aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/trace/ring_buffer.c
blob: 830a2930dd9196cc9cf0d8b651cfbf2db9ff4349 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
/*
 * Generic ring buffer
 *
 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
 */
#include <linux/ring_buffer.h>
#include <linux/spinlock.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/mutex.h>
#include <linux/sched.h>	/* used for sched_clock() (for now) */
#include <linux/init.h>
#include <linux/hash.h>
#include <linux/list.h>
#include <linux/fs.h>

/* Up this if you want to test the TIME_EXTENTS and normalization */
#define DEBUG_SHIFT 0

/* FIXME!!! */
u64 ring_buffer_time_stamp(int cpu)
{
	/* shift to debug/test normalization and TIME_EXTENTS */
	return sched_clock() << DEBUG_SHIFT;
}

void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
{
	/* Just stupid testing the normalize function and deltas */
	*ts >>= DEBUG_SHIFT;
}

#define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
#define RB_ALIGNMENT_SHIFT	2
#define RB_ALIGNMENT		(1 << RB_ALIGNMENT_SHIFT)
#define RB_MAX_SMALL_DATA	28

enum {
	RB_LEN_TIME_EXTEND = 8,
	RB_LEN_TIME_STAMP = 16,
};

/* inline for ring buffer fast paths */
static inline unsigned
rb_event_length(struct ring_buffer_event *event)
{
	unsigned length;

	switch (event->type) {
	case RINGBUF_TYPE_PADDING:
		/* undefined */
		return -1;

	case RINGBUF_TYPE_TIME_EXTEND:
		return RB_LEN_TIME_EXTEND;

	case RINGBUF_TYPE_TIME_STAMP:
		return RB_LEN_TIME_STAMP;

	case RINGBUF_TYPE_DATA:
		if (event->len)
			length = event->len << RB_ALIGNMENT_SHIFT;
		else
			length = event->array[0];
		return length + RB_EVNT_HDR_SIZE;
	default:
		BUG();
	}
	/* not hit */
	return 0;
}

/**
 * ring_buffer_event_length - return the length of the event
 * @event: the event to get the length of
 */
unsigned ring_buffer_event_length(struct ring_buffer_event *event)
{
	return rb_event_length(event);
}

/* inline for ring buffer fast paths */
static inline void *
rb_event_data(struct ring_buffer_event *event)
{
	BUG_ON(event->type != RINGBUF_TYPE_DATA);
	/* If length is in len field, then array[0] has the data */
	if (event->len)
		return (void *)&event->array[0];
	/* Otherwise length is in array[0] and array[1] has the data */
	return (void *)&event->array[1];
}

/**
 * ring_buffer_event_data - return the data of the event
 * @event: the event to get the data from
 */
void *ring_buffer_event_data(struct ring_buffer_event *event)
{
	return rb_event_data(event);
}

#define for_each_buffer_cpu(buffer, cpu)		\
	for_each_cpu_mask(cpu, buffer->cpumask)

#define TS_SHIFT	27
#define TS_MASK		((1ULL << TS_SHIFT) - 1)
#define TS_DELTA_TEST	(~TS_MASK)

/*
 * This hack stolen from mm/slob.c.
 * We can store per page timing information in the page frame of the page.
 * Thanks to Peter Zijlstra for suggesting this idea.
 */
struct buffer_page {
	union {
		struct {
			unsigned long	 flags;		/* mandatory */
			atomic_t	 _count;	/* mandatory */
			u64		 time_stamp;	/* page time stamp */
			unsigned	 size;		/* size of page data */
			struct list_head list;		/* list of free pages */
		};
		struct page page;
	};
};

/*
 * We need to fit the time_stamp delta into 27 bits.
 */
static inline int test_time_stamp(u64 delta)
{
	if (delta & TS_DELTA_TEST)
		return 1;
	return 0;
}

#define BUF_PAGE_SIZE PAGE_SIZE

/*
 * head_page == tail_page && head == tail then buffer is empty.
 */
struct ring_buffer_per_cpu {
	int				cpu;
	struct ring_buffer		*buffer;
	spinlock_t			lock;
	struct lock_class_key		lock_key;
	struct list_head		pages;
	unsigned long			head;	/* read from head */
	unsigned long			tail;	/* write to tail */
	struct buffer_page		*head_page;
	struct buffer_page		*tail_page;
	unsigned long			overrun;
	unsigned long			entries;
	u64				write_stamp;
	u64				read_stamp;
	atomic_t			record_disabled;
};

struct ring_buffer {
	unsigned long			size;
	unsigned			pages;
	unsigned			flags;
	int				cpus;
	cpumask_t			cpumask;
	atomic_t			record_disabled;

	struct mutex			mutex;

	struct ring_buffer_per_cpu	**buffers;
};

struct ring_buffer_iter {
	struct ring_buffer_per_cpu	*cpu_buffer;
	unsigned long			head;
	struct buffer_page		*head_page;
	u64				read_stamp;
};

#define RB_WARN_ON(buffer, cond)			\
	if (unlikely(cond)) {				\
		atomic_inc(&buffer->record_disabled);	\
		WARN_ON(1);				\
		return -1;				\
	}

/**
 * check_pages - integrity check of buffer pages
 * @cpu_buffer: CPU buffer with pages to test
 *
 * As a safty measure we check to make sure the data pages have not
 * been corrupted.
 */
static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
{
	struct list_head *head = &cpu_buffer->pages;
	struct buffer_page *page, *tmp;

	RB_WARN_ON(cpu_buffer, head->next->prev != head);
	RB_WARN_ON(cpu_buffer, head->prev->next != head);

	list_for_each_entry_safe(page, tmp, head, list) {
		RB_WARN_ON(cpu_buffer, page->list.next->prev != &page->list);
		RB_WARN_ON(cpu_buffer, page->list.prev->next != &page->list);
	}

	return 0;
}

static unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
{
	return cpu_buffer->head_page->size;
}

static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
			     unsigned nr_pages)
{
	struct list_head *head = &cpu_buffer->pages;
	struct buffer_page *page, *tmp;
	unsigned long addr;
	LIST_HEAD(pages);
	unsigned i;

	for (i = 0; i < nr_pages; i++) {
		addr = __get_free_page(GFP_KERNEL);
		if (!addr)
			goto free_pages;
		page = (struct buffer_page *)virt_to_page(addr);
		list_add(&page->list, &pages);
	}

	list_splice(&pages, head);

	rb_check_pages(cpu_buffer);

	return 0;

 free_pages:
	list_for_each_entry_safe(page, tmp, &pages, list) {
		list_del_init(&page->list);
		__free_page(&page->page);
	}
	return -ENOMEM;
}

static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
{
	struct ring_buffer_per_cpu *cpu_buffer;
	int ret;

	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
				  GFP_KERNEL, cpu_to_node(cpu));
	if (!cpu_buffer)
		return NULL;

	cpu_buffer->cpu = cpu;
	cpu_buffer->buffer = buffer;
	spin_lock_init(&cpu_buffer->lock);
	INIT_LIST_HEAD(&cpu_buffer->pages);

	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
	if (ret < 0)
		goto fail_free_buffer;

	cpu_buffer->head_page
		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
	cpu_buffer->tail_page
		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);

	return cpu_buffer;

 fail_free_buffer:
	kfree(cpu_buffer);
	return NULL;
}

static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
{
	struct list_head *head = &cpu_buffer->pages;
	struct buffer_page *page, *tmp;

	list_for_each_entry_safe(page, tmp, head, list) {
		list_del_init(&page->list);
		__free_page(&page->page);
	}
	kfree(cpu_buffer);
}

/**
 * ring_buffer_alloc - allocate a new ring_buffer
 * @size: the size in bytes that is needed.
 * @flags: attributes to set for the ring buffer.
 *
 * Currently the only flag that is available is the RB_FL_OVERWRITE
 * flag. This flag means that the buffer will overwrite old data
 * when the buffer wraps. If this flag is not set, the buffer will
 * drop data when the tail hits the head.
 */
struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
{
	struct ring_buffer *buffer;
	int bsize;
	int cpu;

	/* keep it in its own cache line */
	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
			 GFP_KERNEL);
	if (!buffer)
		return NULL;

	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
	buffer->flags = flags;

	/* need at least two pages */
	if (buffer->pages == 1)
		buffer->pages++;

	buffer->cpumask = cpu_possible_map;
	buffer->cpus = nr_cpu_ids;

	bsize = sizeof(void *) * nr_cpu_ids;
	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
				  GFP_KERNEL);
	if (!buffer->buffers)
		goto fail_free_buffer;

	for_each_buffer_cpu(buffer, cpu) {
		buffer->buffers[cpu] =
			rb_allocate_cpu_buffer(buffer, cpu);
		if (!buffer->buffers[cpu])
			goto fail_free_buffers;
	}

	mutex_init(&buffer->mutex);

	return buffer;

 fail_free_buffers:
	for_each_buffer_cpu(buffer, cpu) {
		if (buffer->buffers[cpu])
			rb_free_cpu_buffer(buffer->buffers[cpu]);
	}
	kfree(buffer->buffers);

 fail_free_buffer:
	kfree(buffer);
	return NULL;
}

/**
 * ring_buffer_free - free a ring buffer.
 * @buffer: the buffer to free.
 */
void
ring_buffer_free(struct ring_buffer *buffer)
{
	int cpu;

	for_each_buffer_cpu(buffer, cpu)
		rb_free_cpu_buffer(buffer->buffers[cpu]);

	kfree(buffer);
}

static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);

static void
rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
{
	struct buffer_page *page;
	struct list_head *p;
	unsigned i;

	atomic_inc(&cpu_buffer->record_disabled);
	synchronize_sched();

	for (i = 0; i < nr_pages; i++) {
		BUG_ON(list_empty(&cpu_buffer->pages));
		p = cpu_buffer->pages.next;
		page = list_entry(p, struct buffer_page, list);
		list_del_init(&page->list);
		__free_page(&page->page);
	}
	BUG_ON(list_empty(&cpu_buffer->pages));

	rb_reset_cpu(cpu_buffer);

	rb_check_pages(cpu_buffer);

	atomic_dec(&cpu_buffer->record_disabled);

}

static void
rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
		struct list_head *pages, unsigned nr_pages)
{
	struct buffer_page *page;
	struct list_head *p;
	unsigned i;

	atomic_inc(&cpu_buffer->record_disabled);
	synchronize_sched();

	for (i = 0; i < nr_pages; i++) {
		BUG_ON(list_empty(pages));
		p = pages->next;
		page = list_entry(p, struct buffer_page, list);
		list_del_init(&page->list);
		list_add_tail(&page->list, &cpu_buffer->pages);
	}
	rb_reset_cpu(cpu_buffer);

	rb_check_pages(cpu_buffer);

	atomic_dec(&cpu_buffer->record_disabled);
}

/**
 * ring_buffer_resize - resize the ring buffer
 * @buffer: the buffer to resize.
 * @size: the new size.
 *
 * The tracer is responsible for making sure that the buffer is
 * not being used while changing the size.
 * Note: We may be able to change the above requirement by using
 *  RCU synchronizations.
 *
 * Minimum size is 2 * BUF_PAGE_SIZE.
 *
 * Returns -1 on failure.
 */
int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
{
	struct ring_buffer_per_cpu *cpu_buffer;
	unsigned nr_pages, rm_pages, new_pages;
	struct buffer_page *page, *tmp;
	unsigned long buffer_size;
	unsigned long addr;
	LIST_HEAD(pages);
	int i, cpu;

	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
	size *= BUF_PAGE_SIZE;
	buffer_size = buffer->pages * BUF_PAGE_SIZE;

	/* we need a minimum of two pages */
	if (size < BUF_PAGE_SIZE * 2)
		size = BUF_PAGE_SIZE * 2;

	if (size == buffer_size)
		return size;

	mutex_lock(&buffer->mutex);

	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);

	if (size < buffer_size) {

		/* easy case, just free pages */
		BUG_ON(nr_pages >= buffer->pages);

		rm_pages = buffer->pages - nr_pages;

		for_each_buffer_cpu(buffer, cpu) {
			cpu_buffer = buffer->buffers[cpu];
			rb_remove_pages(cpu_buffer, rm_pages);
		}
		goto out;
	}

	/*
	 * This is a bit more difficult. We only want to add pages
	 * when we can allocate enough for all CPUs. We do this
	 * by allocating all the pages and storing them on a local
	 * link list. If we succeed in our allocation, then we
	 * add these pages to the cpu_buffers. Otherwise we just free
	 * them all and return -ENOMEM;
	 */
	BUG_ON(nr_pages <= buffer->pages);
	new_pages = nr_pages - buffer->pages;

	for_each_buffer_cpu(buffer, cpu) {
		for (i = 0; i < new_pages; i++) {
			addr = __get_free_page(GFP_KERNEL);
			if (!addr)
				goto free_pages;
			page = (struct buffer_page *)virt_to_page(addr);
			list_add(&page->list, &pages);
		}
	}

	for_each_buffer_cpu(buffer, cpu) {
		cpu_buffer = buffer->buffers[cpu];
		rb_insert_pages(cpu_buffer, &pages, new_pages);
	}

	BUG_ON(!list_empty(&pages));

 out:
	buffer->pages = nr_pages;
	mutex_unlock(&buffer->mutex);

	return size;

 free_pages:
	list_for_each_entry_safe(page, tmp, &pages, list) {
		list_del_init(&page->list);
		__free_page(&page->page);
	}
	return -ENOMEM;
}

static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
{
	return cpu_buffer->head_page == cpu_buffer->tail_page &&
		cpu_buffer->head == cpu_buffer->tail;
}

static inline int rb_null_event(struct ring_buffer_event *event)
{
	return event->type == RINGBUF_TYPE_PADDING;
}

static inline void *rb_page_index(struct buffer_page *page, unsigned index)
{
	void *addr = page_address(&page->page);

	return addr + index;
}

static inline struct ring_buffer_event *
rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
{
	return rb_page_index(cpu_buffer->head_page,
			     cpu_buffer->head);
}

static inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter *iter)
{
	return rb_page_index(iter->head_page,
			     iter->head);
}

/*
 * When the tail hits the head and the buffer is in overwrite mode,
 * the head jumps to the next page and all content on the previous
 * page is discarded. But before doing so, we update the overrun
 * variable of the buffer.
 */
static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
{
	struct ring_buffer_event *event;
	unsigned long head;

	for (head = 0; head < rb_head_size(cpu_buffer);
	     head += rb_event_length(event)) {

		event = rb_page_index(cpu_buffer->head_page, head);
		BUG_ON(rb_null_event(event));
		/* Only count data entries */
		if (event->type != RINGBUF_TYPE_DATA)
			continue;
		cpu_buffer->overrun++;
		cpu_buffer->entries--;
	}
}

static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
			       struct buffer_page **page)
{
	struct list_head *p = (*page)->list.next;

	if (p == &cpu_buffer->pages)
		p = p->next;

	*page = list_entry(p, struct buffer_page, list);
}

static inline void
rb_add_stamp(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
{
	cpu_buffer->tail_page->time_stamp = *ts;
	cpu_buffer->write_stamp = *ts;
}

static void rb_reset_read_page(struct ring_buffer_per_cpu *cpu_buffer)
{
	cpu_buffer->read_stamp = cpu_buffer->head_page->time_stamp;
	cpu_buffer->head = 0;
}

static void
rb_reset_iter_read_page(struct ring_buffer_iter *iter)
{
	iter->read_stamp = iter->head_page->time_stamp;
	iter->head = 0;
}

/**
 * ring_buffer_update_event - update event type and data
 * @event: the even to update
 * @type: the type of event
 * @length: the size of the event field in the ring buffer
 *
 * Update the type and data fields of the event. The length
 * is the actual size that is written to the ring buffer,
 * and with this, we can determine what to place into the
 * data field.
 */
static inline void
rb_update_event(struct ring_buffer_event *event,
			 unsigned type, unsigned length)
{
	event->type = type;

	switch (type) {

	case RINGBUF_TYPE_PADDING:
		break;

	case RINGBUF_TYPE_TIME_EXTEND:
		event->len =
			(RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
			>> RB_ALIGNMENT_SHIFT;
		break;

	case RINGBUF_TYPE_TIME_STAMP:
		event->len =
			(RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
			>> RB_ALIGNMENT_SHIFT;
		break;

	case RINGBUF_TYPE_DATA:
		length -= RB_EVNT_HDR_SIZE;
		if (length > RB_MAX_SMALL_DATA) {
			event->len = 0;
			event->array[0] = length;
		} else
			event->len =
				(length + (RB_ALIGNMENT-1))
				>> RB_ALIGNMENT_SHIFT;
		break;
	default:
		BUG();
	}
}

static inline unsigned rb_calculate_event_length(unsigned length)
{
	struct ring_buffer_event event; /* Used only for sizeof array */

	/* zero length can cause confusions */
	if (!length)
		length = 1;

	if (length > RB_MAX_SMALL_DATA)
		length += sizeof(event.array[0]);

	length += RB_EVNT_HDR_SIZE;
	length = ALIGN(length, RB_ALIGNMENT);

	return length;
}

static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
		  unsigned type, unsigned long length, u64 *ts)
{
	struct buffer_page *head_page, *tail_page;
	unsigned long tail;
	struct ring_buffer *buffer = cpu_buffer->buffer;
	struct ring_buffer_event *event;

	tail_page = cpu_buffer->tail_page;
	head_page = cpu_buffer->head_page;
	tail = cpu_buffer->tail;

	if (tail + length > BUF_PAGE_SIZE) {
		struct buffer_page *next_page = tail_page;

		rb_inc_page(cpu_buffer, &next_page);

		if (next_page == head_page) {
			if (!(buffer->flags & RB_FL_OVERWRITE))
				return NULL;

			/* count overflows */
			rb_update_overflow(cpu_buffer);

			rb_inc_page(cpu_buffer, &head_page);
			cpu_buffer->head_page = head_page;
			rb_reset_read_page(cpu_buffer);
		}

		if (tail != BUF_PAGE_SIZE) {
			event = rb_page_index(tail_page, tail);
			/* page padding */
			event->type = RINGBUF_TYPE_PADDING;
		}

		tail_page->size = tail;
		tail_page = next_page;
		tail_page->size = 0;
		tail = 0;
		cpu_buffer->tail_page = tail_page;
		cpu_buffer->tail = tail;
		rb_add_stamp(cpu_buffer, ts);
	}

	BUG_ON(tail + length > BUF_PAGE_SIZE);

	event = rb_page_index(tail_page, tail);
	rb_update_event(event, type, length);

	return event;
}

static int
rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
		  u64 *ts, u64 *delta)
{
	struct ring_buffer_event *event;
	static int once;

	if (unlikely(*delta > (1ULL << 59) && !once++)) {
		printk(KERN_WARNING "Delta way too big! %llu"
		       " ts=%llu write stamp = %llu\n",
		       *delta, *ts, cpu_buffer->write_stamp);
		WARN_ON(1);
	}

	/*
	 * The delta is too big, we to add a
	 * new timestamp.
	 */
	event = __rb_reserve_next(cpu_buffer,
				  RINGBUF_TYPE_TIME_EXTEND,
				  RB_LEN_TIME_EXTEND,
				  ts);
	if (!event)
		return -1;

	/* check to see if we went to the next page */
	if (cpu_buffer->tail) {
		/* Still on same page, update timestamp */
		event->time_delta = *delta & TS_MASK;
		event->array[0] = *delta >> TS_SHIFT;
		/* commit the time event */
		cpu_buffer->tail +=
			rb_event_length(event);
		cpu_buffer->write_stamp = *ts;
		*delta = 0;
	}

	return 0;
}

static struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
		      unsigned type, unsigned long length)
{
	struct ring_buffer_event *event;
	u64 ts, delta;

	ts = ring_buffer_time_stamp(cpu_buffer->cpu);

	if (cpu_buffer->tail) {
		delta = ts - cpu_buffer->write_stamp;

		if (test_time_stamp(delta)) {
			int ret;

			ret = rb_add_time_stamp(cpu_buffer, &ts, &delta);
			if (ret < 0)
				return NULL;
		}
	} else {
		rb_add_stamp(cpu_buffer, &ts);
		delta = 0;
	}

	event = __rb_reserve_next(cpu_buffer, type, length, &ts);
	if (!event)
		return NULL;

	/* If the reserve went to the next page, our delta is zero */
	if (!cpu_buffer->tail)
		delta = 0;

	event->time_delta = delta;

	return event;
}

/**
 * ring_buffer_lock_reserve - reserve a part of the buffer
 * @buffer: the ring buffer to reserve from
 * @length: the length of the data to reserve (excluding event header)
 * @flags: a pointer to save the interrupt flags
 *
 * Returns a reseverd event on the ring buffer to copy directly to.
 * The user of this interface will need to get the body to write into
 * and can use the ring_buffer_event_data() interface.
 *
 * The length is the length of the data needed, not the event length
 * which also includes the event header.
 *
 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
 * If NULL is returned, then nothing has been allocated or locked.
 */
struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer *buffer,
			 unsigned long length,
			 unsigned long *flags)
{
	struct ring_buffer_per_cpu *cpu_buffer;
	struct ring_buffer_event *event;
	int cpu;

	if (atomic_read(&buffer->record_disabled))
		return NULL;

	raw_local_irq_save(*flags);
	cpu = raw_smp_processor_id();

	if (!cpu_isset(cpu, buffer->cpumask))
		goto out_irq;

	cpu_buffer = buffer->buffers[cpu];
	spin_lock(&cpu_buffer->lock);

	if (atomic_read(&cpu_buffer->record_disabled))
		goto no_record;

	length = rb_calculate_event_length(length);
	if (length > BUF_PAGE_SIZE)
		return NULL;

	event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
	if (!event)
		goto no_record;

	return event;

 no_record:
	spin_unlock(&cpu_buffer->lock);
 out_irq:
	local_irq_restore(*flags);
	return NULL;
}

static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
		      struct ring_buffer_event *event)
{
	cpu_buffer->tail += rb_event_length(event);
	cpu_buffer->tail_page->size = cpu_buffer->tail;
	cpu_buffer->write_stamp += event->time_delta;
	cpu_buffer->entries++;
}

/**
 * ring_buffer_unlock_commit - commit a reserved
 * @buffer: The buffer to commit to
 * @event: The event pointer to commit.
 * @flags: the interrupt flags received from ring_buffer_lock_reserve.
 *
 * This commits the data to the ring buffer, and releases any locks held.
 *
 * Must be paired with ring_buffer_lock_reserve.
 */
int ring_buffer_unlock_commit(struct ring_buffer *buffer,
			      struct ring_buffer_event *event,
			      unsigned long flags)
{
	struct ring_buffer_per_cpu *cpu_buffer;
	int cpu = raw_smp_processor_id();

	cpu_buffer = buffer->buffers[cpu];

	assert_spin_locked(&cpu_buffer->lock);

	rb_commit(cpu_buffer, event);

	spin_unlock(&cpu_buffer->lock);
	raw_local_irq_restore(flags);

	return 0;
}

/**
 * ring_buffer_write - write data to the buffer without reserving
 * @buffer: The ring buffer to write to.
 * @length: The length of the data being written (excluding the event header)
 * @data: The data to write to the buffer.
 *
 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
 * one function. If you already have the data to write to the buffer, it
 * may be easier to simply call this function.
 *
 * Note, like ring_buffer_lock_reserve, the length is the length of the data
 * and not the length of the event which would hold the header.
 */
int ring_buffer_write(struct ring_buffer *buffer,
			unsigned long length,
			void *data)
{
	struct ring_buffer_per_cpu *cpu_buffer;
	struct ring_buffer_event *event;
	unsigned long event_length, flags;
	void *body;
	int ret = -EBUSY;
	int cpu;

	if (atomic_read(&buffer->record_disabled))
		return -EBUSY;

	local_irq_save(flags);
	cpu = raw_smp_processor_id();

	if (!cpu_isset(cpu, buffer->cpumask))
		goto out_irq;

	cpu_buffer = buffer->buffers[cpu];
	spin_lock(&cpu_buffer->lock);

	if (atomic_read(&cpu_buffer->record_disabled))
		goto out;

	event_length = rb_calculate_event_length(length);
	event = rb_reserve_next_event(cpu_buffer,
				      RINGBUF_TYPE_DATA, event_length);
	if (!event)
		goto out;

	body = rb_event_data(event);

	memcpy(body, data, length);

	rb_commit(cpu_buffer, event);

	ret = 0;
 out:
	spin_unlock(&cpu_buffer->lock);
 out_irq:
	local_irq_restore(flags);

	return ret;
}

/**
 * ring_buffer_lock - lock the ring buffer
 * @buffer: The ring buffer to lock
 * @flags: The place to store the interrupt flags
 *
 * This locks all the per CPU buffers.
 *
 * Must be unlocked by ring_buffer_unlock.
 */
void ring_buffer_lock(struct ring_buffer *buffer, unsigned long *flags)
{
	struct ring_buffer_per_cpu *cpu_buffer;
	int cpu;

	local_irq_save(*flags);

	for_each_buffer_cpu(buffer, cpu) {
		cpu_buffer = buffer->buffers[cpu];
		spin_lock(&cpu_buffer->lock);
	}
}

/**
 * ring_buffer_unlock - unlock a locked buffer
 * @buffer: The locked buffer to unlock
 * @flags: The interrupt flags received by ring_buffer_lock
 */
void ring_buffer_unlock(struct ring_buffer *buffer, unsigned long flags)
{
	struct ring_buffer_per_cpu *cpu_buffer;
	int cpu;

	for (cpu = buffer->cpus - 1; cpu >= 0; cpu--) {
		if (!cpu_isset(cpu, buffer->cpumask))
			continue;
		cpu_buffer = buffer->buffers[cpu];
		spin_unlock(&cpu_buffer->lock);
	}

	local_irq_restore(flags);
}

/**
 * ring_buffer_record_disable - stop all writes into the buffer
 * @buffer: The ring buffer to stop writes to.
 *
 * This prevents all writes to the buffer. Any attempt to write
 * to the buffer after this will fail and return NULL.
 *
 * The caller should call synchronize_sched() after this.
 */
void ring_buffer_record_disable(struct ring_buffer *buffer)
{
	atomic_inc(&buffer->record_disabled);
}

/**
 * ring_buffer_record_enable - enable writes to the buffer
 * @buffer: The ring buffer to enable writes
 *
 * Note, multiple disables will need the same number of enables
 * to truely enable the writing (much like preempt_disable).
 */
void ring_buffer_record_enable(struct ring_buffer *buffer)
{
	atomic_dec(&buffer->record_disabled);
}

/**
 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
 * @buffer: The ring buffer to stop writes to.
 * @cpu: The CPU buffer to stop
 *
 * This prevents all writes to the buffer. Any attempt to write
 * to the buffer after this will fail and return NULL.
 *
 * The caller should call synchronize_sched() after this.
 */
void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
{
	struct ring_buffer_per_cpu *cpu_buffer;

	if (!cpu_isset(cpu, buffer->cpumask))
		return;

	cpu_buffer = buffer->buffers[cpu];
	atomic_inc(&cpu_buffer->record_disabled);
}

/**
 * ring_buffer_record_enable_cpu - enable writes to the buffer
 * @buffer: The ring buffer to enable writes
 * @cpu: The CPU to enable.
 *
 * Note, multiple disables will need the same number of enables
 * to truely enable the writing (much like preempt_disable).
 */
void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
{
	struct ring_buffer_per_cpu *cpu_buffer;

	if (!cpu_isset(cpu, buffer->cpumask))
		return;

	cpu_buffer = buffer->buffers[cpu];
	atomic_dec(&cpu_buffer->record_disabled);
}

/**
 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
 * @buffer: The ring buffer
 * @cpu: The per CPU buffer to get the entries from.
 */
unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
{
	struct ring_buffer_per_cpu *cpu_buffer;

	if (!cpu_isset(cpu, buffer->cpumask))
		return 0;

	cpu_buffer = buffer->buffers[cpu];
	return cpu_buffer->entries;
}

/**
 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
 * @buffer: The ring buffer
 * @cpu: The per CPU buffer to get the number of overruns from
 */
unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
{
	struct ring_buffer_per_cpu *cpu_buffer;

	if (!cpu_isset(cpu, buffer->cpumask))
		return 0;

	cpu_buffer = buffer->buffers[cpu];
	return cpu_buffer->overrun;
}

/**
 * ring_buffer_entries - get the number of entries in a buffer
 * @buffer: The ring buffer
 *
 * Returns the total number of entries in the ring buffer
 * (all CPU entries)
 */
unsigned long ring_buffer_entries(struct ring_buffer *buffer)
{
	struct ring_buffer_per_cpu *cpu_buffer;
	unsigned long entries = 0;
	int cpu;

	/* if you care about this being correct, lock the buffer */
	for_each_buffer_cpu(buffer, cpu) {
		cpu_buffer = buffer->buffers[cpu];
		entries += cpu_buffer->entries;
	}

	return entries;
}

/**
 * ring_buffer_overrun_cpu - get the number of overruns in buffer
 * @buffer: The ring buffer
 *
 * Returns the total number of overruns in the ring buffer
 * (all CPU entries)
 */
unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
{
	struct ring_buffer_per_cpu *cpu_buffer;
	unsigned long overruns = 0;
	int cpu;

	/* if you care about this being correct, lock the buffer */
	for_each_buffer_cpu(buffer, cpu) {
		cpu_buffer = buffer->buffers[cpu];
		overruns += cpu_buffer->overrun;
	}

	return overruns;
}

/**
 * ring_buffer_iter_reset - reset an iterator
 * @iter: The iterator to reset
 *
 * Resets the iterator, so that it will start from the beginning
 * again.
 */
void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
{
	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;

	iter->head_page = cpu_buffer->head_page;
	iter->head = cpu_buffer->head;
	rb_reset_iter_read_page(iter);
}

/**
 * ring_buffer_iter_empty - check if an iterator has no more to read
 * @iter: The iterator to check
 */
int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
{
	struct ring_buffer_per_cpu *cpu_buffer;

	cpu_buffer = iter->cpu_buffer;

	return iter->head_page == cpu_buffer->tail_page &&
		iter->head == cpu_buffer->tail;
}

static void
rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
		     struct ring_buffer_event *event)
{
	u64 delta;

	switch (event->type) {
	case RINGBUF_TYPE_PADDING:
		return;

	case RINGBUF_TYPE_TIME_EXTEND:
		delta = event->array[0];
		delta <<= TS_SHIFT;
		delta += event->time_delta;
		cpu_buffer->read_stamp += delta;
		return;

	case RINGBUF_TYPE_TIME_STAMP:
		/* FIXME: not implemented */
		return;

	case RINGBUF_TYPE_DATA:
		cpu_buffer->read_stamp += event->time_delta;
		return;

	default:
		BUG();
	}
	return;
}

static void
rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
			  struct ring_buffer_event *event)
{
	u64 delta;

	switch (event->type) {
	case RINGBUF_TYPE_PADDING:
		return;

	case RINGBUF_TYPE_TIME_EXTEND:
		delta = event->array[0];
		delta <<= TS_SHIFT;
		delta += event->time_delta;
		iter->read_stamp += delta;
		return;

	case RINGBUF_TYPE_TIME_STAMP:
		/* FIXME: not implemented */
		return;

	case RINGBUF_TYPE_DATA:
		iter->read_stamp += event->time_delta;
		return;

	default:
		BUG();
	}
	return;
}

static void rb_advance_head(struct ring_buffer_per_cpu *cpu_buffer)
{
	struct ring_buffer_event *event;
	unsigned length;

	/*
	 * Check if we are at the end of the buffer.
	 */
	if (cpu_buffer->head >= cpu_buffer->head_page->size) {
		BUG_ON(cpu_buffer->head_page == cpu_buffer->tail_page);
		rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
		rb_reset_read_page(cpu_buffer);
		return;
	}

	event = rb_head_event(cpu_buffer);

	if (event->type == RINGBUF_TYPE_DATA)
		cpu_buffer->entries--;

	length = rb_event_length(event);

	/*
	 * This should not be called to advance the header if we are
	 * at the tail of the buffer.
	 */
	BUG_ON((cpu_buffer->head_page == cpu_buffer->tail_page) &&
	       (cpu_buffer->head + length > cpu_buffer->tail));

	rb_update_read_stamp(cpu_buffer, event);

	cpu_buffer->head += length;

	/* check for end of page */
	if ((cpu_buffer->head >= cpu_buffer->head_page->size) &&
	    (cpu_buffer->head_page != cpu_buffer->tail_page))
		rb_advance_head(cpu_buffer);
}

static void rb_advance_iter(struct ring_buffer_iter *iter)
{
	struct ring_buffer *buffer;
	struct ring_buffer_per_cpu *cpu_buffer;
	struct ring_buffer_event *event;
	unsigned length;

	cpu_buffer = iter->cpu_buffer;
	buffer = cpu_buffer->buffer;

	/*
	 * Check if we are at the end of the buffer.
	 */
	if (iter->head >= iter->head_page->size) {
		BUG_ON(iter->head_page == cpu_buffer->tail_page);
		rb_inc_page(cpu_buffer, &iter->head_page);
		rb_reset_iter_read_page(iter);
		return;
	}

	event = rb_iter_head_event(iter);

	length = rb_event_length(event);

	/*
	 * This should not be called to advance the header if we are
	 * at the tail of the buffer.
	 */
	BUG_ON((iter->head_page == cpu_buffer->tail_page) &&
	       (iter->head + length > cpu_buffer->tail));

	rb_update_iter_read_stamp(iter, event);

	iter->head += length;

	/* check for end of page padding */
	if ((iter->head >= iter->head_page->size) &&
	    (iter->head_page != cpu_buffer->tail_page))
		rb_advance_iter(iter);
}

/**
 * ring_buffer_peek - peek at the next event to be read
 * @buffer: The ring buffer to read
 * @cpu: The cpu to peak at
 * @ts: The timestamp counter of this event.
 *
 * This will return the event that will be read next, but does
 * not consume the data.
 */
struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
{
	struct ring_buffer_per_cpu *cpu_buffer;
	struct ring_buffer_event *event;

	if (!cpu_isset(cpu, buffer->cpumask))
		return NULL;

	cpu_buffer = buffer->buffers[cpu];

 again:
	if (rb_per_cpu_empty(cpu_buffer))
		return NULL;

	event = rb_head_event(cpu_buffer);

	switch (event->type) {
	case RINGBUF_TYPE_PADDING:
		rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
		rb_reset_read_page(cpu_buffer);
		goto again;

	case RINGBUF_TYPE_TIME_EXTEND:
		/* Internal data, OK to advance */
		rb_advance_head(cpu_buffer);
		goto again;

	case RINGBUF_TYPE_TIME_STAMP:
		/* FIXME: not implemented */
		rb_advance_head(cpu_buffer);
		goto again;

	case RINGBUF_TYPE_DATA:
		if (ts) {
			*ts = cpu_buffer->read_stamp + event->time_delta;
			ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
		}
		return event;

	default:
		BUG();
	}

	return NULL;
}

/**
 * ring_buffer_iter_peek - peek at the next event to be read
 * @iter: The ring buffer iterator
 * @ts: The timestamp counter of this event.
 *
 * This will return the event that will be read next, but does
 * not increment the iterator.
 */
struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
{
	struct ring_buffer *buffer;
	struct ring_buffer_per_cpu *cpu_buffer;
	struct ring_buffer_event *event;

	if (ring_buffer_iter_empty(iter))
		return NULL;

	cpu_buffer = iter->cpu_buffer;
	buffer = cpu_buffer->buffer;

 again:
	if (rb_per_cpu_empty(cpu_buffer))
		return NULL;

	event = rb_iter_head_event(iter);

	switch (event->type) {
	case RINGBUF_TYPE_PADDING:
		rb_inc_page(cpu_buffer, &iter->head_page);
		rb_reset_iter_read_page(iter);
		goto again;

	case RINGBUF_TYPE_TIME_EXTEND:
		/* Internal data, OK to advance */
		rb_advance_iter(iter);
		goto again;

	case RINGBUF_TYPE_TIME_STAMP:
		/* FIXME: not implemented */
		rb_advance_iter(iter);
		goto again;

	case RINGBUF_TYPE_DATA:
		if (ts) {
			*ts = iter->read_stamp + event->time_delta;
			ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
		}
		return event;

	default:
		BUG();
	}

	return NULL;
}

/**
 * ring_buffer_consume - return an event and consume it
 * @buffer: The ring buffer to get the next event from
 *
 * Returns the next event in the ring buffer, and that event is consumed.
 * Meaning, that sequential reads will keep returning a different event,
 * and eventually empty the ring buffer if the producer is slower.
 */
struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
{
	struct ring_buffer_per_cpu *cpu_buffer;
	struct ring_buffer_event *event;

	if (!cpu_isset(cpu, buffer->cpumask))
		return NULL;

	event = ring_buffer_peek(buffer, cpu, ts);
	if (!event)
		return NULL;

	cpu_buffer = buffer->buffers[cpu];
	rb_advance_head(cpu_buffer);

	return event;
}

/**
 * ring_buffer_read_start - start a non consuming read of the buffer
 * @buffer: The ring buffer to read from
 * @cpu: The cpu buffer to iterate over
 *
 * This starts up an iteration through the buffer. It also disables
 * the recording to the buffer until the reading is finished.
 * This prevents the reading from being corrupted. This is not
 * a consuming read, so a producer is not expected.
 *
 * Must be paired with ring_buffer_finish.
 */
struct ring_buffer_iter *
ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
{
	struct ring_buffer_per_cpu *cpu_buffer;
	struct ring_buffer_iter *iter;

	if (!cpu_isset(cpu, buffer->cpumask))
		return NULL;

	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
	if (!iter)
		return NULL;

	cpu_buffer = buffer->buffers[cpu];

	iter->cpu_buffer = cpu_buffer;

	atomic_inc(&cpu_buffer->record_disabled);
	synchronize_sched();

	spin_lock(&cpu_buffer->lock);
	iter->head = cpu_buffer->head;
	iter->head_page = cpu_buffer->head_page;
	rb_reset_iter_read_page(iter);
	spin_unlock(&cpu_buffer->lock);

	return iter;
}

/**
 * ring_buffer_finish - finish reading the iterator of the buffer
 * @iter: The iterator retrieved by ring_buffer_start
 *
 * This re-enables the recording to the buffer, and frees the
 * iterator.
 */
void
ring_buffer_read_finish(struct ring_buffer_iter *iter)
{
	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;

	atomic_dec(&cpu_buffer->record_disabled);
	kfree(iter);
}

/**
 * ring_buffer_read - read the next item in the ring buffer by the iterator
 * @iter: The ring buffer iterator
 * @ts: The time stamp of the event read.
 *
 * This reads the next event in the ring buffer and increments the iterator.
 */
struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
{
	struct ring_buffer_event *event;

	event = ring_buffer_iter_peek(iter, ts);
	if (!event)
		return NULL;

	rb_advance_iter(iter);

	return event;
}

/**
 * ring_buffer_size - return the size of the ring buffer (in bytes)
 * @buffer: The ring buffer.
 */
unsigned long ring_buffer_size(struct ring_buffer *buffer)
{
	return BUF_PAGE_SIZE * buffer->pages;
}

static void
rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
{
	cpu_buffer->head_page
		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
	cpu_buffer->tail_page
		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);

	cpu_buffer->head = cpu_buffer->tail = 0;
	cpu_buffer->overrun = 0;
	cpu_buffer->entries = 0;
}

/**
 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
 * @buffer: The ring buffer to reset a per cpu buffer of
 * @cpu: The CPU buffer to be reset
 */
void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
{
	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
	unsigned long flags;

	if (!cpu_isset(cpu, buffer->cpumask))
		return;

	raw_local_irq_save(flags);
	spin_lock(&cpu_buffer->lock);

	rb_reset_cpu(cpu_buffer);

	spin_unlock(&cpu_buffer->lock);
	raw_local_irq_restore(flags);
}

/**
 * ring_buffer_reset - reset a ring buffer
 * @buffer: The ring buffer to reset all cpu buffers
 */
void ring_buffer_reset(struct ring_buffer *buffer)
{
	unsigned long flags;
	int cpu;

	ring_buffer_lock(buffer, &flags);

	for_each_buffer_cpu(buffer, cpu)
		rb_reset_cpu(buffer->buffers[cpu]);

	ring_buffer_unlock(buffer, flags);
}

/**
 * rind_buffer_empty - is the ring buffer empty?
 * @buffer: The ring buffer to test
 */
int ring_buffer_empty(struct ring_buffer *buffer)
{
	struct ring_buffer_per_cpu *cpu_buffer;
	int cpu;

	/* yes this is racy, but if you don't like the race, lock the buffer */
	for_each_buffer_cpu(buffer, cpu) {
		cpu_buffer = buffer->buffers[cpu];
		if (!rb_per_cpu_empty(cpu_buffer))
			return 0;
	}
	return 1;
}

/**
 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
 * @buffer: The ring buffer
 * @cpu: The CPU buffer to test
 */
int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
{
	struct ring_buffer_per_cpu *cpu_buffer;

	if (!cpu_isset(cpu, buffer->cpumask))
		return 1;

	cpu_buffer = buffer->buffers[cpu];
	return rb_per_cpu_empty(cpu_buffer);
}

/**
 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
 * @buffer_a: One buffer to swap with
 * @buffer_b: The other buffer to swap with
 *
 * This function is useful for tracers that want to take a "snapshot"
 * of a CPU buffer and has another back up buffer lying around.
 * it is expected that the tracer handles the cpu buffer not being
 * used at the moment.
 */
int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
			 struct ring_buffer *buffer_b, int cpu)
{
	struct ring_buffer_per_cpu *cpu_buffer_a;
	struct ring_buffer_per_cpu *cpu_buffer_b;

	if (!cpu_isset(cpu, buffer_a->cpumask) ||
	    !cpu_isset(cpu, buffer_b->cpumask))
		return -EINVAL;

	/* At least make sure the two buffers are somewhat the same */
	if (buffer_a->size != buffer_b->size ||
	    buffer_a->pages != buffer_b->pages)
		return -EINVAL;

	cpu_buffer_a = buffer_a->buffers[cpu];
	cpu_buffer_b = buffer_b->buffers[cpu];

	/*
	 * We can't do a synchronize_sched here because this
	 * function can be called in atomic context.
	 * Normally this will be called from the same CPU as cpu.
	 * If not it's up to the caller to protect this.
	 */
	atomic_inc(&cpu_buffer_a->record_disabled);
	atomic_inc(&cpu_buffer_b->record_disabled);

	buffer_a->buffers[cpu] = cpu_buffer_b;
	buffer_b->buffers[cpu] = cpu_buffer_a;

	cpu_buffer_b->buffer = buffer_a;
	cpu_buffer_a->buffer = buffer_b;

	atomic_dec(&cpu_buffer_a->record_disabled);
	atomic_dec(&cpu_buffer_b->record_disabled);

	return 0;
}