/* * Generic ring buffer * * Copyright (C) 2008 Steven Rostedt */ #include #include #include #include #include #include #include #include /* used for sched_clock() (for now) */ #include #include #include #include /* Up this if you want to test the TIME_EXTENTS and normalization */ #define DEBUG_SHIFT 0 /* FIXME!!! */ u64 ring_buffer_time_stamp(int cpu) { /* shift to debug/test normalization and TIME_EXTENTS */ return sched_clock() << DEBUG_SHIFT; } void ring_buffer_normalize_time_stamp(int cpu, u64 *ts) { /* Just stupid testing the normalize function and deltas */ *ts >>= DEBUG_SHIFT; } #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event)) #define RB_ALIGNMENT_SHIFT 2 #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT) #define RB_MAX_SMALL_DATA 28 enum { RB_LEN_TIME_EXTEND = 8, RB_LEN_TIME_STAMP = 16, }; /* inline for ring buffer fast paths */ static inline unsigned rb_event_length(struct ring_buffer_event *event) { unsigned length; switch (event->type) { case RINGBUF_TYPE_PADDING: /* undefined */ return -1; case RINGBUF_TYPE_TIME_EXTEND: return RB_LEN_TIME_EXTEND; case RINGBUF_TYPE_TIME_STAMP: return RB_LEN_TIME_STAMP; case RINGBUF_TYPE_DATA: if (event->len) length = event->len << RB_ALIGNMENT_SHIFT; else length = event->array[0]; return length + RB_EVNT_HDR_SIZE; default: BUG(); } /* not hit */ return 0; } /** * ring_buffer_event_length - return the length of the event * @event: the event to get the length of */ unsigned ring_buffer_event_length(struct ring_buffer_event *event) { return rb_event_length(event); } /* inline for ring buffer fast paths */ static inline void * rb_event_data(struct ring_buffer_event *event) { BUG_ON(event->type != RINGBUF_TYPE_DATA); /* If length is in len field, then array[0] has the data */ if (event->len) return (void *)&event->array[0]; /* Otherwise length is in array[0] and array[1] has the data */ return (void *)&event->array[1]; } /** * ring_buffer_event_data - return the data of the event * @event: the event to get the data from */ void *ring_buffer_event_data(struct ring_buffer_event *event) { return rb_event_data(event); } #define for_each_buffer_cpu(buffer, cpu) \ for_each_cpu_mask(cpu, buffer->cpumask) #define TS_SHIFT 27 #define TS_MASK ((1ULL << TS_SHIFT) - 1) #define TS_DELTA_TEST (~TS_MASK) /* * This hack stolen from mm/slob.c. * We can store per page timing information in the page frame of the page. * Thanks to Peter Zijlstra for suggesting this idea. */ struct buffer_page { union { struct { unsigned long flags; /* mandatory */ atomic_t _count; /* mandatory */ u64 time_stamp; /* page time stamp */ unsigned size; /* size of page data */ struct list_head list; /* list of free pages */ }; struct page page; }; }; /* * We need to fit the time_stamp delta into 27 bits. */ static inline int test_time_stamp(u64 delta) { if (delta & TS_DELTA_TEST) return 1; return 0; } #define BUF_PAGE_SIZE PAGE_SIZE /* * head_page == tail_page && head == tail then buffer is empty. */ struct ring_buffer_per_cpu { int cpu; struct ring_buffer *buffer; spinlock_t lock; struct lock_class_key lock_key; struct list_head pages; unsigned long head; /* read from head */ unsigned long tail; /* write to tail */ struct buffer_page *head_page; struct buffer_page *tail_page; unsigned long overrun; unsigned long entries; u64 write_stamp; u64 read_stamp; atomic_t record_disabled; }; struct ring_buffer { unsigned long size; unsigned pages; unsigned flags; int cpus; cpumask_t cpumask; atomic_t record_disabled; struct mutex mutex; struct ring_buffer_per_cpu **buffers; }; struct ring_buffer_iter { struct ring_buffer_per_cpu *cpu_buffer; unsigned long head; struct buffer_page *head_page; u64 read_stamp; }; #define RB_WARN_ON(buffer, cond) \ if (unlikely(cond)) { \ atomic_inc(&buffer->record_disabled); \ WARN_ON(1); \ return -1; \ } /** * check_pages - integrity check of buffer pages * @cpu_buffer: CPU buffer with pages to test * * As a safty measure we check to make sure the data pages have not * been corrupted. */ static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) { struct list_head *head = &cpu_buffer->pages; struct buffer_page *page, *tmp; RB_WARN_ON(cpu_buffer, head->next->prev != head); RB_WARN_ON(cpu_buffer, head->prev->next != head); list_for_each_entry_safe(page, tmp, head, list) { RB_WARN_ON(cpu_buffer, page->list.next->prev != &page->list); RB_WARN_ON(cpu_buffer, page->list.prev->next != &page->list); } return 0; } static unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer) { return cpu_buffer->head_page->size; } static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) { struct list_head *head = &cpu_buffer->pages; struct buffer_page *page, *tmp; unsigned long addr; LIST_HEAD(pages); unsigned i; for (i = 0; i < nr_pages; i++) { addr = __get_free_page(GFP_KERNEL); if (!addr) goto free_pages; page = (struct buffer_page *)virt_to_page(addr); list_add(&page->list, &pages); } list_splice(&pages, head); rb_check_pages(cpu_buffer); return 0; free_pages: list_for_each_entry_safe(page, tmp, &pages, list) { list_del_init(&page->list); __free_page(&page->page); } return -ENOMEM; } static struct ring_buffer_per_cpu * rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; int ret; cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), GFP_KERNEL, cpu_to_node(cpu)); if (!cpu_buffer) return NULL; cpu_buffer->cpu = cpu; cpu_buffer->buffer = buffer; spin_lock_init(&cpu_buffer->lock); INIT_LIST_HEAD(&cpu_buffer->pages); ret = rb_allocate_pages(cpu_buffer, buffer->pages); if (ret < 0) goto fail_free_buffer; cpu_buffer->head_page = list_entry(cpu_buffer->pages.next, struct buffer_page, list); cpu_buffer->tail_page = list_entry(cpu_buffer->pages.next, struct buffer_page, list); return cpu_buffer; fail_free_buffer: kfree(cpu_buffer); return NULL; } static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) { struct list_head *head = &cpu_buffer->pages; struct buffer_page *page, *tmp; list_for_each_entry_safe(page, tmp, head, list) { list_del_init(&page->list); __free_page(&page->page); } kfree(cpu_buffer); } /** * ring_buffer_alloc - allocate a new ring_buffer * @size: the size in bytes that is needed. * @flags: attributes to set for the ring buffer. * * Currently the only flag that is available is the RB_FL_OVERWRITE * flag. This flag means that the buffer will overwrite old data * when the buffer wraps. If this flag is not set, the buffer will * drop data when the tail hits the head. */ struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags) { struct ring_buffer *buffer; int bsize; int cpu; /* keep it in its own cache line */ buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), GFP_KERNEL); if (!buffer) return NULL; buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); buffer->flags = flags; /* need at least two pages */ if (buffer->pages == 1) buffer->pages++; buffer->cpumask = cpu_possible_map; buffer->cpus = nr_cpu_ids; bsize = sizeof(void *) * nr_cpu_ids; buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), GFP_KERNEL); if (!buffer->buffers) goto fail_free_buffer; for_each_buffer_cpu(buffer, cpu) { buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, cpu); if (!buffer->buffers[cpu]) goto fail_free_buffers; } mutex_init(&buffer->mutex); return buffer; fail_free_buffers: for_each_buffer_cpu(buffer, cpu) { if (buffer->buffers[cpu]) rb_free_cpu_buffer(buffer->buffers[cpu]); } kfree(buffer->buffers); fail_free_buffer: kfree(buffer); return NULL; } /** * ring_buffer_free - free a ring buffer. * @buffer: the buffer to free. */ void ring_buffer_free(struct ring_buffer *buffer) { int cpu; for_each_buffer_cpu(buffer, cpu) rb_free_cpu_buffer(buffer->buffers[cpu]); kfree(buffer); } static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); static void rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) { struct buffer_page *page; struct list_head *p; unsigned i; atomic_inc(&cpu_buffer->record_disabled); synchronize_sched(); for (i = 0; i < nr_pages; i++) { BUG_ON(list_empty(&cpu_buffer->pages)); p = cpu_buffer->pages.next; page = list_entry(p, struct buffer_page, list); list_del_init(&page->list); __free_page(&page->page); } BUG_ON(list_empty(&cpu_buffer->pages)); rb_reset_cpu(cpu_buffer); rb_check_pages(cpu_buffer); atomic_dec(&cpu_buffer->record_disabled); } static void rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer, struct list_head *pages, unsigned nr_pages) { struct buffer_page *page; struct list_head *p; unsigned i; atomic_inc(&cpu_buffer->record_disabled); synchronize_sched(); for (i = 0; i < nr_pages; i++) { BUG_ON(list_empty(pages)); p = pages->next; page = list_entry(p, struct buffer_page, list); list_del_init(&page->list); list_add_tail(&page->list, &cpu_buffer->pages); } rb_reset_cpu(cpu_buffer); rb_check_pages(cpu_buffer); atomic_dec(&cpu_buffer->record_disabled); } /** * ring_buffer_resize - resize the ring buffer * @buffer: the buffer to resize. * @size: the new size. * * The tracer is responsible for making sure that the buffer is * not being used while changing the size. * Note: We may be able to change the above requirement by using * RCU synchronizations. * * Minimum size is 2 * BUF_PAGE_SIZE. * * Returns -1 on failure. */ int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size) { struct ring_buffer_per_cpu *cpu_buffer; unsigned nr_pages, rm_pages, new_pages; struct buffer_page *page, *tmp; unsigned long buffer_size; unsigned long addr; LIST_HEAD(pages); int i, cpu; size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); size *= BUF_PAGE_SIZE; buffer_size = buffer->pages * BUF_PAGE_SIZE; /* we need a minimum of two pages */ if (size < BUF_PAGE_SIZE * 2) size = BUF_PAGE_SIZE * 2; if (size == buffer_size) return size; mutex_lock(&buffer->mutex); nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); if (size < buffer_size) { /* easy case, just free pages */ BUG_ON(nr_pages >= buffer->pages); rm_pages = buffer->pages - nr_pages; for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; rb_remove_pages(cpu_buffer, rm_pages); } goto out; } /* * This is a bit more difficult. We only want to add pages * when we can allocate enough for all CPUs. We do this * by allocating all the pages and storing them on a local * link list. If we succeed in our allocation, then we * add these pages to the cpu_buffers. Otherwise we just free * them all and return -ENOMEM; */ BUG_ON(nr_pages <= buffer->pages); new_pages = nr_pages - buffer->pages; for_each_buffer_cpu(buffer, cpu) { for (i = 0; i < new_pages; i++) { addr = __get_free_page(GFP_KERNEL); if (!addr) goto free_pages; page = (struct buffer_page *)virt_to_page(addr); list_add(&page->list, &pages); } } for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; rb_insert_pages(cpu_buffer, &pages, new_pages); } BUG_ON(!list_empty(&pages)); out: buffer->pages = nr_pages; mutex_unlock(&buffer->mutex); return size; free_pages: list_for_each_entry_safe(page, tmp, &pages, list) { list_del_init(&page->list); __free_page(&page->page); } return -ENOMEM; } static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) { return cpu_buffer->head_page == cpu_buffer->tail_page && cpu_buffer->head == cpu_buffer->tail; } static inline int rb_null_event(struct ring_buffer_event *event) { return event->type == RINGBUF_TYPE_PADDING; } static inline void *rb_page_index(struct buffer_page *page, unsigned index) { void *addr = page_address(&page->page); return addr + index; } static inline struct ring_buffer_event * rb_head_event(struct ring_buffer_per_cpu *cpu_buffer) { return rb_page_index(cpu_buffer->head_page, cpu_buffer->head); } static inline struct ring_buffer_event * rb_iter_head_event(struct ring_buffer_iter *iter) { return rb_page_index(iter->head_page, iter->head); } /* * When the tail hits the head and the buffer is in overwrite mode, * the head jumps to the next page and all content on the previous * page is discarded. But before doing so, we update the overrun * variable of the buffer. */ static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer) { struct ring_buffer_event *event; unsigned long head; for (head = 0; head < rb_head_size(cpu_buffer); head += rb_event_length(event)) { event = rb_page_index(cpu_buffer->head_page, head); BUG_ON(rb_null_event(event)); /* Only count data entries */ if (event->type != RINGBUF_TYPE_DATA) continue; cpu_buffer->overrun++; cpu_buffer->entries--; } } static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page **page) { struct list_head *p = (*page)->list.next; if (p == &cpu_buffer->pages) p = p->next; *page = list_entry(p, struct buffer_page, list); } static inline void rb_add_stamp(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts) { cpu_buffer->tail_page->time_stamp = *ts; cpu_buffer->write_stamp = *ts; } static void rb_reset_read_page(struct ring_buffer_per_cpu *cpu_buffer) { cpu_buffer->read_stamp = cpu_buffer->head_page->time_stamp; cpu_buffer->head = 0; } static void rb_reset_iter_read_page(struct ring_buffer_iter *iter) { iter->read_stamp = iter->head_page->time_stamp; iter->head = 0; } /** * ring_buffer_update_event - update event type and data * @event: the even to update * @type: the type of event * @length: the size of the event field in the ring buffer * * Update the type and data fields of the event. The length * is the actual size that is written to the ring buffer, * and with this, we can determine what to place into the * data field. */ static inline void rb_update_event(struct ring_buffer_event *event, unsigned type, unsigned length) { event->type = type; switch (type) { case RINGBUF_TYPE_PADDING: break; case RINGBUF_TYPE_TIME_EXTEND: event->len = (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1)) >> RB_ALIGNMENT_SHIFT; break; case RINGBUF_TYPE_TIME_STAMP: event->len = (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1)) >> RB_ALIGNMENT_SHIFT; break; case RINGBUF_TYPE_DATA: length -= RB_EVNT_HDR_SIZE; if (length > RB_MAX_SMALL_DATA) { event->len = 0; event->array[0] = length; } else event->len = (length + (RB_ALIGNMENT-1)) >> RB_ALIGNMENT_SHIFT; break; default: BUG(); } } static inline unsigned rb_calculate_event_length(unsigned length) { struct ring_buffer_event event; /* Used only for sizeof array */ /* zero length can cause confusions */ if (!length) length = 1; if (length > RB_MAX_SMALL_DATA) length += sizeof(event.array[0]); length += RB_EVNT_HDR_SIZE; length = ALIGN(length, RB_ALIGNMENT); return length; } static struct ring_buffer_event * __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, unsigned type, unsigned long length, u64 *ts) { struct buffer_page *head_page, *tail_page; unsigned long tail; struct ring_buffer *buffer = cpu_buffer->buffer; struct ring_buffer_event *event; tail_page = cpu_buffer->tail_page; head_page = cpu_buffer->head_page; tail = cpu_buffer->tail; if (tail + length > BUF_PAGE_SIZE) { struct buffer_page *next_page = tail_page; rb_inc_page(cpu_buffer, &next_page); if (next_page == head_page) { if (!(buffer->flags & RB_FL_OVERWRITE)) return NULL; /* count overflows */ rb_update_overflow(cpu_buffer); rb_inc_page(cpu_buffer, &head_page); cpu_buffer->head_page = head_page; rb_reset_read_page(cpu_buffer); } if (tail != BUF_PAGE_SIZE) { event = rb_page_index(tail_page, tail); /* page padding */ event->type = RINGBUF_TYPE_PADDING; } tail_page->size = tail; tail_page = next_page; tail_page->size = 0; tail = 0; cpu_buffer->tail_page = tail_page; cpu_buffer->tail = tail; rb_add_stamp(cpu_buffer, ts); } BUG_ON(tail + length > BUF_PAGE_SIZE); event = rb_page_index(tail_page, tail); rb_update_event(event, type, length); return event; } static int rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, u64 *delta) { struct ring_buffer_event *event; static int once; if (unlikely(*delta > (1ULL << 59) && !once++)) { printk(KERN_WARNING "Delta way too big! %llu" " ts=%llu write stamp = %llu\n", *delta, *ts, cpu_buffer->write_stamp); WARN_ON(1); } /* * The delta is too big, we to add a * new timestamp. */ event = __rb_reserve_next(cpu_buffer, RINGBUF_TYPE_TIME_EXTEND, RB_LEN_TIME_EXTEND, ts); if (!event) return -1; /* check to see if we went to the next page */ if (cpu_buffer->tail) { /* Still on same page, update timestamp */ event->time_delta = *delta & TS_MASK; event->array[0] = *delta >> TS_SHIFT; /* commit the time event */ cpu_buffer->tail += rb_event_length(event); cpu_buffer->write_stamp = *ts; *delta = 0; } return 0; } static struct ring_buffer_event * rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer, unsigned type, unsigned long length) { struct ring_buffer_event *event; u64 ts, delta; ts = ring_buffer_time_stamp(cpu_buffer->cpu); if (cpu_buffer->tail) { delta = ts - cpu_buffer->write_stamp; if (test_time_stamp(delta)) { int ret; ret = rb_add_time_stamp(cpu_buffer, &ts, &delta); if (ret < 0) return NULL; } } else { rb_add_stamp(cpu_buffer, &ts); delta = 0; } event = __rb_reserve_next(cpu_buffer, type, length, &ts); if (!event) return NULL; /* If the reserve went to the next page, our delta is zero */ if (!cpu_buffer->tail) delta = 0; event->time_delta = delta; return event; } /** * ring_buffer_lock_reserve - reserve a part of the buffer * @buffer: the ring buffer to reserve from * @length: the length of the data to reserve (excluding event header) * @flags: a pointer to save the interrupt flags * * Returns a reseverd event on the ring buffer to copy directly to. * The user of this interface will need to get the body to write into * and can use the ring_buffer_event_data() interface. * * The length is the length of the data needed, not the event length * which also includes the event header. * * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. * If NULL is returned, then nothing has been allocated or locked. */ struct ring_buffer_event * ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length, unsigned long *flags) { struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event; int cpu; if (atomic_read(&buffer->record_disabled)) return NULL; raw_local_irq_save(*flags); cpu = raw_smp_processor_id(); if (!cpu_isset(cpu, buffer->cpumask)) goto out_irq; cpu_buffer = buffer->buffers[cpu]; spin_lock(&cpu_buffer->lock); if (atomic_read(&cpu_buffer->record_disabled)) goto no_record; length = rb_calculate_event_length(length); if (length > BUF_PAGE_SIZE) return NULL; event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length); if (!event) goto no_record; return event; no_record: spin_unlock(&cpu_buffer->lock); out_irq: local_irq_restore(*flags); return NULL; } static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) { cpu_buffer->tail += rb_event_length(event); cpu_buffer->tail_page->size = cpu_buffer->tail; cpu_buffer->write_stamp += event->time_delta; cpu_buffer->entries++; } /** * ring_buffer_unlock_commit - commit a reserved * @buffer: The buffer to commit to * @event: The event pointer to commit. * @flags: the interrupt flags received from ring_buffer_lock_reserve. * * This commits the data to the ring buffer, and releases any locks held. * * Must be paired with ring_buffer_lock_reserve. */ int ring_buffer_unlock_commit(struct ring_buffer *buffer, struct ring_buffer_event *event, unsigned long flags) { struct ring_buffer_per_cpu *cpu_buffer; int cpu = raw_smp_processor_id(); cpu_buffer = buffer->buffers[cpu]; assert_spin_locked(&cpu_buffer->lock); rb_commit(cpu_buffer, event); spin_unlock(&cpu_buffer->lock); raw_local_irq_restore(flags); return 0; } /** * ring_buffer_write - write data to the buffer without reserving * @buffer: The ring buffer to write to. * @length: The length of the data being written (excluding the event header) * @data: The data to write to the buffer. * * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as * one function. If you already have the data to write to the buffer, it * may be easier to simply call this function. * * Note, like ring_buffer_lock_reserve, the length is the length of the data * and not the length of the event which would hold the header. */ int ring_buffer_write(struct ring_buffer *buffer, unsigned long length, void *data) { struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event; unsigned long event_length, flags; void *body; int ret = -EBUSY; int cpu; if (atomic_read(&buffer->record_disabled)) return -EBUSY; local_irq_save(flags); cpu = raw_smp_processor_id(); if (!cpu_isset(cpu, buffer->cpumask)) goto out_irq; cpu_buffer = buffer->buffers[cpu]; spin_lock(&cpu_buffer->lock); if (atomic_read(&cpu_buffer->record_disabled)) goto out; event_length = rb_calculate_event_length(length); event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, event_length); if (!event) goto out; body = rb_event_data(event); memcpy(body, data, length); rb_commit(cpu_buffer, event); ret = 0; out: spin_unlock(&cpu_buffer->lock); out_irq: local_irq_restore(flags); return ret; } /** * ring_buffer_lock - lock the ring buffer * @buffer: The ring buffer to lock * @flags: The place to store the interrupt flags * * This locks all the per CPU buffers. * * Must be unlocked by ring_buffer_unlock. */ void ring_buffer_lock(struct ring_buffer *buffer, unsigned long *flags) { struct ring_buffer_per_cpu *cpu_buffer; int cpu; local_irq_save(*flags); for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; spin_lock(&cpu_buffer->lock); } } /** * ring_buffer_unlock - unlock a locked buffer * @buffer: The locked buffer to unlock * @flags: The interrupt flags received by ring_buffer_lock */ void ring_buffer_unlock(struct ring_buffer *buffer, unsigned long flags) { struct ring_buffer_per_cpu *cpu_buffer; int cpu; for (cpu = buffer->cpus - 1; cpu >= 0; cpu--) { if (!cpu_isset(cpu, buffer->cpumask)) continue; cpu_buffer = buffer->buffers[cpu]; spin_unlock(&cpu_buffer->lock); } local_irq_restore(flags); } /** * ring_buffer_record_disable - stop all writes into the buffer * @buffer: The ring buffer to stop writes to. * * This prevents all writes to the buffer. Any attempt to write * to the buffer after this will fail and return NULL. * * The caller should call synchronize_sched() after this. */ void ring_buffer_record_disable(struct ring_buffer *buffer) { atomic_inc(&buffer->record_disabled); } /** * ring_buffer_record_enable - enable writes to the buffer * @buffer: The ring buffer to enable writes * * Note, multiple disables will need the same number of enables * to truely enable the writing (much like preempt_disable). */ void ring_buffer_record_enable(struct ring_buffer *buffer) { atomic_dec(&buffer->record_disabled); } /** * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer * @buffer: The ring buffer to stop writes to. * @cpu: The CPU buffer to stop * * This prevents all writes to the buffer. Any attempt to write * to the buffer after this will fail and return NULL. * * The caller should call synchronize_sched() after this. */ void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpu_isset(cpu, buffer->cpumask)) return; cpu_buffer = buffer->buffers[cpu]; atomic_inc(&cpu_buffer->record_disabled); } /** * ring_buffer_record_enable_cpu - enable writes to the buffer * @buffer: The ring buffer to enable writes * @cpu: The CPU to enable. * * Note, multiple disables will need the same number of enables * to truely enable the writing (much like preempt_disable). */ void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpu_isset(cpu, buffer->cpumask)) return; cpu_buffer = buffer->buffers[cpu]; atomic_dec(&cpu_buffer->record_disabled); } /** * ring_buffer_entries_cpu - get the number of entries in a cpu buffer * @buffer: The ring buffer * @cpu: The per CPU buffer to get the entries from. */ unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpu_isset(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; return cpu_buffer->entries; } /** * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer * @buffer: The ring buffer * @cpu: The per CPU buffer to get the number of overruns from */ unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpu_isset(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; return cpu_buffer->overrun; } /** * ring_buffer_entries - get the number of entries in a buffer * @buffer: The ring buffer * * Returns the total number of entries in the ring buffer * (all CPU entries) */ unsigned long ring_buffer_entries(struct ring_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long entries = 0; int cpu; /* if you care about this being correct, lock the buffer */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; entries += cpu_buffer->entries; } return entries; } /** * ring_buffer_overrun_cpu - get the number of overruns in buffer * @buffer: The ring buffer * * Returns the total number of overruns in the ring buffer * (all CPU entries) */ unsigned long ring_buffer_overruns(struct ring_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long overruns = 0; int cpu; /* if you care about this being correct, lock the buffer */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; overruns += cpu_buffer->overrun; } return overruns; } /** * ring_buffer_iter_reset - reset an iterator * @iter: The iterator to reset * * Resets the iterator, so that it will start from the beginning * again. */ void ring_buffer_iter_reset(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; iter->head_page = cpu_buffer->head_page; iter->head = cpu_buffer->head; rb_reset_iter_read_page(iter); } /** * ring_buffer_iter_empty - check if an iterator has no more to read * @iter: The iterator to check */ int ring_buffer_iter_empty(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer; cpu_buffer = iter->cpu_buffer; return iter->head_page == cpu_buffer->tail_page && iter->head == cpu_buffer->tail; } static void rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) { u64 delta; switch (event->type) { case RINGBUF_TYPE_PADDING: return; case RINGBUF_TYPE_TIME_EXTEND: delta = event->array[0]; delta <<= TS_SHIFT; delta += event->time_delta; cpu_buffer->read_stamp += delta; return; case RINGBUF_TYPE_TIME_STAMP: /* FIXME: not implemented */ return; case RINGBUF_TYPE_DATA: cpu_buffer->read_stamp += event->time_delta; return; default: BUG(); } return; } static void rb_update_iter_read_stamp(struct ring_buffer_iter *iter, struct ring_buffer_event *event) { u64 delta; switch (event->type) { case RINGBUF_TYPE_PADDING: return; case RINGBUF_TYPE_TIME_EXTEND: delta = event->array[0]; delta <<= TS_SHIFT; delta += event->time_delta; iter->read_stamp += delta; return; case RINGBUF_TYPE_TIME_STAMP: /* FIXME: not implemented */ return; case RINGBUF_TYPE_DATA: iter->read_stamp += event->time_delta; return; default: BUG(); } return; } static void rb_advance_head(struct ring_buffer_per_cpu *cpu_buffer) { struct ring_buffer_event *event; unsigned length; /* * Check if we are at the end of the buffer. */ if (cpu_buffer->head >= cpu_buffer->head_page->size) { BUG_ON(cpu_buffer->head_page == cpu_buffer->tail_page); rb_inc_page(cpu_buffer, &cpu_buffer->head_page); rb_reset_read_page(cpu_buffer); return; } event = rb_head_event(cpu_buffer); if (event->type == RINGBUF_TYPE_DATA) cpu_buffer->entries--; length = rb_event_length(event); /* * This should not be called to advance the header if we are * at the tail of the buffer. */ BUG_ON((cpu_buffer->head_page == cpu_buffer->tail_page) && (cpu_buffer->head + length > cpu_buffer->tail)); rb_update_read_stamp(cpu_buffer, event); cpu_buffer->head += length; /* check for end of page */ if ((cpu_buffer->head >= cpu_buffer->head_page->size) && (cpu_buffer->head_page != cpu_buffer->tail_page)) rb_advance_head(cpu_buffer); } static void rb_advance_iter(struct ring_buffer_iter *iter) { struct ring_buffer *buffer; struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event; unsigned length; cpu_buffer = iter->cpu_buffer; buffer = cpu_buffer->buffer; /* * Check if we are at the end of the buffer. */ if (iter->head >= iter->head_page->size) { BUG_ON(iter->head_page == cpu_buffer->tail_page); rb_inc_page(cpu_buffer, &iter->head_page); rb_reset_iter_read_page(iter); return; } event = rb_iter_head_event(iter); length = rb_event_length(event); /* * This should not be called to advance the header if we are * at the tail of the buffer. */ BUG_ON((iter->head_page == cpu_buffer->tail_page) && (iter->head + length > cpu_buffer->tail)); rb_update_iter_read_stamp(iter, event); iter->head += length; /* check for end of page padding */ if ((iter->head >= iter->head_page->size) && (iter->head_page != cpu_buffer->tail_page)) rb_advance_iter(iter); } /** * ring_buffer_peek - peek at the next event to be read * @buffer: The ring buffer to read * @cpu: The cpu to peak at * @ts: The timestamp counter of this event. * * This will return the event that will be read next, but does * not consume the data. */ struct ring_buffer_event * ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) { struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event; if (!cpu_isset(cpu, buffer->cpumask)) return NULL; cpu_buffer = buffer->buffers[cpu]; again: if (rb_per_cpu_empty(cpu_buffer)) return NULL; event = rb_head_event(cpu_buffer); switch (event->type) { case RINGBUF_TYPE_PADDING: rb_inc_page(cpu_buffer, &cpu_buffer->head_page); rb_reset_read_page(cpu_buffer); goto again; case RINGBUF_TYPE_TIME_EXTEND: /* Internal data, OK to advance */ rb_advance_head(cpu_buffer); goto again; case RINGBUF_TYPE_TIME_STAMP: /* FIXME: not implemented */ rb_advance_head(cpu_buffer); goto again; case RINGBUF_TYPE_DATA: if (ts) { *ts = cpu_buffer->read_stamp + event->time_delta; ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts); } return event; default: BUG(); } return NULL; } /** * ring_buffer_iter_peek - peek at the next event to be read * @iter: The ring buffer iterator * @ts: The timestamp counter of this event. * * This will return the event that will be read next, but does * not increment the iterator. */ struct ring_buffer_event * ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) { struct ring_buffer *buffer; struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event; if (ring_buffer_iter_empty(iter)) return NULL; cpu_buffer = iter->cpu_buffer; buffer = cpu_buffer->buffer; again: if (rb_per_cpu_empty(cpu_buffer)) return NULL; event = rb_iter_head_event(iter); switch (event->type) { case RINGBUF_TYPE_PADDING: rb_inc_page(cpu_buffer, &iter->head_page); rb_reset_iter_read_page(iter); goto again; case RINGBUF_TYPE_TIME_EXTEND: /* Internal data, OK to advance */ rb_advance_iter(iter); goto again; case RINGBUF_TYPE_TIME_STAMP: /* FIXME: not implemented */ rb_advance_iter(iter); goto again; case RINGBUF_TYPE_DATA: if (ts) { *ts = iter->read_stamp + event->time_delta; ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts); } return event; default: BUG(); } return NULL; } /** * ring_buffer_consume - return an event and consume it * @buffer: The ring buffer to get the next event from * * Returns the next event in the ring buffer, and that event is consumed. * Meaning, that sequential reads will keep returning a different event, * and eventually empty the ring buffer if the producer is slower. */ struct ring_buffer_event * ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) { struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event; if (!cpu_isset(cpu, buffer->cpumask)) return NULL; event = ring_buffer_peek(buffer, cpu, ts); if (!event) return NULL; cpu_buffer = buffer->buffers[cpu]; rb_advance_head(cpu_buffer); return event; } /** * ring_buffer_read_start - start a non consuming read of the buffer * @buffer: The ring buffer to read from * @cpu: The cpu buffer to iterate over * * This starts up an iteration through the buffer. It also disables * the recording to the buffer until the reading is finished. * This prevents the reading from being corrupted. This is not * a consuming read, so a producer is not expected. * * Must be paired with ring_buffer_finish. */ struct ring_buffer_iter * ring_buffer_read_start(struct ring_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_iter *iter; if (!cpu_isset(cpu, buffer->cpumask)) return NULL; iter = kmalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return NULL; cpu_buffer = buffer->buffers[cpu]; iter->cpu_buffer = cpu_buffer; atomic_inc(&cpu_buffer->record_disabled); synchronize_sched(); spin_lock(&cpu_buffer->lock); iter->head = cpu_buffer->head; iter->head_page = cpu_buffer->head_page; rb_reset_iter_read_page(iter); spin_unlock(&cpu_buffer->lock); return iter; } /** * ring_buffer_finish - finish reading the iterator of the buffer * @iter: The iterator retrieved by ring_buffer_start * * This re-enables the recording to the buffer, and frees the * iterator. */ void ring_buffer_read_finish(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; atomic_dec(&cpu_buffer->record_disabled); kfree(iter); } /** * ring_buffer_read - read the next item in the ring buffer by the iterator * @iter: The ring buffer iterator * @ts: The time stamp of the event read. * * This reads the next event in the ring buffer and increments the iterator. */ struct ring_buffer_event * ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) { struct ring_buffer_event *event; event = ring_buffer_iter_peek(iter, ts); if (!event) return NULL; rb_advance_iter(iter); return event; } /** * ring_buffer_size - return the size of the ring buffer (in bytes) * @buffer: The ring buffer. */ unsigned long ring_buffer_size(struct ring_buffer *buffer) { return BUF_PAGE_SIZE * buffer->pages; } static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) { cpu_buffer->head_page = list_entry(cpu_buffer->pages.next, struct buffer_page, list); cpu_buffer->tail_page = list_entry(cpu_buffer->pages.next, struct buffer_page, list); cpu_buffer->head = cpu_buffer->tail = 0; cpu_buffer->overrun = 0; cpu_buffer->entries = 0; } /** * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer * @buffer: The ring buffer to reset a per cpu buffer of * @cpu: The CPU buffer to be reset */ void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; unsigned long flags; if (!cpu_isset(cpu, buffer->cpumask)) return; raw_local_irq_save(flags); spin_lock(&cpu_buffer->lock); rb_reset_cpu(cpu_buffer); spin_unlock(&cpu_buffer->lock); raw_local_irq_restore(flags); } /** * ring_buffer_reset - reset a ring buffer * @buffer: The ring buffer to reset all cpu buffers */ void ring_buffer_reset(struct ring_buffer *buffer) { unsigned long flags; int cpu; ring_buffer_lock(buffer, &flags); for_each_buffer_cpu(buffer, cpu) rb_reset_cpu(buffer->buffers[cpu]); ring_buffer_unlock(buffer, flags); } /** * rind_buffer_empty - is the ring buffer empty? * @buffer: The ring buffer to test */ int ring_buffer_empty(struct ring_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; int cpu; /* yes this is racy, but if you don't like the race, lock the buffer */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; if (!rb_per_cpu_empty(cpu_buffer)) return 0; } return 1; } /** * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? * @buffer: The ring buffer * @cpu: The CPU buffer to test */ int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpu_isset(cpu, buffer->cpumask)) return 1; cpu_buffer = buffer->buffers[cpu]; return rb_per_cpu_empty(cpu_buffer); } /** * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers * @buffer_a: One buffer to swap with * @buffer_b: The other buffer to swap with * * This function is useful for tracers that want to take a "snapshot" * of a CPU buffer and has another back up buffer lying around. * it is expected that the tracer handles the cpu buffer not being * used at the moment. */ int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, struct ring_buffer *buffer_b, int cpu) { struct ring_buffer_per_cpu *cpu_buffer_a; struct ring_buffer_per_cpu *cpu_buffer_b; if (!cpu_isset(cpu, buffer_a->cpumask) || !cpu_isset(cpu, buffer_b->cpumask)) return -EINVAL; /* At least make sure the two buffers are somewhat the same */ if (buffer_a->size != buffer_b->size || buffer_a->pages != buffer_b->pages) return -EINVAL; cpu_buffer_a = buffer_a->buffers[cpu]; cpu_buffer_b = buffer_b->buffers[cpu]; /* * We can't do a synchronize_sched here because this * function can be called in atomic context. * Normally this will be called from the same CPU as cpu. * If not it's up to the caller to protect this. */ atomic_inc(&cpu_buffer_a->record_disabled); atomic_inc(&cpu_buffer_b->record_disabled); buffer_a->buffers[cpu] = cpu_buffer_b; buffer_b->buffers[cpu] = cpu_buffer_a; cpu_buffer_b->buffer = buffer_a; cpu_buffer_a->buffer = buffer_b; atomic_dec(&cpu_buffer_a->record_disabled); atomic_dec(&cpu_buffer_b->record_disabled); return 0; }