diff options
Diffstat (limited to 'SD-VBS/benchmarks/texture_synthesis/src/matlab/mkGaussian.m')
-rwxr-xr-x | SD-VBS/benchmarks/texture_synthesis/src/matlab/mkGaussian.m | 58 |
1 files changed, 0 insertions, 58 deletions
diff --git a/SD-VBS/benchmarks/texture_synthesis/src/matlab/mkGaussian.m b/SD-VBS/benchmarks/texture_synthesis/src/matlab/mkGaussian.m deleted file mode 100755 index fa8a554..0000000 --- a/SD-VBS/benchmarks/texture_synthesis/src/matlab/mkGaussian.m +++ /dev/null | |||
@@ -1,58 +0,0 @@ | |||
1 | % IM = mkGaussian(SIZE, COVARIANCE, MEAN, AMPLITUDE) | ||
2 | % | ||
3 | % Compute a matrix with dimensions SIZE (a [Y X] 2-vector, or a | ||
4 | % scalar) containing a Gaussian function, centered at pixel position | ||
5 | % specified by MEAN (default = (size+1)/2), with given COVARIANCE (can | ||
6 | % be a scalar, 2-vector, or 2x2 matrix. Default = (min(size)/6)^2), | ||
7 | % and AMPLITUDE. AMPLITUDE='norm' (default) will produce a | ||
8 | % probability-normalized function. All but the first argument are | ||
9 | % optional. | ||
10 | |||
11 | % Eero Simoncelli, 6/96. | ||
12 | |||
13 | function [res] = mkGaussian(sz, cov, mn, ampl) | ||
14 | |||
15 | sz = sz(:); | ||
16 | if (size(sz,1) == 1) | ||
17 | sz = [sz,sz]; | ||
18 | end | ||
19 | |||
20 | %------------------------------------------------------------ | ||
21 | %% OPTIONAL ARGS: | ||
22 | |||
23 | if (exist('cov') ~= 1) | ||
24 | cov = (min(sz(1),sz(2))/6)^2; | ||
25 | end | ||
26 | |||
27 | if (exist('mn') ~= 1) | ||
28 | mn = (sz+1)/2; | ||
29 | end | ||
30 | |||
31 | if (exist('ampl') ~= 1) | ||
32 | ampl = 'norm'; | ||
33 | end | ||
34 | |||
35 | %------------------------------------------------------------ | ||
36 | |||
37 | [xramp,yramp] = meshgrid([1:sz(2)]-mn(2),[1:sz(1)]-mn(1)); | ||
38 | |||
39 | if (sum(size(cov)) == 2) % scalar | ||
40 | if (strcmp(ampl,'norm')) | ||
41 | ampl = 1/(2*pi*cov(1)); | ||
42 | end | ||
43 | e = (xramp.^2 + yramp.^2)/(-2 * cov); | ||
44 | elseif (sum(size(cov)) == 3) % a 2-vector | ||
45 | if (strcmp(ampl,'norm')) | ||
46 | ampl = 1/(2*pi*sqrt(cov(1)*cov(2))); | ||
47 | end | ||
48 | e = xramp.^2/(-2 * cov(2)) + yramp.^2/(-2 * cov(1)); | ||
49 | else | ||
50 | if (strcmp(ampl,'norm')) | ||
51 | ampl = 1/(2*pi*sqrt(det(cov))); | ||
52 | end | ||
53 | cov = -inv(cov)/2; | ||
54 | e = cov(2,2)*xramp.^2 + (cov(1,2)+cov(2,1))*(xramp.*yramp) ... | ||
55 | + cov(1,1)*yramp.^2; | ||
56 | end | ||
57 | |||
58 | res = ampl .* exp(e); | ||