aboutsummaryrefslogtreecommitdiffstats
path: root/native/src/sharedres.cpp
blob: a3b4ed9a5e0ac4070dbef452e7e946dd48045867 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
#include <algorithm> // for greater, sort
#include <numeric>
#include <functional>
#include <limits.h>
#include <iostream>

#include "sharedres.h"
#include "res_io.h"

#include "time-types.h"
#include "math-helper.h"

#include "stl-helper.h"

#ifdef CONFIG_USE_0X
#include <unordered_map>
#define hashmap std::unordered_map
#else
#include <ext/hash_map>
#define hashmap __gnu_cxx::hash_map
#endif

#include "blocking.h"

const unsigned int UNLIMITED = UINT_MAX;

std::ostream& operator<<(std::ostream &os, const TaskInfo  &ti)
{
	os << "TaskInfo[";
	if (ti.get_priority() != UINT_MAX)
		os << "priority="
		   << ti.get_priority() <<  ", ";
	os << "period="
	   << ti.get_period()   << ", response="
	   << ti.get_response() << ", cluster="
	   << ti.get_cluster()  << ", requests=<";

	foreach(ti.get_requests(), it)
	{
		if (it != ti.get_requests().begin())
			os << " ";
		os << (*it);
	}

	os << ">]";
	return os;
}

std::ostream& operator<<(std::ostream &os, const RequestBound &rb)
{
	os << "(res-id="
	   << rb.get_resource_id() << ", num="
	   << rb.get_num_requests() << ", len="
	   << rb.get_request_length() << ")";
	return os;
}

std::ostream& operator<<(std::ostream &os, const ResourceSharingInfo &rsi)
{
	foreach(rsi.get_tasks(), it)
	{
		const TaskInfo& tsk  = *it;
		os << "\t" << tsk << std::endl;
	}
	return os;
}

unsigned int RequestBound::get_max_num_requests(unsigned long interval) const
{
	unsigned long num_jobs;

	num_jobs = divide_with_ceil(interval + task->get_response(),
				    task->get_period());

	return (unsigned int) (num_jobs * num_requests);
}


// ****** non-exported helpers *******


void split_by_cluster(const ResourceSharingInfo& info, Clusters& clusters)
{
	foreach(info.get_tasks(), it)
	{
		const TaskInfo& tsk  = *it;
		unsigned int cluster = tsk.get_cluster();

		while (cluster  >= clusters.size())
			clusters.push_back(Cluster());

		clusters[cluster].push_back(&tsk);
	}
}


bool has_higher_priority(const TaskInfo* a, const TaskInfo* b)
{
	return a->get_priority() < b->get_priority();
}

void sort_by_priority(Clusters& clusters)
{
	foreach(clusters, it)
	{
		Cluster& cluster = *it;
		std::sort(cluster.begin(), cluster.end(), has_higher_priority);
	}
}


void split_by_resource(const ResourceSharingInfo& info, Resources& resources)
{
	foreach(info.get_tasks(), it)
	{
		const TaskInfo& tsk  = *it;

		foreach(tsk.get_requests(), jt)
		{
			const RequestBound& req = *jt;
			unsigned int res = req.get_resource_id();

			while (res  >= resources.size())
				resources.push_back(ContentionSet());

			resources[res].push_back(&req);
		}
	}
}

static void all_from_cluster(const Cluster& cluster, ContentionSet& cs)
{
	foreach(cluster, it)
	{
		const TaskInfo* tsk  = *it;

		foreach(tsk->get_requests(), jt)
		{
			const RequestBound& req = *jt;
			cs.push_back(&req);
		}
	}
}

static void all_per_cluster(const Clusters& clusters,
			    AllPerCluster& all)
{
	foreach(clusters, it)
	{
		all.push_back(ContentionSet());
		all_from_cluster(*it, all.back());
	}
}


static void split_by_resource(const Cluster& cluster, Resources& resources)
{

	foreach(cluster, it)
	{
		const TaskInfo* tsk  = *it;

		foreach(tsk->get_requests(), jt)
		{
			const RequestBound& req = *jt;
			unsigned int res = req.get_resource_id();

			while (res  >= resources.size())
				resources.push_back(ContentionSet());

			resources[res].push_back(&req);
		}
	}
}

static void split_by_resource(const Clusters& clusters,
			      ClusterResources& resources)
{
	foreach(clusters, it)
	{
		resources.push_back(Resources());
		split_by_resource(*it, resources.back());
	}
}

static void split_by_type(const ContentionSet& requests,
			  ContentionSet& reads,
			  ContentionSet& writes)
{
	foreach(requests, it)
	{
		const RequestBound *req = *it;

		if (req->get_request_type() == READ)
			reads.push_back(req);
		else
			writes.push_back(req);
	}
}

static void split_by_type(const Resources& resources,
			  Resources &reads,
			  Resources &writes)
{
	reads.reserve(resources.size());
	writes.reserve(resources.size());
	foreach(resources, it)
	{
		reads.push_back(ContentionSet());
		writes.push_back(ContentionSet());
		split_by_type(*it, reads.back(), writes.back());
	}
}

static void split_by_type(const ClusterResources& per_cluster,
			  ClusterResources &reads,
			  ClusterResources &writes)
{
	reads.reserve(per_cluster.size());
	writes.reserve(per_cluster.size());
	foreach(per_cluster, it)
	{
		reads.push_back(Resources());
		writes.push_back(Resources());
		split_by_type(*it, reads.back(), writes.back());
	}
}

static bool has_longer_request_length(const RequestBound* a,
				      const RequestBound* b)
{
	return a->get_request_length() > b->get_request_length();
}

void sort_by_request_length(ContentionSet& cs)
{
	std::sort(cs.begin(), cs.end(), has_longer_request_length);
}

static bool has_longer_request_length_lcs(const LimitedRequestBound &a,
				          const LimitedRequestBound &b)
{
	return has_longer_request_length(a.request_bound, b.request_bound);
}

void sort_by_request_length(LimitedContentionSet &lcs)
{
	std::sort(lcs.begin(), lcs.end(), has_longer_request_length_lcs);
}

void sort_by_request_length(Resources& resources)
{
	apply_foreach(resources, sort_by_request_length);
}

void sort_by_request_length(ClusterResources& resources)
{
	apply_foreach(resources, sort_by_request_length);
}

typedef std::vector<ContentionSet> TaskContention;
typedef std::vector<TaskContention> ClusterContention;

// have one contention set per task
static void derive_task_contention(const Cluster& cluster,
				   TaskContention& requests)
{
	requests.reserve(cluster.size());

	foreach(cluster, it)
	{
		const TaskInfo* tsk  = *it;

		requests.push_back(ContentionSet());

		foreach(tsk->get_requests(), jt)
		{
			const RequestBound& req = *jt;

			requests.back().push_back(&req);
		}
	}
}

static void derive_task_contention(const Clusters& clusters,
				   ClusterContention& contention)
{
	map_ref(clusters, contention, TaskContention, derive_task_contention);
}

static Interference bound_blocking(const ContentionSet& cont,
				   unsigned long interval,
				   unsigned int max_total_requests,
				   unsigned int max_requests_per_source,
				   const TaskInfo* exclude_tsk,
				   // Note: the following parameter excludes
				   // *high-priority* tasks. Used to exclude local higher-priority tasks.
				   // Default: all tasks can block (suitable for remote blocking).
				   unsigned int min_priority = 0)
{
	Interference inter;
	unsigned int remaining;

	remaining = max_total_requests;

	foreach(cont, it)
	{
		const RequestBound* req = *it;

		if (!remaining)
			break;

		// only use this source if it is not excluded
		if (req->get_task() != exclude_tsk &&
		    req->get_task()->get_priority() >= min_priority)
		{
			unsigned int num;
			// This makes the assumption that there is only one
			// request object per task. This makes sense if the
			// contention set has been split by resource. This may
			// be pessimistic for contention sets that contain
			// request objects for multiple resources. The
			// assumption also works out if max_total_requests ==
			// max_requests_per_source.
			num = std::min(req->get_max_num_requests(interval),
				       max_requests_per_source);
			num = std::min(num, remaining);

			inter.total_length += num * req->get_request_length();
			inter.count        += num;
			remaining -= num;
		}
	}

	return inter;
}

static void add_blocking(LimitedContentionSet &lcs,
			 const ContentionSet& cont,
			 unsigned long interval,
			 unsigned int max_total_requests,
			 unsigned int max_requests_per_source,
			 const TaskInfo* exclude_tsk,
			 unsigned int min_priority = 0)
{
	unsigned int remaining;

	remaining = max_total_requests;

	foreach(cont, it)
	{
		const RequestBound* req = *it;

		if (!remaining)
			break;

		// only use this source if it is not excluded
		if (req->get_task() != exclude_tsk &&
		    req->get_task()->get_priority() >= min_priority)
		{
			unsigned int num;
			// This makes the assumption that there is only one
			// request object per task. See bound_blocking() above.
			num = std::min(req->get_max_num_requests(interval),
				       max_requests_per_source);
			num = std::min(num, remaining);
			remaining -= num;
			lcs.push_back(LimitedRequestBound(req, num));
		}
	}
}

static Interference bound_blocking(const ContentionSet& cont,
				   unsigned long interval,
				   unsigned int max_total_requests,
				   unsigned int max_requests_per_source,
				   bool exclude_whole_cluster,
				   const TaskInfo* exclude_tsk)
{
	Interference inter;
	unsigned int remaining;

	remaining = max_total_requests;

	foreach(cont, it)
	{
		const RequestBound* req = *it;

		if (!remaining)
			break;

		// only use this source if it is not excluded
		if (req->get_task() != exclude_tsk &&
		    (!exclude_whole_cluster ||
		     req->get_task()->get_cluster() != exclude_tsk->get_cluster()))
		{
			unsigned int num;
			num = std::min(req->get_max_num_requests(interval),
				       max_requests_per_source);
			num = std::min(num, remaining);

			inter.total_length += num * req->get_request_length();
			inter.count        += num;
			remaining -= num;
		}
	}

	return inter;
}

struct ClusterLimit
{
	unsigned int max_total_requests;
	unsigned int max_requests_per_source;

	ClusterLimit(unsigned int total, unsigned int src) :
		max_total_requests(total), max_requests_per_source(src) {}
};

typedef std::vector<ClusterLimit> ClusterLimits;

static Interference bound_blocking_all_clusters(
	const ClusterResources& clusters,
	const ClusterLimits& limits,
	unsigned int res_id,
	unsigned long interval,
	const TaskInfo* exclude_tsk)
{
	Interference inter;
	unsigned int i;

	// add interference from each non-excluded cluster
	enumerate(clusters, it, i)
	{
		const Resources& resources = *it;
		const ClusterLimit& limit = limits[i];

		if (resources.size() > res_id)
			inter += bound_blocking(resources[res_id],
						interval,
						limit.max_total_requests,
						limit.max_requests_per_source,
						exclude_tsk);
	}

	return inter;
}

// Return a contention set that includes the longest requests from all
// clusters subject to the specified constraints.
static LimitedContentionSet contention_from_all_clusters(
	const ClusterResources& clusters,
	const ClusterLimits& limits,
	unsigned int res_id,
	unsigned long interval,
	const TaskInfo* exclude_tsk)
{
	LimitedContentionSet lcs;
	unsigned int i;

	// add interference from each non-excluded cluster
	enumerate(clusters, it, i)
	{
		const Resources& resources = *it;
		const ClusterLimit& limit = limits[i];

		if (resources.size() > res_id)
			add_blocking(lcs, resources[res_id],
				     interval,
				     limit.max_total_requests,
				     limit.max_requests_per_source,
				     exclude_tsk);
	}

	return lcs;
}


static Interference max_local_request_span(const TaskInfo &tsk,
					   const TaskInfos &tasks,
					   const BlockingBounds& bounds)
{
	Interference span;
	unsigned int i = 0;

	enumerate(tasks, it, i)
	{
		const TaskInfo& t = *it;

		if (&t != &tsk)
		{
			// only consider local, lower-priority tasks
			if (t.get_cluster() == tsk.get_cluster() &&
			    t.get_priority() >= tsk.get_priority())
			{
				Interference b = bounds.get_max_request_span(i);
				span = std::max(span, bounds.get_max_request_span(i));
			}
		}
	}

	return span;
}

static void charge_arrival_blocking(const ResourceSharingInfo& info,
				    BlockingBounds& bounds)
{
	unsigned int i = 0;
	const TaskInfos& tasks = info.get_tasks();

	enumerate(tasks, it, i)
	{
		Interference inf = max_local_request_span(*it, tasks, bounds);
		bounds[i] += inf; // charge to total
		bounds.set_arrival_blocking(i, inf);
	}
}


// **** blocking term analysis ****

BlockingBounds* global_omlp_bounds(const ResourceSharingInfo& info,
				   unsigned int num_procs)
{
	// split every thing by resources, sort, and then start counting.
	Resources resources;

	split_by_resource(info, resources);
	sort_by_request_length(resources);

	unsigned int i;
	BlockingBounds* _results = new BlockingBounds(info);
	BlockingBounds& results = *_results;

	for (i = 0; i < info.get_tasks().size(); i++)
	{
		const TaskInfo& tsk  = info.get_tasks()[i];
		Interference bterm;

		foreach(tsk.get_requests(), jt)
		{
			const RequestBound& req = *jt;
			const ContentionSet& cs =
				resources[req.get_resource_id()];

			unsigned int num_sources = cs.size();
			unsigned long interval = tsk.get_response();
			unsigned long issued   = req.get_num_requests();


			unsigned int total_limit = (2 * num_procs - 1) * issued;
			// Derived in the dissertation: at most twice per request.
			unsigned int per_src_limit = 2 * issued;

			if (num_sources <= num_procs + 1) {
				// FIFO case: no job is ever skipped in the
				//  priority queue (since at most one job is in
				//  PQ at any time).
				// Lemma 15 in RTSS'10: at most one blocking
				// request per source per issued request.
				per_src_limit = issued;
				total_limit   = (num_sources - 1) * issued;
			}

			bterm += bound_blocking(cs,
						interval,
						total_limit,
						per_src_limit,
						&tsk);
		}

		results[i] = bterm;
	}

	return _results;
}


BlockingBounds* global_fmlp_bounds(const ResourceSharingInfo& info)
{
	// split every thing by resources, sort, and then start counting.
	Resources resources;

	split_by_resource(info, resources);
	sort_by_request_length(resources);


	unsigned int i;
	BlockingBounds* _results = new BlockingBounds(info);
	BlockingBounds& results = *_results;

	unsigned int num_tasks = info.get_tasks().size();

	for (i = 0; i < info.get_tasks().size(); i++)
	{
		const TaskInfo& tsk  = info.get_tasks()[i];
		Interference bterm;


		foreach(tsk.get_requests(), jt)
		{
			const RequestBound& req = *jt;
			const ContentionSet& cs =
				resources[req.get_resource_id()];

			unsigned long interval = tsk.get_response();
			unsigned long issued   = req.get_num_requests();

			// every other task may block once per request
			unsigned int total_limit = (num_tasks - 1) * issued;
			unsigned int per_src_limit = issued;

			bterm += bound_blocking(cs,
						interval,
						total_limit,
						per_src_limit,
						&tsk);
		}

		results[i] = bterm;
	}

	return _results;
}

static ClusterLimits np_fifo_limits(
	const TaskInfo& tsk, const ClusterResources& clusters,
	unsigned int procs_per_cluster,
	const unsigned int issued,
	int dedicated_irq)
{
	ClusterLimits limits;
	int idx;
	limits.reserve(clusters.size());
	enumerate(clusters, ct, idx)
	{
		unsigned int total, parallelism = procs_per_cluster;

		if (idx == dedicated_irq)
			parallelism--;

		if (parallelism && (int) tsk.get_cluster() == idx)
			parallelism--;

		// At most one blocking request per remote CPU in
		// cluster per request.
		total = issued * parallelism;
		limits.push_back(ClusterLimit(total, issued));
	}

	return limits;
}

static Interference np_fifo_per_resource(
	const TaskInfo& tsk, const ClusterResources& clusters,
	unsigned int procs_per_cluster,
	unsigned int res_id, unsigned int issued,
	int dedicated_irq = NO_CPU)
{
	const unsigned long interval = tsk.get_response();
	ClusterLimits limits = np_fifo_limits(tsk, clusters, procs_per_cluster,
					      issued, dedicated_irq);
	return bound_blocking_all_clusters(clusters,
					   limits,
					   res_id,
					   interval,
					  &tsk);
}

static LimitedContentionSet np_fifo_per_resource_contention(
	const TaskInfo& tsk, const ClusterResources& clusters,
	unsigned int procs_per_cluster,
	unsigned int res_id, unsigned int issued,
	int dedicated_irq = NO_CPU)
{
	const unsigned long interval = tsk.get_response();
	ClusterLimits limits = np_fifo_limits(tsk, clusters, procs_per_cluster,
					      issued, dedicated_irq);
	return contention_from_all_clusters(clusters,
					    limits,
					    res_id,
					    interval,
					   &tsk);
}


// assumption: lcs is sorted by request length
static Interference bound_blocking(const LimitedContentionSet &lcs, unsigned int max_total_requests)
{
	Interference inter;
	unsigned int remaining = max_total_requests;

	foreach(lcs, it)
	{
		const LimitedRequestBound &lreqb = *it;
		unsigned int num;

		if (!remaining)
			break;

		num = std::min(lreqb.limit, remaining);

		inter.total_length += num * lreqb.request_bound->get_request_length();
		inter.count        += num;
		remaining          -= num;
	}

	return inter;
}

BlockingBounds* part_omlp_bounds(const ResourceSharingInfo& info)
{
	// split everything by partition
	Clusters clusters;

	split_by_cluster(info, clusters);

	// split each partition by resource
	ClusterResources resources;

	split_by_resource(clusters, resources);

	// sort each contention set by request length
	sort_by_request_length(resources);

	// We need for each task the maximum request span.  We also need the
	// maximum direct blocking from remote partitions for each request. We
	// can determine both in one pass.

	unsigned int i;

	// direct blocking results
	BlockingBounds* _results = new BlockingBounds(info);
	BlockingBounds& results = *_results;

	for (i = 0; i < info.get_tasks().size(); i++)
	{
		const TaskInfo& tsk  = info.get_tasks()[i];
		Interference bterm;

		foreach(tsk.get_requests(), jt)
		{
			const RequestBound& req = *jt;

			Interference blocking;

			blocking = np_fifo_per_resource(
				tsk, resources, 1,
				req.get_resource_id(), req.get_num_requests());

			// add in blocking term
			bterm += blocking;

			// Keep track of maximum request span.
			// Is this already a single-issue request?
			if (req.get_num_requests() != 1)
				// nope, need to recompute
				blocking = np_fifo_per_resource(
					tsk, resources, 1,
					req.get_resource_id(), 1);

			// The span includes our own request.
			blocking.total_length += req.get_request_length();
			blocking.count        += 1;

			// Update max. request span.
			results.raise_request_span(i, blocking);
		}

		results[i] = bterm;
	}

	charge_arrival_blocking(info, results);

	return _results;
}


BlockingBounds* clustered_omlp_bounds(const ResourceSharingInfo& info,
				      unsigned int procs_per_cluster,
				      int dedicated_irq)
{
	// split everything by partition
	Clusters clusters;

	split_by_cluster(info, clusters);

	// split each partition by resource
	ClusterResources resources;

	split_by_resource(clusters, resources);

	// sort each contention set by request length
	sort_by_request_length(resources);

	// We need for each task the maximum request span.  We also need the
	// maximum direct blocking from remote partitions for each request. We
	// can determine both in one pass.

	unsigned int i;

	// direct blocking results
	BlockingBounds* _results = new BlockingBounds(info);
	BlockingBounds& results = *_results;

	for (i = 0; i < info.get_tasks().size(); i++)
	{
		const TaskInfo& tsk  = info.get_tasks()[i];

		Interference bterm;

		foreach(tsk.get_requests(), jt)
		{
			const RequestBound& req = *jt;
			Interference blocking;

			blocking = np_fifo_per_resource(
				tsk, resources, procs_per_cluster,
				req.get_resource_id(),
				req.get_num_requests(),
				dedicated_irq);

			// add in blocking term
			bterm += blocking;

			// Keep track of maximum request span.
			// Is this already a single-issue request?
			if (req.get_num_requests() != 1)
				blocking = np_fifo_per_resource(
					tsk, resources, procs_per_cluster,
					req.get_resource_id(), 1);

			// The span includes our own request.
			blocking.total_length += req.get_request_length();
			blocking.count        += 1;
			// Update max. request span.
			results.raise_request_span(i, blocking);
		}

		results[i] = bterm;
	}

	// This is the initial delay due to priority donation.
	charge_arrival_blocking(info, results);

	return _results;
}

BlockingBounds* clustered_kx_omlp_bounds(const ResourceSharingInfo& info,
					 const ReplicaInfo& replicaInfo,
					 unsigned int procs_per_cluster,
					 int dedicated_irq)
{
	// split everything by partition
	Clusters clusters;

	split_by_cluster(info, clusters);

	const unsigned int num_cpus = clusters.size() * procs_per_cluster -
	                              (dedicated_irq != NO_CPU ? 1 : 0);

	// split each partition by resource
	ClusterResources resources;

	split_by_resource(clusters, resources);

	// sort each contention set by request length
	sort_by_request_length(resources);

	unsigned int i;

	// direct blocking results
	BlockingBounds* _results = new BlockingBounds(info);
	BlockingBounds& results = *_results;

	for (i = 0; i < info.get_tasks().size(); i++)
	{
		const TaskInfo& tsk  = info.get_tasks()[i];

		Interference bterm;

		foreach(tsk.get_requests(), jt)
		{
			const RequestBound& req = *jt;

			unsigned int max_total_once;
			LimitedContentionSet lcs;
			Interference blocking;

			max_total_once = divide_with_ceil(num_cpus,
					replicaInfo[req.get_resource_id()]) - 1;

			lcs = np_fifo_per_resource_contention(
					tsk, resources, procs_per_cluster,
					req.get_resource_id(),
					req.get_num_requests(),
					dedicated_irq);
			sort_by_request_length(lcs);
			blocking = bound_blocking(lcs, max_total_once * req.get_num_requests());

			// add in blocking term
			bterm += blocking;

			// Keep track of maximum request span.
			// Is this already a single-issue request?
			if (req.get_num_requests() != 1)
			{
				lcs = np_fifo_per_resource_contention(
						tsk, resources, procs_per_cluster,
						req.get_resource_id(),
						1, dedicated_irq);
				sort_by_request_length(lcs);
				blocking = bound_blocking(lcs, max_total_once);
			}

			// The span includes our own request.
			blocking.total_length += req.get_request_length();
			blocking.count        += 1;
			// Update max. request span.
			results.raise_request_span(i, blocking);
		}

		results[i] = bterm;
	}

	// This is the initial delay due to priority donation.
	charge_arrival_blocking(info, results);

	return _results;
}


struct RWCount {
	unsigned int res_id;
	unsigned int num_reads;
	unsigned int num_writes;
	unsigned int rlength;
	unsigned int wlength;

	RWCount(unsigned int id) : res_id(id),
				   num_reads(0),
				   num_writes(0),
				   rlength(0),
				   wlength(0)
	{}
};

typedef std::vector<RWCount> RWCounts;

static void merge_rw_requests(const TaskInfo &tsk, RWCounts &counts)
{
	foreach(tsk.get_requests(), req)
	{
		unsigned int res_id = req->get_resource_id();

		while (counts.size() <= res_id)
			counts.push_back(RWCount(counts.size()));

		if (req->is_read())
		{
			counts[res_id].num_reads += req->get_num_requests();
			counts[res_id].rlength = req->get_request_length();
		}
		else
		{
			counts[res_id].num_writes += req->get_num_requests();
			counts[res_id].wlength = req->get_request_length();
		}
	}
}


static Interference pf_writer_fifo(
	const TaskInfo& tsk, const ClusterResources& writes,
	const unsigned int num_writes,
	const unsigned int num_reads,
	const unsigned int res_id,
	const unsigned int procs_per_cluster,
	const int dedicated_irq)
{
	const unsigned int per_src_wlimit = num_reads + num_writes;
	const unsigned long interval = tsk.get_response();
	ClusterLimits limits;
	int idx;

	limits.reserve(writes.size());
	enumerate(writes, ct, idx)
	{
		unsigned int total, parallelism = procs_per_cluster;

		if (idx == dedicated_irq)
			parallelism--;

		if (parallelism && (int) tsk.get_cluster() == idx)
			parallelism--;

		// At most one blocking request per remote CPU in
		// cluster per request.
		if (parallelism)
			total = num_reads + num_writes * parallelism;
		else
			// No interference from writers if we are hogging
			// the only available CPU.
			total = 0;

		limits.push_back(ClusterLimit(total, per_src_wlimit));
	}

	Interference blocking;
	blocking = bound_blocking_all_clusters(writes,
					       limits,
					       res_id,
					       interval,
					       &tsk);
	return blocking;

}

static Interference pf_reader_all(
	const TaskInfo& tsk,
	const Resources& all_reads,
	const unsigned int num_writes,
	const unsigned int num_wblock,
	const unsigned int num_reads,
	const unsigned int res_id,
	const unsigned int procs_per_cluster,
	const unsigned int num_procs)
{
	const unsigned long interval = tsk.get_response();
	Interference blocking;
	unsigned int rlimit = std::min(num_wblock + num_writes,
				   num_reads + num_writes * (num_procs - 1));
	blocking = bound_blocking(all_reads[res_id],
				  interval,
				  rlimit,
				  rlimit,
				  // exclude all if c == 1
				  procs_per_cluster == 1,
				  &tsk);
	return blocking;
}

BlockingBounds* clustered_rw_omlp_bounds(const ResourceSharingInfo& info,
					 unsigned int procs_per_cluster,
					 int dedicated_irq)
{
	// split everything by partition
	Clusters clusters;

	split_by_cluster(info, clusters);

	// split each partition by resource
	ClusterResources resources;

	split_by_resource(clusters, resources);

	// split all by resource
	Resources all_task_reqs, all_reads, __all_writes;
	split_by_resource(info, all_task_reqs);
	split_by_type(all_task_reqs, all_reads, __all_writes);

	// sort each contention set by request length
	sort_by_request_length(resources);
	sort_by_request_length(all_reads);

	// split by type --- sorted order is maintained
	ClusterResources __reads, writes;
	split_by_type(resources, __reads, writes);


	// We need for each task the maximum request span.  We also need the
	// maximum direct blocking from remote partitions for each request. We
	// can determine both in one pass.

	const unsigned int num_procs = procs_per_cluster * clusters.size();
	unsigned int i;

	// direct blocking results
	BlockingBounds* _results = new BlockingBounds(info);
	BlockingBounds& results = *_results;

	for (i = 0; i < info.get_tasks().size(); i++)
	{
		const TaskInfo& tsk  = info.get_tasks()[i];
		RWCounts rwcounts;
		Interference bterm;

		merge_rw_requests(tsk, rwcounts);

		foreach(rwcounts, jt)
		{
			const RWCount& rw = *jt;

			// skip placeholders
			if (!rw.num_reads && !rw.num_writes)
				continue;

			Interference wblocking,  rblocking;

			wblocking = pf_writer_fifo(tsk, writes, rw.num_writes,
						   rw.num_reads, rw.res_id,
						   procs_per_cluster,
						   dedicated_irq);

			rblocking = pf_reader_all(tsk, all_reads, rw.num_writes,
						  wblocking.count, rw.num_reads,
						  rw.res_id, procs_per_cluster,
						  num_procs);

			//**** SINGLE WRITE
			Interference rblocking_w1, wblocking_w1;

			// Keep track of maximum request span.
			// Is this already a single-issue request?
			if (rw.num_writes &&
			    (rw.num_writes != 1 || rw.num_reads != 0))
			{
				wblocking_w1 = pf_writer_fifo(tsk, writes, 1, 0,
							      rw.res_id, procs_per_cluster,
							      dedicated_irq);

				rblocking_w1 = pf_reader_all(
					tsk, all_reads, 1,
					wblocking_w1.count, 0,
					rw.res_id, procs_per_cluster,
					num_procs);
			}
			else if (rw.num_writes)
			{
				  wblocking_w1 = wblocking;
				  rblocking_w1 = rblocking;
			}
			// else: zero, nothing to do

			//**** SINGLE READ

			Interference rblocking_r1, wblocking_r1;


			if (rw.num_reads &&
			    (rw.num_reads != 1 || rw.num_writes != 0))
			{
				wblocking_r1 = pf_writer_fifo(tsk, writes, 0, 1,
							      rw.res_id, procs_per_cluster,
							      dedicated_irq);

				rblocking_r1 = pf_reader_all(
					tsk, all_reads, 0,
					wblocking_r1.count, 1,
					rw.res_id, procs_per_cluster,
					num_procs);
			}
			else if (rw.num_reads)
			{
				wblocking_r1 = wblocking;
				rblocking_r1 = rblocking;
			}

			// else: zero, nothing to do

			// The span includes our own request.
			if (rw.num_writes)
			{
				wblocking_w1.total_length += rw.wlength;
				wblocking_w1.count        += 1;
			}
			if (rw.num_reads)
			{
				rblocking_r1.total_length += rw.rlength;
				wblocking_r1.count        += 1;
			}

			// combine
			wblocking_w1 += rblocking_w1;
			wblocking_r1 += rblocking_r1;
			wblocking    += rblocking;

			results.raise_request_span(i, wblocking_w1);
			results.raise_request_span(i, wblocking_r1);
			bterm += wblocking;
		}
		results[i] = bterm;
	}

	// This is the initial delay due to priority donation.
	charge_arrival_blocking(info, results);

	return _results;
}


BlockingBounds* task_fair_mutex_bounds(const ResourceSharingInfo& info,
				       unsigned int procs_per_cluster,
				       int dedicated_irq)
{
	// These are structurally equivalent. Therefore, no need to reimplement
	// everything from scratch.
	return clustered_omlp_bounds(info, procs_per_cluster, dedicated_irq);
}


BlockingBounds* phase_fair_rw_bounds(const ResourceSharingInfo& info,
				     unsigned int procs_per_cluster,
				     int dedicated_irq)
{
	// These are structurally equivalent. Therefore, no need to reimplement
	// everything from scratch.
	return clustered_rw_omlp_bounds(info, procs_per_cluster, dedicated_irq);
}


static Interference bound_blocking_all(
	const TaskInfo* tsk,
	const ContentionSet& all_reqs, // presumed sorted, for all clusters/tasks
	const unsigned int max_remote_requests, // per cluster
	const unsigned int max_local_requests,  // local cluster
	const unsigned int max_requests,        // per task
	unsigned int max_total)                 // stop after counting max_total
{
	unsigned long interval = tsk->get_response();
	hashmap<unsigned long, unsigned int> task_counter(512);
	hashmap<unsigned long, unsigned int>::iterator tctr;
	hashmap<unsigned int, unsigned int> cluster_counter(64);
	hashmap<unsigned int, unsigned int>::iterator cctr;
	Interference inter;

	cluster_counter[tsk->get_cluster()] = max_local_requests;

	foreach(all_reqs, it)
	{
		const RequestBound* req = *it;
		const TaskInfo* t = req->get_task();
		unsigned long key = (unsigned long) t;
		unsigned int cluster = t->get_cluster();

		if (!max_total)
			// we are done
			break;

		if (t == tsk)
			// doesn't block itself
			continue;

		// make sure we have seen this task
		tctr = task_counter.find(key);
		if (tctr == task_counter.end())
		{
			task_counter[key] = max_requests;
			tctr = task_counter.find(key);
		}

		if (!tctr->second)
			continue;

		cctr = cluster_counter.find(cluster);
		if (cctr == cluster_counter.end())
		{
			cluster_counter[cluster] = max_remote_requests;
			cctr = cluster_counter.find(cluster);
		}

		if (!cctr->second)
			continue;

		unsigned int remaining;
		remaining = std::min(tctr->second, cctr->second);
		remaining = std::min(remaining, max_total);
		unsigned int num = std::min(req->get_max_num_requests(interval), remaining);

		inter.total_length += num * req->get_request_length();
		inter.count        += num;
		cctr->second -= num;
		tctr->second -= num;
		max_total    -= num;
	}

	return inter;
}


static Interference tf_reader_all(
	const TaskInfo& tsk,
	const Resources& all_reads,
	const unsigned int num_writes,
	const unsigned int num_wblock,
	const unsigned int num_reads,
	const unsigned int res_id,
	const unsigned int procs_per_cluster)
{
	Interference blocking;
	unsigned int num_reqs = num_reads + num_writes;
	unsigned int max_reader_phases = num_wblock + num_writes;
	unsigned int task_limit = std::min(max_reader_phases, num_reqs);

	return bound_blocking_all(
		&tsk, all_reads[res_id],
		num_reqs * procs_per_cluster,
		num_reqs * (procs_per_cluster - 1),
		task_limit,
		max_reader_phases);
}


BlockingBounds* task_fair_rw_bounds(const ResourceSharingInfo& info,
				    const ResourceSharingInfo& info_mtx,
				    unsigned int procs_per_cluster,
				    int dedicated_irq)
{
	// split everything by partition
	Clusters clusters, clusters_mtx;

	split_by_cluster(info, clusters);
	split_by_cluster(info_mtx, clusters_mtx);

	// split each partition by resource
	ClusterResources resources, resources_mtx;

	split_by_resource(clusters, resources);
	split_by_resource(clusters_mtx, resources_mtx);

	// split all by resource
	Resources all_task_reqs, all_reads, __all_writes;
	split_by_resource(info, all_task_reqs);
	split_by_type(all_task_reqs, all_reads, __all_writes);

	// sort each contention set by request length
	sort_by_request_length(resources);
	sort_by_request_length(resources_mtx);
	sort_by_request_length(all_reads);

	// split by type --- sorted order is maintained
	ClusterResources __reads, writes;
	split_by_type(resources, __reads, writes);


	// We need for each task the maximum request span.  We also need the
	// maximum direct blocking from remote partitions for each request. We
	// can determine both in one pass.

	unsigned int i;

	// direct blocking results
	BlockingBounds* _results = new BlockingBounds(info);
	BlockingBounds& results = *_results;

	for (i = 0; i < info.get_tasks().size(); i++)
	{
		const TaskInfo& tsk  = info.get_tasks()[i];
		RWCounts rwcounts;

		Interference bterm;

		merge_rw_requests(tsk, rwcounts);

		foreach(rwcounts, jt)
		{
			const RWCount& rw = *jt;

			// skip placeholders
			if (!rw.num_reads && !rw.num_writes)
				continue;


			// 1) treat it as a mutex as a baseline
			Interference mtx, mtx_1;

			mtx = np_fifo_per_resource(
				tsk, resources_mtx, procs_per_cluster, rw.res_id,
				rw.num_reads + rw.num_writes,
				dedicated_irq);

			if (rw.num_reads + rw.num_writes == 1)
				mtx_1 = mtx;
			else
				mtx_1 = np_fifo_per_resource(
					tsk, resources_mtx, procs_per_cluster,
					rw.res_id, 1, dedicated_irq);

			// The span includes our own request.
			mtx_1.total_length += std::max(rw.wlength, rw.rlength);
			mtx_1.count        += 1;

			// 2) apply real RW analysis
			Interference wblocking, wblocking_1;
			Interference rblocking, rblocking_r1, rblocking_w1;

			wblocking = np_fifo_per_resource(
				tsk, writes, procs_per_cluster, rw.res_id,
				rw.num_reads + rw.num_writes,
				dedicated_irq);
			wblocking_1 = np_fifo_per_resource(
				tsk, writes, procs_per_cluster, rw.res_id, 1,
				dedicated_irq);

			rblocking = tf_reader_all(
				tsk, all_reads, rw.num_writes, wblocking.count,
				rw.num_reads, rw.res_id, procs_per_cluster);

			if (rw.num_writes)
			{
				// single write
				rblocking_w1 = tf_reader_all(
					tsk, all_reads, 1, wblocking.count,
					0, rw.res_id, procs_per_cluster);
				// The span includes our own request.
				rblocking_w1.total_length += rw.wlength;
				rblocking_w1.count        += 1;
			}
			if (rw.num_reads)
			{
				// single read
				rblocking_r1 = tf_reader_all(
					tsk, all_reads, 0, wblocking.count,
					1, rw.res_id, procs_per_cluster);
				// The span includes our own request.
				rblocking_r1.total_length += rw.rlength;
				rblocking_r1.count        += 1;
			}

			// combine
			wblocking   += rblocking;
			wblocking_1 += std::max(rblocking_w1, rblocking_r1);

			bterm += std::min(wblocking, mtx);
			results.raise_request_span(i, std::min(wblocking_1, mtx_1));
		}
		results[i] = bterm;
	}

	// This is the initial delay due to priority donation.
	charge_arrival_blocking(info, results);

	return _results;
}


/* this analysis corresponds to the FMLP+ in the dissertation */

static void pfmlp_count_direct_blocking(const TaskInfo* tsk,
					const ClusterResources& resources,
					std::vector<Interference>& counts)
{
	unsigned int interval = tsk->get_response();


	// for each resource requested by tsk
	foreach(tsk->get_requests(), jt)
	{
		const RequestBound& req = *jt;
		unsigned long issued    = req.get_num_requests();
		unsigned int res_id     = req.get_resource_id();

		unsigned int i;

		// for each cluster
		for (i = 0; i < resources.size(); i++)
		{
			// count interference... direct blocking will be counted later
			// make sure that cluster acceses res_id at  all
			if (resources[i].size() > res_id)
				// yes it does---how often can it block?
				counts[i] += bound_blocking(resources[i][res_id],
							    interval,
							    UNLIMITED,  // no total limit
							    issued, // once per request
							    tsk);
		}
	}
}

typedef std::vector<unsigned int> AccessCounts;
typedef std::vector<AccessCounts> PerClusterAccessCounts;

// How many times does a task issue requests that can
// conflict with tasks in a remote cluster. Indexed by cluster id.
typedef std::vector<unsigned int> IssuedRequests;
// Issued requests for each task. Indexed by task id.
typedef std::vector<IssuedRequests> PerTaskIssuedCounts;

static void derive_access_counts(const ContentionSet &cluster_contention,
				 AccessCounts &counts)
{
	foreach(cluster_contention, it)
	{
		const RequestBound *req = *it;
		unsigned int res_id = req->get_resource_id();

		while (counts.size() <= res_id)
			counts.push_back(0);

		counts[res_id] += req->get_num_requests();
	}
}

static void count_accesses_for_task(const TaskInfo& tsk,
				    const PerClusterAccessCounts& acc_counts,
				    IssuedRequests& ireqs)
{
	foreach(acc_counts, it)
	{
		const AccessCounts &ac = *it;
		unsigned int count = 0;

		// Check for each request of the task to see
		// if it conflicts with the cluster.
		foreach(tsk.get_requests(), jt)
		{
			const RequestBound &req = *jt;
			unsigned int res_id = req.get_resource_id();
			if (ac.size() > res_id && ac[res_id] > 0)
			{
				// cluster acceses res_id as well
				count += req.get_num_requests();
			}
		}
		ireqs.push_back(count);
	}
}

static void derive_access_counts(const AllPerCluster &per_cluster,
				 const ResourceSharingInfo &info,
				 PerTaskIssuedCounts &issued_reqs)
{
	PerClusterAccessCounts counts;

	/* which resources are accessed by each cluster? */
	map_ref(per_cluster, counts, AccessCounts, derive_access_counts);

	issued_reqs.reserve(info.get_tasks().size());

	foreach(info.get_tasks(), it)
	{
		issued_reqs.push_back(IssuedRequests());
		count_accesses_for_task(*it, counts, issued_reqs.back());
	}
}

static Interference pfmlp_bound_remote_blocking(const TaskInfo* tsk,
						const IssuedRequests &icounts,
						const std::vector<Interference>& counts,
						const ClusterContention& contention)
{
	unsigned int i;

	unsigned long interval = tsk->get_response();
	Interference blocking;

	// for each cluster
	for (i = 0; i < contention.size(); i++)
	{
		// Each task can either directly or indirectly block tsk
		// each time that tsk is directly blocked, but no more than
		// once per request issued by tsk.
		unsigned int max_per_task = std::min(counts[i].count, icounts[i]);

		// skip local cluster and independent clusters
		if (i == tsk->get_cluster() || !max_per_task)
			continue;

		Interference b;

		// for each task in cluster
		foreach(contention[i], it)
		{

			// count longest critical sections
			b += bound_blocking(*it,
					    interval,
					    max_per_task,
					    UNLIMITED, // no limit per source
					    tsk);
		}

		blocking += b;
	}
	return blocking;
}

static Interference pfmlp_bound_np_blocking(const TaskInfo* tsk,
					    const std::vector<Interference>& counts,
					    const AllPerCluster& per_cluster)
{
	unsigned int i;

	unsigned long interval = tsk->get_response();
	Interference blocking;

	// for each cluster
	for (i = 0; i < per_cluster.size(); i++)
	{
		// skip local cluster, this is only remote
		if (i == tsk->get_cluster())
			continue;

		// could be the same task each time tsk is directly blocked
		unsigned int max_direct = counts[i].count;
		Interference b;

		// count longest critical sections
		b += bound_blocking(per_cluster[i],
				    interval,
				    max_direct,
				    max_direct,
				    tsk);
		blocking += b;
	}
	return blocking;
}

static Interference pfmlp_bound_local_blocking(const TaskInfo* tsk,
					       const std::vector<Interference>& counts,
					       const ClusterContention& contention)
{
	// Locally, we have to account two things.
	// 1) Direct blocking from lower-priority tasks.
	// 2) Boost blocking from lower-priority tasks.
	// (Higher-priority requests are not counted as blocking.)
	// Since lower-priority jobs are boosted while
	// they directly block, 1) is subsumed by 2).
	// Lower-priority tasks cannot issue requests while a higher-priority
	// job executes. Therefore, at most one blocking request
	// is issued prior to the release of the job under analysis,
	// and one prior to each time that the job under analysis resumes.

	Interference blocking;
	Interference num_db = std::accumulate(counts.begin(), counts.end(),
					      Interference());
	unsigned int num_arrivals = std::min(tsk->get_num_arrivals(),
					     num_db.count + 1);
	unsigned long interval = tsk->get_response();

	const TaskContention& cont = contention[tsk->get_cluster()];

	// for each task in cluster
	foreach(cont, it)
	{
		// count longest critical sections
		blocking += bound_blocking(*it,
					   interval,
					   num_arrivals,
					   UNLIMITED, // no limit per source
					   tsk,
					   tsk->get_priority());
	}

	return blocking;
}

BlockingBounds* part_fmlp_bounds(const ResourceSharingInfo& info, bool preemptive)
{
	// split everything by partition
	Clusters clusters;

	split_by_cluster(info, clusters);

	// split each partition by resource
	ClusterResources resources;
	split_by_resource(clusters, resources);

	// find interference on a per-task basis
	ClusterContention contention;
	derive_task_contention(clusters, contention);

	// sort each contention set by request length
	sort_by_request_length(contention);

	// find total interference on a per-cluster basis
	AllPerCluster per_cluster;
	PerTaskIssuedCounts access_counts;

	all_per_cluster(clusters, per_cluster);
	sort_by_request_length(per_cluster);

	derive_access_counts(per_cluster, info, access_counts);

	// We need to find two blocking sources. Direct blocking (i.e., jobs
	// that are enqueued prior to the job under analysis) and boost
	// blocking, which occurs when the job under analysis is delayed
	// because some other job is priority-boosted. Boost blocking can be
	// local and transitive from remote CPUs. To compute this correctly,
	// we need to count how many times some job on a remote CPU can directly
	// block the job under analysis. So we first compute direct blocking
	// and count on which CPUs a job can be blocked.

	unsigned int i;

	// direct blocking results
	BlockingBounds* _results = new BlockingBounds(info);
	BlockingBounds& results = *_results;

	for (i = 0; i < info.get_tasks().size(); i++)
	{
		const TaskInfo& tsk  = info.get_tasks()[i];
		std::vector<Interference> counts(resources.size());
		Interference remote, local;

		// Determine counts.
		pfmlp_count_direct_blocking(&tsk, resources, counts);

		// Find longest remote requests.
		remote = pfmlp_bound_remote_blocking(&tsk, access_counts[i], counts,
							 contention);

		// Add in local boost blocking.
		local = pfmlp_bound_local_blocking(&tsk, counts, contention);

		if (!preemptive)
		{
			// Charge for additional delays due to remot non-preemptive
			// sections.
			remote += pfmlp_bound_np_blocking(&tsk, counts, per_cluster);
		}
		results[i] = remote + local;
		results.set_remote_blocking(i, remote);
		results.set_local_blocking(i, local);
	}

	return _results;
}