diff options
Diffstat (limited to 'SD-VBS/benchmarks/texture_synthesis/src/matlab/modkurt.m')
-rwxr-xr-x | SD-VBS/benchmarks/texture_synthesis/src/matlab/modkurt.m | 172 |
1 files changed, 172 insertions, 0 deletions
diff --git a/SD-VBS/benchmarks/texture_synthesis/src/matlab/modkurt.m b/SD-VBS/benchmarks/texture_synthesis/src/matlab/modkurt.m new file mode 100755 index 0000000..e144d32 --- /dev/null +++ b/SD-VBS/benchmarks/texture_synthesis/src/matlab/modkurt.m | |||
@@ -0,0 +1,172 @@ | |||
1 | function [chm, snrk] = modkurt(ch,k,p); | ||
2 | |||
3 | % Modify the kurtosis in one step, by moving in gradient direction until | ||
4 | % reaching the desired kurtosis value. | ||
5 | % It does not affect the mean nor the variance, but it affects the skewness. | ||
6 | % This operation is not an orthogonal projection, but the projection angle is | ||
7 | % near pi/2 when k is close to the original kurtosis, which is a realistic assumption | ||
8 | % when doing iterative projections in a pyramid, for example (small corrections | ||
9 | % to the channels' statistics). | ||
10 | % | ||
11 | % [chm, snrk] = modkurt(ch,k,p); | ||
12 | % ch: channel | ||
13 | % k: desired kurtosis (k=M4/M2^2) | ||
14 | % p [OPTIONAL]: mixing proportion between k0 and k | ||
15 | % it imposes (1-p)*k0 + p*k, | ||
16 | % being k0 the current kurtosis. | ||
17 | % DEFAULT: p = 1; | ||
18 | |||
19 | |||
20 | % Javier Portilla, Oct.12/97, NYU | ||
21 | |||
22 | Warn = 0; % Set to 1 if you want to see warning messages | ||
23 | if ~exist('p'), | ||
24 | p = 1; | ||
25 | end | ||
26 | |||
27 | me=mean2(ch); | ||
28 | ch=ch-me; | ||
29 | |||
30 | % Compute the moments | ||
31 | |||
32 | m=zeros(12,1); | ||
33 | for n=2:12, | ||
34 | m(n)=mean2(ch.^n); | ||
35 | end | ||
36 | |||
37 | % The original kurtosis | ||
38 | |||
39 | k0=m(4)/m(2)^2; | ||
40 | snrk = snr(k, k-k0); | ||
41 | if snrk > 60, | ||
42 | chm = ch+me; | ||
43 | return | ||
44 | end | ||
45 | k = k0*(1-p) + k*p; | ||
46 | |||
47 | % Some auxiliar variables | ||
48 | |||
49 | a=m(4)/m(2); | ||
50 | |||
51 | % Coeficients of the numerator (A*lam^4+B*lam^3+C*lam^2+D*lam+E) | ||
52 | |||
53 | A=m(12)-4*a*m(10)-4*m(3)*m(9)+6*a^2*m(8)+12*a*m(3)*m(7)+6*m(3)^2*m(6)-... | ||
54 | 4*a^3*m(6)-12*a^2*m(3)*m(5)+a^4*m(4)-12*a*m(3)^2*m(4)+... | ||
55 | 4*a^3*m(3)^2+6*a^2*m(3)^2*m(2)-3*m(3)^4; | ||
56 | B=4*(m(10)-3*a*m(8)-3*m(3)*m(7)+3*a^2*m(6)+6*a*m(3)*m(5)+3*m(3)^2*m(4)-... | ||
57 | a^3*m(4)-3*a^2*m(3)^2-3*m(4)*m(3)^2); | ||
58 | C=6*(m(8)-2*a*m(6)-2*m(3)*m(5)+a^2*m(4)+2*a*m(3)^2+m(3)^2*m(2)); | ||
59 | D=4*(m(6)-a^2*m(2)-m(3)^2); | ||
60 | E=m(4); | ||
61 | |||
62 | % Define the coefficients of the denominator (F*lam^2+G)^2 | ||
63 | |||
64 | F=D/4; | ||
65 | G=m(2); | ||
66 | |||
67 | % test | ||
68 | test = 0; | ||
69 | |||
70 | if test, | ||
71 | |||
72 | grd = ch.^3 - a*ch - m(3); | ||
73 | lam = -0.001:0.00001:0.001; | ||
74 | k = (A*lam.^4+B*lam.^3+C*lam.^2+D*lam+E)./... | ||
75 | (F*lam.^2 + G).^2; | ||
76 | for lam = -0.001:0.00001:0.001, | ||
77 | n = lam*100000+101; | ||
78 | chp = ch + lam*grd; | ||
79 | k2(n) = mean2(chp.^4)/mean2(chp.^2)^2; | ||
80 | %k2(n) = mean2(chp.^4); | ||
81 | end | ||
82 | lam = -0.001:0.00001:0.001; | ||
83 | snr(k2, k-k2) | ||
84 | |||
85 | end % test | ||
86 | |||
87 | % Now I compute its derivative with respect to lambda | ||
88 | % (only the roots of derivative = 0 ) | ||
89 | |||
90 | d(1) = B*F; | ||
91 | d(2) = 2*C*F - 4*A*G; | ||
92 | d(3) = 4*F*D -3*B*G - D*F; | ||
93 | d(4) = 4*F*E - 2*C*G; | ||
94 | d(5) = -D*G; | ||
95 | |||
96 | mMlambda = roots(d); | ||
97 | |||
98 | tg = imag(mMlambda)./real(mMlambda); | ||
99 | mMlambda = mMlambda(find(abs(tg)<1e-6)); | ||
100 | lNeg = mMlambda(find(mMlambda<0)); | ||
101 | if length(lNeg)==0, | ||
102 | lNeg = -1/eps; | ||
103 | end | ||
104 | lPos = mMlambda(find(mMlambda>=0)); | ||
105 | if length(lPos)==0, | ||
106 | lPos = 1/eps; | ||
107 | end | ||
108 | lmi = max(lNeg); | ||
109 | lma = min(lPos); | ||
110 | |||
111 | lam = [lmi lma]; | ||
112 | mMnewKt = polyval([A B C D E],lam)./(polyval([F 0 G],lam)).^2; | ||
113 | kmin = min(mMnewKt); | ||
114 | kmax = max(mMnewKt); | ||
115 | |||
116 | % Given a desired kurtosis, solves for lambda | ||
117 | |||
118 | if k<=kmin & Warn, | ||
119 | lam = lmi; | ||
120 | warning('Saturating (down) kurtosis!'); | ||
121 | kmin | ||
122 | elseif k>=kmax & Warn, | ||
123 | lam = lma; | ||
124 | warning('Saturating (up) kurtosis!'); | ||
125 | kmax | ||
126 | else | ||
127 | |||
128 | % Coeficients of the algebraic equation | ||
129 | |||
130 | c0 = E - k*G^2; | ||
131 | c1 = D; | ||
132 | c2 = C - 2*k*F*G; | ||
133 | c3 = B; | ||
134 | c4 = A - k*F^2; | ||
135 | |||
136 | % Solves the equation | ||
137 | |||
138 | r=roots([c4 c3 c2 c1 c0]); | ||
139 | |||
140 | % Chose the real solution with minimum absolute value with the rigth sign | ||
141 | |||
142 | tg = imag(r)./real(r); | ||
143 | %lambda = real(r(find(abs(tg)<1e-6))); | ||
144 | lambda = real(r(find(abs(tg)==0))); | ||
145 | if length(lambda)>0, | ||
146 | lam = lambda(find(abs(lambda)==min(abs(lambda)))); | ||
147 | lam = lam(1); | ||
148 | else | ||
149 | lam = 0; | ||
150 | end | ||
151 | |||
152 | end % if ... else | ||
153 | |||
154 | |||
155 | % Modify the channel | ||
156 | |||
157 | chm=ch+lam*(ch.^3-a*ch-m(3)); % adjust the kurtosis | ||
158 | chm=chm*sqrt(m(2)/mean2(chm.^2)); % adjust the variance | ||
159 | chm=chm+me; % adjust the mean | ||
160 | |||
161 | % Check the result | ||
162 | %k2=mean2((chm-me).^4)/(mean2((chm-me).^2))^2; | ||
163 | %SNR=snr(k,k-k2) | ||
164 | |||
165 | |||
166 | |||
167 | |||
168 | |||
169 | |||
170 | |||
171 | |||
172 | |||