306 | array_wr32(E1000_MTA, hash_reg, mta); | ||
307 | wrfl(); | ||
308 | } | ||
309 | |||
310 | /** | ||
311 | * igb_hash_mc_addr - Generate a multicast hash value | ||
312 | * @hw: pointer to the HW structure | ||
313 | * @mc_addr: pointer to a multicast address | ||
314 | * | ||
315 | * Generates a multicast address hash value which is used to determine | ||
316 | * the multicast filter table array address and new table value. See | ||
317 | * igb_mta_set() | ||
318 | **/ | ||
319 | static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | ||
320 | { | ||
321 | u32 hash_value, hash_mask; | ||
322 | u8 bit_shift = 0; | ||
323 | |||
324 | /* Register count multiplied by bits per register */ | ||
325 | hash_mask = (hw->mac.mta_reg_count * 32) - 1; | ||
326 | |||
327 | /* | ||
328 | * For a mc_filter_type of 0, bit_shift is the number of left-shifts | ||
329 | * where 0xFF would still fall within the hash mask. | ||
330 | */ | ||
331 | while (hash_mask >> bit_shift != 0xFF) | ||
332 | bit_shift++; | ||
333 | |||
334 | /* | ||
335 | * The portion of the address that is used for the hash table | ||
336 | * is determined by the mc_filter_type setting. | ||
337 | * The algorithm is such that there is a total of 8 bits of shifting. | ||
338 | * The bit_shift for a mc_filter_type of 0 represents the number of | ||
339 | * left-shifts where the MSB of mc_addr[5] would still fall within | ||
340 | * the hash_mask. Case 0 does this exactly. Since there are a total | ||
341 | * of 8 bits of shifting, then mc_addr[4] will shift right the | ||
342 | * remaining number of bits. Thus 8 - bit_shift. The rest of the | ||
343 | * cases are a variation of this algorithm...essentially raising the | ||
344 | * number of bits to shift mc_addr[5] left, while still keeping the | ||
345 | * 8-bit shifting total. | ||
346 | * | ||
347 | * For example, given the following Destination MAC Address and an | ||
348 | * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | ||
349 | * we can see that the bit_shift for case 0 is 4. These are the hash | ||
350 | * values resulting from each mc_filter_type... | ||
351 | * [0] [1] [2] [3] [4] [5] | ||
352 | * 01 AA 00 12 34 56 | ||
353 | * LSB MSB | ||
354 | * | ||
355 | * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | ||
356 | * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | ||
357 | * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | ||
358 | * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | ||
359 | */ | ||
360 | switch (hw->mac.mc_filter_type) { | ||
361 | default: | ||
362 | case 0: | ||
363 | break; | ||
364 | case 1: | ||
365 | bit_shift += 1; | ||
366 | break; | ||
367 | case 2: | ||
368 | bit_shift += 2; | ||
369 | break; | ||
370 | case 3: | ||
371 | bit_shift += 4; | ||
372 | break; | ||
373 | } | ||
374 | |||
375 | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | ||
376 | (((u16) mc_addr[5]) << bit_shift))); | ||
377 | |||
378 | return hash_value; | ||
379 | } | ||
380 | |||
381 | /** | ||
382 | * igb_update_mc_addr_list - Update Multicast addresses | ||
383 | * @hw: pointer to the HW structure | ||
384 | * @mc_addr_list: array of multicast addresses to program | ||
385 | * @mc_addr_count: number of multicast addresses to program | ||
386 | * | ||
387 | * Updates entire Multicast Table Array. | ||
388 | * The caller must have a packed mc_addr_list of multicast addresses. | ||
389 | **/ | ||
390 | void igb_update_mc_addr_list(struct e1000_hw *hw, | ||
391 | u8 *mc_addr_list, u32 mc_addr_count) | ||
392 | { | ||
393 | u32 hash_value, hash_bit, hash_reg; | ||
394 | int i; | ||
395 | |||
396 | /* clear mta_shadow */ | ||
397 | memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); | ||
398 | |||
399 | /* update mta_shadow from mc_addr_list */ | ||
400 | for (i = 0; (u32) i < mc_addr_count; i++) { | ||
401 | hash_value = igb_hash_mc_addr(hw, mc_addr_list); | ||
402 | |||
403 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | ||
404 | hash_bit = hash_value & 0x1F; | ||
405 | |||
406 | hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); | ||
407 | mc_addr_list += (ETH_ALEN); | ||
408 | } | ||
409 | |||
410 | /* replace the entire MTA table */ | ||
411 | for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) | ||
412 | array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]); | ||
413 | wrfl(); | ||
414 | } | ||
415 | |||
416 | /** | ||
417 | * igb_clear_hw_cntrs_base - Clear base hardware counters | ||
418 | * @hw: pointer to the HW structure | ||
419 | * | ||
420 | * Clears the base hardware counters by reading the counter registers. | ||
421 | **/ | ||
422 | void igb_clear_hw_cntrs_base(struct e1000_hw *hw) | ||
423 | { | ||
424 | rd32(E1000_CRCERRS); | ||
425 | rd32(E1000_SYMERRS); | ||
426 | rd32(E1000_MPC); | ||
427 | rd32(E1000_SCC); | ||
428 | rd32(E1000_ECOL); | ||
429 | rd32(E1000_MCC); | ||
430 | rd32(E1000_LATECOL); | ||
431 | rd32(E1000_COLC); | ||
432 | rd32(E1000_DC); | ||
433 | rd32(E1000_SEC); | ||
434 | rd32(E1000_RLEC); | ||
435 | rd32(E1000_XONRXC); | ||
436 | rd32(E1000_XONTXC); | ||
437 | rd32(E1000_XOFFRXC); | ||
438 | rd32(E1000_XOFFTXC); | ||
439 | rd32(E1000_FCRUC); | ||
440 | rd32(E1000_GPRC); | ||
441 | rd32(E1000_BPRC); | ||
442 | rd32(E1000_MPRC); | ||
443 | rd32(E1000_GPTC); | ||
444 | rd32(E1000_GORCL); | ||
445 | rd32(E1000_GORCH); | ||
446 | rd32(E1000_GOTCL); | ||
447 | rd32(E1000_GOTCH); | ||
448 | rd32(E1000_RNBC); | ||
449 | rd32(E1000_RUC); | ||
450 | rd32(E1000_RFC); | ||
451 | rd32(E1000_ROC); | ||
452 | rd32(E1000_RJC); | ||
453 | rd32(E1000_TORL); | ||
454 | rd32(E1000_TORH); | ||
455 | rd32(E1000_TOTL); | ||
456 | rd32(E1000_TOTH); | ||
457 | rd32(E1000_TPR); | ||
458 | rd32(E1000_TPT); | ||
459 | rd32(E1000_MPTC); | ||
460 | rd32(E1000_BPTC); | ||
461 | } | ||
462 | |||
463 | /** | ||
464 | * igb_check_for_copper_link - Check for link (Copper) | ||
465 | * @hw: pointer to the HW structure | ||
466 | * | ||
467 | * Checks to see of the link status of the hardware has changed. If a | ||
468 | * change in link status has been detected, then we read the PHY registers | ||
469 | * to get the current speed/duplex if link exists. | ||
470 | **/ | ||
471 | s32 igb_check_for_copper_link(struct e1000_hw *hw) | ||
472 | { | ||
473 | struct e1000_mac_info *mac = &hw->mac; | ||
474 | s32 ret_val; | ||
475 | bool link; | ||
476 | |||
477 | /* | ||
478 | * We only want to go out to the PHY registers to see if Auto-Neg | ||
479 | * has completed and/or if our link status has changed. The | ||
480 | * get_link_status flag is set upon receiving a Link Status | ||
481 | * Change or Rx Sequence Error interrupt. | ||
482 | */ | ||
483 | if (!mac->get_link_status) { | ||
484 | ret_val = 0; | ||
485 | goto out; | ||
486 | } | ||
487 | |||
488 | /* | ||
489 | * First we want to see if the MII Status Register reports | ||
490 | * link. If so, then we want to get the current speed/duplex | ||
491 | * of the PHY. | ||
492 | */ | ||
493 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
494 | if (ret_val) | ||
495 | goto out; | ||
496 | |||
497 | if (!link) | ||
498 | goto out; /* No link detected */ | ||
499 | |||
500 | mac->get_link_status = false; | ||
501 | |||
502 | /* | ||
503 | * Check if there was DownShift, must be checked | ||
504 | * immediately after link-up | ||
505 | */ | ||
506 | igb_check_downshift(hw); | ||
507 | |||
508 | /* | ||
509 | * If we are forcing speed/duplex, then we simply return since | ||
510 | * we have already determined whether we have link or not. | ||
511 | */ | ||
512 | if (!mac->autoneg) { | ||
513 | ret_val = -E1000_ERR_CONFIG; | ||
514 | goto out; | ||
515 | } | ||
516 | |||
517 | /* | ||
518 | * Auto-Neg is enabled. Auto Speed Detection takes care | ||
519 | * of MAC speed/duplex configuration. So we only need to | ||
520 | * configure Collision Distance in the MAC. | ||
521 | */ | ||
522 | igb_config_collision_dist(hw); | ||
523 | |||
524 | /* | ||
525 | * Configure Flow Control now that Auto-Neg has completed. | ||
526 | * First, we need to restore the desired flow control | ||
527 | * settings because we may have had to re-autoneg with a | ||
528 | * different link partner. | ||
529 | */ | ||
530 | ret_val = igb_config_fc_after_link_up(hw); | ||
531 | if (ret_val) | ||
532 | hw_dbg("Error configuring flow control\n"); | ||
533 | |||
534 | out: | ||
535 | return ret_val; | ||
536 | } | ||
537 | |||
538 | /** | ||
539 | * igb_setup_link - Setup flow control and link settings | ||
540 | * @hw: pointer to the HW structure | ||
541 | * | ||
542 | * Determines which flow control settings to use, then configures flow | ||
543 | * control. Calls the appropriate media-specific link configuration | ||
544 | * function. Assuming the adapter has a valid link partner, a valid link | ||
545 | * should be established. Assumes the hardware has previously been reset | ||
546 | * and the transmitter and receiver are not enabled. | ||
547 | **/ | ||
548 | s32 igb_setup_link(struct e1000_hw *hw) | ||
549 | { | ||
550 | s32 ret_val = 0; | ||
551 | |||
552 | /* | ||
553 | * In the case of the phy reset being blocked, we already have a link. | ||
554 | * We do not need to set it up again. | ||
555 | */ | ||
556 | if (igb_check_reset_block(hw)) | ||
557 | goto out; | ||
558 | |||
559 | /* | ||
560 | * If requested flow control is set to default, set flow control | ||
561 | * based on the EEPROM flow control settings. | ||
562 | */ | ||
563 | if (hw->fc.requested_mode == e1000_fc_default) { | ||
564 | ret_val = igb_set_default_fc(hw); | ||
565 | if (ret_val) | ||
566 | goto out; | ||
567 | } | ||
568 | |||
569 | /* | ||
570 | * We want to save off the original Flow Control configuration just | ||
571 | * in case we get disconnected and then reconnected into a different | ||
572 | * hub or switch with different Flow Control capabilities. | ||
573 | */ | ||
574 | hw->fc.current_mode = hw->fc.requested_mode; | ||
575 | |||
576 | hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); | ||
577 | |||
578 | /* Call the necessary media_type subroutine to configure the link. */ | ||
579 | ret_val = hw->mac.ops.setup_physical_interface(hw); | ||
580 | if (ret_val) | ||
581 | goto out; | ||
582 | |||
583 | /* | ||
584 | * Initialize the flow control address, type, and PAUSE timer | ||
585 | * registers to their default values. This is done even if flow | ||
586 | * control is disabled, because it does not hurt anything to | ||
587 | * initialize these registers. | ||
588 | */ | ||
589 | hw_dbg("Initializing the Flow Control address, type and timer regs\n"); | ||
590 | wr32(E1000_FCT, FLOW_CONTROL_TYPE); | ||
591 | wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
592 | wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
593 | |||
594 | wr32(E1000_FCTTV, hw->fc.pause_time); | ||
595 | |||
596 | ret_val = igb_set_fc_watermarks(hw); | ||
597 | |||
598 | out: | ||
599 | return ret_val; | ||
600 | } | ||
601 | |||
602 | /** | ||
603 | * igb_config_collision_dist - Configure collision distance | ||
604 | * @hw: pointer to the HW structure | ||
605 | * | ||
606 | * Configures the collision distance to the default value and is used | ||
607 | * during link setup. Currently no func pointer exists and all | ||
608 | * implementations are handled in the generic version of this function. | ||
609 | **/ | ||
610 | void igb_config_collision_dist(struct e1000_hw *hw) | ||
611 | { | ||
612 | u32 tctl; | ||
613 | |||
614 | tctl = rd32(E1000_TCTL); | ||
615 | |||
616 | tctl &= ~E1000_TCTL_COLD; | ||
617 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | ||
618 | |||
619 | wr32(E1000_TCTL, tctl); | ||
620 | wrfl(); | ||
621 | } | ||
622 | |||
623 | /** | ||
624 | * igb_set_fc_watermarks - Set flow control high/low watermarks | ||
625 | * @hw: pointer to the HW structure | ||
626 | * | ||
627 | * Sets the flow control high/low threshold (watermark) registers. If | ||
628 | * flow control XON frame transmission is enabled, then set XON frame | ||
629 | * tansmission as well. | ||
630 | **/ | ||
631 | static s32 igb_set_fc_watermarks(struct e1000_hw *hw) | ||
632 | { | ||
633 | s32 ret_val = 0; | ||
634 | u32 fcrtl = 0, fcrth = 0; | ||
635 | |||
636 | /* | ||
637 | * Set the flow control receive threshold registers. Normally, | ||
638 | * these registers will be set to a default threshold that may be | ||
639 | * adjusted later by the driver's runtime code. However, if the | ||
640 | * ability to transmit pause frames is not enabled, then these | ||
641 | * registers will be set to 0. | ||
642 | */ | ||
643 | if (hw->fc.current_mode & e1000_fc_tx_pause) { | ||
644 | /* | ||
645 | * We need to set up the Receive Threshold high and low water | ||
646 | * marks as well as (optionally) enabling the transmission of | ||
647 | * XON frames. | ||
648 | */ | ||
649 | fcrtl = hw->fc.low_water; | ||
650 | if (hw->fc.send_xon) | ||
651 | fcrtl |= E1000_FCRTL_XONE; | ||
652 | |||
653 | fcrth = hw->fc.high_water; | ||
654 | } | ||
655 | wr32(E1000_FCRTL, fcrtl); | ||
656 | wr32(E1000_FCRTH, fcrth); | ||
657 | |||
658 | return ret_val; | ||
659 | } | ||
660 | |||
661 | /** | ||
662 | * igb_set_default_fc - Set flow control default values | ||
663 | * @hw: pointer to the HW structure | ||
664 | * | ||
665 | * Read the EEPROM for the default values for flow control and store the | ||
666 | * values. | ||
667 | **/ | ||
668 | static s32 igb_set_default_fc(struct e1000_hw *hw) | ||
669 | { | ||
670 | s32 ret_val = 0; | ||
671 | u16 nvm_data; | ||
672 | |||
673 | /* | ||
674 | * Read and store word 0x0F of the EEPROM. This word contains bits | ||
675 | * that determine the hardware's default PAUSE (flow control) mode, | ||
676 | * a bit that determines whether the HW defaults to enabling or | ||
677 | * disabling auto-negotiation, and the direction of the | ||
678 | * SW defined pins. If there is no SW over-ride of the flow | ||
679 | * control setting, then the variable hw->fc will | ||
680 | * be initialized based on a value in the EEPROM. | ||
681 | */ | ||
682 | ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); | ||
683 | |||
684 | if (ret_val) { | ||
685 | hw_dbg("NVM Read Error\n"); | ||
686 | goto out; | ||
687 | } | ||
688 | |||
689 | if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) | ||
690 | hw->fc.requested_mode = e1000_fc_none; | ||
691 | else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == | ||
692 | NVM_WORD0F_ASM_DIR) | ||
693 | hw->fc.requested_mode = e1000_fc_tx_pause; | ||
694 | else | ||
695 | hw->fc.requested_mode = e1000_fc_full; | ||
696 | |||
697 | out: | ||
698 | return ret_val; | ||
699 | } | ||
700 | |||
701 | /** | ||
702 | * igb_force_mac_fc - Force the MAC's flow control settings | ||
703 | * @hw: pointer to the HW structure | ||
704 | * | ||
705 | * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the | ||
706 | * device control register to reflect the adapter settings. TFCE and RFCE | ||
707 | * need to be explicitly set by software when a copper PHY is used because | ||
708 | * autonegotiation is managed by the PHY rather than the MAC. Software must | ||
709 | * also configure these bits when link is forced on a fiber connection. | ||
710 | **/ | ||
711 | s32 igb_force_mac_fc(struct e1000_hw *hw) | ||
712 | { | ||
713 | u32 ctrl; | ||
714 | s32 ret_val = 0; | ||
715 | |||
716 | ctrl = rd32(E1000_CTRL); | ||
717 | |||
718 | /* | ||
719 | * Because we didn't get link via the internal auto-negotiation | ||
720 | * mechanism (we either forced link or we got link via PHY | ||
721 | * auto-neg), we have to manually enable/disable transmit an | ||
722 | * receive flow control. | ||
723 | * | ||
724 | * The "Case" statement below enables/disable flow control | ||
725 | * according to the "hw->fc.current_mode" parameter. | ||
726 | * | ||
727 | * The possible values of the "fc" parameter are: | ||
728 | * 0: Flow control is completely disabled | ||
729 | * 1: Rx flow control is enabled (we can receive pause | ||
730 | * frames but not send pause frames). | ||
731 | * 2: Tx flow control is enabled (we can send pause frames | ||
732 | * frames but we do not receive pause frames). | ||
733 | * 3: Both Rx and TX flow control (symmetric) is enabled. | ||
734 | * other: No other values should be possible at this point. | ||
735 | */ | ||
736 | hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); | ||
737 | |||
738 | switch (hw->fc.current_mode) { | ||
739 | case e1000_fc_none: | ||
740 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | ||
741 | break; | ||
742 | case e1000_fc_rx_pause: | ||
743 | ctrl &= (~E1000_CTRL_TFCE); | ||
744 | ctrl |= E1000_CTRL_RFCE; | ||
745 | break; | ||
746 | case e1000_fc_tx_pause: | ||
747 | ctrl &= (~E1000_CTRL_RFCE); | ||
748 | ctrl |= E1000_CTRL_TFCE; | ||
749 | break; | ||
750 | case e1000_fc_full: | ||
751 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | ||
752 | break; | ||
753 | default: | ||
754 | hw_dbg("Flow control param set incorrectly\n"); | ||
755 | ret_val = -E1000_ERR_CONFIG; | ||
756 | goto out; | ||
757 | } | ||
758 | |||
759 | wr32(E1000_CTRL, ctrl); | ||
760 | |||
761 | out: | ||
762 | return ret_val; | ||
763 | } | ||
764 | |||
765 | /** | ||
766 | * igb_config_fc_after_link_up - Configures flow control after link | ||
767 | * @hw: pointer to the HW structure | ||
768 | * | ||
769 | * Checks the status of auto-negotiation after link up to ensure that the | ||
770 | * speed and duplex were not forced. If the link needed to be forced, then | ||
771 | * flow control needs to be forced also. If auto-negotiation is enabled | ||
772 | * and did not fail, then we configure flow control based on our link | ||
773 | * partner. | ||
774 | **/ | ||
775 | s32 igb_config_fc_after_link_up(struct e1000_hw *hw) | ||
776 | { | ||
777 | struct e1000_mac_info *mac = &hw->mac; | ||
778 | s32 ret_val = 0; | ||
779 | u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | ||
780 | u16 speed, duplex; | ||
781 | |||
782 | /* | ||
783 | * Check for the case where we have fiber media and auto-neg failed | ||
784 | * so we had to force link. In this case, we need to force the | ||
785 | * configuration of the MAC to match the "fc" parameter. | ||
786 | */ | ||
787 | if (mac->autoneg_failed) { | ||
788 | if (hw->phy.media_type == e1000_media_type_internal_serdes) | ||
789 | ret_val = igb_force_mac_fc(hw); | ||
790 | } else { | ||
791 | if (hw->phy.media_type == e1000_media_type_copper) | ||
792 | ret_val = igb_force_mac_fc(hw); | ||
793 | } | ||
794 | |||
795 | if (ret_val) { | ||
796 | hw_dbg("Error forcing flow control settings\n"); | ||
797 | goto out; | ||
798 | } | ||
799 | |||
800 | /* | ||
801 | * Check for the case where we have copper media and auto-neg is | ||
802 | * enabled. In this case, we need to check and see if Auto-Neg | ||
803 | * has completed, and if so, how the PHY and link partner has | ||
804 | * flow control configured. | ||
805 | */ | ||
806 | if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { | ||
807 | /* | ||
808 | * Read the MII Status Register and check to see if AutoNeg | ||
809 | * has completed. We read this twice because this reg has | ||
810 | * some "sticky" (latched) bits. | ||
811 | */ | ||
812 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, | ||
813 | &mii_status_reg); | ||
814 | if (ret_val) | ||
815 | goto out; | ||
816 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, | ||
817 | &mii_status_reg); | ||
818 | if (ret_val) | ||
819 | goto out; | ||
820 | |||
821 | if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { | ||
822 | hw_dbg("Copper PHY and Auto Neg " | ||
823 | "has not completed.\n"); | ||
824 | goto out; | ||
825 | } | ||
826 | |||
827 | /* | ||
828 | * The AutoNeg process has completed, so we now need to | ||
829 | * read both the Auto Negotiation Advertisement | ||
830 | * Register (Address 4) and the Auto_Negotiation Base | ||
831 | * Page Ability Register (Address 5) to determine how | ||
832 | * flow control was negotiated. | ||
833 | */ | ||
834 | ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, | ||
835 | &mii_nway_adv_reg); | ||
836 | if (ret_val) | ||
837 | goto out; | ||
838 | ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, | ||
839 | &mii_nway_lp_ability_reg); | ||
840 | if (ret_val) | ||
841 | goto out; | ||
842 | |||
843 | /* | ||
844 | * Two bits in the Auto Negotiation Advertisement Register | ||
845 | * (Address 4) and two bits in the Auto Negotiation Base | ||
846 | * Page Ability Register (Address 5) determine flow control | ||
847 | * for both the PHY and the link partner. The following | ||
848 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | ||
849 | * 1999, describes these PAUSE resolution bits and how flow | ||
850 | * control is determined based upon these settings. | ||
851 | * NOTE: DC = Don't Care | ||
852 | * | ||
853 | * LOCAL DEVICE | LINK PARTNER | ||
854 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | ||
855 | *-------|---------|-------|---------|-------------------- | ||
856 | * 0 | 0 | DC | DC | e1000_fc_none | ||
857 | * 0 | 1 | 0 | DC | e1000_fc_none | ||
858 | * 0 | 1 | 1 | 0 | e1000_fc_none | ||
859 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
860 | * 1 | 0 | 0 | DC | e1000_fc_none | ||
861 | * 1 | DC | 1 | DC | e1000_fc_full | ||
862 | * 1 | 1 | 0 | 0 | e1000_fc_none | ||
863 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
864 | * | ||
865 | * Are both PAUSE bits set to 1? If so, this implies | ||
866 | * Symmetric Flow Control is enabled at both ends. The | ||
867 | * ASM_DIR bits are irrelevant per the spec. | ||
868 | * | ||
869 | * For Symmetric Flow Control: | ||
870 | * | ||
871 | * LOCAL DEVICE | LINK PARTNER | ||
872 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
873 | *-------|---------|-------|---------|-------------------- | ||
874 | * 1 | DC | 1 | DC | E1000_fc_full | ||
875 | * | ||
876 | */ | ||
877 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
878 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | ||
879 | /* | ||
880 | * Now we need to check if the user selected RX ONLY | ||
881 | * of pause frames. In this case, we had to advertise | ||
882 | * FULL flow control because we could not advertise RX | ||
883 | * ONLY. Hence, we must now check to see if we need to | ||
884 | * turn OFF the TRANSMISSION of PAUSE frames. | ||
885 | */ | ||
886 | if (hw->fc.requested_mode == e1000_fc_full) { | ||
887 | hw->fc.current_mode = e1000_fc_full; | ||
888 | hw_dbg("Flow Control = FULL.\r\n"); | ||
889 | } else { | ||
890 | hw->fc.current_mode = e1000_fc_rx_pause; | ||
891 | hw_dbg("Flow Control = " | ||
892 | "RX PAUSE frames only.\r\n"); | ||
893 | } | ||
894 | } | ||
895 | /* | ||
896 | * For receiving PAUSE frames ONLY. | ||
897 | * | ||
898 | * LOCAL DEVICE | LINK PARTNER | ||
899 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
900 | *-------|---------|-------|---------|-------------------- | ||
901 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
902 | */ | ||
903 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
904 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
905 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
906 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
907 | hw->fc.current_mode = e1000_fc_tx_pause; | ||
908 | hw_dbg("Flow Control = TX PAUSE frames only.\r\n"); | ||
909 | } | ||
910 | /* | ||
911 | * For transmitting PAUSE frames ONLY. | ||
912 | * | ||
913 | * LOCAL DEVICE | LINK PARTNER | ||
914 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
915 | *-------|---------|-------|---------|-------------------- | ||
916 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
917 | */ | ||
918 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
919 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
920 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
921 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
922 | hw->fc.current_mode = e1000_fc_rx_pause; | ||
923 | hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); | ||
924 | } | ||
925 | /* | ||
926 | * Per the IEEE spec, at this point flow control should be | ||
927 | * disabled. However, we want to consider that we could | ||
928 | * be connected to a legacy switch that doesn't advertise | ||
929 | * desired flow control, but can be forced on the link | ||
930 | * partner. So if we advertised no flow control, that is | ||
931 | * what we will resolve to. If we advertised some kind of | ||
932 | * receive capability (Rx Pause Only or Full Flow Control) | ||
933 | * and the link partner advertised none, we will configure | ||
934 | * ourselves to enable Rx Flow Control only. We can do | ||
935 | * this safely for two reasons: If the link partner really | ||
936 | * didn't want flow control enabled, and we enable Rx, no | ||
937 | * harm done since we won't be receiving any PAUSE frames | ||
938 | * anyway. If the intent on the link partner was to have | ||
939 | * flow control enabled, then by us enabling RX only, we | ||
940 | * can at least receive pause frames and process them. | ||
941 | * This is a good idea because in most cases, since we are | ||
942 | * predominantly a server NIC, more times than not we will | ||
943 | * be asked to delay transmission of packets than asking | ||
944 | * our link partner to pause transmission of frames. | ||
945 | */ | ||
946 | else if ((hw->fc.requested_mode == e1000_fc_none || | ||
947 | hw->fc.requested_mode == e1000_fc_tx_pause) || | ||
948 | hw->fc.strict_ieee) { | ||
949 | hw->fc.current_mode = e1000_fc_none; | ||
950 | hw_dbg("Flow Control = NONE.\r\n"); | ||
951 | } else { | ||
952 | hw->fc.current_mode = e1000_fc_rx_pause; | ||
953 | hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); | ||
954 | } | ||
955 | |||
956 | /* | ||
957 | * Now we need to do one last check... If we auto- | ||
958 | * negotiated to HALF DUPLEX, flow control should not be | ||
959 | * enabled per IEEE 802.3 spec. | ||
960 | */ | ||
961 | ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); | ||
962 | if (ret_val) { | ||
963 | hw_dbg("Error getting link speed and duplex\n"); | ||
964 | goto out; | ||
965 | } | ||
966 | |||
967 | if (duplex == HALF_DUPLEX) | ||
968 | hw->fc.current_mode = e1000_fc_none; | ||
969 | |||
970 | /* | ||
971 | * Now we call a subroutine to actually force the MAC | ||
972 | * controller to use the correct flow control settings. | ||
973 | */ | ||
974 | ret_val = igb_force_mac_fc(hw); | ||
975 | if (ret_val) { | ||
976 | hw_dbg("Error forcing flow control settings\n"); | ||
977 | goto out; | ||
978 | } | ||
979 | } | ||
980 | |||
981 | out: | ||
982 | return ret_val; | ||
983 | } | ||
984 | |||
985 | /** | ||
986 | * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex | ||
987 | * @hw: pointer to the HW structure | ||
988 | * @speed: stores the current speed | ||
989 | * @duplex: stores the current duplex | ||
990 | * | ||
991 | * Read the status register for the current speed/duplex and store the current | ||
992 | * speed and duplex for copper connections. | ||
993 | **/ | ||
994 | s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, | ||
995 | u16 *duplex) | ||
996 | { | ||
997 | u32 status; | ||
998 | |||
999 | status = rd32(E1000_STATUS); | ||
1000 | if (status & E1000_STATUS_SPEED_1000) { | ||
1001 | *speed = SPEED_1000; | ||
1002 | hw_dbg("1000 Mbs, "); | ||
1003 | } else if (status & E1000_STATUS_SPEED_100) { | ||
1004 | *speed = SPEED_100; | ||
1005 | hw_dbg("100 Mbs, "); | ||
1006 | } else { | ||
1007 | *speed = SPEED_10; | ||
1008 | hw_dbg("10 Mbs, "); | ||
1009 | } | ||
1010 | |||
1011 | if (status & E1000_STATUS_FD) { | ||
1012 | *duplex = FULL_DUPLEX; | ||
1013 | hw_dbg("Full Duplex\n"); | ||
1014 | } else { | ||
1015 | *duplex = HALF_DUPLEX; | ||
1016 | hw_dbg("Half Duplex\n"); | ||
1017 | } | ||
1018 | |||
1019 | return 0; | ||
1020 | } | ||
1021 | |||
1022 | /** | ||
1023 | * igb_get_hw_semaphore - Acquire hardware semaphore | ||
1024 | * @hw: pointer to the HW structure | ||
1025 | * | ||
1026 | * Acquire the HW semaphore to access the PHY or NVM | ||
1027 | **/ | ||
1028 | s32 igb_get_hw_semaphore(struct e1000_hw *hw) | ||
1029 | { | ||
1030 | u32 swsm; | ||
1031 | s32 ret_val = 0; | ||
1032 | s32 timeout = hw->nvm.word_size + 1; | ||
1033 | s32 i = 0; | ||
1034 | |||
1035 | /* Get the SW semaphore */ | ||
1036 | while (i < timeout) { | ||
1037 | swsm = rd32(E1000_SWSM); | ||
1038 | if (!(swsm & E1000_SWSM_SMBI)) | ||
1039 | break; | ||
1040 | |||
1041 | udelay(50); | ||
1042 | i++; | ||
1043 | } | ||
1044 | |||
1045 | if (i == timeout) { | ||
1046 | hw_dbg("Driver can't access device - SMBI bit is set.\n"); | ||
1047 | ret_val = -E1000_ERR_NVM; | ||
1048 | goto out; | ||
1049 | } | ||
1050 | |||
1051 | /* Get the FW semaphore. */ | ||
1052 | for (i = 0; i < timeout; i++) { | ||
1053 | swsm = rd32(E1000_SWSM); | ||
1054 | wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); | ||
1055 | |||
1056 | /* Semaphore acquired if bit latched */ | ||
1057 | if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) | ||
1058 | break; | ||
1059 | |||
1060 | udelay(50); | ||
1061 | } | ||
1062 | |||
1063 | if (i == timeout) { | ||
1064 | /* Release semaphores */ | ||
1065 | igb_put_hw_semaphore(hw); | ||
1066 | hw_dbg("Driver can't access the NVM\n"); | ||
1067 | ret_val = -E1000_ERR_NVM; | ||
1068 | goto out; | ||
1069 | } | ||
1070 | |||
1071 | out: | ||
1072 | return ret_val; | ||
1073 | } | ||
1074 | |||
1075 | /** | ||
1076 | * igb_put_hw_semaphore - Release hardware semaphore | ||
1077 | * @hw: pointer to the HW structure | ||
1078 | * | ||
1079 | * Release hardware semaphore used to access the PHY or NVM | ||
1080 | **/ | ||
1081 | void igb_put_hw_semaphore(struct e1000_hw *hw) | ||
1082 | { | ||
1083 | u32 swsm; | ||
1084 | |||
1085 | swsm = rd32(E1000_SWSM); | ||
1086 | |||
1087 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
1088 | |||
1089 | wr32(E1000_SWSM, swsm); | ||
1090 | } | ||
1091 | |||
1092 | /** | ||
1093 | * igb_get_auto_rd_done - Check for auto read completion | ||
1094 | * @hw: pointer to the HW structure | ||
1095 | * | ||
1096 | * Check EEPROM for Auto Read done bit. | ||
1097 | **/ | ||
1098 | s32 igb_get_auto_rd_done(struct e1000_hw *hw) | ||
1099 | { | ||
1100 | s32 i = 0; | ||
1101 | s32 ret_val = 0; | ||
1102 | |||
1103 | |||
1104 | while (i < AUTO_READ_DONE_TIMEOUT) { | ||
1105 | if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) | ||
1106 | break; | ||
1107 | msleep(1); | ||
1108 | i++; | ||
1109 | } | ||
1110 | |||
1111 | if (i == AUTO_READ_DONE_TIMEOUT) { | ||
1112 | hw_dbg("Auto read by HW from NVM has not completed.\n"); | ||
1113 | ret_val = -E1000_ERR_RESET; | ||
1114 | goto out; | ||
1115 | } | ||
1116 | |||
1117 | out: | ||
1118 | return ret_val; | ||
1119 | } | ||
1120 | |||
1121 | /** | ||
1122 | * igb_valid_led_default - Verify a valid default LED config | ||
1123 | * @hw: pointer to the HW structure | ||
1124 | * @data: pointer to the NVM (EEPROM) | ||
1125 | * | ||
1126 | * Read the EEPROM for the current default LED configuration. If the | ||
1127 | * LED configuration is not valid, set to a valid LED configuration. | ||
1128 | **/ | ||
1129 | static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) | ||
1130 | { | ||
1131 | s32 ret_val; | ||
1132 | |||
1133 | ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); | ||
1134 | if (ret_val) { | ||
1135 | hw_dbg("NVM Read Error\n"); | ||
1136 | goto out; | ||
1137 | } | ||
1138 | |||
1139 | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { | ||
1140 | switch(hw->phy.media_type) { | ||
1141 | case e1000_media_type_internal_serdes: | ||
1142 | *data = ID_LED_DEFAULT_82575_SERDES; | ||
1143 | break; | ||
1144 | case e1000_media_type_copper: | ||
1145 | default: | ||
1146 | *data = ID_LED_DEFAULT; | ||
1147 | break; | ||
1148 | } | ||
1149 | } | ||
1150 | out: | ||
1151 | return ret_val; | ||
1152 | } | ||
1153 | |||
1154 | /** | ||
1155 | * igb_id_led_init - | ||
1156 | * @hw: pointer to the HW structure | ||
1157 | * | ||
1158 | **/ | ||
1159 | s32 igb_id_led_init(struct e1000_hw *hw) | ||
1160 | { | ||
1161 | struct e1000_mac_info *mac = &hw->mac; | ||
1162 | s32 ret_val; | ||
1163 | const u32 ledctl_mask = 0x000000FF; | ||
1164 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | ||
1165 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | ||
1166 | u16 data, i, temp; | ||
1167 | const u16 led_mask = 0x0F; | ||
1168 | |||
1169 | ret_val = igb_valid_led_default(hw, &data); | ||
1170 | if (ret_val) | ||
1171 | goto out; | ||
1172 | |||
1173 | mac->ledctl_default = rd32(E1000_LEDCTL); | ||
1174 | mac->ledctl_mode1 = mac->ledctl_default; | ||
1175 | mac->ledctl_mode2 = mac->ledctl_default; | ||
1176 | |||
1177 | for (i = 0; i < 4; i++) { | ||
1178 | temp = (data >> (i << 2)) & led_mask; | ||
1179 | switch (temp) { | ||
1180 | case ID_LED_ON1_DEF2: | ||
1181 | case ID_LED_ON1_ON2: | ||
1182 | case ID_LED_ON1_OFF2: | ||
1183 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1184 | mac->ledctl_mode1 |= ledctl_on << (i << 3); | ||
1185 | break; | ||
1186 | case ID_LED_OFF1_DEF2: | ||
1187 | case ID_LED_OFF1_ON2: | ||
1188 | case ID_LED_OFF1_OFF2: | ||
1189 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1190 | mac->ledctl_mode1 |= ledctl_off << (i << 3); | ||
1191 | break; | ||
1192 | default: | ||
1193 | /* Do nothing */ | ||
1194 | break; | ||
1195 | } | ||
1196 | switch (temp) { | ||
1197 | case ID_LED_DEF1_ON2: | ||
1198 | case ID_LED_ON1_ON2: | ||
1199 | case ID_LED_OFF1_ON2: | ||
1200 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1201 | mac->ledctl_mode2 |= ledctl_on << (i << 3); | ||
1202 | break; | ||
1203 | case ID_LED_DEF1_OFF2: | ||
1204 | case ID_LED_ON1_OFF2: | ||
1205 | case ID_LED_OFF1_OFF2: | ||
1206 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1207 | mac->ledctl_mode2 |= ledctl_off << (i << 3); | ||
1208 | break; | ||
1209 | default: | ||
1210 | /* Do nothing */ | ||
1211 | break; | ||
1212 | } | ||
1213 | } | ||
1214 | |||
1215 | out: | ||
1216 | return ret_val; | ||
1217 | } | ||
1218 | |||
1219 | /** | ||
1220 | * igb_cleanup_led - Set LED config to default operation | ||
1221 | * @hw: pointer to the HW structure | ||
1222 | * | ||
1223 | * Remove the current LED configuration and set the LED configuration | ||
1224 | * to the default value, saved from the EEPROM. | ||
1225 | **/ | ||
1226 | s32 igb_cleanup_led(struct e1000_hw *hw) | ||
1227 | { | ||
1228 | wr32(E1000_LEDCTL, hw->mac.ledctl_default); | ||
1229 | return 0; | ||
1230 | } | ||
1231 | |||
1232 | /** | ||
1233 | * igb_blink_led - Blink LED | ||
1234 | * @hw: pointer to the HW structure | ||
1235 | * | ||
1236 | * Blink the led's which are set to be on. | ||
1237 | **/ | ||
1238 | s32 igb_blink_led(struct e1000_hw *hw) | ||
1239 | { | ||
1240 | u32 ledctl_blink = 0; | ||
1241 | u32 i; | ||
1242 | |||
1243 | /* | ||
1244 | * set the blink bit for each LED that's "on" (0x0E) | ||
1245 | * in ledctl_mode2 | ||
1246 | */ | ||
1247 | ledctl_blink = hw->mac.ledctl_mode2; | ||
1248 | for (i = 0; i < 4; i++) | ||
1249 | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
1250 | E1000_LEDCTL_MODE_LED_ON) | ||
1251 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << | ||
1252 | (i * 8)); | ||
1253 | |||
1254 | wr32(E1000_LEDCTL, ledctl_blink); | ||
1255 | |||
1256 | return 0; | ||
1257 | } | ||
1258 | |||
1259 | /** | ||
1260 | * igb_led_off - Turn LED off | ||
1261 | * @hw: pointer to the HW structure | ||
1262 | * | ||
1263 | * Turn LED off. | ||
1264 | **/ | ||
1265 | s32 igb_led_off(struct e1000_hw *hw) | ||
1266 | { | ||
1267 | switch (hw->phy.media_type) { | ||
1268 | case e1000_media_type_copper: | ||
1269 | wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); | ||
1270 | break; | ||
1271 | default: | ||
1272 | break; | ||
1273 | } | ||
1274 | |||
1275 | return 0; | ||
1276 | } | ||
1277 | |||
1278 | /** | ||
1279 | * igb_disable_pcie_master - Disables PCI-express master access | ||
1280 | * @hw: pointer to the HW structure | ||
1281 | * | ||
1282 | * Returns 0 (0) if successful, else returns -10 | ||
1283 | * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued | ||
1284 | * the master requests to be disabled. | ||
1285 | * | ||
1286 | * Disables PCI-Express master access and verifies there are no pending | ||
1287 | * requests. | ||
1288 | **/ | ||
1289 | s32 igb_disable_pcie_master(struct e1000_hw *hw) | ||
1290 | { | ||
1291 | u32 ctrl; | ||
1292 | s32 timeout = MASTER_DISABLE_TIMEOUT; | ||
1293 | s32 ret_val = 0; | ||
1294 | |||
1295 | if (hw->bus.type != e1000_bus_type_pci_express) | ||
1296 | goto out; | ||
1297 | |||
1298 | ctrl = rd32(E1000_CTRL); | ||
1299 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | ||
1300 | wr32(E1000_CTRL, ctrl); | ||
1301 | |||
1302 | while (timeout) { | ||
1303 | if (!(rd32(E1000_STATUS) & | ||
1304 | E1000_STATUS_GIO_MASTER_ENABLE)) | ||
1305 | break; | ||
1306 | udelay(100); | ||
1307 | timeout--; | ||
1308 | } | ||
1309 | |||
1310 | if (!timeout) { | ||
1311 | hw_dbg("Master requests are pending.\n"); | ||
1312 | ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
1313 | goto out; | ||
1314 | } | ||
1315 | |||
1316 | out: | ||
1317 | return ret_val; | ||
1318 | } | ||
1319 | |||
1320 | /** | ||
1321 | * igb_validate_mdi_setting - Verify MDI/MDIx settings | ||
1322 | * @hw: pointer to the HW structure | ||
1323 | * | ||
1324 | * Verify that when not using auto-negotitation that MDI/MDIx is correctly | ||
1325 | * set, which is forced to MDI mode only. | ||
1326 | **/ | ||
1327 | s32 igb_validate_mdi_setting(struct e1000_hw *hw) | ||
1328 | { | ||
1329 | s32 ret_val = 0; | ||
1330 | |||
1331 | if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { | ||
1332 | hw_dbg("Invalid MDI setting detected\n"); | ||
1333 | hw->phy.mdix = 1; | ||
1334 | ret_val = -E1000_ERR_CONFIG; | ||
1335 | goto out; | ||
1336 | } | ||
1337 | |||
1338 | out: | ||
1339 | return ret_val; | ||
1340 | } | ||
1341 | |||
1342 | /** | ||
1343 | * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register | ||
1344 | * @hw: pointer to the HW structure | ||
1345 | * @reg: 32bit register offset such as E1000_SCTL | ||
1346 | * @offset: register offset to write to | ||
1347 | * @data: data to write at register offset | ||
1348 | * | ||
1349 | * Writes an address/data control type register. There are several of these | ||
1350 | * and they all have the format address << 8 | data and bit 31 is polled for | ||
1351 | * completion. | ||
1352 | **/ | ||
1353 | s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, | ||
1354 | u32 offset, u8 data) | ||
1355 | { | ||
1356 | u32 i, regvalue = 0; | ||
1357 | s32 ret_val = 0; | ||
1358 | |||
1359 | /* Set up the address and data */ | ||
1360 | regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); | ||
1361 | wr32(reg, regvalue); | ||
1362 | |||
1363 | /* Poll the ready bit to see if the MDI read completed */ | ||
1364 | for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { | ||
1365 | udelay(5); | ||
1366 | regvalue = rd32(reg); | ||
1367 | if (regvalue & E1000_GEN_CTL_READY) | ||
1368 | break; | ||
1369 | } | ||
1370 | if (!(regvalue & E1000_GEN_CTL_READY)) { | ||
1371 | hw_dbg("Reg %08x did not indicate ready\n", reg); | ||
1372 | ret_val = -E1000_ERR_PHY; | ||
1373 | goto out; | ||
1374 | } | ||
1375 | |||
1376 | out: | ||
1377 | return ret_val; | ||
1378 | } | ||
1379 | |||
1380 | /** | ||
1381 | * igb_enable_mng_pass_thru - Enable processing of ARP's | ||
1382 | * @hw: pointer to the HW structure | ||
1383 | * | ||
1384 | * Verifies the hardware needs to leave interface enabled so that frames can | ||
1385 | * be directed to and from the management interface. | ||
1386 | **/ | ||
1387 | bool igb_enable_mng_pass_thru(struct e1000_hw *hw) | ||
1388 | { | ||
1389 | u32 manc; | ||
1390 | u32 fwsm, factps; | ||
1391 | bool ret_val = false; | ||
1392 | |||
1393 | if (!hw->mac.asf_firmware_present) | ||
1394 | goto out; | ||
1395 | |||
1396 | manc = rd32(E1000_MANC); | ||
1397 | |||
1398 | if (!(manc & E1000_MANC_RCV_TCO_EN)) | ||
1399 | goto out; | ||
1400 | |||
1401 | if (hw->mac.arc_subsystem_valid) { | ||
1402 | fwsm = rd32(E1000_FWSM); | ||
1403 | factps = rd32(E1000_FACTPS); | ||
1404 | |||
1405 | if (!(factps & E1000_FACTPS_MNGCG) && | ||
1406 | ((fwsm & E1000_FWSM_MODE_MASK) == | ||
1407 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { | ||
1408 | ret_val = true; | ||
1409 | goto out; | ||
1410 | } | ||
1411 | } else { | ||
1412 | if ((manc & E1000_MANC_SMBUS_EN) && | ||
1413 | !(manc & E1000_MANC_ASF_EN)) { | ||
1414 | ret_val = true; | ||
1415 | goto out; | ||
1416 | } | ||
1417 | } | ||
1418 | |||
1419 | out: | ||
1420 | return ret_val; | ||
1421 | } | ||