diff options
Diffstat (limited to 'drivers/net/igb/e1000_mac.c')
| -rw-r--r-- | drivers/net/igb/e1000_mac.c | 1421 |
1 files changed, 1421 insertions, 0 deletions
diff --git a/drivers/net/igb/e1000_mac.c b/drivers/net/igb/e1000_mac.c new file mode 100644 index 00000000000..2b5ef761d2a --- /dev/null +++ b/drivers/net/igb/e1000_mac.c | |||
| @@ -0,0 +1,1421 @@ | |||
| 1 | /******************************************************************************* | ||
| 2 | |||
| 3 | Intel(R) Gigabit Ethernet Linux driver | ||
| 4 | Copyright(c) 2007-2011 Intel Corporation. | ||
| 5 | |||
| 6 | This program is free software; you can redistribute it and/or modify it | ||
| 7 | under the terms and conditions of the GNU General Public License, | ||
| 8 | version 2, as published by the Free Software Foundation. | ||
| 9 | |||
| 10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
| 13 | more details. | ||
| 14 | |||
| 15 | You should have received a copy of the GNU General Public License along with | ||
| 16 | this program; if not, write to the Free Software Foundation, Inc., | ||
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
| 18 | |||
| 19 | The full GNU General Public License is included in this distribution in | ||
| 20 | the file called "COPYING". | ||
| 21 | |||
| 22 | Contact Information: | ||
| 23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
| 24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
| 25 | |||
| 26 | *******************************************************************************/ | ||
| 27 | |||
| 28 | #include <linux/if_ether.h> | ||
| 29 | #include <linux/delay.h> | ||
| 30 | #include <linux/pci.h> | ||
| 31 | #include <linux/netdevice.h> | ||
| 32 | #include <linux/etherdevice.h> | ||
| 33 | |||
| 34 | #include "e1000_mac.h" | ||
| 35 | |||
| 36 | #include "igb.h" | ||
| 37 | |||
| 38 | static s32 igb_set_default_fc(struct e1000_hw *hw); | ||
| 39 | static s32 igb_set_fc_watermarks(struct e1000_hw *hw); | ||
| 40 | |||
| 41 | /** | ||
| 42 | * igb_get_bus_info_pcie - Get PCIe bus information | ||
| 43 | * @hw: pointer to the HW structure | ||
| 44 | * | ||
| 45 | * Determines and stores the system bus information for a particular | ||
| 46 | * network interface. The following bus information is determined and stored: | ||
| 47 | * bus speed, bus width, type (PCIe), and PCIe function. | ||
| 48 | **/ | ||
| 49 | s32 igb_get_bus_info_pcie(struct e1000_hw *hw) | ||
| 50 | { | ||
| 51 | struct e1000_bus_info *bus = &hw->bus; | ||
| 52 | s32 ret_val; | ||
| 53 | u32 reg; | ||
| 54 | u16 pcie_link_status; | ||
| 55 | |||
| 56 | bus->type = e1000_bus_type_pci_express; | ||
| 57 | |||
| 58 | ret_val = igb_read_pcie_cap_reg(hw, | ||
| 59 | PCI_EXP_LNKSTA, | ||
| 60 | &pcie_link_status); | ||
| 61 | if (ret_val) { | ||
| 62 | bus->width = e1000_bus_width_unknown; | ||
| 63 | bus->speed = e1000_bus_speed_unknown; | ||
| 64 | } else { | ||
| 65 | switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) { | ||
| 66 | case PCI_EXP_LNKSTA_CLS_2_5GB: | ||
| 67 | bus->speed = e1000_bus_speed_2500; | ||
| 68 | break; | ||
| 69 | case PCI_EXP_LNKSTA_CLS_5_0GB: | ||
| 70 | bus->speed = e1000_bus_speed_5000; | ||
| 71 | break; | ||
| 72 | default: | ||
| 73 | bus->speed = e1000_bus_speed_unknown; | ||
| 74 | break; | ||
| 75 | } | ||
| 76 | |||
| 77 | bus->width = (enum e1000_bus_width)((pcie_link_status & | ||
| 78 | PCI_EXP_LNKSTA_NLW) >> | ||
| 79 | PCI_EXP_LNKSTA_NLW_SHIFT); | ||
| 80 | } | ||
| 81 | |||
| 82 | reg = rd32(E1000_STATUS); | ||
| 83 | bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; | ||
| 84 | |||
| 85 | return 0; | ||
| 86 | } | ||
| 87 | |||
| 88 | /** | ||
| 89 | * igb_clear_vfta - Clear VLAN filter table | ||
| 90 | * @hw: pointer to the HW structure | ||
| 91 | * | ||
| 92 | * Clears the register array which contains the VLAN filter table by | ||
| 93 | * setting all the values to 0. | ||
| 94 | **/ | ||
| 95 | void igb_clear_vfta(struct e1000_hw *hw) | ||
| 96 | { | ||
| 97 | u32 offset; | ||
| 98 | |||
| 99 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
| 100 | array_wr32(E1000_VFTA, offset, 0); | ||
| 101 | wrfl(); | ||
| 102 | } | ||
| 103 | } | ||
| 104 | |||
| 105 | /** | ||
| 106 | * igb_write_vfta - Write value to VLAN filter table | ||
| 107 | * @hw: pointer to the HW structure | ||
| 108 | * @offset: register offset in VLAN filter table | ||
| 109 | * @value: register value written to VLAN filter table | ||
| 110 | * | ||
| 111 | * Writes value at the given offset in the register array which stores | ||
| 112 | * the VLAN filter table. | ||
| 113 | **/ | ||
| 114 | static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | ||
| 115 | { | ||
| 116 | array_wr32(E1000_VFTA, offset, value); | ||
| 117 | wrfl(); | ||
| 118 | } | ||
| 119 | |||
| 120 | /** | ||
| 121 | * igb_init_rx_addrs - Initialize receive address's | ||
| 122 | * @hw: pointer to the HW structure | ||
| 123 | * @rar_count: receive address registers | ||
| 124 | * | ||
| 125 | * Setups the receive address registers by setting the base receive address | ||
| 126 | * register to the devices MAC address and clearing all the other receive | ||
| 127 | * address registers to 0. | ||
| 128 | **/ | ||
| 129 | void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) | ||
| 130 | { | ||
| 131 | u32 i; | ||
| 132 | u8 mac_addr[ETH_ALEN] = {0}; | ||
| 133 | |||
| 134 | /* Setup the receive address */ | ||
| 135 | hw_dbg("Programming MAC Address into RAR[0]\n"); | ||
| 136 | |||
| 137 | hw->mac.ops.rar_set(hw, hw->mac.addr, 0); | ||
| 138 | |||
| 139 | /* Zero out the other (rar_entry_count - 1) receive addresses */ | ||
| 140 | hw_dbg("Clearing RAR[1-%u]\n", rar_count-1); | ||
| 141 | for (i = 1; i < rar_count; i++) | ||
| 142 | hw->mac.ops.rar_set(hw, mac_addr, i); | ||
| 143 | } | ||
| 144 | |||
| 145 | /** | ||
| 146 | * igb_vfta_set - enable or disable vlan in VLAN filter table | ||
| 147 | * @hw: pointer to the HW structure | ||
| 148 | * @vid: VLAN id to add or remove | ||
| 149 | * @add: if true add filter, if false remove | ||
| 150 | * | ||
| 151 | * Sets or clears a bit in the VLAN filter table array based on VLAN id | ||
| 152 | * and if we are adding or removing the filter | ||
| 153 | **/ | ||
| 154 | s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add) | ||
| 155 | { | ||
| 156 | u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; | ||
| 157 | u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | ||
| 158 | u32 vfta = array_rd32(E1000_VFTA, index); | ||
| 159 | s32 ret_val = 0; | ||
| 160 | |||
| 161 | /* bit was set/cleared before we started */ | ||
| 162 | if ((!!(vfta & mask)) == add) { | ||
| 163 | ret_val = -E1000_ERR_CONFIG; | ||
| 164 | } else { | ||
| 165 | if (add) | ||
| 166 | vfta |= mask; | ||
| 167 | else | ||
| 168 | vfta &= ~mask; | ||
| 169 | } | ||
| 170 | |||
| 171 | igb_write_vfta(hw, index, vfta); | ||
| 172 | |||
| 173 | return ret_val; | ||
| 174 | } | ||
| 175 | |||
| 176 | /** | ||
| 177 | * igb_check_alt_mac_addr - Check for alternate MAC addr | ||
| 178 | * @hw: pointer to the HW structure | ||
| 179 | * | ||
| 180 | * Checks the nvm for an alternate MAC address. An alternate MAC address | ||
| 181 | * can be setup by pre-boot software and must be treated like a permanent | ||
| 182 | * address and must override the actual permanent MAC address. If an | ||
| 183 | * alternate MAC address is fopund it is saved in the hw struct and | ||
| 184 | * prgrammed into RAR0 and the cuntion returns success, otherwise the | ||
| 185 | * function returns an error. | ||
| 186 | **/ | ||
| 187 | s32 igb_check_alt_mac_addr(struct e1000_hw *hw) | ||
| 188 | { | ||
| 189 | u32 i; | ||
| 190 | s32 ret_val = 0; | ||
| 191 | u16 offset, nvm_alt_mac_addr_offset, nvm_data; | ||
| 192 | u8 alt_mac_addr[ETH_ALEN]; | ||
| 193 | |||
| 194 | ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, | ||
| 195 | &nvm_alt_mac_addr_offset); | ||
| 196 | if (ret_val) { | ||
| 197 | hw_dbg("NVM Read Error\n"); | ||
| 198 | goto out; | ||
| 199 | } | ||
| 200 | |||
| 201 | if (nvm_alt_mac_addr_offset == 0xFFFF) { | ||
| 202 | /* There is no Alternate MAC Address */ | ||
| 203 | goto out; | ||
| 204 | } | ||
| 205 | |||
| 206 | if (hw->bus.func == E1000_FUNC_1) | ||
| 207 | nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; | ||
| 208 | for (i = 0; i < ETH_ALEN; i += 2) { | ||
| 209 | offset = nvm_alt_mac_addr_offset + (i >> 1); | ||
| 210 | ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); | ||
| 211 | if (ret_val) { | ||
| 212 | hw_dbg("NVM Read Error\n"); | ||
| 213 | goto out; | ||
| 214 | } | ||
| 215 | |||
| 216 | alt_mac_addr[i] = (u8)(nvm_data & 0xFF); | ||
| 217 | alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); | ||
| 218 | } | ||
| 219 | |||
| 220 | /* if multicast bit is set, the alternate address will not be used */ | ||
| 221 | if (is_multicast_ether_addr(alt_mac_addr)) { | ||
| 222 | hw_dbg("Ignoring Alternate Mac Address with MC bit set\n"); | ||
| 223 | goto out; | ||
| 224 | } | ||
| 225 | |||
| 226 | /* | ||
| 227 | * We have a valid alternate MAC address, and we want to treat it the | ||
| 228 | * same as the normal permanent MAC address stored by the HW into the | ||
| 229 | * RAR. Do this by mapping this address into RAR0. | ||
| 230 | */ | ||
| 231 | hw->mac.ops.rar_set(hw, alt_mac_addr, 0); | ||
| 232 | |||
| 233 | out: | ||
| 234 | return ret_val; | ||
| 235 | } | ||
| 236 | |||
| 237 | /** | ||
| 238 | * igb_rar_set - Set receive address register | ||
| 239 | * @hw: pointer to the HW structure | ||
| 240 | * @addr: pointer to the receive address | ||
| 241 | * @index: receive address array register | ||
| 242 | * | ||
| 243 | * Sets the receive address array register at index to the address passed | ||
| 244 | * in by addr. | ||
| 245 | **/ | ||
| 246 | void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | ||
| 247 | { | ||
| 248 | u32 rar_low, rar_high; | ||
| 249 | |||
| 250 | /* | ||
| 251 | * HW expects these in little endian so we reverse the byte order | ||
| 252 | * from network order (big endian) to little endian | ||
| 253 | */ | ||
| 254 | rar_low = ((u32) addr[0] | | ||
| 255 | ((u32) addr[1] << 8) | | ||
| 256 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | ||
| 257 | |||
| 258 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | ||
| 259 | |||
| 260 | /* If MAC address zero, no need to set the AV bit */ | ||
| 261 | if (rar_low || rar_high) | ||
| 262 | rar_high |= E1000_RAH_AV; | ||
| 263 | |||
| 264 | /* | ||
| 265 | * Some bridges will combine consecutive 32-bit writes into | ||
| 266 | * a single burst write, which will malfunction on some parts. | ||
| 267 | * The flushes avoid this. | ||
| 268 | */ | ||
| 269 | wr32(E1000_RAL(index), rar_low); | ||
| 270 | wrfl(); | ||
| 271 | wr32(E1000_RAH(index), rar_high); | ||
| 272 | wrfl(); | ||
| 273 | } | ||
| 274 | |||
| 275 | /** | ||
| 276 | * igb_mta_set - Set multicast filter table address | ||
| 277 | * @hw: pointer to the HW structure | ||
| 278 | * @hash_value: determines the MTA register and bit to set | ||
| 279 | * | ||
| 280 | * The multicast table address is a register array of 32-bit registers. | ||
| 281 | * The hash_value is used to determine what register the bit is in, the | ||
| 282 | * current value is read, the new bit is OR'd in and the new value is | ||
| 283 | * written back into the register. | ||
| 284 | **/ | ||
| 285 | void igb_mta_set(struct e1000_hw *hw, u32 hash_value) | ||
| 286 | { | ||
| 287 | u32 hash_bit, hash_reg, mta; | ||
| 288 | |||
| 289 | /* | ||
| 290 | * The MTA is a register array of 32-bit registers. It is | ||
| 291 | * treated like an array of (32*mta_reg_count) bits. We want to | ||
| 292 | * set bit BitArray[hash_value]. So we figure out what register | ||
| 293 | * the bit is in, read it, OR in the new bit, then write | ||
| 294 | * back the new value. The (hw->mac.mta_reg_count - 1) serves as a | ||
| 295 | * mask to bits 31:5 of the hash value which gives us the | ||
| 296 | * register we're modifying. The hash bit within that register | ||
| 297 | * is determined by the lower 5 bits of the hash value. | ||
| 298 | */ | ||
| 299 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | ||
| 300 | hash_bit = hash_value & 0x1F; | ||
| 301 | |||
| 302 | mta = array_rd32(E1000_MTA, hash_reg); | ||
| 303 | |||
| 304 | mta |= (1 << hash_bit); | ||
| 305 | |||
| 306 | array_wr32(E1000_MTA, hash_reg, mta); | ||
| 307 | wrfl(); | ||
| 308 | } | ||
| 309 | |||
| 310 | /** | ||
| 311 | * igb_hash_mc_addr - Generate a multicast hash value | ||
| 312 | * @hw: pointer to the HW structure | ||
| 313 | * @mc_addr: pointer to a multicast address | ||
| 314 | * | ||
| 315 | * Generates a multicast address hash value which is used to determine | ||
| 316 | * the multicast filter table array address and new table value. See | ||
| 317 | * igb_mta_set() | ||
| 318 | **/ | ||
| 319 | static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | ||
| 320 | { | ||
| 321 | u32 hash_value, hash_mask; | ||
| 322 | u8 bit_shift = 0; | ||
| 323 | |||
| 324 | /* Register count multiplied by bits per register */ | ||
| 325 | hash_mask = (hw->mac.mta_reg_count * 32) - 1; | ||
| 326 | |||
| 327 | /* | ||
| 328 | * For a mc_filter_type of 0, bit_shift is the number of left-shifts | ||
| 329 | * where 0xFF would still fall within the hash mask. | ||
| 330 | */ | ||
| 331 | while (hash_mask >> bit_shift != 0xFF) | ||
| 332 | bit_shift++; | ||
| 333 | |||
| 334 | /* | ||
| 335 | * The portion of the address that is used for the hash table | ||
| 336 | * is determined by the mc_filter_type setting. | ||
| 337 | * The algorithm is such that there is a total of 8 bits of shifting. | ||
| 338 | * The bit_shift for a mc_filter_type of 0 represents the number of | ||
| 339 | * left-shifts where the MSB of mc_addr[5] would still fall within | ||
| 340 | * the hash_mask. Case 0 does this exactly. Since there are a total | ||
| 341 | * of 8 bits of shifting, then mc_addr[4] will shift right the | ||
| 342 | * remaining number of bits. Thus 8 - bit_shift. The rest of the | ||
| 343 | * cases are a variation of this algorithm...essentially raising the | ||
| 344 | * number of bits to shift mc_addr[5] left, while still keeping the | ||
| 345 | * 8-bit shifting total. | ||
| 346 | * | ||
| 347 | * For example, given the following Destination MAC Address and an | ||
| 348 | * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | ||
| 349 | * we can see that the bit_shift for case 0 is 4. These are the hash | ||
| 350 | * values resulting from each mc_filter_type... | ||
| 351 | * [0] [1] [2] [3] [4] [5] | ||
| 352 | * 01 AA 00 12 34 56 | ||
| 353 | * LSB MSB | ||
| 354 | * | ||
| 355 | * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | ||
| 356 | * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | ||
| 357 | * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | ||
| 358 | * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | ||
| 359 | */ | ||
| 360 | switch (hw->mac.mc_filter_type) { | ||
| 361 | default: | ||
| 362 | case 0: | ||
| 363 | break; | ||
| 364 | case 1: | ||
| 365 | bit_shift += 1; | ||
| 366 | break; | ||
| 367 | case 2: | ||
| 368 | bit_shift += 2; | ||
| 369 | break; | ||
| 370 | case 3: | ||
| 371 | bit_shift += 4; | ||
| 372 | break; | ||
| 373 | } | ||
| 374 | |||
| 375 | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | ||
| 376 | (((u16) mc_addr[5]) << bit_shift))); | ||
| 377 | |||
| 378 | return hash_value; | ||
| 379 | } | ||
| 380 | |||
| 381 | /** | ||
| 382 | * igb_update_mc_addr_list - Update Multicast addresses | ||
| 383 | * @hw: pointer to the HW structure | ||
| 384 | * @mc_addr_list: array of multicast addresses to program | ||
| 385 | * @mc_addr_count: number of multicast addresses to program | ||
| 386 | * | ||
| 387 | * Updates entire Multicast Table Array. | ||
| 388 | * The caller must have a packed mc_addr_list of multicast addresses. | ||
| 389 | **/ | ||
| 390 | void igb_update_mc_addr_list(struct e1000_hw *hw, | ||
| 391 | u8 *mc_addr_list, u32 mc_addr_count) | ||
| 392 | { | ||
| 393 | u32 hash_value, hash_bit, hash_reg; | ||
| 394 | int i; | ||
| 395 | |||
| 396 | /* clear mta_shadow */ | ||
| 397 | memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); | ||
| 398 | |||
| 399 | /* update mta_shadow from mc_addr_list */ | ||
| 400 | for (i = 0; (u32) i < mc_addr_count; i++) { | ||
| 401 | hash_value = igb_hash_mc_addr(hw, mc_addr_list); | ||
| 402 | |||
| 403 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | ||
| 404 | hash_bit = hash_value & 0x1F; | ||
| 405 | |||
| 406 | hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); | ||
| 407 | mc_addr_list += (ETH_ALEN); | ||
| 408 | } | ||
| 409 | |||
| 410 | /* replace the entire MTA table */ | ||
| 411 | for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) | ||
| 412 | array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]); | ||
| 413 | wrfl(); | ||
| 414 | } | ||
| 415 | |||
| 416 | /** | ||
| 417 | * igb_clear_hw_cntrs_base - Clear base hardware counters | ||
| 418 | * @hw: pointer to the HW structure | ||
| 419 | * | ||
| 420 | * Clears the base hardware counters by reading the counter registers. | ||
| 421 | **/ | ||
| 422 | void igb_clear_hw_cntrs_base(struct e1000_hw *hw) | ||
| 423 | { | ||
| 424 | rd32(E1000_CRCERRS); | ||
| 425 | rd32(E1000_SYMERRS); | ||
| 426 | rd32(E1000_MPC); | ||
| 427 | rd32(E1000_SCC); | ||
| 428 | rd32(E1000_ECOL); | ||
| 429 | rd32(E1000_MCC); | ||
| 430 | rd32(E1000_LATECOL); | ||
| 431 | rd32(E1000_COLC); | ||
| 432 | rd32(E1000_DC); | ||
| 433 | rd32(E1000_SEC); | ||
| 434 | rd32(E1000_RLEC); | ||
| 435 | rd32(E1000_XONRXC); | ||
| 436 | rd32(E1000_XONTXC); | ||
| 437 | rd32(E1000_XOFFRXC); | ||
| 438 | rd32(E1000_XOFFTXC); | ||
| 439 | rd32(E1000_FCRUC); | ||
| 440 | rd32(E1000_GPRC); | ||
| 441 | rd32(E1000_BPRC); | ||
| 442 | rd32(E1000_MPRC); | ||
| 443 | rd32(E1000_GPTC); | ||
| 444 | rd32(E1000_GORCL); | ||
| 445 | rd32(E1000_GORCH); | ||
| 446 | rd32(E1000_GOTCL); | ||
| 447 | rd32(E1000_GOTCH); | ||
| 448 | rd32(E1000_RNBC); | ||
| 449 | rd32(E1000_RUC); | ||
| 450 | rd32(E1000_RFC); | ||
| 451 | rd32(E1000_ROC); | ||
| 452 | rd32(E1000_RJC); | ||
| 453 | rd32(E1000_TORL); | ||
| 454 | rd32(E1000_TORH); | ||
| 455 | rd32(E1000_TOTL); | ||
| 456 | rd32(E1000_TOTH); | ||
| 457 | rd32(E1000_TPR); | ||
| 458 | rd32(E1000_TPT); | ||
| 459 | rd32(E1000_MPTC); | ||
| 460 | rd32(E1000_BPTC); | ||
| 461 | } | ||
| 462 | |||
| 463 | /** | ||
| 464 | * igb_check_for_copper_link - Check for link (Copper) | ||
| 465 | * @hw: pointer to the HW structure | ||
| 466 | * | ||
| 467 | * Checks to see of the link status of the hardware has changed. If a | ||
| 468 | * change in link status has been detected, then we read the PHY registers | ||
| 469 | * to get the current speed/duplex if link exists. | ||
| 470 | **/ | ||
| 471 | s32 igb_check_for_copper_link(struct e1000_hw *hw) | ||
| 472 | { | ||
| 473 | struct e1000_mac_info *mac = &hw->mac; | ||
| 474 | s32 ret_val; | ||
| 475 | bool link; | ||
| 476 | |||
| 477 | /* | ||
| 478 | * We only want to go out to the PHY registers to see if Auto-Neg | ||
| 479 | * has completed and/or if our link status has changed. The | ||
| 480 | * get_link_status flag is set upon receiving a Link Status | ||
| 481 | * Change or Rx Sequence Error interrupt. | ||
| 482 | */ | ||
| 483 | if (!mac->get_link_status) { | ||
| 484 | ret_val = 0; | ||
| 485 | goto out; | ||
| 486 | } | ||
| 487 | |||
| 488 | /* | ||
| 489 | * First we want to see if the MII Status Register reports | ||
| 490 | * link. If so, then we want to get the current speed/duplex | ||
| 491 | * of the PHY. | ||
| 492 | */ | ||
| 493 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
| 494 | if (ret_val) | ||
| 495 | goto out; | ||
| 496 | |||
| 497 | if (!link) | ||
| 498 | goto out; /* No link detected */ | ||
| 499 | |||
| 500 | mac->get_link_status = false; | ||
| 501 | |||
| 502 | /* | ||
| 503 | * Check if there was DownShift, must be checked | ||
| 504 | * immediately after link-up | ||
| 505 | */ | ||
| 506 | igb_check_downshift(hw); | ||
| 507 | |||
| 508 | /* | ||
| 509 | * If we are forcing speed/duplex, then we simply return since | ||
| 510 | * we have already determined whether we have link or not. | ||
| 511 | */ | ||
| 512 | if (!mac->autoneg) { | ||
| 513 | ret_val = -E1000_ERR_CONFIG; | ||
| 514 | goto out; | ||
| 515 | } | ||
| 516 | |||
| 517 | /* | ||
| 518 | * Auto-Neg is enabled. Auto Speed Detection takes care | ||
| 519 | * of MAC speed/duplex configuration. So we only need to | ||
| 520 | * configure Collision Distance in the MAC. | ||
| 521 | */ | ||
| 522 | igb_config_collision_dist(hw); | ||
| 523 | |||
| 524 | /* | ||
| 525 | * Configure Flow Control now that Auto-Neg has completed. | ||
| 526 | * First, we need to restore the desired flow control | ||
| 527 | * settings because we may have had to re-autoneg with a | ||
| 528 | * different link partner. | ||
| 529 | */ | ||
| 530 | ret_val = igb_config_fc_after_link_up(hw); | ||
| 531 | if (ret_val) | ||
| 532 | hw_dbg("Error configuring flow control\n"); | ||
| 533 | |||
| 534 | out: | ||
| 535 | return ret_val; | ||
| 536 | } | ||
| 537 | |||
| 538 | /** | ||
| 539 | * igb_setup_link - Setup flow control and link settings | ||
| 540 | * @hw: pointer to the HW structure | ||
| 541 | * | ||
| 542 | * Determines which flow control settings to use, then configures flow | ||
| 543 | * control. Calls the appropriate media-specific link configuration | ||
| 544 | * function. Assuming the adapter has a valid link partner, a valid link | ||
| 545 | * should be established. Assumes the hardware has previously been reset | ||
| 546 | * and the transmitter and receiver are not enabled. | ||
| 547 | **/ | ||
| 548 | s32 igb_setup_link(struct e1000_hw *hw) | ||
| 549 | { | ||
| 550 | s32 ret_val = 0; | ||
| 551 | |||
| 552 | /* | ||
| 553 | * In the case of the phy reset being blocked, we already have a link. | ||
| 554 | * We do not need to set it up again. | ||
| 555 | */ | ||
| 556 | if (igb_check_reset_block(hw)) | ||
| 557 | goto out; | ||
| 558 | |||
| 559 | /* | ||
| 560 | * If requested flow control is set to default, set flow control | ||
| 561 | * based on the EEPROM flow control settings. | ||
| 562 | */ | ||
| 563 | if (hw->fc.requested_mode == e1000_fc_default) { | ||
| 564 | ret_val = igb_set_default_fc(hw); | ||
| 565 | if (ret_val) | ||
| 566 | goto out; | ||
| 567 | } | ||
| 568 | |||
| 569 | /* | ||
| 570 | * We want to save off the original Flow Control configuration just | ||
| 571 | * in case we get disconnected and then reconnected into a different | ||
| 572 | * hub or switch with different Flow Control capabilities. | ||
| 573 | */ | ||
| 574 | hw->fc.current_mode = hw->fc.requested_mode; | ||
| 575 | |||
| 576 | hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); | ||
| 577 | |||
| 578 | /* Call the necessary media_type subroutine to configure the link. */ | ||
| 579 | ret_val = hw->mac.ops.setup_physical_interface(hw); | ||
| 580 | if (ret_val) | ||
| 581 | goto out; | ||
| 582 | |||
| 583 | /* | ||
| 584 | * Initialize the flow control address, type, and PAUSE timer | ||
| 585 | * registers to their default values. This is done even if flow | ||
| 586 | * control is disabled, because it does not hurt anything to | ||
| 587 | * initialize these registers. | ||
| 588 | */ | ||
| 589 | hw_dbg("Initializing the Flow Control address, type and timer regs\n"); | ||
| 590 | wr32(E1000_FCT, FLOW_CONTROL_TYPE); | ||
| 591 | wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
| 592 | wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
| 593 | |||
| 594 | wr32(E1000_FCTTV, hw->fc.pause_time); | ||
| 595 | |||
| 596 | ret_val = igb_set_fc_watermarks(hw); | ||
| 597 | |||
| 598 | out: | ||
| 599 | return ret_val; | ||
| 600 | } | ||
| 601 | |||
| 602 | /** | ||
| 603 | * igb_config_collision_dist - Configure collision distance | ||
| 604 | * @hw: pointer to the HW structure | ||
| 605 | * | ||
| 606 | * Configures the collision distance to the default value and is used | ||
| 607 | * during link setup. Currently no func pointer exists and all | ||
| 608 | * implementations are handled in the generic version of this function. | ||
| 609 | **/ | ||
| 610 | void igb_config_collision_dist(struct e1000_hw *hw) | ||
| 611 | { | ||
| 612 | u32 tctl; | ||
| 613 | |||
| 614 | tctl = rd32(E1000_TCTL); | ||
| 615 | |||
| 616 | tctl &= ~E1000_TCTL_COLD; | ||
| 617 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | ||
| 618 | |||
| 619 | wr32(E1000_TCTL, tctl); | ||
| 620 | wrfl(); | ||
| 621 | } | ||
| 622 | |||
| 623 | /** | ||
| 624 | * igb_set_fc_watermarks - Set flow control high/low watermarks | ||
| 625 | * @hw: pointer to the HW structure | ||
| 626 | * | ||
| 627 | * Sets the flow control high/low threshold (watermark) registers. If | ||
| 628 | * flow control XON frame transmission is enabled, then set XON frame | ||
| 629 | * tansmission as well. | ||
| 630 | **/ | ||
| 631 | static s32 igb_set_fc_watermarks(struct e1000_hw *hw) | ||
| 632 | { | ||
| 633 | s32 ret_val = 0; | ||
| 634 | u32 fcrtl = 0, fcrth = 0; | ||
| 635 | |||
| 636 | /* | ||
| 637 | * Set the flow control receive threshold registers. Normally, | ||
| 638 | * these registers will be set to a default threshold that may be | ||
| 639 | * adjusted later by the driver's runtime code. However, if the | ||
| 640 | * ability to transmit pause frames is not enabled, then these | ||
| 641 | * registers will be set to 0. | ||
| 642 | */ | ||
| 643 | if (hw->fc.current_mode & e1000_fc_tx_pause) { | ||
| 644 | /* | ||
| 645 | * We need to set up the Receive Threshold high and low water | ||
| 646 | * marks as well as (optionally) enabling the transmission of | ||
| 647 | * XON frames. | ||
| 648 | */ | ||
| 649 | fcrtl = hw->fc.low_water; | ||
| 650 | if (hw->fc.send_xon) | ||
| 651 | fcrtl |= E1000_FCRTL_XONE; | ||
| 652 | |||
| 653 | fcrth = hw->fc.high_water; | ||
| 654 | } | ||
| 655 | wr32(E1000_FCRTL, fcrtl); | ||
| 656 | wr32(E1000_FCRTH, fcrth); | ||
| 657 | |||
| 658 | return ret_val; | ||
| 659 | } | ||
| 660 | |||
| 661 | /** | ||
| 662 | * igb_set_default_fc - Set flow control default values | ||
| 663 | * @hw: pointer to the HW structure | ||
| 664 | * | ||
| 665 | * Read the EEPROM for the default values for flow control and store the | ||
| 666 | * values. | ||
| 667 | **/ | ||
| 668 | static s32 igb_set_default_fc(struct e1000_hw *hw) | ||
| 669 | { | ||
| 670 | s32 ret_val = 0; | ||
| 671 | u16 nvm_data; | ||
| 672 | |||
| 673 | /* | ||
| 674 | * Read and store word 0x0F of the EEPROM. This word contains bits | ||
| 675 | * that determine the hardware's default PAUSE (flow control) mode, | ||
| 676 | * a bit that determines whether the HW defaults to enabling or | ||
| 677 | * disabling auto-negotiation, and the direction of the | ||
| 678 | * SW defined pins. If there is no SW over-ride of the flow | ||
| 679 | * control setting, then the variable hw->fc will | ||
| 680 | * be initialized based on a value in the EEPROM. | ||
| 681 | */ | ||
| 682 | ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); | ||
| 683 | |||
| 684 | if (ret_val) { | ||
| 685 | hw_dbg("NVM Read Error\n"); | ||
| 686 | goto out; | ||
| 687 | } | ||
| 688 | |||
| 689 | if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) | ||
| 690 | hw->fc.requested_mode = e1000_fc_none; | ||
| 691 | else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == | ||
| 692 | NVM_WORD0F_ASM_DIR) | ||
| 693 | hw->fc.requested_mode = e1000_fc_tx_pause; | ||
| 694 | else | ||
| 695 | hw->fc.requested_mode = e1000_fc_full; | ||
| 696 | |||
| 697 | out: | ||
| 698 | return ret_val; | ||
| 699 | } | ||
| 700 | |||
| 701 | /** | ||
| 702 | * igb_force_mac_fc - Force the MAC's flow control settings | ||
| 703 | * @hw: pointer to the HW structure | ||
| 704 | * | ||
| 705 | * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the | ||
| 706 | * device control register to reflect the adapter settings. TFCE and RFCE | ||
| 707 | * need to be explicitly set by software when a copper PHY is used because | ||
| 708 | * autonegotiation is managed by the PHY rather than the MAC. Software must | ||
| 709 | * also configure these bits when link is forced on a fiber connection. | ||
| 710 | **/ | ||
| 711 | s32 igb_force_mac_fc(struct e1000_hw *hw) | ||
| 712 | { | ||
| 713 | u32 ctrl; | ||
| 714 | s32 ret_val = 0; | ||
| 715 | |||
| 716 | ctrl = rd32(E1000_CTRL); | ||
| 717 | |||
| 718 | /* | ||
| 719 | * Because we didn't get link via the internal auto-negotiation | ||
| 720 | * mechanism (we either forced link or we got link via PHY | ||
| 721 | * auto-neg), we have to manually enable/disable transmit an | ||
| 722 | * receive flow control. | ||
| 723 | * | ||
| 724 | * The "Case" statement below enables/disable flow control | ||
| 725 | * according to the "hw->fc.current_mode" parameter. | ||
| 726 | * | ||
| 727 | * The possible values of the "fc" parameter are: | ||
| 728 | * 0: Flow control is completely disabled | ||
| 729 | * 1: Rx flow control is enabled (we can receive pause | ||
| 730 | * frames but not send pause frames). | ||
| 731 | * 2: Tx flow control is enabled (we can send pause frames | ||
| 732 | * frames but we do not receive pause frames). | ||
| 733 | * 3: Both Rx and TX flow control (symmetric) is enabled. | ||
| 734 | * other: No other values should be possible at this point. | ||
| 735 | */ | ||
| 736 | hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); | ||
| 737 | |||
| 738 | switch (hw->fc.current_mode) { | ||
| 739 | case e1000_fc_none: | ||
| 740 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | ||
| 741 | break; | ||
| 742 | case e1000_fc_rx_pause: | ||
| 743 | ctrl &= (~E1000_CTRL_TFCE); | ||
| 744 | ctrl |= E1000_CTRL_RFCE; | ||
| 745 | break; | ||
| 746 | case e1000_fc_tx_pause: | ||
| 747 | ctrl &= (~E1000_CTRL_RFCE); | ||
| 748 | ctrl |= E1000_CTRL_TFCE; | ||
| 749 | break; | ||
| 750 | case e1000_fc_full: | ||
| 751 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | ||
| 752 | break; | ||
| 753 | default: | ||
| 754 | hw_dbg("Flow control param set incorrectly\n"); | ||
| 755 | ret_val = -E1000_ERR_CONFIG; | ||
| 756 | goto out; | ||
| 757 | } | ||
| 758 | |||
| 759 | wr32(E1000_CTRL, ctrl); | ||
| 760 | |||
| 761 | out: | ||
| 762 | return ret_val; | ||
| 763 | } | ||
| 764 | |||
| 765 | /** | ||
| 766 | * igb_config_fc_after_link_up - Configures flow control after link | ||
| 767 | * @hw: pointer to the HW structure | ||
| 768 | * | ||
| 769 | * Checks the status of auto-negotiation after link up to ensure that the | ||
| 770 | * speed and duplex were not forced. If the link needed to be forced, then | ||
| 771 | * flow control needs to be forced also. If auto-negotiation is enabled | ||
| 772 | * and did not fail, then we configure flow control based on our link | ||
| 773 | * partner. | ||
| 774 | **/ | ||
| 775 | s32 igb_config_fc_after_link_up(struct e1000_hw *hw) | ||
| 776 | { | ||
| 777 | struct e1000_mac_info *mac = &hw->mac; | ||
| 778 | s32 ret_val = 0; | ||
| 779 | u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | ||
| 780 | u16 speed, duplex; | ||
| 781 | |||
| 782 | /* | ||
| 783 | * Check for the case where we have fiber media and auto-neg failed | ||
| 784 | * so we had to force link. In this case, we need to force the | ||
| 785 | * configuration of the MAC to match the "fc" parameter. | ||
| 786 | */ | ||
| 787 | if (mac->autoneg_failed) { | ||
| 788 | if (hw->phy.media_type == e1000_media_type_internal_serdes) | ||
| 789 | ret_val = igb_force_mac_fc(hw); | ||
| 790 | } else { | ||
| 791 | if (hw->phy.media_type == e1000_media_type_copper) | ||
| 792 | ret_val = igb_force_mac_fc(hw); | ||
| 793 | } | ||
| 794 | |||
| 795 | if (ret_val) { | ||
| 796 | hw_dbg("Error forcing flow control settings\n"); | ||
| 797 | goto out; | ||
| 798 | } | ||
| 799 | |||
| 800 | /* | ||
| 801 | * Check for the case where we have copper media and auto-neg is | ||
| 802 | * enabled. In this case, we need to check and see if Auto-Neg | ||
| 803 | * has completed, and if so, how the PHY and link partner has | ||
| 804 | * flow control configured. | ||
| 805 | */ | ||
| 806 | if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { | ||
| 807 | /* | ||
| 808 | * Read the MII Status Register and check to see if AutoNeg | ||
| 809 | * has completed. We read this twice because this reg has | ||
| 810 | * some "sticky" (latched) bits. | ||
| 811 | */ | ||
| 812 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, | ||
| 813 | &mii_status_reg); | ||
| 814 | if (ret_val) | ||
| 815 | goto out; | ||
| 816 | ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, | ||
| 817 | &mii_status_reg); | ||
| 818 | if (ret_val) | ||
| 819 | goto out; | ||
| 820 | |||
| 821 | if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { | ||
| 822 | hw_dbg("Copper PHY and Auto Neg " | ||
| 823 | "has not completed.\n"); | ||
| 824 | goto out; | ||
| 825 | } | ||
| 826 | |||
| 827 | /* | ||
| 828 | * The AutoNeg process has completed, so we now need to | ||
| 829 | * read both the Auto Negotiation Advertisement | ||
| 830 | * Register (Address 4) and the Auto_Negotiation Base | ||
| 831 | * Page Ability Register (Address 5) to determine how | ||
| 832 | * flow control was negotiated. | ||
| 833 | */ | ||
| 834 | ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, | ||
| 835 | &mii_nway_adv_reg); | ||
| 836 | if (ret_val) | ||
| 837 | goto out; | ||
| 838 | ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, | ||
| 839 | &mii_nway_lp_ability_reg); | ||
| 840 | if (ret_val) | ||
| 841 | goto out; | ||
| 842 | |||
| 843 | /* | ||
| 844 | * Two bits in the Auto Negotiation Advertisement Register | ||
| 845 | * (Address 4) and two bits in the Auto Negotiation Base | ||
| 846 | * Page Ability Register (Address 5) determine flow control | ||
| 847 | * for both the PHY and the link partner. The following | ||
| 848 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | ||
| 849 | * 1999, describes these PAUSE resolution bits and how flow | ||
| 850 | * control is determined based upon these settings. | ||
| 851 | * NOTE: DC = Don't Care | ||
| 852 | * | ||
| 853 | * LOCAL DEVICE | LINK PARTNER | ||
| 854 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | ||
| 855 | *-------|---------|-------|---------|-------------------- | ||
| 856 | * 0 | 0 | DC | DC | e1000_fc_none | ||
| 857 | * 0 | 1 | 0 | DC | e1000_fc_none | ||
| 858 | * 0 | 1 | 1 | 0 | e1000_fc_none | ||
| 859 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
| 860 | * 1 | 0 | 0 | DC | e1000_fc_none | ||
| 861 | * 1 | DC | 1 | DC | e1000_fc_full | ||
| 862 | * 1 | 1 | 0 | 0 | e1000_fc_none | ||
| 863 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
| 864 | * | ||
| 865 | * Are both PAUSE bits set to 1? If so, this implies | ||
| 866 | * Symmetric Flow Control is enabled at both ends. The | ||
| 867 | * ASM_DIR bits are irrelevant per the spec. | ||
| 868 | * | ||
| 869 | * For Symmetric Flow Control: | ||
| 870 | * | ||
| 871 | * LOCAL DEVICE | LINK PARTNER | ||
| 872 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
| 873 | *-------|---------|-------|---------|-------------------- | ||
| 874 | * 1 | DC | 1 | DC | E1000_fc_full | ||
| 875 | * | ||
| 876 | */ | ||
| 877 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
| 878 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | ||
| 879 | /* | ||
| 880 | * Now we need to check if the user selected RX ONLY | ||
| 881 | * of pause frames. In this case, we had to advertise | ||
| 882 | * FULL flow control because we could not advertise RX | ||
| 883 | * ONLY. Hence, we must now check to see if we need to | ||
| 884 | * turn OFF the TRANSMISSION of PAUSE frames. | ||
| 885 | */ | ||
| 886 | if (hw->fc.requested_mode == e1000_fc_full) { | ||
| 887 | hw->fc.current_mode = e1000_fc_full; | ||
| 888 | hw_dbg("Flow Control = FULL.\r\n"); | ||
| 889 | } else { | ||
| 890 | hw->fc.current_mode = e1000_fc_rx_pause; | ||
| 891 | hw_dbg("Flow Control = " | ||
| 892 | "RX PAUSE frames only.\r\n"); | ||
| 893 | } | ||
| 894 | } | ||
| 895 | /* | ||
| 896 | * For receiving PAUSE frames ONLY. | ||
| 897 | * | ||
| 898 | * LOCAL DEVICE | LINK PARTNER | ||
| 899 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
| 900 | *-------|---------|-------|---------|-------------------- | ||
| 901 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
| 902 | */ | ||
| 903 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
| 904 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
| 905 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
| 906 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
| 907 | hw->fc.current_mode = e1000_fc_tx_pause; | ||
| 908 | hw_dbg("Flow Control = TX PAUSE frames only.\r\n"); | ||
| 909 | } | ||
| 910 | /* | ||
| 911 | * For transmitting PAUSE frames ONLY. | ||
| 912 | * | ||
| 913 | * LOCAL DEVICE | LINK PARTNER | ||
| 914 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
| 915 | *-------|---------|-------|---------|-------------------- | ||
| 916 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
| 917 | */ | ||
| 918 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
| 919 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
| 920 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
| 921 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
| 922 | hw->fc.current_mode = e1000_fc_rx_pause; | ||
| 923 | hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); | ||
| 924 | } | ||
| 925 | /* | ||
| 926 | * Per the IEEE spec, at this point flow control should be | ||
| 927 | * disabled. However, we want to consider that we could | ||
| 928 | * be connected to a legacy switch that doesn't advertise | ||
| 929 | * desired flow control, but can be forced on the link | ||
| 930 | * partner. So if we advertised no flow control, that is | ||
| 931 | * what we will resolve to. If we advertised some kind of | ||
| 932 | * receive capability (Rx Pause Only or Full Flow Control) | ||
| 933 | * and the link partner advertised none, we will configure | ||
| 934 | * ourselves to enable Rx Flow Control only. We can do | ||
| 935 | * this safely for two reasons: If the link partner really | ||
| 936 | * didn't want flow control enabled, and we enable Rx, no | ||
| 937 | * harm done since we won't be receiving any PAUSE frames | ||
| 938 | * anyway. If the intent on the link partner was to have | ||
| 939 | * flow control enabled, then by us enabling RX only, we | ||
| 940 | * can at least receive pause frames and process them. | ||
| 941 | * This is a good idea because in most cases, since we are | ||
| 942 | * predominantly a server NIC, more times than not we will | ||
| 943 | * be asked to delay transmission of packets than asking | ||
| 944 | * our link partner to pause transmission of frames. | ||
| 945 | */ | ||
| 946 | else if ((hw->fc.requested_mode == e1000_fc_none || | ||
| 947 | hw->fc.requested_mode == e1000_fc_tx_pause) || | ||
| 948 | hw->fc.strict_ieee) { | ||
| 949 | hw->fc.current_mode = e1000_fc_none; | ||
| 950 | hw_dbg("Flow Control = NONE.\r\n"); | ||
| 951 | } else { | ||
| 952 | hw->fc.current_mode = e1000_fc_rx_pause; | ||
| 953 | hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); | ||
| 954 | } | ||
| 955 | |||
| 956 | /* | ||
| 957 | * Now we need to do one last check... If we auto- | ||
| 958 | * negotiated to HALF DUPLEX, flow control should not be | ||
| 959 | * enabled per IEEE 802.3 spec. | ||
| 960 | */ | ||
| 961 | ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); | ||
| 962 | if (ret_val) { | ||
| 963 | hw_dbg("Error getting link speed and duplex\n"); | ||
| 964 | goto out; | ||
| 965 | } | ||
| 966 | |||
| 967 | if (duplex == HALF_DUPLEX) | ||
| 968 | hw->fc.current_mode = e1000_fc_none; | ||
| 969 | |||
| 970 | /* | ||
| 971 | * Now we call a subroutine to actually force the MAC | ||
| 972 | * controller to use the correct flow control settings. | ||
| 973 | */ | ||
| 974 | ret_val = igb_force_mac_fc(hw); | ||
| 975 | if (ret_val) { | ||
| 976 | hw_dbg("Error forcing flow control settings\n"); | ||
| 977 | goto out; | ||
| 978 | } | ||
| 979 | } | ||
| 980 | |||
| 981 | out: | ||
| 982 | return ret_val; | ||
| 983 | } | ||
| 984 | |||
| 985 | /** | ||
| 986 | * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex | ||
| 987 | * @hw: pointer to the HW structure | ||
| 988 | * @speed: stores the current speed | ||
| 989 | * @duplex: stores the current duplex | ||
| 990 | * | ||
| 991 | * Read the status register for the current speed/duplex and store the current | ||
| 992 | * speed and duplex for copper connections. | ||
| 993 | **/ | ||
| 994 | s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, | ||
| 995 | u16 *duplex) | ||
| 996 | { | ||
| 997 | u32 status; | ||
| 998 | |||
| 999 | status = rd32(E1000_STATUS); | ||
| 1000 | if (status & E1000_STATUS_SPEED_1000) { | ||
| 1001 | *speed = SPEED_1000; | ||
| 1002 | hw_dbg("1000 Mbs, "); | ||
| 1003 | } else if (status & E1000_STATUS_SPEED_100) { | ||
| 1004 | *speed = SPEED_100; | ||
| 1005 | hw_dbg("100 Mbs, "); | ||
| 1006 | } else { | ||
| 1007 | *speed = SPEED_10; | ||
| 1008 | hw_dbg("10 Mbs, "); | ||
| 1009 | } | ||
| 1010 | |||
| 1011 | if (status & E1000_STATUS_FD) { | ||
| 1012 | *duplex = FULL_DUPLEX; | ||
| 1013 | hw_dbg("Full Duplex\n"); | ||
| 1014 | } else { | ||
| 1015 | *duplex = HALF_DUPLEX; | ||
| 1016 | hw_dbg("Half Duplex\n"); | ||
| 1017 | } | ||
| 1018 | |||
| 1019 | return 0; | ||
| 1020 | } | ||
| 1021 | |||
| 1022 | /** | ||
| 1023 | * igb_get_hw_semaphore - Acquire hardware semaphore | ||
| 1024 | * @hw: pointer to the HW structure | ||
| 1025 | * | ||
| 1026 | * Acquire the HW semaphore to access the PHY or NVM | ||
| 1027 | **/ | ||
| 1028 | s32 igb_get_hw_semaphore(struct e1000_hw *hw) | ||
| 1029 | { | ||
| 1030 | u32 swsm; | ||
| 1031 | s32 ret_val = 0; | ||
| 1032 | s32 timeout = hw->nvm.word_size + 1; | ||
| 1033 | s32 i = 0; | ||
| 1034 | |||
| 1035 | /* Get the SW semaphore */ | ||
| 1036 | while (i < timeout) { | ||
| 1037 | swsm = rd32(E1000_SWSM); | ||
| 1038 | if (!(swsm & E1000_SWSM_SMBI)) | ||
| 1039 | break; | ||
| 1040 | |||
| 1041 | udelay(50); | ||
| 1042 | i++; | ||
| 1043 | } | ||
| 1044 | |||
| 1045 | if (i == timeout) { | ||
| 1046 | hw_dbg("Driver can't access device - SMBI bit is set.\n"); | ||
| 1047 | ret_val = -E1000_ERR_NVM; | ||
| 1048 | goto out; | ||
| 1049 | } | ||
| 1050 | |||
| 1051 | /* Get the FW semaphore. */ | ||
| 1052 | for (i = 0; i < timeout; i++) { | ||
| 1053 | swsm = rd32(E1000_SWSM); | ||
| 1054 | wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); | ||
| 1055 | |||
| 1056 | /* Semaphore acquired if bit latched */ | ||
| 1057 | if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) | ||
| 1058 | break; | ||
| 1059 | |||
| 1060 | udelay(50); | ||
| 1061 | } | ||
| 1062 | |||
| 1063 | if (i == timeout) { | ||
| 1064 | /* Release semaphores */ | ||
| 1065 | igb_put_hw_semaphore(hw); | ||
| 1066 | hw_dbg("Driver can't access the NVM\n"); | ||
| 1067 | ret_val = -E1000_ERR_NVM; | ||
| 1068 | goto out; | ||
| 1069 | } | ||
| 1070 | |||
| 1071 | out: | ||
| 1072 | return ret_val; | ||
| 1073 | } | ||
| 1074 | |||
| 1075 | /** | ||
| 1076 | * igb_put_hw_semaphore - Release hardware semaphore | ||
| 1077 | * @hw: pointer to the HW structure | ||
| 1078 | * | ||
| 1079 | * Release hardware semaphore used to access the PHY or NVM | ||
| 1080 | **/ | ||
| 1081 | void igb_put_hw_semaphore(struct e1000_hw *hw) | ||
| 1082 | { | ||
| 1083 | u32 swsm; | ||
| 1084 | |||
| 1085 | swsm = rd32(E1000_SWSM); | ||
| 1086 | |||
| 1087 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
| 1088 | |||
| 1089 | wr32(E1000_SWSM, swsm); | ||
| 1090 | } | ||
| 1091 | |||
| 1092 | /** | ||
| 1093 | * igb_get_auto_rd_done - Check for auto read completion | ||
| 1094 | * @hw: pointer to the HW structure | ||
| 1095 | * | ||
| 1096 | * Check EEPROM for Auto Read done bit. | ||
| 1097 | **/ | ||
| 1098 | s32 igb_get_auto_rd_done(struct e1000_hw *hw) | ||
| 1099 | { | ||
| 1100 | s32 i = 0; | ||
| 1101 | s32 ret_val = 0; | ||
| 1102 | |||
| 1103 | |||
| 1104 | while (i < AUTO_READ_DONE_TIMEOUT) { | ||
| 1105 | if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) | ||
| 1106 | break; | ||
| 1107 | msleep(1); | ||
| 1108 | i++; | ||
| 1109 | } | ||
| 1110 | |||
| 1111 | if (i == AUTO_READ_DONE_TIMEOUT) { | ||
| 1112 | hw_dbg("Auto read by HW from NVM has not completed.\n"); | ||
| 1113 | ret_val = -E1000_ERR_RESET; | ||
| 1114 | goto out; | ||
| 1115 | } | ||
| 1116 | |||
| 1117 | out: | ||
| 1118 | return ret_val; | ||
| 1119 | } | ||
| 1120 | |||
| 1121 | /** | ||
| 1122 | * igb_valid_led_default - Verify a valid default LED config | ||
| 1123 | * @hw: pointer to the HW structure | ||
| 1124 | * @data: pointer to the NVM (EEPROM) | ||
| 1125 | * | ||
| 1126 | * Read the EEPROM for the current default LED configuration. If the | ||
| 1127 | * LED configuration is not valid, set to a valid LED configuration. | ||
| 1128 | **/ | ||
| 1129 | static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) | ||
| 1130 | { | ||
| 1131 | s32 ret_val; | ||
| 1132 | |||
| 1133 | ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); | ||
| 1134 | if (ret_val) { | ||
| 1135 | hw_dbg("NVM Read Error\n"); | ||
| 1136 | goto out; | ||
| 1137 | } | ||
| 1138 | |||
| 1139 | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { | ||
| 1140 | switch(hw->phy.media_type) { | ||
| 1141 | case e1000_media_type_internal_serdes: | ||
| 1142 | *data = ID_LED_DEFAULT_82575_SERDES; | ||
| 1143 | break; | ||
| 1144 | case e1000_media_type_copper: | ||
| 1145 | default: | ||
| 1146 | *data = ID_LED_DEFAULT; | ||
| 1147 | break; | ||
| 1148 | } | ||
| 1149 | } | ||
| 1150 | out: | ||
| 1151 | return ret_val; | ||
| 1152 | } | ||
| 1153 | |||
| 1154 | /** | ||
| 1155 | * igb_id_led_init - | ||
| 1156 | * @hw: pointer to the HW structure | ||
| 1157 | * | ||
| 1158 | **/ | ||
| 1159 | s32 igb_id_led_init(struct e1000_hw *hw) | ||
| 1160 | { | ||
| 1161 | struct e1000_mac_info *mac = &hw->mac; | ||
| 1162 | s32 ret_val; | ||
| 1163 | const u32 ledctl_mask = 0x000000FF; | ||
| 1164 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | ||
| 1165 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | ||
| 1166 | u16 data, i, temp; | ||
| 1167 | const u16 led_mask = 0x0F; | ||
| 1168 | |||
| 1169 | ret_val = igb_valid_led_default(hw, &data); | ||
| 1170 | if (ret_val) | ||
| 1171 | goto out; | ||
| 1172 | |||
| 1173 | mac->ledctl_default = rd32(E1000_LEDCTL); | ||
| 1174 | mac->ledctl_mode1 = mac->ledctl_default; | ||
| 1175 | mac->ledctl_mode2 = mac->ledctl_default; | ||
| 1176 | |||
| 1177 | for (i = 0; i < 4; i++) { | ||
| 1178 | temp = (data >> (i << 2)) & led_mask; | ||
| 1179 | switch (temp) { | ||
| 1180 | case ID_LED_ON1_DEF2: | ||
| 1181 | case ID_LED_ON1_ON2: | ||
| 1182 | case ID_LED_ON1_OFF2: | ||
| 1183 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
| 1184 | mac->ledctl_mode1 |= ledctl_on << (i << 3); | ||
| 1185 | break; | ||
| 1186 | case ID_LED_OFF1_DEF2: | ||
| 1187 | case ID_LED_OFF1_ON2: | ||
| 1188 | case ID_LED_OFF1_OFF2: | ||
| 1189 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
| 1190 | mac->ledctl_mode1 |= ledctl_off << (i << 3); | ||
| 1191 | break; | ||
| 1192 | default: | ||
| 1193 | /* Do nothing */ | ||
| 1194 | break; | ||
| 1195 | } | ||
| 1196 | switch (temp) { | ||
| 1197 | case ID_LED_DEF1_ON2: | ||
| 1198 | case ID_LED_ON1_ON2: | ||
| 1199 | case ID_LED_OFF1_ON2: | ||
| 1200 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
| 1201 | mac->ledctl_mode2 |= ledctl_on << (i << 3); | ||
| 1202 | break; | ||
| 1203 | case ID_LED_DEF1_OFF2: | ||
| 1204 | case ID_LED_ON1_OFF2: | ||
| 1205 | case ID_LED_OFF1_OFF2: | ||
| 1206 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
| 1207 | mac->ledctl_mode2 |= ledctl_off << (i << 3); | ||
| 1208 | break; | ||
| 1209 | default: | ||
| 1210 | /* Do nothing */ | ||
| 1211 | break; | ||
| 1212 | } | ||
| 1213 | } | ||
| 1214 | |||
| 1215 | out: | ||
| 1216 | return ret_val; | ||
| 1217 | } | ||
| 1218 | |||
| 1219 | /** | ||
| 1220 | * igb_cleanup_led - Set LED config to default operation | ||
| 1221 | * @hw: pointer to the HW structure | ||
| 1222 | * | ||
| 1223 | * Remove the current LED configuration and set the LED configuration | ||
| 1224 | * to the default value, saved from the EEPROM. | ||
| 1225 | **/ | ||
| 1226 | s32 igb_cleanup_led(struct e1000_hw *hw) | ||
| 1227 | { | ||
| 1228 | wr32(E1000_LEDCTL, hw->mac.ledctl_default); | ||
| 1229 | return 0; | ||
| 1230 | } | ||
| 1231 | |||
| 1232 | /** | ||
| 1233 | * igb_blink_led - Blink LED | ||
| 1234 | * @hw: pointer to the HW structure | ||
| 1235 | * | ||
| 1236 | * Blink the led's which are set to be on. | ||
| 1237 | **/ | ||
| 1238 | s32 igb_blink_led(struct e1000_hw *hw) | ||
| 1239 | { | ||
| 1240 | u32 ledctl_blink = 0; | ||
| 1241 | u32 i; | ||
| 1242 | |||
| 1243 | /* | ||
| 1244 | * set the blink bit for each LED that's "on" (0x0E) | ||
| 1245 | * in ledctl_mode2 | ||
| 1246 | */ | ||
| 1247 | ledctl_blink = hw->mac.ledctl_mode2; | ||
| 1248 | for (i = 0; i < 4; i++) | ||
| 1249 | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
| 1250 | E1000_LEDCTL_MODE_LED_ON) | ||
| 1251 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << | ||
| 1252 | (i * 8)); | ||
| 1253 | |||
| 1254 | wr32(E1000_LEDCTL, ledctl_blink); | ||
| 1255 | |||
| 1256 | return 0; | ||
| 1257 | } | ||
| 1258 | |||
| 1259 | /** | ||
| 1260 | * igb_led_off - Turn LED off | ||
| 1261 | * @hw: pointer to the HW structure | ||
| 1262 | * | ||
| 1263 | * Turn LED off. | ||
| 1264 | **/ | ||
| 1265 | s32 igb_led_off(struct e1000_hw *hw) | ||
| 1266 | { | ||
| 1267 | switch (hw->phy.media_type) { | ||
| 1268 | case e1000_media_type_copper: | ||
| 1269 | wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); | ||
| 1270 | break; | ||
| 1271 | default: | ||
| 1272 | break; | ||
| 1273 | } | ||
| 1274 | |||
| 1275 | return 0; | ||
| 1276 | } | ||
| 1277 | |||
| 1278 | /** | ||
| 1279 | * igb_disable_pcie_master - Disables PCI-express master access | ||
| 1280 | * @hw: pointer to the HW structure | ||
| 1281 | * | ||
| 1282 | * Returns 0 (0) if successful, else returns -10 | ||
| 1283 | * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued | ||
| 1284 | * the master requests to be disabled. | ||
| 1285 | * | ||
| 1286 | * Disables PCI-Express master access and verifies there are no pending | ||
| 1287 | * requests. | ||
| 1288 | **/ | ||
| 1289 | s32 igb_disable_pcie_master(struct e1000_hw *hw) | ||
| 1290 | { | ||
| 1291 | u32 ctrl; | ||
| 1292 | s32 timeout = MASTER_DISABLE_TIMEOUT; | ||
| 1293 | s32 ret_val = 0; | ||
| 1294 | |||
| 1295 | if (hw->bus.type != e1000_bus_type_pci_express) | ||
| 1296 | goto out; | ||
| 1297 | |||
| 1298 | ctrl = rd32(E1000_CTRL); | ||
| 1299 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | ||
| 1300 | wr32(E1000_CTRL, ctrl); | ||
| 1301 | |||
| 1302 | while (timeout) { | ||
| 1303 | if (!(rd32(E1000_STATUS) & | ||
| 1304 | E1000_STATUS_GIO_MASTER_ENABLE)) | ||
| 1305 | break; | ||
| 1306 | udelay(100); | ||
| 1307 | timeout--; | ||
| 1308 | } | ||
| 1309 | |||
| 1310 | if (!timeout) { | ||
| 1311 | hw_dbg("Master requests are pending.\n"); | ||
| 1312 | ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
| 1313 | goto out; | ||
| 1314 | } | ||
| 1315 | |||
| 1316 | out: | ||
| 1317 | return ret_val; | ||
| 1318 | } | ||
| 1319 | |||
| 1320 | /** | ||
| 1321 | * igb_validate_mdi_setting - Verify MDI/MDIx settings | ||
| 1322 | * @hw: pointer to the HW structure | ||
| 1323 | * | ||
| 1324 | * Verify that when not using auto-negotitation that MDI/MDIx is correctly | ||
| 1325 | * set, which is forced to MDI mode only. | ||
| 1326 | **/ | ||
| 1327 | s32 igb_validate_mdi_setting(struct e1000_hw *hw) | ||
| 1328 | { | ||
| 1329 | s32 ret_val = 0; | ||
| 1330 | |||
| 1331 | if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { | ||
| 1332 | hw_dbg("Invalid MDI setting detected\n"); | ||
| 1333 | hw->phy.mdix = 1; | ||
| 1334 | ret_val = -E1000_ERR_CONFIG; | ||
| 1335 | goto out; | ||
| 1336 | } | ||
| 1337 | |||
| 1338 | out: | ||
| 1339 | return ret_val; | ||
| 1340 | } | ||
| 1341 | |||
| 1342 | /** | ||
| 1343 | * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register | ||
| 1344 | * @hw: pointer to the HW structure | ||
| 1345 | * @reg: 32bit register offset such as E1000_SCTL | ||
| 1346 | * @offset: register offset to write to | ||
| 1347 | * @data: data to write at register offset | ||
| 1348 | * | ||
| 1349 | * Writes an address/data control type register. There are several of these | ||
| 1350 | * and they all have the format address << 8 | data and bit 31 is polled for | ||
| 1351 | * completion. | ||
| 1352 | **/ | ||
| 1353 | s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, | ||
| 1354 | u32 offset, u8 data) | ||
| 1355 | { | ||
| 1356 | u32 i, regvalue = 0; | ||
| 1357 | s32 ret_val = 0; | ||
| 1358 | |||
| 1359 | /* Set up the address and data */ | ||
| 1360 | regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); | ||
| 1361 | wr32(reg, regvalue); | ||
| 1362 | |||
| 1363 | /* Poll the ready bit to see if the MDI read completed */ | ||
| 1364 | for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { | ||
| 1365 | udelay(5); | ||
| 1366 | regvalue = rd32(reg); | ||
| 1367 | if (regvalue & E1000_GEN_CTL_READY) | ||
| 1368 | break; | ||
| 1369 | } | ||
| 1370 | if (!(regvalue & E1000_GEN_CTL_READY)) { | ||
| 1371 | hw_dbg("Reg %08x did not indicate ready\n", reg); | ||
| 1372 | ret_val = -E1000_ERR_PHY; | ||
| 1373 | goto out; | ||
| 1374 | } | ||
| 1375 | |||
| 1376 | out: | ||
| 1377 | return ret_val; | ||
| 1378 | } | ||
| 1379 | |||
| 1380 | /** | ||
| 1381 | * igb_enable_mng_pass_thru - Enable processing of ARP's | ||
| 1382 | * @hw: pointer to the HW structure | ||
| 1383 | * | ||
| 1384 | * Verifies the hardware needs to leave interface enabled so that frames can | ||
| 1385 | * be directed to and from the management interface. | ||
| 1386 | **/ | ||
| 1387 | bool igb_enable_mng_pass_thru(struct e1000_hw *hw) | ||
| 1388 | { | ||
| 1389 | u32 manc; | ||
| 1390 | u32 fwsm, factps; | ||
| 1391 | bool ret_val = false; | ||
| 1392 | |||
| 1393 | if (!hw->mac.asf_firmware_present) | ||
| 1394 | goto out; | ||
| 1395 | |||
| 1396 | manc = rd32(E1000_MANC); | ||
| 1397 | |||
| 1398 | if (!(manc & E1000_MANC_RCV_TCO_EN)) | ||
| 1399 | goto out; | ||
| 1400 | |||
| 1401 | if (hw->mac.arc_subsystem_valid) { | ||
| 1402 | fwsm = rd32(E1000_FWSM); | ||
| 1403 | factps = rd32(E1000_FACTPS); | ||
| 1404 | |||
| 1405 | if (!(factps & E1000_FACTPS_MNGCG) && | ||
| 1406 | ((fwsm & E1000_FWSM_MODE_MASK) == | ||
| 1407 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { | ||
| 1408 | ret_val = true; | ||
| 1409 | goto out; | ||
| 1410 | } | ||
| 1411 | } else { | ||
| 1412 | if ((manc & E1000_MANC_SMBUS_EN) && | ||
| 1413 | !(manc & E1000_MANC_ASF_EN)) { | ||
| 1414 | ret_val = true; | ||
| 1415 | goto out; | ||
| 1416 | } | ||
| 1417 | } | ||
| 1418 | |||
| 1419 | out: | ||
| 1420 | return ret_val; | ||
| 1421 | } | ||
