#include // for greater, sort #include #include #include #include #include "sharedres.h" #include "res_io.h" #include "time-types.h" #include "math-helper.h" #include "stl-helper.h" #ifdef CONFIG_USE_0X #include #define hashmap std::unordered_map #else #include #define hashmap __gnu_cxx::hash_map #endif #include "blocking.h" const unsigned int UNLIMITED = UINT_MAX; std::ostream& operator<<(std::ostream &os, const TaskInfo &ti) { os << "TaskInfo["; if (ti.get_priority() != UINT_MAX) os << "priority=" << ti.get_priority() << ", "; os << "period=" << ti.get_period() << ", response=" << ti.get_response() << ", cluster=" << ti.get_cluster() << ", requests=<"; foreach(ti.get_requests(), it) { if (it != ti.get_requests().begin()) os << " "; os << (*it); } os << ">]"; return os; } std::ostream& operator<<(std::ostream &os, const RequestBound &rb) { os << "(res-id=" << rb.get_resource_id() << ", num=" << rb.get_num_requests() << ", len=" << rb.get_request_length() << ")"; return os; } std::ostream& operator<<(std::ostream &os, const ResourceSharingInfo &rsi) { foreach(rsi.get_tasks(), it) { const TaskInfo& tsk = *it; os << "\t" << tsk << std::endl; } return os; } unsigned int RequestBound::get_max_num_requests(unsigned long interval) const { unsigned long num_jobs; num_jobs = divide_with_ceil(interval + task->get_response(), task->get_period()); return (unsigned int) (num_jobs * num_requests); } // ****** non-exported helpers ******* void split_by_cluster(const ResourceSharingInfo& info, Clusters& clusters) { foreach(info.get_tasks(), it) { const TaskInfo& tsk = *it; unsigned int cluster = tsk.get_cluster(); while (cluster >= clusters.size()) clusters.push_back(Cluster()); clusters[cluster].push_back(&tsk); } } bool has_higher_priority(const TaskInfo* a, const TaskInfo* b) { return a->get_priority() < b->get_priority(); } void sort_by_priority(Clusters& clusters) { foreach(clusters, it) { Cluster& cluster = *it; std::sort(cluster.begin(), cluster.end(), has_higher_priority); } } void split_by_resource(const ResourceSharingInfo& info, Resources& resources) { foreach(info.get_tasks(), it) { const TaskInfo& tsk = *it; foreach(tsk.get_requests(), jt) { const RequestBound& req = *jt; unsigned int res = req.get_resource_id(); while (res >= resources.size()) resources.push_back(ContentionSet()); resources[res].push_back(&req); } } } static void all_from_cluster(const Cluster& cluster, ContentionSet& cs) { foreach(cluster, it) { const TaskInfo* tsk = *it; foreach(tsk->get_requests(), jt) { const RequestBound& req = *jt; cs.push_back(&req); } } } static void all_per_cluster(const Clusters& clusters, AllPerCluster& all) { foreach(clusters, it) { all.push_back(ContentionSet()); all_from_cluster(*it, all.back()); } } static void split_by_resource(const Cluster& cluster, Resources& resources) { foreach(cluster, it) { const TaskInfo* tsk = *it; foreach(tsk->get_requests(), jt) { const RequestBound& req = *jt; unsigned int res = req.get_resource_id(); while (res >= resources.size()) resources.push_back(ContentionSet()); resources[res].push_back(&req); } } } static void split_by_resource(const Clusters& clusters, ClusterResources& resources) { foreach(clusters, it) { resources.push_back(Resources()); split_by_resource(*it, resources.back()); } } static void split_by_type(const ContentionSet& requests, ContentionSet& reads, ContentionSet& writes) { foreach(requests, it) { const RequestBound *req = *it; if (req->get_request_type() == READ) reads.push_back(req); else writes.push_back(req); } } static void split_by_type(const Resources& resources, Resources &reads, Resources &writes) { reads.reserve(resources.size()); writes.reserve(resources.size()); foreach(resources, it) { reads.push_back(ContentionSet()); writes.push_back(ContentionSet()); split_by_type(*it, reads.back(), writes.back()); } } static void split_by_type(const ClusterResources& per_cluster, ClusterResources &reads, ClusterResources &writes) { reads.reserve(per_cluster.size()); writes.reserve(per_cluster.size()); foreach(per_cluster, it) { reads.push_back(Resources()); writes.push_back(Resources()); split_by_type(*it, reads.back(), writes.back()); } } static bool has_longer_request_length(const RequestBound* a, const RequestBound* b) { return a->get_request_length() > b->get_request_length(); } void sort_by_request_length(ContentionSet& cs) { std::sort(cs.begin(), cs.end(), has_longer_request_length); } static bool has_longer_request_length_lcs(const LimitedRequestBound &a, const LimitedRequestBound &b) { return has_longer_request_length(a.request_bound, b.request_bound); } void sort_by_request_length(LimitedContentionSet &lcs) { std::sort(lcs.begin(), lcs.end(), has_longer_request_length_lcs); } void sort_by_request_length(Resources& resources) { apply_foreach(resources, sort_by_request_length); } void sort_by_request_length(ClusterResources& resources) { apply_foreach(resources, sort_by_request_length); } typedef std::vector TaskContention; typedef std::vector ClusterContention; // have one contention set per task static void derive_task_contention(const Cluster& cluster, TaskContention& requests) { requests.reserve(cluster.size()); foreach(cluster, it) { const TaskInfo* tsk = *it; requests.push_back(ContentionSet()); foreach(tsk->get_requests(), jt) { const RequestBound& req = *jt; requests.back().push_back(&req); } } } static void derive_task_contention(const Clusters& clusters, ClusterContention& contention) { map_ref(clusters, contention, TaskContention, derive_task_contention); } static Interference bound_blocking(const ContentionSet& cont, unsigned long interval, unsigned int max_total_requests, unsigned int max_requests_per_source, const TaskInfo* exclude_tsk, // Note: the following parameter excludes // *high-priority* tasks. Used to exclude local higher-priority tasks. // Default: all tasks can block (suitable for remote blocking). unsigned int min_priority = 0) { Interference inter; unsigned int remaining; remaining = max_total_requests; foreach(cont, it) { const RequestBound* req = *it; if (!remaining) break; // only use this source if it is not excluded if (req->get_task() != exclude_tsk && req->get_task()->get_priority() >= min_priority) { unsigned int num; // This makes the assumption that there is only one // request object per task. This makes sense if the // contention set has been split by resource. This may // be pessimistic for contention sets that contain // request objects for multiple resources. The // assumption also works out if max_total_requests == // max_requests_per_source. num = std::min(req->get_max_num_requests(interval), max_requests_per_source); num = std::min(num, remaining); inter.total_length += num * req->get_request_length(); inter.count += num; remaining -= num; } } return inter; } static void add_blocking(LimitedContentionSet &lcs, const ContentionSet& cont, unsigned long interval, unsigned int max_total_requests, unsigned int max_requests_per_source, const TaskInfo* exclude_tsk, unsigned int min_priority = 0) { unsigned int remaining; remaining = max_total_requests; foreach(cont, it) { const RequestBound* req = *it; if (!remaining) break; // only use this source if it is not excluded if (req->get_task() != exclude_tsk && req->get_task()->get_priority() >= min_priority) { unsigned int num; // This makes the assumption that there is only one // request object per task. See bound_blocking() above. num = std::min(req->get_max_num_requests(interval), max_requests_per_source); num = std::min(num, remaining); remaining -= num; lcs.push_back(LimitedRequestBound(req, num)); } } } static Interference bound_blocking(const ContentionSet& cont, unsigned long interval, unsigned int max_total_requests, unsigned int max_requests_per_source, bool exclude_whole_cluster, const TaskInfo* exclude_tsk) { Interference inter; unsigned int remaining; remaining = max_total_requests; foreach(cont, it) { const RequestBound* req = *it; if (!remaining) break; // only use this source if it is not excluded if (req->get_task() != exclude_tsk && (!exclude_whole_cluster || req->get_task()->get_cluster() != exclude_tsk->get_cluster())) { unsigned int num; num = std::min(req->get_max_num_requests(interval), max_requests_per_source); num = std::min(num, remaining); inter.total_length += num * req->get_request_length(); inter.count += num; remaining -= num; } } return inter; } struct ClusterLimit { unsigned int max_total_requests; unsigned int max_requests_per_source; ClusterLimit(unsigned int total, unsigned int src) : max_total_requests(total), max_requests_per_source(src) {} }; typedef std::vector ClusterLimits; static Interference bound_blocking_all_clusters( const ClusterResources& clusters, const ClusterLimits& limits, unsigned int res_id, unsigned long interval, const TaskInfo* exclude_tsk) { Interference inter; unsigned int i; // add interference from each non-excluded cluster enumerate(clusters, it, i) { const Resources& resources = *it; const ClusterLimit& limit = limits[i]; if (resources.size() > res_id) inter += bound_blocking(resources[res_id], interval, limit.max_total_requests, limit.max_requests_per_source, exclude_tsk); } return inter; } // Return a contention set that includes the longest requests from all // clusters subject to the specified constraints. static LimitedContentionSet contention_from_all_clusters( const ClusterResources& clusters, const ClusterLimits& limits, unsigned int res_id, unsigned long interval, const TaskInfo* exclude_tsk) { LimitedContentionSet lcs; unsigned int i; // add interference from each non-excluded cluster enumerate(clusters, it, i) { const Resources& resources = *it; const ClusterLimit& limit = limits[i]; if (resources.size() > res_id) add_blocking(lcs, resources[res_id], interval, limit.max_total_requests, limit.max_requests_per_source, exclude_tsk); } return lcs; } static Interference max_local_request_span(const TaskInfo &tsk, const TaskInfos &tasks, const BlockingBounds& bounds) { Interference span; unsigned int i = 0; enumerate(tasks, it, i) { const TaskInfo& t = *it; if (&t != &tsk) { // only consider local, lower-priority tasks if (t.get_cluster() == tsk.get_cluster() && t.get_priority() >= tsk.get_priority()) { Interference b = bounds.get_max_request_span(i); span = std::max(span, bounds.get_max_request_span(i)); } } } return span; } static void charge_arrival_blocking(const ResourceSharingInfo& info, BlockingBounds& bounds) { unsigned int i = 0; const TaskInfos& tasks = info.get_tasks(); enumerate(tasks, it, i) { Interference inf = max_local_request_span(*it, tasks, bounds); bounds[i] += inf; // charge to total bounds.set_arrival_blocking(i, inf); } } // **** blocking term analysis **** BlockingBounds* global_omlp_bounds(const ResourceSharingInfo& info, unsigned int num_procs) { // split every thing by resources, sort, and then start counting. Resources resources; split_by_resource(info, resources); sort_by_request_length(resources); unsigned int i; BlockingBounds* _results = new BlockingBounds(info); BlockingBounds& results = *_results; for (i = 0; i < info.get_tasks().size(); i++) { const TaskInfo& tsk = info.get_tasks()[i]; Interference bterm; foreach(tsk.get_requests(), jt) { const RequestBound& req = *jt; const ContentionSet& cs = resources[req.get_resource_id()]; unsigned int num_sources = cs.size(); unsigned long interval = tsk.get_response(); unsigned long issued = req.get_num_requests(); unsigned int total_limit = (2 * num_procs - 1) * issued; // Derived in the dissertation: at most twice per request. unsigned int per_src_limit = 2 * issued; if (num_sources <= num_procs + 1) { // FIFO case: no job is ever skipped in the // priority queue (since at most one job is in // PQ at any time). // Lemma 15 in RTSS'10: at most one blocking // request per source per issued request. per_src_limit = issued; total_limit = (num_sources - 1) * issued; } bterm += bound_blocking(cs, interval, total_limit, per_src_limit, &tsk); } results[i] = bterm; } return _results; } BlockingBounds* global_fmlp_bounds(const ResourceSharingInfo& info) { // split every thing by resources, sort, and then start counting. Resources resources; split_by_resource(info, resources); sort_by_request_length(resources); unsigned int i; BlockingBounds* _results = new BlockingBounds(info); BlockingBounds& results = *_results; unsigned int num_tasks = info.get_tasks().size(); for (i = 0; i < info.get_tasks().size(); i++) { const TaskInfo& tsk = info.get_tasks()[i]; Interference bterm; foreach(tsk.get_requests(), jt) { const RequestBound& req = *jt; const ContentionSet& cs = resources[req.get_resource_id()]; unsigned long interval = tsk.get_response(); unsigned long issued = req.get_num_requests(); // every other task may block once per request unsigned int total_limit = (num_tasks - 1) * issued; unsigned int per_src_limit = issued; bterm += bound_blocking(cs, interval, total_limit, per_src_limit, &tsk); } results[i] = bterm; } return _results; } static ClusterLimits np_fifo_limits( const TaskInfo& tsk, const ClusterResources& clusters, unsigned int procs_per_cluster, const unsigned int issued, int dedicated_irq) { ClusterLimits limits; int idx; limits.reserve(clusters.size()); enumerate(clusters, ct, idx) { unsigned int total, parallelism = procs_per_cluster; if (idx == dedicated_irq) parallelism--; if (parallelism && (int) tsk.get_cluster() == idx) parallelism--; // At most one blocking request per remote CPU in // cluster per request. total = issued * parallelism; limits.push_back(ClusterLimit(total, issued)); } return limits; } static Interference np_fifo_per_resource( const TaskInfo& tsk, const ClusterResources& clusters, unsigned int procs_per_cluster, unsigned int res_id, unsigned int issued, int dedicated_irq = NO_CPU) { const unsigned long interval = tsk.get_response(); ClusterLimits limits = np_fifo_limits(tsk, clusters, procs_per_cluster, issued, dedicated_irq); return bound_blocking_all_clusters(clusters, limits, res_id, interval, &tsk); } static LimitedContentionSet np_fifo_per_resource_contention( const TaskInfo& tsk, const ClusterResources& clusters, unsigned int procs_per_cluster, unsigned int res_id, unsigned int issued, int dedicated_irq = NO_CPU) { const unsigned long interval = tsk.get_response(); ClusterLimits limits = np_fifo_limits(tsk, clusters, procs_per_cluster, issued, dedicated_irq); return contention_from_all_clusters(clusters, limits, res_id, interval, &tsk); } // assumption: lcs is sorted by request length static Interference bound_blocking(const LimitedContentionSet &lcs, unsigned int max_total_requests) { Interference inter; unsigned int remaining = max_total_requests; foreach(lcs, it) { const LimitedRequestBound &lreqb = *it; unsigned int num; if (!remaining) break; num = std::min(lreqb.limit, remaining); inter.total_length += num * lreqb.request_bound->get_request_length(); inter.count += num; remaining -= num; } return inter; } BlockingBounds* part_omlp_bounds(const ResourceSharingInfo& info) { // split everything by partition Clusters clusters; split_by_cluster(info, clusters); // split each partition by resource ClusterResources resources; split_by_resource(clusters, resources); // sort each contention set by request length sort_by_request_length(resources); // We need for each task the maximum request span. We also need the // maximum direct blocking from remote partitions for each request. We // can determine both in one pass. unsigned int i; // direct blocking results BlockingBounds* _results = new BlockingBounds(info); BlockingBounds& results = *_results; for (i = 0; i < info.get_tasks().size(); i++) { const TaskInfo& tsk = info.get_tasks()[i]; Interference bterm; foreach(tsk.get_requests(), jt) { const RequestBound& req = *jt; Interference blocking; blocking = np_fifo_per_resource( tsk, resources, 1, req.get_resource_id(), req.get_num_requests()); // add in blocking term bterm += blocking; // Keep track of maximum request span. // Is this already a single-issue request? if (req.get_num_requests() != 1) // nope, need to recompute blocking = np_fifo_per_resource( tsk, resources, 1, req.get_resource_id(), 1); // The span includes our own request. blocking.total_length += req.get_request_length(); blocking.count += 1; // Update max. request span. results.raise_request_span(i, blocking); } results[i] = bterm; } charge_arrival_blocking(info, results); return _results; } BlockingBounds* clustered_omlp_bounds(const ResourceSharingInfo& info, unsigned int procs_per_cluster, int dedicated_irq) { // split everything by partition Clusters clusters; split_by_cluster(info, clusters); // split each partition by resource ClusterResources resources; split_by_resource(clusters, resources); // sort each contention set by request length sort_by_request_length(resources); // We need for each task the maximum request span. We also need the // maximum direct blocking from remote partitions for each request. We // can determine both in one pass. unsigned int i; // direct blocking results BlockingBounds* _results = new BlockingBounds(info); BlockingBounds& results = *_results; for (i = 0; i < info.get_tasks().size(); i++) { const TaskInfo& tsk = info.get_tasks()[i]; Interference bterm; foreach(tsk.get_requests(), jt) { const RequestBound& req = *jt; Interference blocking; blocking = np_fifo_per_resource( tsk, resources, procs_per_cluster, req.get_resource_id(), req.get_num_requests(), dedicated_irq); // add in blocking term bterm += blocking; // Keep track of maximum request span. // Is this already a single-issue request? if (req.get_num_requests() != 1) blocking = np_fifo_per_resource( tsk, resources, procs_per_cluster, req.get_resource_id(), 1); // The span includes our own request. blocking.total_length += req.get_request_length(); blocking.count += 1; // Update max. request span. results.raise_request_span(i, blocking); } results[i] = bterm; } // This is the initial delay due to priority donation. charge_arrival_blocking(info, results); return _results; } BlockingBounds* clustered_kx_omlp_bounds(const ResourceSharingInfo& info, const ReplicaInfo& replicaInfo, unsigned int procs_per_cluster, int dedicated_irq) { // split everything by partition Clusters clusters; split_by_cluster(info, clusters); const unsigned int num_cpus = clusters.size() * procs_per_cluster - (dedicated_irq != NO_CPU ? 1 : 0); // split each partition by resource ClusterResources resources; split_by_resource(clusters, resources); // sort each contention set by request length sort_by_request_length(resources); unsigned int i; // direct blocking results BlockingBounds* _results = new BlockingBounds(info); BlockingBounds& results = *_results; for (i = 0; i < info.get_tasks().size(); i++) { const TaskInfo& tsk = info.get_tasks()[i]; Interference bterm; foreach(tsk.get_requests(), jt) { const RequestBound& req = *jt; unsigned int max_total_once; LimitedContentionSet lcs; Interference blocking; max_total_once = divide_with_ceil(num_cpus, replicaInfo[req.get_resource_id()]) - 1; lcs = np_fifo_per_resource_contention( tsk, resources, procs_per_cluster, req.get_resource_id(), req.get_num_requests(), dedicated_irq); sort_by_request_length(lcs); blocking = bound_blocking(lcs, max_total_once * req.get_num_requests()); // add in blocking term bterm += blocking; // Keep track of maximum request span. // Is this already a single-issue request? if (req.get_num_requests() != 1) { lcs = np_fifo_per_resource_contention( tsk, resources, procs_per_cluster, req.get_resource_id(), 1, dedicated_irq); sort_by_request_length(lcs); blocking = bound_blocking(lcs, max_total_once); } // The span includes our own request. blocking.total_length += req.get_request_length(); blocking.count += 1; // Update max. request span. results.raise_request_span(i, blocking); } results[i] = bterm; } // This is the initial delay due to priority donation. charge_arrival_blocking(info, results); return _results; } struct RWCount { unsigned int res_id; unsigned int num_reads; unsigned int num_writes; unsigned int rlength; unsigned int wlength; RWCount(unsigned int id) : res_id(id), num_reads(0), num_writes(0), rlength(0), wlength(0) {} }; typedef std::vector RWCounts; static void merge_rw_requests(const TaskInfo &tsk, RWCounts &counts) { foreach(tsk.get_requests(), req) { unsigned int res_id = req->get_resource_id(); while (counts.size() <= res_id) counts.push_back(RWCount(counts.size())); if (req->is_read()) { counts[res_id].num_reads += req->get_num_requests(); counts[res_id].rlength = req->get_request_length(); } else { counts[res_id].num_writes += req->get_num_requests(); counts[res_id].wlength = req->get_request_length(); } } } static Interference pf_writer_fifo( const TaskInfo& tsk, const ClusterResources& writes, const unsigned int num_writes, const unsigned int num_reads, const unsigned int res_id, const unsigned int procs_per_cluster, const int dedicated_irq) { const unsigned int per_src_wlimit = num_reads + num_writes; const unsigned long interval = tsk.get_response(); ClusterLimits limits; int idx; limits.reserve(writes.size()); enumerate(writes, ct, idx) { unsigned int total, parallelism = procs_per_cluster; if (idx == dedicated_irq) parallelism--; if (parallelism && (int) tsk.get_cluster() == idx) parallelism--; // At most one blocking request per remote CPU in // cluster per request. if (parallelism) total = num_reads + num_writes * parallelism; else // No interference from writers if we are hogging // the only available CPU. total = 0; limits.push_back(ClusterLimit(total, per_src_wlimit)); } Interference blocking; blocking = bound_blocking_all_clusters(writes, limits, res_id, interval, &tsk); return blocking; } static Interference pf_reader_all( const TaskInfo& tsk, const Resources& all_reads, const unsigned int num_writes, const unsigned int num_wblock, const unsigned int num_reads, const unsigned int res_id, const unsigned int procs_per_cluster, const unsigned int num_procs) { const unsigned long interval = tsk.get_response(); Interference blocking; unsigned int rlimit = std::min(num_wblock + num_writes, num_reads + num_writes * (num_procs - 1)); blocking = bound_blocking(all_reads[res_id], interval, rlimit, rlimit, // exclude all if c == 1 procs_per_cluster == 1, &tsk); return blocking; } BlockingBounds* clustered_rw_omlp_bounds(const ResourceSharingInfo& info, unsigned int procs_per_cluster, int dedicated_irq) { // split everything by partition Clusters clusters; split_by_cluster(info, clusters); // split each partition by resource ClusterResources resources; split_by_resource(clusters, resources); // split all by resource Resources all_task_reqs, all_reads, __all_writes; split_by_resource(info, all_task_reqs); split_by_type(all_task_reqs, all_reads, __all_writes); // sort each contention set by request length sort_by_request_length(resources); sort_by_request_length(all_reads); // split by type --- sorted order is maintained ClusterResources __reads, writes; split_by_type(resources, __reads, writes); // We need for each task the maximum request span. We also need the // maximum direct blocking from remote partitions for each request. We // can determine both in one pass. const unsigned int num_procs = procs_per_cluster * clusters.size(); unsigned int i; // direct blocking results BlockingBounds* _results = new BlockingBounds(info); BlockingBounds& results = *_results; for (i = 0; i < info.get_tasks().size(); i++) { const TaskInfo& tsk = info.get_tasks()[i]; RWCounts rwcounts; Interference bterm; merge_rw_requests(tsk, rwcounts); foreach(rwcounts, jt) { const RWCount& rw = *jt; // skip placeholders if (!rw.num_reads && !rw.num_writes) continue; Interference wblocking, rblocking; wblocking = pf_writer_fifo(tsk, writes, rw.num_writes, rw.num_reads, rw.res_id, procs_per_cluster, dedicated_irq); rblocking = pf_reader_all(tsk, all_reads, rw.num_writes, wblocking.count, rw.num_reads, rw.res_id, procs_per_cluster, num_procs); //**** SINGLE WRITE Interference rblocking_w1, wblocking_w1; // Keep track of maximum request span. // Is this already a single-issue request? if (rw.num_writes && (rw.num_writes != 1 || rw.num_reads != 0)) { wblocking_w1 = pf_writer_fifo(tsk, writes, 1, 0, rw.res_id, procs_per_cluster, dedicated_irq); rblocking_w1 = pf_reader_all( tsk, all_reads, 1, wblocking_w1.count, 0, rw.res_id, procs_per_cluster, num_procs); } else if (rw.num_writes) { wblocking_w1 = wblocking; rblocking_w1 = rblocking; } // else: zero, nothing to do //**** SINGLE READ Interference rblocking_r1, wblocking_r1; if (rw.num_reads && (rw.num_reads != 1 || rw.num_writes != 0)) { wblocking_r1 = pf_writer_fifo(tsk, writes, 0, 1, rw.res_id, procs_per_cluster, dedicated_irq); rblocking_r1 = pf_reader_all( tsk, all_reads, 0, wblocking_r1.count, 1, rw.res_id, procs_per_cluster, num_procs); } else if (rw.num_reads) { wblocking_r1 = wblocking; rblocking_r1 = rblocking; } // else: zero, nothing to do // The span includes our own request. if (rw.num_writes) { wblocking_w1.total_length += rw.wlength; wblocking_w1.count += 1; } if (rw.num_reads) { rblocking_r1.total_length += rw.rlength; wblocking_r1.count += 1; } // combine wblocking_w1 += rblocking_w1; wblocking_r1 += rblocking_r1; wblocking += rblocking; results.raise_request_span(i, wblocking_w1); results.raise_request_span(i, wblocking_r1); bterm += wblocking; } results[i] = bterm; } // This is the initial delay due to priority donation. charge_arrival_blocking(info, results); return _results; } BlockingBounds* task_fair_mutex_bounds(const ResourceSharingInfo& info, unsigned int procs_per_cluster, int dedicated_irq) { // These are structurally equivalent. Therefore, no need to reimplement // everything from scratch. return clustered_omlp_bounds(info, procs_per_cluster, dedicated_irq); } BlockingBounds* phase_fair_rw_bounds(const ResourceSharingInfo& info, unsigned int procs_per_cluster, int dedicated_irq) { // These are structurally equivalent. Therefore, no need to reimplement // everything from scratch. return clustered_rw_omlp_bounds(info, procs_per_cluster, dedicated_irq); } static Interference bound_blocking_all( const TaskInfo* tsk, const ContentionSet& all_reqs, // presumed sorted, for all clusters/tasks const unsigned int max_remote_requests, // per cluster const unsigned int max_local_requests, // local cluster const unsigned int max_requests, // per task unsigned int max_total) // stop after counting max_total { unsigned long interval = tsk->get_response(); hashmap task_counter(512); hashmap::iterator tctr; hashmap cluster_counter(64); hashmap::iterator cctr; Interference inter; cluster_counter[tsk->get_cluster()] = max_local_requests; foreach(all_reqs, it) { const RequestBound* req = *it; const TaskInfo* t = req->get_task(); unsigned long key = (unsigned long) t; unsigned int cluster = t->get_cluster(); if (!max_total) // we are done break; if (t == tsk) // doesn't block itself continue; // make sure we have seen this task tctr = task_counter.find(key); if (tctr == task_counter.end()) { task_counter[key] = max_requests; tctr = task_counter.find(key); } if (!tctr->second) continue; cctr = cluster_counter.find(cluster); if (cctr == cluster_counter.end()) { cluster_counter[cluster] = max_remote_requests; cctr = cluster_counter.find(cluster); } if (!cctr->second) continue; unsigned int remaining; remaining = std::min(tctr->second, cctr->second); remaining = std::min(remaining, max_total); unsigned int num = std::min(req->get_max_num_requests(interval), remaining); inter.total_length += num * req->get_request_length(); inter.count += num; cctr->second -= num; tctr->second -= num; max_total -= num; } return inter; } static Interference tf_reader_all( const TaskInfo& tsk, const Resources& all_reads, const unsigned int num_writes, const unsigned int num_wblock, const unsigned int num_reads, const unsigned int res_id, const unsigned int procs_per_cluster) { Interference blocking; unsigned int num_reqs = num_reads + num_writes; unsigned int max_reader_phases = num_wblock + num_writes; unsigned int task_limit = std::min(max_reader_phases, num_reqs); return bound_blocking_all( &tsk, all_reads[res_id], num_reqs * procs_per_cluster, num_reqs * (procs_per_cluster - 1), task_limit, max_reader_phases); } BlockingBounds* task_fair_rw_bounds(const ResourceSharingInfo& info, const ResourceSharingInfo& info_mtx, unsigned int procs_per_cluster, int dedicated_irq) { // split everything by partition Clusters clusters, clusters_mtx; split_by_cluster(info, clusters); split_by_cluster(info_mtx, clusters_mtx); // split each partition by resource ClusterResources resources, resources_mtx; split_by_resource(clusters, resources); split_by_resource(clusters_mtx, resources_mtx); // split all by resource Resources all_task_reqs, all_reads, __all_writes; split_by_resource(info, all_task_reqs); split_by_type(all_task_reqs, all_reads, __all_writes); // sort each contention set by request length sort_by_request_length(resources); sort_by_request_length(resources_mtx); sort_by_request_length(all_reads); // split by type --- sorted order is maintained ClusterResources __reads, writes; split_by_type(resources, __reads, writes); // We need for each task the maximum request span. We also need the // maximum direct blocking from remote partitions for each request. We // can determine both in one pass. unsigned int i; // direct blocking results BlockingBounds* _results = new BlockingBounds(info); BlockingBounds& results = *_results; for (i = 0; i < info.get_tasks().size(); i++) { const TaskInfo& tsk = info.get_tasks()[i]; RWCounts rwcounts; Interference bterm; merge_rw_requests(tsk, rwcounts); foreach(rwcounts, jt) { const RWCount& rw = *jt; // skip placeholders if (!rw.num_reads && !rw.num_writes) continue; // 1) treat it as a mutex as a baseline Interference mtx, mtx_1; mtx = np_fifo_per_resource( tsk, resources_mtx, procs_per_cluster, rw.res_id, rw.num_reads + rw.num_writes, dedicated_irq); if (rw.num_reads + rw.num_writes == 1) mtx_1 = mtx; else mtx_1 = np_fifo_per_resource( tsk, resources_mtx, procs_per_cluster, rw.res_id, 1, dedicated_irq); // The span includes our own request. mtx_1.total_length += std::max(rw.wlength, rw.rlength); mtx_1.count += 1; // 2) apply real RW analysis Interference wblocking, wblocking_1; Interference rblocking, rblocking_r1, rblocking_w1; wblocking = np_fifo_per_resource( tsk, writes, procs_per_cluster, rw.res_id, rw.num_reads + rw.num_writes, dedicated_irq); wblocking_1 = np_fifo_per_resource( tsk, writes, procs_per_cluster, rw.res_id, 1, dedicated_irq); rblocking = tf_reader_all( tsk, all_reads, rw.num_writes, wblocking.count, rw.num_reads, rw.res_id, procs_per_cluster); if (rw.num_writes) { // single write rblocking_w1 = tf_reader_all( tsk, all_reads, 1, wblocking.count, 0, rw.res_id, procs_per_cluster); // The span includes our own request. rblocking_w1.total_length += rw.wlength; rblocking_w1.count += 1; } if (rw.num_reads) { // single read rblocking_r1 = tf_reader_all( tsk, all_reads, 0, wblocking.count, 1, rw.res_id, procs_per_cluster); // The span includes our own request. rblocking_r1.total_length += rw.rlength; rblocking_r1.count += 1; } // combine wblocking += rblocking; wblocking_1 += std::max(rblocking_w1, rblocking_r1); bterm += std::min(wblocking, mtx); results.raise_request_span(i, std::min(wblocking_1, mtx_1)); } results[i] = bterm; } // This is the initial delay due to priority donation. charge_arrival_blocking(info, results); return _results; } /* this analysis corresponds to the FMLP+ in the dissertation */ static void pfmlp_count_direct_blocking(const TaskInfo* tsk, const ClusterResources& resources, std::vector& counts) { unsigned int interval = tsk->get_response(); // for each resource requested by tsk foreach(tsk->get_requests(), jt) { const RequestBound& req = *jt; unsigned long issued = req.get_num_requests(); unsigned int res_id = req.get_resource_id(); unsigned int i; // for each cluster for (i = 0; i < resources.size(); i++) { // count interference... direct blocking will be counted later // make sure that cluster acceses res_id at all if (resources[i].size() > res_id) // yes it does---how often can it block? counts[i] += bound_blocking(resources[i][res_id], interval, UNLIMITED, // no total limit issued, // once per request tsk); } } } typedef std::vector AccessCounts; typedef std::vector PerClusterAccessCounts; // How many times does a task issue requests that can // conflict with tasks in a remote cluster. Indexed by cluster id. typedef std::vector IssuedRequests; // Issued requests for each task. Indexed by task id. typedef std::vector PerTaskIssuedCounts; static void derive_access_counts(const ContentionSet &cluster_contention, AccessCounts &counts) { foreach(cluster_contention, it) { const RequestBound *req = *it; unsigned int res_id = req->get_resource_id(); while (counts.size() <= res_id) counts.push_back(0); counts[res_id] += req->get_num_requests(); } } static void count_accesses_for_task(const TaskInfo& tsk, const PerClusterAccessCounts& acc_counts, IssuedRequests& ireqs) { foreach(acc_counts, it) { const AccessCounts &ac = *it; unsigned int count = 0; // Check for each request of the task to see // if it conflicts with the cluster. foreach(tsk.get_requests(), jt) { const RequestBound &req = *jt; unsigned int res_id = req.get_resource_id(); if (ac.size() > res_id && ac[res_id] > 0) { // cluster acceses res_id as well count += req.get_num_requests(); } } ireqs.push_back(count); } } static void derive_access_counts(const AllPerCluster &per_cluster, const ResourceSharingInfo &info, PerTaskIssuedCounts &issued_reqs) { PerClusterAccessCounts counts; /* which resources are accessed by each cluster? */ map_ref(per_cluster, counts, AccessCounts, derive_access_counts); issued_reqs.reserve(info.get_tasks().size()); foreach(info.get_tasks(), it) { issued_reqs.push_back(IssuedRequests()); count_accesses_for_task(*it, counts, issued_reqs.back()); } } static Interference pfmlp_bound_remote_blocking(const TaskInfo* tsk, const IssuedRequests &icounts, const std::vector& counts, const ClusterContention& contention) { unsigned int i; unsigned long interval = tsk->get_response(); Interference blocking; // for each cluster for (i = 0; i < contention.size(); i++) { // Each task can either directly or indirectly block tsk // each time that tsk is directly blocked, but no more than // once per request issued by tsk. unsigned int max_per_task = std::min(counts[i].count, icounts[i]); // skip local cluster and independent clusters if (i == tsk->get_cluster() || !max_per_task) continue; Interference b; // for each task in cluster foreach(contention[i], it) { // count longest critical sections b += bound_blocking(*it, interval, max_per_task, UNLIMITED, // no limit per source tsk); } blocking += b; } return blocking; } static Interference pfmlp_bound_np_blocking(const TaskInfo* tsk, const std::vector& counts, const AllPerCluster& per_cluster) { unsigned int i; unsigned long interval = tsk->get_response(); Interference blocking; // for each cluster for (i = 0; i < per_cluster.size(); i++) { // skip local cluster, this is only remote if (i == tsk->get_cluster()) continue; // could be the same task each time tsk is directly blocked unsigned int max_direct = counts[i].count; Interference b; // count longest critical sections b += bound_blocking(per_cluster[i], interval, max_direct, max_direct, tsk); blocking += b; } return blocking; } static Interference pfmlp_bound_local_blocking(const TaskInfo* tsk, const std::vector& counts, const ClusterContention& contention) { // Locally, we have to account two things. // 1) Direct blocking from lower-priority tasks. // 2) Boost blocking from lower-priority tasks. // (Higher-priority requests are not counted as blocking.) // Since lower-priority jobs are boosted while // they directly block, 1) is subsumed by 2). // Lower-priority tasks cannot issue requests while a higher-priority // job executes. Therefore, at most one blocking request // is issued prior to the release of the job under analysis, // and one prior to each time that the job under analysis resumes. Interference blocking; Interference num_db = std::accumulate(counts.begin(), counts.end(), Interference()); unsigned int num_arrivals = std::min(tsk->get_num_arrivals(), num_db.count + 1); unsigned long interval = tsk->get_response(); const TaskContention& cont = contention[tsk->get_cluster()]; // for each task in cluster foreach(cont, it) { // count longest critical sections blocking += bound_blocking(*it, interval, num_arrivals, UNLIMITED, // no limit per source tsk, tsk->get_priority()); } return blocking; } BlockingBounds* part_fmlp_bounds(const ResourceSharingInfo& info, bool preemptive) { // split everything by partition Clusters clusters; split_by_cluster(info, clusters); // split each partition by resource ClusterResources resources; split_by_resource(clusters, resources); // find interference on a per-task basis ClusterContention contention; derive_task_contention(clusters, contention); // sort each contention set by request length sort_by_request_length(contention); // find total interference on a per-cluster basis AllPerCluster per_cluster; PerTaskIssuedCounts access_counts; all_per_cluster(clusters, per_cluster); sort_by_request_length(per_cluster); derive_access_counts(per_cluster, info, access_counts); // We need to find two blocking sources. Direct blocking (i.e., jobs // that are enqueued prior to the job under analysis) and boost // blocking, which occurs when the job under analysis is delayed // because some other job is priority-boosted. Boost blocking can be // local and transitive from remote CPUs. To compute this correctly, // we need to count how many times some job on a remote CPU can directly // block the job under analysis. So we first compute direct blocking // and count on which CPUs a job can be blocked. unsigned int i; // direct blocking results BlockingBounds* _results = new BlockingBounds(info); BlockingBounds& results = *_results; for (i = 0; i < info.get_tasks().size(); i++) { const TaskInfo& tsk = info.get_tasks()[i]; std::vector counts(resources.size()); Interference remote, local; // Determine counts. pfmlp_count_direct_blocking(&tsk, resources, counts); // Find longest remote requests. remote = pfmlp_bound_remote_blocking(&tsk, access_counts[i], counts, contention); // Add in local boost blocking. local = pfmlp_bound_local_blocking(&tsk, counts, contention); if (!preemptive) { // Charge for additional delays due to remot non-preemptive // sections. remote += pfmlp_bound_np_blocking(&tsk, counts, per_cluster); } results[i] = remote + local; results.set_remote_blocking(i, remote); results.set_local_blocking(i, local); } return _results; }