diff options
Diffstat (limited to 'SD-VBS/benchmarks/texture_synthesis/src/matlab/buildSCFpyrLevs.m')
| -rwxr-xr-x | SD-VBS/benchmarks/texture_synthesis/src/matlab/buildSCFpyrLevs.m | 73 |
1 files changed, 0 insertions, 73 deletions
diff --git a/SD-VBS/benchmarks/texture_synthesis/src/matlab/buildSCFpyrLevs.m b/SD-VBS/benchmarks/texture_synthesis/src/matlab/buildSCFpyrLevs.m deleted file mode 100755 index bd75695..0000000 --- a/SD-VBS/benchmarks/texture_synthesis/src/matlab/buildSCFpyrLevs.m +++ /dev/null | |||
| @@ -1,73 +0,0 @@ | |||
| 1 | % [PYR, INDICES] = buildSCFpyrLevs(LODFT, LOGRAD, XRCOS, YRCOS, ANGLE, HEIGHT, NBANDS) | ||
| 2 | % | ||
| 3 | % Recursive function for constructing levels of a steerable pyramid. This | ||
| 4 | % is called by buildSCFpyr, and is not usually called directly. | ||
| 5 | |||
| 6 | % Original code: Eero Simoncelli, 5/97. | ||
| 7 | % Modified by Javier Portilla to generate complex bands in 9/97. | ||
| 8 | |||
| 9 | function [pyr,pind] = buildSCFpyrLevs(lodft,log_rad,Xrcos,Yrcos,angle,ht,nbands); | ||
| 10 | |||
| 11 | if (ht <= 0) | ||
| 12 | |||
| 13 | lo0 = ifft2(ifftshift(lodft)); | ||
| 14 | pyr = real(lo0(:)); | ||
| 15 | pind = size(lo0); | ||
| 16 | |||
| 17 | else | ||
| 18 | |||
| 19 | bands = zeros(prod(size(lodft)), nbands); | ||
| 20 | bind = zeros(nbands,2); | ||
| 21 | |||
| 22 | % log_rad = log_rad + 1; | ||
| 23 | Xrcos = Xrcos - log2(2); % shift origin of lut by 1 octave. | ||
| 24 | |||
| 25 | lutsize = 1024; | ||
| 26 | Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi] | ||
| 27 | order = nbands-1; | ||
| 28 | %% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) ) | ||
| 29 | %% Thanks to Patrick Teo for writing this out :) | ||
| 30 | const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order)); | ||
| 31 | |||
| 32 | % | ||
| 33 | % Ycosn = sqrt(const) * (cos(Xcosn)).^order; | ||
| 34 | % | ||
| 35 | % analityc version: only take one lobe | ||
| 36 | alfa= mod(pi+Xcosn,2*pi)-pi; | ||
| 37 | Ycosn = 2*sqrt(const) * (cos(Xcosn).^order) .* (abs(alfa)<pi/2); | ||
| 38 | |||
| 39 | himask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); | ||
| 40 | |||
| 41 | for b = 1:nbands | ||
| 42 | anglemask = pointOp(angle, Ycosn, Xcosn(1)+pi*(b-1)/nbands, Xcosn(2)-Xcosn(1)); | ||
| 43 | banddft = ((-i)^(nbands-1)) .* lodft .* anglemask .* himask; | ||
| 44 | band = ifft2(ifftshift(banddft)); | ||
| 45 | |||
| 46 | % bands(:,b) = real(band(:)); | ||
| 47 | % analytic version: full complex value | ||
| 48 | bands(:,b)=band(:); | ||
| 49 | bind(b,:) = size(band); | ||
| 50 | end | ||
| 51 | |||
| 52 | dims = size(lodft); | ||
| 53 | ctr = ceil((dims+0.5)/2); | ||
| 54 | lodims = ceil((dims-0.5)/2); | ||
| 55 | loctr = ceil((lodims+0.5)/2); | ||
| 56 | lostart = ctr-loctr+1; | ||
| 57 | loend = lostart+lodims-1; | ||
| 58 | |||
| 59 | log_rad = log_rad(lostart(1):loend(1),lostart(2):loend(2)); | ||
| 60 | angle = angle(lostart(1):loend(1),lostart(2):loend(2)); | ||
| 61 | lodft = lodft(lostart(1):loend(1),lostart(2):loend(2)); | ||
| 62 | YIrcos = abs(sqrt(1.0 - Yrcos.^2)); | ||
| 63 | lomask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); | ||
| 64 | |||
| 65 | lodft = lomask .* lodft; | ||
| 66 | |||
| 67 | [npyr,nind] = buildSCFpyrLevs(lodft, log_rad, Xrcos, Yrcos, angle, ht-1, nbands); | ||
| 68 | |||
| 69 | pyr = [bands(:); npyr]; | ||
| 70 | pind = [bind; nind]; | ||
| 71 | |||
| 72 | end | ||
| 73 | |||
