aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-mips/pmc-sierra/msp71xx/msp_regops.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-mips/pmc-sierra/msp71xx/msp_regops.h')
-rw-r--r--include/asm-mips/pmc-sierra/msp71xx/msp_regops.h236
1 files changed, 236 insertions, 0 deletions
diff --git a/include/asm-mips/pmc-sierra/msp71xx/msp_regops.h b/include/asm-mips/pmc-sierra/msp71xx/msp_regops.h
new file mode 100644
index 000000000000..60a5a38dd5b2
--- /dev/null
+++ b/include/asm-mips/pmc-sierra/msp71xx/msp_regops.h
@@ -0,0 +1,236 @@
1/*
2 * SMP/VPE-safe functions to access "registers" (see note).
3 *
4 * NOTES:
5* - These macros use ll/sc instructions, so it is your responsibility to
6 * ensure these are available on your platform before including this file.
7 * - The MIPS32 spec states that ll/sc results are undefined for uncached
8 * accesses. This means they can't be used on HW registers accessed
9 * through kseg1. Code which requires these macros for this purpose must
10 * front-end the registers with cached memory "registers" and have a single
11 * thread update the actual HW registers.
12 * - A maximum of 2k of code can be inserted between ll and sc. Every
13 * memory accesses between the instructions will increase the chance of
14 * sc failing and having to loop.
15 * - When using custom_read_reg32/custom_write_reg32 only perform the
16 * necessary logical operations on the register value in between these
17 * two calls. All other logic should be performed before the first call.
18 * - There is a bug on the R10000 chips which has a workaround. If you
19 * are affected by this bug, make sure to define the symbol 'R10000_LLSC_WAR'
20 * to be non-zero. If you are using this header from within linux, you may
21 * include <asm/war.h> before including this file to have this defined
22 * appropriately for you.
23 *
24 * Copyright 2005-2007 PMC-Sierra, Inc.
25 *
26 * This program is free software; you can redistribute it and/or modify it
27 * under the terms of the GNU General Public License as published by the
28 * Free Software Foundation; either version 2 of the License, or (at your
29 * option) any later version.
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
33 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
34 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
40 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * You should have received a copy of the GNU General Public License along
43 * with this program; if not, write to the Free Software Foundation, Inc., 675
44 * Mass Ave, Cambridge, MA 02139, USA.
45 */
46
47#ifndef __ASM_REGOPS_H__
48#define __ASM_REGOPS_H__
49
50#include <linux/types.h>
51
52#include <asm/war.h>
53
54#ifndef R10000_LLSC_WAR
55#define R10000_LLSC_WAR 0
56#endif
57
58#if R10000_LLSC_WAR == 1
59#define __beqz "beqzl "
60#else
61#define __beqz "beqz "
62#endif
63
64#ifndef _LINUX_TYPES_H
65typedef unsigned int u32;
66#endif
67
68/*
69 * Sets all the masked bits to the corresponding value bits
70 */
71static inline void set_value_reg32(volatile u32 *const addr,
72 u32 const mask,
73 u32 const value)
74{
75 u32 temp;
76
77 __asm__ __volatile__(
78 " .set push \n"
79 " .set mips3 \n"
80 "1: ll %0, %1 # set_value_reg32 \n"
81 " and %0, %2 \n"
82 " or %0, %3 \n"
83 " sc %0, %1 \n"
84 " "__beqz"%0, 1b \n"
85 " nop \n"
86 " .set pop \n"
87 : "=&r" (temp), "=m" (*addr)
88 : "ir" (~mask), "ir" (value), "m" (*addr));
89}
90
91/*
92 * Sets all the masked bits to '1'
93 */
94static inline void set_reg32(volatile u32 *const addr,
95 u32 const mask)
96{
97 u32 temp;
98
99 __asm__ __volatile__(
100 " .set push \n"
101 " .set mips3 \n"
102 "1: ll %0, %1 # set_reg32 \n"
103 " or %0, %2 \n"
104 " sc %0, %1 \n"
105 " "__beqz"%0, 1b \n"
106 " nop \n"
107 " .set pop \n"
108 : "=&r" (temp), "=m" (*addr)
109 : "ir" (mask), "m" (*addr));
110}
111
112/*
113 * Sets all the masked bits to '0'
114 */
115static inline void clear_reg32(volatile u32 *const addr,
116 u32 const mask)
117{
118 u32 temp;
119
120 __asm__ __volatile__(
121 " .set push \n"
122 " .set mips3 \n"
123 "1: ll %0, %1 # clear_reg32 \n"
124 " and %0, %2 \n"
125 " sc %0, %1 \n"
126 " "__beqz"%0, 1b \n"
127 " nop \n"
128 " .set pop \n"
129 : "=&r" (temp), "=m" (*addr)
130 : "ir" (~mask), "m" (*addr));
131}
132
133/*
134 * Toggles all masked bits from '0' to '1' and '1' to '0'
135 */
136static inline void toggle_reg32(volatile u32 *const addr,
137 u32 const mask)
138{
139 u32 temp;
140
141 __asm__ __volatile__(
142 " .set push \n"
143 " .set mips3 \n"
144 "1: ll %0, %1 # toggle_reg32 \n"
145 " xor %0, %2 \n"
146 " sc %0, %1 \n"
147 " "__beqz"%0, 1b \n"
148 " nop \n"
149 " .set pop \n"
150 : "=&r" (temp), "=m" (*addr)
151 : "ir" (mask), "m" (*addr));
152}
153
154/*
155 * Read all masked bits others are returned as '0'
156 */
157static inline u32 read_reg32(volatile u32 *const addr,
158 u32 const mask)
159{
160 u32 temp;
161
162 __asm__ __volatile__(
163 " .set push \n"
164 " .set noreorder \n"
165 " lw %0, %1 # read \n"
166 " and %0, %2 # mask \n"
167 " .set pop \n"
168 : "=&r" (temp)
169 : "m" (*addr), "ir" (mask));
170
171 return temp;
172}
173
174/*
175 * blocking_read_reg32 - Read address with blocking load
176 *
177 * Uncached writes need to be read back to ensure they reach RAM.
178 * The returned value must be 'used' to prevent from becoming a
179 * non-blocking load.
180 */
181static inline u32 blocking_read_reg32(volatile u32 *const addr)
182{
183 u32 temp;
184
185 __asm__ __volatile__(
186 " .set push \n"
187 " .set noreorder \n"
188 " lw %0, %1 # read \n"
189 " move %0, %0 # block \n"
190 " .set pop \n"
191 : "=&r" (temp)
192 : "m" (*addr));
193
194 return temp;
195}
196
197/*
198 * For special strange cases only:
199 *
200 * If you need custom processing within a ll/sc loop, use the following macros
201 * VERY CAREFULLY:
202 *
203 * u32 tmp; <-- Define a variable to hold the data
204 *
205 * custom_read_reg32(address, tmp); <-- Reads the address and put the value
206 * in the 'tmp' variable given
207 *
208 * From here on out, you are (basicly) atomic, so don't do anything too
209 * fancy!
210 * Also, this code may loop if the end of this block fails to write
211 * everything back safely due do the other CPU, so do NOT do anything
212 * with side-effects!
213 *
214 * custom_write_reg32(address, tmp); <-- Writes back 'tmp' safely.
215 */
216#define custom_read_reg32(address, tmp) \
217 __asm__ __volatile__( \
218 " .set push \n" \
219 " .set mips3 \n" \
220 "1: ll %0, %1 #custom_read_reg32 \n" \
221 " .set pop \n" \
222 : "=r" (tmp), "=m" (*address) \
223 : "m" (*address))
224
225#define custom_write_reg32(address, tmp) \
226 __asm__ __volatile__( \
227 " .set push \n" \
228 " .set mips3 \n" \
229 " sc %0, %1 #custom_write_reg32 \n" \
230 " "__beqz"%0, 1b \n" \
231 " nop \n" \
232 " .set pop \n" \
233 : "=&r" (tmp), "=m" (*address) \
234 : "0" (tmp), "m" (*address))
235
236#endif /* __ASM_REGOPS_H__ */