diff options
Diffstat (limited to 'drivers/media/dvb/frontends/dib9000.c')
-rw-r--r-- | drivers/media/dvb/frontends/dib9000.c | 2403 |
1 files changed, 2403 insertions, 0 deletions
diff --git a/drivers/media/dvb/frontends/dib9000.c b/drivers/media/dvb/frontends/dib9000.c new file mode 100644 index 000000000000..a0855883b5ce --- /dev/null +++ b/drivers/media/dvb/frontends/dib9000.c | |||
@@ -0,0 +1,2403 @@ | |||
1 | /* | ||
2 | * Linux-DVB Driver for DiBcom's DiB9000 and demodulator-family. | ||
3 | * | ||
4 | * Copyright (C) 2005-10 DiBcom (http://www.dibcom.fr/) | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU General Public License as | ||
8 | * published by the Free Software Foundation, version 2. | ||
9 | */ | ||
10 | #include <linux/kernel.h> | ||
11 | #include <linux/i2c.h> | ||
12 | #include <linux/mutex.h> | ||
13 | |||
14 | #include "dvb_math.h" | ||
15 | #include "dvb_frontend.h" | ||
16 | |||
17 | #include "dib9000.h" | ||
18 | #include "dibx000_common.h" | ||
19 | |||
20 | static int debug; | ||
21 | module_param(debug, int, 0644); | ||
22 | MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); | ||
23 | |||
24 | #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB9000: "); printk(args); printk("\n"); } } while (0) | ||
25 | #define MAX_NUMBER_OF_FRONTENDS 6 | ||
26 | |||
27 | struct i2c_device { | ||
28 | struct i2c_adapter *i2c_adap; | ||
29 | u8 i2c_addr; | ||
30 | u8 *i2c_read_buffer; | ||
31 | u8 *i2c_write_buffer; | ||
32 | }; | ||
33 | |||
34 | /* lock */ | ||
35 | #define DIB_LOCK struct mutex | ||
36 | #define DibAcquireLock(lock) do { if (mutex_lock_interruptible(lock) < 0) dprintk("could not get the lock"); } while (0) | ||
37 | #define DibReleaseLock(lock) mutex_unlock(lock) | ||
38 | #define DibInitLock(lock) mutex_init(lock) | ||
39 | #define DibFreeLock(lock) | ||
40 | |||
41 | struct dib9000_state { | ||
42 | struct i2c_device i2c; | ||
43 | |||
44 | struct dibx000_i2c_master i2c_master; | ||
45 | struct i2c_adapter tuner_adap; | ||
46 | struct i2c_adapter component_bus; | ||
47 | |||
48 | u16 revision; | ||
49 | u8 reg_offs; | ||
50 | |||
51 | enum frontend_tune_state tune_state; | ||
52 | u32 status; | ||
53 | struct dvb_frontend_parametersContext channel_status; | ||
54 | |||
55 | u8 fe_id; | ||
56 | |||
57 | #define DIB9000_GPIO_DEFAULT_DIRECTIONS 0xffff | ||
58 | u16 gpio_dir; | ||
59 | #define DIB9000_GPIO_DEFAULT_VALUES 0x0000 | ||
60 | u16 gpio_val; | ||
61 | #define DIB9000_GPIO_DEFAULT_PWM_POS 0xffff | ||
62 | u16 gpio_pwm_pos; | ||
63 | |||
64 | union { /* common for all chips */ | ||
65 | struct { | ||
66 | u8 mobile_mode:1; | ||
67 | } host; | ||
68 | |||
69 | struct { | ||
70 | struct dib9000_fe_memory_map { | ||
71 | u16 addr; | ||
72 | u16 size; | ||
73 | } fe_mm[18]; | ||
74 | u8 memcmd; | ||
75 | |||
76 | DIB_LOCK mbx_if_lock; /* to protect read/write operations */ | ||
77 | DIB_LOCK mbx_lock; /* to protect the whole mailbox handling */ | ||
78 | |||
79 | DIB_LOCK mem_lock; /* to protect the memory accesses */ | ||
80 | DIB_LOCK mem_mbx_lock; /* to protect the memory-based mailbox */ | ||
81 | |||
82 | #define MBX_MAX_WORDS (256 - 200 - 2) | ||
83 | #define DIB9000_MSG_CACHE_SIZE 2 | ||
84 | u16 message_cache[DIB9000_MSG_CACHE_SIZE][MBX_MAX_WORDS]; | ||
85 | u8 fw_is_running; | ||
86 | } risc; | ||
87 | } platform; | ||
88 | |||
89 | union { /* common for all platforms */ | ||
90 | struct { | ||
91 | struct dib9000_config cfg; | ||
92 | } d9; | ||
93 | } chip; | ||
94 | |||
95 | struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS]; | ||
96 | u16 component_bus_speed; | ||
97 | |||
98 | /* for the I2C transfer */ | ||
99 | struct i2c_msg msg[2]; | ||
100 | u8 i2c_write_buffer[255]; | ||
101 | u8 i2c_read_buffer[255]; | ||
102 | }; | ||
103 | |||
104 | static const u32 fe_info[44] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
105 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
106 | 0, 0, 0, 0, 0, 0, 0, 0 | ||
107 | }; | ||
108 | |||
109 | enum dib9000_power_mode { | ||
110 | DIB9000_POWER_ALL = 0, | ||
111 | |||
112 | DIB9000_POWER_NO, | ||
113 | DIB9000_POWER_INTERF_ANALOG_AGC, | ||
114 | DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD, | ||
115 | DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD, | ||
116 | DIB9000_POWER_INTERFACE_ONLY, | ||
117 | }; | ||
118 | |||
119 | enum dib9000_out_messages { | ||
120 | OUT_MSG_HBM_ACK, | ||
121 | OUT_MSG_HOST_BUF_FAIL, | ||
122 | OUT_MSG_REQ_VERSION, | ||
123 | OUT_MSG_BRIDGE_I2C_W, | ||
124 | OUT_MSG_BRIDGE_I2C_R, | ||
125 | OUT_MSG_BRIDGE_APB_W, | ||
126 | OUT_MSG_BRIDGE_APB_R, | ||
127 | OUT_MSG_SCAN_CHANNEL, | ||
128 | OUT_MSG_MONIT_DEMOD, | ||
129 | OUT_MSG_CONF_GPIO, | ||
130 | OUT_MSG_DEBUG_HELP, | ||
131 | OUT_MSG_SUBBAND_SEL, | ||
132 | OUT_MSG_ENABLE_TIME_SLICE, | ||
133 | OUT_MSG_FE_FW_DL, | ||
134 | OUT_MSG_FE_CHANNEL_SEARCH, | ||
135 | OUT_MSG_FE_CHANNEL_TUNE, | ||
136 | OUT_MSG_FE_SLEEP, | ||
137 | OUT_MSG_FE_SYNC, | ||
138 | OUT_MSG_CTL_MONIT, | ||
139 | |||
140 | OUT_MSG_CONF_SVC, | ||
141 | OUT_MSG_SET_HBM, | ||
142 | OUT_MSG_INIT_DEMOD, | ||
143 | OUT_MSG_ENABLE_DIVERSITY, | ||
144 | OUT_MSG_SET_OUTPUT_MODE, | ||
145 | OUT_MSG_SET_PRIORITARY_CHANNEL, | ||
146 | OUT_MSG_ACK_FRG, | ||
147 | OUT_MSG_INIT_PMU, | ||
148 | }; | ||
149 | |||
150 | enum dib9000_in_messages { | ||
151 | IN_MSG_DATA, | ||
152 | IN_MSG_FRAME_INFO, | ||
153 | IN_MSG_CTL_MONIT, | ||
154 | IN_MSG_ACK_FREE_ITEM, | ||
155 | IN_MSG_DEBUG_BUF, | ||
156 | IN_MSG_MPE_MONITOR, | ||
157 | IN_MSG_RAWTS_MONITOR, | ||
158 | IN_MSG_END_BRIDGE_I2C_RW, | ||
159 | IN_MSG_END_BRIDGE_APB_RW, | ||
160 | IN_MSG_VERSION, | ||
161 | IN_MSG_END_OF_SCAN, | ||
162 | IN_MSG_MONIT_DEMOD, | ||
163 | IN_MSG_ERROR, | ||
164 | IN_MSG_FE_FW_DL_DONE, | ||
165 | IN_MSG_EVENT, | ||
166 | IN_MSG_ACK_CHANGE_SVC, | ||
167 | IN_MSG_HBM_PROF, | ||
168 | }; | ||
169 | |||
170 | /* memory_access requests */ | ||
171 | #define FE_MM_W_CHANNEL 0 | ||
172 | #define FE_MM_W_FE_INFO 1 | ||
173 | #define FE_MM_RW_SYNC 2 | ||
174 | |||
175 | #define FE_SYNC_CHANNEL 1 | ||
176 | #define FE_SYNC_W_GENERIC_MONIT 2 | ||
177 | #define FE_SYNC_COMPONENT_ACCESS 3 | ||
178 | |||
179 | #define FE_MM_R_CHANNEL_SEARCH_STATE 3 | ||
180 | #define FE_MM_R_CHANNEL_UNION_CONTEXT 4 | ||
181 | #define FE_MM_R_FE_INFO 5 | ||
182 | #define FE_MM_R_FE_MONITOR 6 | ||
183 | |||
184 | #define FE_MM_W_CHANNEL_HEAD 7 | ||
185 | #define FE_MM_W_CHANNEL_UNION 8 | ||
186 | #define FE_MM_W_CHANNEL_CONTEXT 9 | ||
187 | #define FE_MM_R_CHANNEL_UNION 10 | ||
188 | #define FE_MM_R_CHANNEL_CONTEXT 11 | ||
189 | #define FE_MM_R_CHANNEL_TUNE_STATE 12 | ||
190 | |||
191 | #define FE_MM_R_GENERIC_MONITORING_SIZE 13 | ||
192 | #define FE_MM_W_GENERIC_MONITORING 14 | ||
193 | #define FE_MM_R_GENERIC_MONITORING 15 | ||
194 | |||
195 | #define FE_MM_W_COMPONENT_ACCESS 16 | ||
196 | #define FE_MM_RW_COMPONENT_ACCESS_BUFFER 17 | ||
197 | static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len); | ||
198 | static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len); | ||
199 | |||
200 | static u16 to_fw_output_mode(u16 mode) | ||
201 | { | ||
202 | switch (mode) { | ||
203 | case OUTMODE_HIGH_Z: | ||
204 | return 0; | ||
205 | case OUTMODE_MPEG2_PAR_GATED_CLK: | ||
206 | return 4; | ||
207 | case OUTMODE_MPEG2_PAR_CONT_CLK: | ||
208 | return 8; | ||
209 | case OUTMODE_MPEG2_SERIAL: | ||
210 | return 16; | ||
211 | case OUTMODE_DIVERSITY: | ||
212 | return 128; | ||
213 | case OUTMODE_MPEG2_FIFO: | ||
214 | return 2; | ||
215 | case OUTMODE_ANALOG_ADC: | ||
216 | return 1; | ||
217 | default: | ||
218 | return 0; | ||
219 | } | ||
220 | } | ||
221 | |||
222 | static u16 dib9000_read16_attr(struct dib9000_state *state, u16 reg, u8 * b, u32 len, u16 attribute) | ||
223 | { | ||
224 | u32 chunk_size = 126; | ||
225 | u32 l; | ||
226 | int ret; | ||
227 | |||
228 | if (state->platform.risc.fw_is_running && (reg < 1024)) | ||
229 | return dib9000_risc_apb_access_read(state, reg, attribute, NULL, 0, b, len); | ||
230 | |||
231 | memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); | ||
232 | state->msg[0].addr = state->i2c.i2c_addr >> 1; | ||
233 | state->msg[0].flags = 0; | ||
234 | state->msg[0].buf = state->i2c_write_buffer; | ||
235 | state->msg[0].len = 2; | ||
236 | state->msg[1].addr = state->i2c.i2c_addr >> 1; | ||
237 | state->msg[1].flags = I2C_M_RD; | ||
238 | state->msg[1].buf = b; | ||
239 | state->msg[1].len = len; | ||
240 | |||
241 | state->i2c_write_buffer[0] = reg >> 8; | ||
242 | state->i2c_write_buffer[1] = reg & 0xff; | ||
243 | |||
244 | if (attribute & DATA_BUS_ACCESS_MODE_8BIT) | ||
245 | state->i2c_write_buffer[0] |= (1 << 5); | ||
246 | if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) | ||
247 | state->i2c_write_buffer[0] |= (1 << 4); | ||
248 | |||
249 | do { | ||
250 | l = len < chunk_size ? len : chunk_size; | ||
251 | state->msg[1].len = l; | ||
252 | state->msg[1].buf = b; | ||
253 | ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 2) != 2 ? -EREMOTEIO : 0; | ||
254 | if (ret != 0) { | ||
255 | dprintk("i2c read error on %d", reg); | ||
256 | return -EREMOTEIO; | ||
257 | } | ||
258 | |||
259 | b += l; | ||
260 | len -= l; | ||
261 | |||
262 | if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)) | ||
263 | reg += l / 2; | ||
264 | } while ((ret == 0) && len); | ||
265 | |||
266 | return 0; | ||
267 | } | ||
268 | |||
269 | static u16 dib9000_i2c_read16(struct i2c_device *i2c, u16 reg) | ||
270 | { | ||
271 | struct i2c_msg msg[2] = { | ||
272 | {.addr = i2c->i2c_addr >> 1, .flags = 0, | ||
273 | .buf = i2c->i2c_write_buffer, .len = 2}, | ||
274 | {.addr = i2c->i2c_addr >> 1, .flags = I2C_M_RD, | ||
275 | .buf = i2c->i2c_read_buffer, .len = 2}, | ||
276 | }; | ||
277 | |||
278 | i2c->i2c_write_buffer[0] = reg >> 8; | ||
279 | i2c->i2c_write_buffer[1] = reg & 0xff; | ||
280 | |||
281 | if (i2c_transfer(i2c->i2c_adap, msg, 2) != 2) { | ||
282 | dprintk("read register %x error", reg); | ||
283 | return 0; | ||
284 | } | ||
285 | |||
286 | return (i2c->i2c_read_buffer[0] << 8) | i2c->i2c_read_buffer[1]; | ||
287 | } | ||
288 | |||
289 | static inline u16 dib9000_read_word(struct dib9000_state *state, u16 reg) | ||
290 | { | ||
291 | if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2, 0) != 0) | ||
292 | return 0; | ||
293 | return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; | ||
294 | } | ||
295 | |||
296 | static inline u16 dib9000_read_word_attr(struct dib9000_state *state, u16 reg, u16 attribute) | ||
297 | { | ||
298 | if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2, | ||
299 | attribute) != 0) | ||
300 | return 0; | ||
301 | return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; | ||
302 | } | ||
303 | |||
304 | #define dib9000_read16_noinc_attr(state, reg, b, len, attribute) dib9000_read16_attr(state, reg, b, len, (attribute) | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) | ||
305 | |||
306 | static u16 dib9000_write16_attr(struct dib9000_state *state, u16 reg, const u8 * buf, u32 len, u16 attribute) | ||
307 | { | ||
308 | u32 chunk_size = 126; | ||
309 | u32 l; | ||
310 | int ret; | ||
311 | |||
312 | if (state->platform.risc.fw_is_running && (reg < 1024)) { | ||
313 | if (dib9000_risc_apb_access_write | ||
314 | (state, reg, DATA_BUS_ACCESS_MODE_16BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | attribute, buf, len) != 0) | ||
315 | return -EINVAL; | ||
316 | return 0; | ||
317 | } | ||
318 | |||
319 | memset(&state->msg[0], 0, sizeof(struct i2c_msg)); | ||
320 | state->msg[0].addr = state->i2c.i2c_addr >> 1; | ||
321 | state->msg[0].flags = 0; | ||
322 | state->msg[0].buf = state->i2c_write_buffer; | ||
323 | state->msg[0].len = len + 2; | ||
324 | |||
325 | state->i2c_write_buffer[0] = (reg >> 8) & 0xff; | ||
326 | state->i2c_write_buffer[1] = (reg) & 0xff; | ||
327 | |||
328 | if (attribute & DATA_BUS_ACCESS_MODE_8BIT) | ||
329 | state->i2c_write_buffer[0] |= (1 << 5); | ||
330 | if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) | ||
331 | state->i2c_write_buffer[0] |= (1 << 4); | ||
332 | |||
333 | do { | ||
334 | l = len < chunk_size ? len : chunk_size; | ||
335 | state->msg[0].len = l + 2; | ||
336 | memcpy(&state->i2c_write_buffer[2], buf, l); | ||
337 | |||
338 | ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 1) != 1 ? -EREMOTEIO : 0; | ||
339 | |||
340 | buf += l; | ||
341 | len -= l; | ||
342 | |||
343 | if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)) | ||
344 | reg += l / 2; | ||
345 | } while ((ret == 0) && len); | ||
346 | |||
347 | return ret; | ||
348 | } | ||
349 | |||
350 | static int dib9000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val) | ||
351 | { | ||
352 | struct i2c_msg msg = { | ||
353 | .addr = i2c->i2c_addr >> 1, .flags = 0, | ||
354 | .buf = i2c->i2c_write_buffer, .len = 4 | ||
355 | }; | ||
356 | |||
357 | i2c->i2c_write_buffer[0] = (reg >> 8) & 0xff; | ||
358 | i2c->i2c_write_buffer[1] = reg & 0xff; | ||
359 | i2c->i2c_write_buffer[2] = (val >> 8) & 0xff; | ||
360 | i2c->i2c_write_buffer[3] = val & 0xff; | ||
361 | |||
362 | return i2c_transfer(i2c->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; | ||
363 | } | ||
364 | |||
365 | static inline int dib9000_write_word(struct dib9000_state *state, u16 reg, u16 val) | ||
366 | { | ||
367 | u8 b[2] = { val >> 8, val & 0xff }; | ||
368 | return dib9000_write16_attr(state, reg, b, 2, 0); | ||
369 | } | ||
370 | |||
371 | static inline int dib9000_write_word_attr(struct dib9000_state *state, u16 reg, u16 val, u16 attribute) | ||
372 | { | ||
373 | u8 b[2] = { val >> 8, val & 0xff }; | ||
374 | return dib9000_write16_attr(state, reg, b, 2, attribute); | ||
375 | } | ||
376 | |||
377 | #define dib9000_write(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, 0) | ||
378 | #define dib9000_write16_noinc(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) | ||
379 | #define dib9000_write16_noinc_attr(state, reg, buf, len, attribute) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | (attribute)) | ||
380 | |||
381 | #define dib9000_mbx_send(state, id, data, len) dib9000_mbx_send_attr(state, id, data, len, 0) | ||
382 | #define dib9000_mbx_get_message(state, id, msg, len) dib9000_mbx_get_message_attr(state, id, msg, len, 0) | ||
383 | |||
384 | #define MAC_IRQ (1 << 1) | ||
385 | #define IRQ_POL_MSK (1 << 4) | ||
386 | |||
387 | #define dib9000_risc_mem_read_chunks(state, b, len) dib9000_read16_attr(state, 1063, b, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) | ||
388 | #define dib9000_risc_mem_write_chunks(state, buf, len) dib9000_write16_attr(state, 1063, buf, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) | ||
389 | |||
390 | static void dib9000_risc_mem_setup_cmd(struct dib9000_state *state, u32 addr, u32 len, u8 reading) | ||
391 | { | ||
392 | u8 b[14] = { 0 }; | ||
393 | |||
394 | /* dprintk("%d memcmd: %d %d %d\n", state->fe_id, addr, addr+len, len); */ | ||
395 | /* b[0] = 0 << 7; */ | ||
396 | b[1] = 1; | ||
397 | |||
398 | /* b[2] = 0; */ | ||
399 | /* b[3] = 0; */ | ||
400 | b[4] = (u8) (addr >> 8); | ||
401 | b[5] = (u8) (addr & 0xff); | ||
402 | |||
403 | /* b[10] = 0; */ | ||
404 | /* b[11] = 0; */ | ||
405 | b[12] = (u8) (addr >> 8); | ||
406 | b[13] = (u8) (addr & 0xff); | ||
407 | |||
408 | addr += len; | ||
409 | /* b[6] = 0; */ | ||
410 | /* b[7] = 0; */ | ||
411 | b[8] = (u8) (addr >> 8); | ||
412 | b[9] = (u8) (addr & 0xff); | ||
413 | |||
414 | dib9000_write(state, 1056, b, 14); | ||
415 | if (reading) | ||
416 | dib9000_write_word(state, 1056, (1 << 15) | 1); | ||
417 | state->platform.risc.memcmd = -1; /* if it was called directly reset it - to force a future setup-call to set it */ | ||
418 | } | ||
419 | |||
420 | static void dib9000_risc_mem_setup(struct dib9000_state *state, u8 cmd) | ||
421 | { | ||
422 | struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd & 0x7f]; | ||
423 | /* decide whether we need to "refresh" the memory controller */ | ||
424 | if (state->platform.risc.memcmd == cmd && /* same command */ | ||
425 | !(cmd & 0x80 && m->size < 67)) /* and we do not want to read something with less than 67 bytes looping - working around a bug in the memory controller */ | ||
426 | return; | ||
427 | dib9000_risc_mem_setup_cmd(state, m->addr, m->size, cmd & 0x80); | ||
428 | state->platform.risc.memcmd = cmd; | ||
429 | } | ||
430 | |||
431 | static int dib9000_risc_mem_read(struct dib9000_state *state, u8 cmd, u8 * b, u16 len) | ||
432 | { | ||
433 | if (!state->platform.risc.fw_is_running) | ||
434 | return -EIO; | ||
435 | |||
436 | DibAcquireLock(&state->platform.risc.mem_lock); | ||
437 | dib9000_risc_mem_setup(state, cmd | 0x80); | ||
438 | dib9000_risc_mem_read_chunks(state, b, len); | ||
439 | DibReleaseLock(&state->platform.risc.mem_lock); | ||
440 | return 0; | ||
441 | } | ||
442 | |||
443 | static int dib9000_risc_mem_write(struct dib9000_state *state, u8 cmd, const u8 * b) | ||
444 | { | ||
445 | struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd]; | ||
446 | if (!state->platform.risc.fw_is_running) | ||
447 | return -EIO; | ||
448 | |||
449 | DibAcquireLock(&state->platform.risc.mem_lock); | ||
450 | dib9000_risc_mem_setup(state, cmd); | ||
451 | dib9000_risc_mem_write_chunks(state, b, m->size); | ||
452 | DibReleaseLock(&state->platform.risc.mem_lock); | ||
453 | return 0; | ||
454 | } | ||
455 | |||
456 | static int dib9000_firmware_download(struct dib9000_state *state, u8 risc_id, u16 key, const u8 * code, u32 len) | ||
457 | { | ||
458 | u16 offs; | ||
459 | |||
460 | if (risc_id == 1) | ||
461 | offs = 16; | ||
462 | else | ||
463 | offs = 0; | ||
464 | |||
465 | /* config crtl reg */ | ||
466 | dib9000_write_word(state, 1024 + offs, 0x000f); | ||
467 | dib9000_write_word(state, 1025 + offs, 0); | ||
468 | dib9000_write_word(state, 1031 + offs, key); | ||
469 | |||
470 | dprintk("going to download %dB of microcode", len); | ||
471 | if (dib9000_write16_noinc(state, 1026 + offs, (u8 *) code, (u16) len) != 0) { | ||
472 | dprintk("error while downloading microcode for RISC %c", 'A' + risc_id); | ||
473 | return -EIO; | ||
474 | } | ||
475 | |||
476 | dprintk("Microcode for RISC %c loaded", 'A' + risc_id); | ||
477 | |||
478 | return 0; | ||
479 | } | ||
480 | |||
481 | static int dib9000_mbx_host_init(struct dib9000_state *state, u8 risc_id) | ||
482 | { | ||
483 | u16 mbox_offs; | ||
484 | u16 reset_reg; | ||
485 | u16 tries = 1000; | ||
486 | |||
487 | if (risc_id == 1) | ||
488 | mbox_offs = 16; | ||
489 | else | ||
490 | mbox_offs = 0; | ||
491 | |||
492 | /* Reset mailbox */ | ||
493 | dib9000_write_word(state, 1027 + mbox_offs, 0x8000); | ||
494 | |||
495 | /* Read reset status */ | ||
496 | do { | ||
497 | reset_reg = dib9000_read_word(state, 1027 + mbox_offs); | ||
498 | msleep(100); | ||
499 | } while ((reset_reg & 0x8000) && --tries); | ||
500 | |||
501 | if (reset_reg & 0x8000) { | ||
502 | dprintk("MBX: init ERROR, no response from RISC %c", 'A' + risc_id); | ||
503 | return -EIO; | ||
504 | } | ||
505 | dprintk("MBX: initialized"); | ||
506 | return 0; | ||
507 | } | ||
508 | |||
509 | #define MAX_MAILBOX_TRY 100 | ||
510 | static int dib9000_mbx_send_attr(struct dib9000_state *state, u8 id, u16 * data, u8 len, u16 attr) | ||
511 | { | ||
512 | u8 *d, b[2]; | ||
513 | u16 tmp; | ||
514 | u16 size; | ||
515 | u32 i; | ||
516 | int ret = 0; | ||
517 | |||
518 | if (!state->platform.risc.fw_is_running) | ||
519 | return -EINVAL; | ||
520 | |||
521 | DibAcquireLock(&state->platform.risc.mbx_if_lock); | ||
522 | tmp = MAX_MAILBOX_TRY; | ||
523 | do { | ||
524 | size = dib9000_read_word_attr(state, 1043, attr) & 0xff; | ||
525 | if ((size + len + 1) > MBX_MAX_WORDS && --tmp) { | ||
526 | dprintk("MBX: RISC mbx full, retrying"); | ||
527 | msleep(100); | ||
528 | } else | ||
529 | break; | ||
530 | } while (1); | ||
531 | |||
532 | /*dprintk( "MBX: size: %d", size); */ | ||
533 | |||
534 | if (tmp == 0) { | ||
535 | ret = -EINVAL; | ||
536 | goto out; | ||
537 | } | ||
538 | #ifdef DUMP_MSG | ||
539 | dprintk("--> %02x %d ", id, len + 1); | ||
540 | for (i = 0; i < len; i++) | ||
541 | dprintk("%04x ", data[i]); | ||
542 | dprintk("\n"); | ||
543 | #endif | ||
544 | |||
545 | /* byte-order conversion - works on big (where it is not necessary) or little endian */ | ||
546 | d = (u8 *) data; | ||
547 | for (i = 0; i < len; i++) { | ||
548 | tmp = data[i]; | ||
549 | *d++ = tmp >> 8; | ||
550 | *d++ = tmp & 0xff; | ||
551 | } | ||
552 | |||
553 | /* write msg */ | ||
554 | b[0] = id; | ||
555 | b[1] = len + 1; | ||
556 | if (dib9000_write16_noinc_attr(state, 1045, b, 2, attr) != 0 || dib9000_write16_noinc_attr(state, 1045, (u8 *) data, len * 2, attr) != 0) { | ||
557 | ret = -EIO; | ||
558 | goto out; | ||
559 | } | ||
560 | |||
561 | /* update register nb_mes_in_RX */ | ||
562 | ret = (u8) dib9000_write_word_attr(state, 1043, 1 << 14, attr); | ||
563 | |||
564 | out: | ||
565 | DibReleaseLock(&state->platform.risc.mbx_if_lock); | ||
566 | |||
567 | return ret; | ||
568 | } | ||
569 | |||
570 | static u8 dib9000_mbx_read(struct dib9000_state *state, u16 * data, u8 risc_id, u16 attr) | ||
571 | { | ||
572 | #ifdef DUMP_MSG | ||
573 | u16 *d = data; | ||
574 | #endif | ||
575 | |||
576 | u16 tmp, i; | ||
577 | u8 size; | ||
578 | u8 mc_base; | ||
579 | |||
580 | if (!state->platform.risc.fw_is_running) | ||
581 | return 0; | ||
582 | |||
583 | DibAcquireLock(&state->platform.risc.mbx_if_lock); | ||
584 | if (risc_id == 1) | ||
585 | mc_base = 16; | ||
586 | else | ||
587 | mc_base = 0; | ||
588 | |||
589 | /* Length and type in the first word */ | ||
590 | *data = dib9000_read_word_attr(state, 1029 + mc_base, attr); | ||
591 | |||
592 | size = *data & 0xff; | ||
593 | if (size <= MBX_MAX_WORDS) { | ||
594 | data++; | ||
595 | size--; /* Initial word already read */ | ||
596 | |||
597 | dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, size * 2, attr); | ||
598 | |||
599 | /* to word conversion */ | ||
600 | for (i = 0; i < size; i++) { | ||
601 | tmp = *data; | ||
602 | *data = (tmp >> 8) | (tmp << 8); | ||
603 | data++; | ||
604 | } | ||
605 | |||
606 | #ifdef DUMP_MSG | ||
607 | dprintk("<-- "); | ||
608 | for (i = 0; i < size + 1; i++) | ||
609 | dprintk("%04x ", d[i]); | ||
610 | dprintk("\n"); | ||
611 | #endif | ||
612 | } else { | ||
613 | dprintk("MBX: message is too big for message cache (%d), flushing message", size); | ||
614 | size--; /* Initial word already read */ | ||
615 | while (size--) | ||
616 | dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, 2, attr); | ||
617 | } | ||
618 | /* Update register nb_mes_in_TX */ | ||
619 | dib9000_write_word_attr(state, 1028 + mc_base, 1 << 14, attr); | ||
620 | |||
621 | DibReleaseLock(&state->platform.risc.mbx_if_lock); | ||
622 | |||
623 | return size + 1; | ||
624 | } | ||
625 | |||
626 | static int dib9000_risc_debug_buf(struct dib9000_state *state, u16 * data, u8 size) | ||
627 | { | ||
628 | u32 ts = data[1] << 16 | data[0]; | ||
629 | char *b = (char *)&data[2]; | ||
630 | |||
631 | b[2 * (size - 2) - 1] = '\0'; /* Bullet proof the buffer */ | ||
632 | if (*b == '~') { | ||
633 | b++; | ||
634 | dprintk(b); | ||
635 | } else | ||
636 | dprintk("RISC%d: %d.%04d %s", state->fe_id, ts / 10000, ts % 10000, *b ? b : "<emtpy>"); | ||
637 | return 1; | ||
638 | } | ||
639 | |||
640 | static int dib9000_mbx_fetch_to_cache(struct dib9000_state *state, u16 attr) | ||
641 | { | ||
642 | int i; | ||
643 | u8 size; | ||
644 | u16 *block; | ||
645 | /* find a free slot */ | ||
646 | for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) { | ||
647 | block = state->platform.risc.message_cache[i]; | ||
648 | if (*block == 0) { | ||
649 | size = dib9000_mbx_read(state, block, 1, attr); | ||
650 | |||
651 | /* dprintk( "MBX: fetched %04x message to cache", *block); */ | ||
652 | |||
653 | switch (*block >> 8) { | ||
654 | case IN_MSG_DEBUG_BUF: | ||
655 | dib9000_risc_debug_buf(state, block + 1, size); /* debug-messages are going to be printed right away */ | ||
656 | *block = 0; /* free the block */ | ||
657 | break; | ||
658 | #if 0 | ||
659 | case IN_MSG_DATA: /* FE-TRACE */ | ||
660 | dib9000_risc_data_process(state, block + 1, size); | ||
661 | *block = 0; | ||
662 | break; | ||
663 | #endif | ||
664 | default: | ||
665 | break; | ||
666 | } | ||
667 | |||
668 | return 1; | ||
669 | } | ||
670 | } | ||
671 | dprintk("MBX: no free cache-slot found for new message..."); | ||
672 | return -1; | ||
673 | } | ||
674 | |||
675 | static u8 dib9000_mbx_count(struct dib9000_state *state, u8 risc_id, u16 attr) | ||
676 | { | ||
677 | if (risc_id == 0) | ||
678 | return (u8) (dib9000_read_word_attr(state, 1028, attr) >> 10) & 0x1f; /* 5 bit field */ | ||
679 | else | ||
680 | return (u8) (dib9000_read_word_attr(state, 1044, attr) >> 8) & 0x7f; /* 7 bit field */ | ||
681 | } | ||
682 | |||
683 | static int dib9000_mbx_process(struct dib9000_state *state, u16 attr) | ||
684 | { | ||
685 | int ret = 0; | ||
686 | u16 tmp; | ||
687 | |||
688 | if (!state->platform.risc.fw_is_running) | ||
689 | return -1; | ||
690 | |||
691 | DibAcquireLock(&state->platform.risc.mbx_lock); | ||
692 | |||
693 | if (dib9000_mbx_count(state, 1, attr)) /* 1=RiscB */ | ||
694 | ret = dib9000_mbx_fetch_to_cache(state, attr); | ||
695 | |||
696 | tmp = dib9000_read_word_attr(state, 1229, attr); /* Clear the IRQ */ | ||
697 | /* if (tmp) */ | ||
698 | /* dprintk( "cleared IRQ: %x", tmp); */ | ||
699 | DibReleaseLock(&state->platform.risc.mbx_lock); | ||
700 | |||
701 | return ret; | ||
702 | } | ||
703 | |||
704 | static int dib9000_mbx_get_message_attr(struct dib9000_state *state, u16 id, u16 * msg, u8 * size, u16 attr) | ||
705 | { | ||
706 | u8 i; | ||
707 | u16 *block; | ||
708 | u16 timeout = 30; | ||
709 | |||
710 | *msg = 0; | ||
711 | do { | ||
712 | /* dib9000_mbx_get_from_cache(); */ | ||
713 | for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) { | ||
714 | block = state->platform.risc.message_cache[i]; | ||
715 | if ((*block >> 8) == id) { | ||
716 | *size = (*block & 0xff) - 1; | ||
717 | memcpy(msg, block + 1, (*size) * 2); | ||
718 | *block = 0; /* free the block */ | ||
719 | i = 0; /* signal that we found a message */ | ||
720 | break; | ||
721 | } | ||
722 | } | ||
723 | |||
724 | if (i == 0) | ||
725 | break; | ||
726 | |||
727 | if (dib9000_mbx_process(state, attr) == -1) /* try to fetch one message - if any */ | ||
728 | return -1; | ||
729 | |||
730 | } while (--timeout); | ||
731 | |||
732 | if (timeout == 0) { | ||
733 | dprintk("waiting for message %d timed out", id); | ||
734 | return -1; | ||
735 | } | ||
736 | |||
737 | return i == 0; | ||
738 | } | ||
739 | |||
740 | static int dib9000_risc_check_version(struct dib9000_state *state) | ||
741 | { | ||
742 | u8 r[4]; | ||
743 | u8 size; | ||
744 | u16 fw_version = 0; | ||
745 | |||
746 | if (dib9000_mbx_send(state, OUT_MSG_REQ_VERSION, &fw_version, 1) != 0) | ||
747 | return -EIO; | ||
748 | |||
749 | if (dib9000_mbx_get_message(state, IN_MSG_VERSION, (u16 *) r, &size) < 0) | ||
750 | return -EIO; | ||
751 | |||
752 | fw_version = (r[0] << 8) | r[1]; | ||
753 | dprintk("RISC: ver: %d.%02d (IC: %d)", fw_version >> 10, fw_version & 0x3ff, (r[2] << 8) | r[3]); | ||
754 | |||
755 | if ((fw_version >> 10) != 7) | ||
756 | return -EINVAL; | ||
757 | |||
758 | switch (fw_version & 0x3ff) { | ||
759 | case 11: | ||
760 | case 12: | ||
761 | case 14: | ||
762 | case 15: | ||
763 | case 16: | ||
764 | case 17: | ||
765 | break; | ||
766 | default: | ||
767 | dprintk("RISC: invalid firmware version"); | ||
768 | return -EINVAL; | ||
769 | } | ||
770 | |||
771 | dprintk("RISC: valid firmware version"); | ||
772 | return 0; | ||
773 | } | ||
774 | |||
775 | static int dib9000_fw_boot(struct dib9000_state *state, const u8 * codeA, u32 lenA, const u8 * codeB, u32 lenB) | ||
776 | { | ||
777 | /* Reconfig pool mac ram */ | ||
778 | dib9000_write_word(state, 1225, 0x02); /* A: 8k C, 4 k D - B: 32k C 6 k D - IRAM 96k */ | ||
779 | dib9000_write_word(state, 1226, 0x05); | ||
780 | |||
781 | /* Toggles IP crypto to Host APB interface. */ | ||
782 | dib9000_write_word(state, 1542, 1); | ||
783 | |||
784 | /* Set jump and no jump in the dma box */ | ||
785 | dib9000_write_word(state, 1074, 0); | ||
786 | dib9000_write_word(state, 1075, 0); | ||
787 | |||
788 | /* Set MAC as APB Master. */ | ||
789 | dib9000_write_word(state, 1237, 0); | ||
790 | |||
791 | /* Reset the RISCs */ | ||
792 | if (codeA != NULL) | ||
793 | dib9000_write_word(state, 1024, 2); | ||
794 | else | ||
795 | dib9000_write_word(state, 1024, 15); | ||
796 | if (codeB != NULL) | ||
797 | dib9000_write_word(state, 1040, 2); | ||
798 | |||
799 | if (codeA != NULL) | ||
800 | dib9000_firmware_download(state, 0, 0x1234, codeA, lenA); | ||
801 | if (codeB != NULL) | ||
802 | dib9000_firmware_download(state, 1, 0x1234, codeB, lenB); | ||
803 | |||
804 | /* Run the RISCs */ | ||
805 | if (codeA != NULL) | ||
806 | dib9000_write_word(state, 1024, 0); | ||
807 | if (codeB != NULL) | ||
808 | dib9000_write_word(state, 1040, 0); | ||
809 | |||
810 | if (codeA != NULL) | ||
811 | if (dib9000_mbx_host_init(state, 0) != 0) | ||
812 | return -EIO; | ||
813 | if (codeB != NULL) | ||
814 | if (dib9000_mbx_host_init(state, 1) != 0) | ||
815 | return -EIO; | ||
816 | |||
817 | msleep(100); | ||
818 | state->platform.risc.fw_is_running = 1; | ||
819 | |||
820 | if (dib9000_risc_check_version(state) != 0) | ||
821 | return -EINVAL; | ||
822 | |||
823 | state->platform.risc.memcmd = 0xff; | ||
824 | return 0; | ||
825 | } | ||
826 | |||
827 | static u16 dib9000_identify(struct i2c_device *client) | ||
828 | { | ||
829 | u16 value; | ||
830 | |||
831 | value = dib9000_i2c_read16(client, 896); | ||
832 | if (value != 0x01b3) { | ||
833 | dprintk("wrong Vendor ID (0x%x)", value); | ||
834 | return 0; | ||
835 | } | ||
836 | |||
837 | value = dib9000_i2c_read16(client, 897); | ||
838 | if (value != 0x4000 && value != 0x4001 && value != 0x4002 && value != 0x4003 && value != 0x4004 && value != 0x4005) { | ||
839 | dprintk("wrong Device ID (0x%x)", value); | ||
840 | return 0; | ||
841 | } | ||
842 | |||
843 | /* protect this driver to be used with 7000PC */ | ||
844 | if (value == 0x4000 && dib9000_i2c_read16(client, 769) == 0x4000) { | ||
845 | dprintk("this driver does not work with DiB7000PC"); | ||
846 | return 0; | ||
847 | } | ||
848 | |||
849 | switch (value) { | ||
850 | case 0x4000: | ||
851 | dprintk("found DiB7000MA/PA/MB/PB"); | ||
852 | break; | ||
853 | case 0x4001: | ||
854 | dprintk("found DiB7000HC"); | ||
855 | break; | ||
856 | case 0x4002: | ||
857 | dprintk("found DiB7000MC"); | ||
858 | break; | ||
859 | case 0x4003: | ||
860 | dprintk("found DiB9000A"); | ||
861 | break; | ||
862 | case 0x4004: | ||
863 | dprintk("found DiB9000H"); | ||
864 | break; | ||
865 | case 0x4005: | ||
866 | dprintk("found DiB9000M"); | ||
867 | break; | ||
868 | } | ||
869 | |||
870 | return value; | ||
871 | } | ||
872 | |||
873 | static void dib9000_set_power_mode(struct dib9000_state *state, enum dib9000_power_mode mode) | ||
874 | { | ||
875 | /* by default everything is going to be powered off */ | ||
876 | u16 reg_903 = 0x3fff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906; | ||
877 | u8 offset; | ||
878 | |||
879 | if (state->revision == 0x4003 || state->revision == 0x4004 || state->revision == 0x4005) | ||
880 | offset = 1; | ||
881 | else | ||
882 | offset = 0; | ||
883 | |||
884 | reg_906 = dib9000_read_word(state, 906 + offset) | 0x3; /* keep settings for RISC */ | ||
885 | |||
886 | /* now, depending on the requested mode, we power on */ | ||
887 | switch (mode) { | ||
888 | /* power up everything in the demod */ | ||
889 | case DIB9000_POWER_ALL: | ||
890 | reg_903 = 0x0000; | ||
891 | reg_904 = 0x0000; | ||
892 | reg_905 = 0x0000; | ||
893 | reg_906 = 0x0000; | ||
894 | break; | ||
895 | |||
896 | /* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */ | ||
897 | case DIB9000_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */ | ||
898 | reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2)); | ||
899 | break; | ||
900 | |||
901 | case DIB9000_POWER_INTERF_ANALOG_AGC: | ||
902 | reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10)); | ||
903 | reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2)); | ||
904 | reg_906 &= ~((1 << 0)); | ||
905 | break; | ||
906 | |||
907 | case DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD: | ||
908 | reg_903 = 0x0000; | ||
909 | reg_904 = 0x801f; | ||
910 | reg_905 = 0x0000; | ||
911 | reg_906 &= ~((1 << 0)); | ||
912 | break; | ||
913 | |||
914 | case DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD: | ||
915 | reg_903 = 0x0000; | ||
916 | reg_904 = 0x8000; | ||
917 | reg_905 = 0x010b; | ||
918 | reg_906 &= ~((1 << 0)); | ||
919 | break; | ||
920 | default: | ||
921 | case DIB9000_POWER_NO: | ||
922 | break; | ||
923 | } | ||
924 | |||
925 | /* always power down unused parts */ | ||
926 | if (!state->platform.host.mobile_mode) | ||
927 | reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1); | ||
928 | |||
929 | /* P_sdio_select_clk = 0 on MC and after */ | ||
930 | if (state->revision != 0x4000) | ||
931 | reg_906 <<= 1; | ||
932 | |||
933 | dib9000_write_word(state, 903 + offset, reg_903); | ||
934 | dib9000_write_word(state, 904 + offset, reg_904); | ||
935 | dib9000_write_word(state, 905 + offset, reg_905); | ||
936 | dib9000_write_word(state, 906 + offset, reg_906); | ||
937 | } | ||
938 | |||
939 | static int dib9000_fw_reset(struct dvb_frontend *fe) | ||
940 | { | ||
941 | struct dib9000_state *state = fe->demodulator_priv; | ||
942 | |||
943 | dib9000_write_word(state, 1817, 0x0003); | ||
944 | |||
945 | dib9000_write_word(state, 1227, 1); | ||
946 | dib9000_write_word(state, 1227, 0); | ||
947 | |||
948 | switch ((state->revision = dib9000_identify(&state->i2c))) { | ||
949 | case 0x4003: | ||
950 | case 0x4004: | ||
951 | case 0x4005: | ||
952 | state->reg_offs = 1; | ||
953 | break; | ||
954 | default: | ||
955 | return -EINVAL; | ||
956 | } | ||
957 | |||
958 | /* reset the i2c-master to use the host interface */ | ||
959 | dibx000_reset_i2c_master(&state->i2c_master); | ||
960 | |||
961 | dib9000_set_power_mode(state, DIB9000_POWER_ALL); | ||
962 | |||
963 | /* unforce divstr regardless whether i2c enumeration was done or not */ | ||
964 | dib9000_write_word(state, 1794, dib9000_read_word(state, 1794) & ~(1 << 1)); | ||
965 | dib9000_write_word(state, 1796, 0); | ||
966 | dib9000_write_word(state, 1805, 0x805); | ||
967 | |||
968 | /* restart all parts */ | ||
969 | dib9000_write_word(state, 898, 0xffff); | ||
970 | dib9000_write_word(state, 899, 0xffff); | ||
971 | dib9000_write_word(state, 900, 0x0001); | ||
972 | dib9000_write_word(state, 901, 0xff19); | ||
973 | dib9000_write_word(state, 902, 0x003c); | ||
974 | |||
975 | dib9000_write_word(state, 898, 0); | ||
976 | dib9000_write_word(state, 899, 0); | ||
977 | dib9000_write_word(state, 900, 0); | ||
978 | dib9000_write_word(state, 901, 0); | ||
979 | dib9000_write_word(state, 902, 0); | ||
980 | |||
981 | dib9000_write_word(state, 911, state->chip.d9.cfg.if_drives); | ||
982 | |||
983 | dib9000_set_power_mode(state, DIB9000_POWER_INTERFACE_ONLY); | ||
984 | |||
985 | return 0; | ||
986 | } | ||
987 | |||
988 | static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len) | ||
989 | { | ||
990 | u16 mb[10]; | ||
991 | u8 i, s; | ||
992 | |||
993 | if (address >= 1024 || !state->platform.risc.fw_is_running) | ||
994 | return -EINVAL; | ||
995 | |||
996 | /* dprintk( "APB access thru rd fw %d %x", address, attribute); */ | ||
997 | |||
998 | mb[0] = (u16) address; | ||
999 | mb[1] = len / 2; | ||
1000 | dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_R, mb, 2, attribute); | ||
1001 | switch (dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute)) { | ||
1002 | case 1: | ||
1003 | s--; | ||
1004 | for (i = 0; i < s; i++) { | ||
1005 | b[i * 2] = (mb[i + 1] >> 8) & 0xff; | ||
1006 | b[i * 2 + 1] = (mb[i + 1]) & 0xff; | ||
1007 | } | ||
1008 | return 0; | ||
1009 | default: | ||
1010 | return -EIO; | ||
1011 | } | ||
1012 | return -EIO; | ||
1013 | } | ||
1014 | |||
1015 | static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len) | ||
1016 | { | ||
1017 | u16 mb[10]; | ||
1018 | u8 s, i; | ||
1019 | |||
1020 | if (address >= 1024 || !state->platform.risc.fw_is_running) | ||
1021 | return -EINVAL; | ||
1022 | |||
1023 | /* dprintk( "APB access thru wr fw %d %x", address, attribute); */ | ||
1024 | |||
1025 | mb[0] = (unsigned short)address; | ||
1026 | for (i = 0; i < len && i < 20; i += 2) | ||
1027 | mb[1 + (i / 2)] = (b[i] << 8 | b[i + 1]); | ||
1028 | |||
1029 | dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_W, mb, 1 + len / 2, attribute); | ||
1030 | return dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute) == 1 ? 0 : -EINVAL; | ||
1031 | } | ||
1032 | |||
1033 | static int dib9000_fw_memmbx_sync(struct dib9000_state *state, u8 i) | ||
1034 | { | ||
1035 | u8 index_loop = 10; | ||
1036 | |||
1037 | if (!state->platform.risc.fw_is_running) | ||
1038 | return 0; | ||
1039 | dib9000_risc_mem_write(state, FE_MM_RW_SYNC, &i); | ||
1040 | do { | ||
1041 | dib9000_risc_mem_read(state, FE_MM_RW_SYNC, state->i2c_read_buffer, 1); | ||
1042 | } while (state->i2c_read_buffer[0] && index_loop--); | ||
1043 | |||
1044 | if (index_loop > 0) | ||
1045 | return 0; | ||
1046 | return -EIO; | ||
1047 | } | ||
1048 | |||
1049 | static int dib9000_fw_init(struct dib9000_state *state) | ||
1050 | { | ||
1051 | struct dibGPIOFunction *f; | ||
1052 | u16 b[40] = { 0 }; | ||
1053 | u8 i; | ||
1054 | u8 size; | ||
1055 | |||
1056 | if (dib9000_fw_boot(state, NULL, 0, state->chip.d9.cfg.microcode_B_fe_buffer, state->chip.d9.cfg.microcode_B_fe_size) != 0) | ||
1057 | return -EIO; | ||
1058 | |||
1059 | /* initialize the firmware */ | ||
1060 | for (i = 0; i < ARRAY_SIZE(state->chip.d9.cfg.gpio_function); i++) { | ||
1061 | f = &state->chip.d9.cfg.gpio_function[i]; | ||
1062 | if (f->mask) { | ||
1063 | switch (f->function) { | ||
1064 | case BOARD_GPIO_FUNCTION_COMPONENT_ON: | ||
1065 | b[0] = (u16) f->mask; | ||
1066 | b[1] = (u16) f->direction; | ||
1067 | b[2] = (u16) f->value; | ||
1068 | break; | ||
1069 | case BOARD_GPIO_FUNCTION_COMPONENT_OFF: | ||
1070 | b[3] = (u16) f->mask; | ||
1071 | b[4] = (u16) f->direction; | ||
1072 | b[5] = (u16) f->value; | ||
1073 | break; | ||
1074 | } | ||
1075 | } | ||
1076 | } | ||
1077 | if (dib9000_mbx_send(state, OUT_MSG_CONF_GPIO, b, 15) != 0) | ||
1078 | return -EIO; | ||
1079 | |||
1080 | /* subband */ | ||
1081 | b[0] = state->chip.d9.cfg.subband.size; /* type == 0 -> GPIO - PWM not yet supported */ | ||
1082 | for (i = 0; i < state->chip.d9.cfg.subband.size; i++) { | ||
1083 | b[1 + i * 4] = state->chip.d9.cfg.subband.subband[i].f_mhz; | ||
1084 | b[2 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.mask; | ||
1085 | b[3 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.direction; | ||
1086 | b[4 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.value; | ||
1087 | } | ||
1088 | b[1 + i * 4] = 0; /* fe_id */ | ||
1089 | if (dib9000_mbx_send(state, OUT_MSG_SUBBAND_SEL, b, 2 + 4 * i) != 0) | ||
1090 | return -EIO; | ||
1091 | |||
1092 | /* 0 - id, 1 - no_of_frontends */ | ||
1093 | b[0] = (0 << 8) | 1; | ||
1094 | /* 0 = i2c-address demod, 0 = tuner */ | ||
1095 | b[1] = (0 << 8) | (0); | ||
1096 | b[2] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000) >> 16) & 0xffff); | ||
1097 | b[3] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000)) & 0xffff); | ||
1098 | b[4] = (u16) ((state->chip.d9.cfg.vcxo_timer >> 16) & 0xffff); | ||
1099 | b[5] = (u16) ((state->chip.d9.cfg.vcxo_timer) & 0xffff); | ||
1100 | b[6] = (u16) ((state->chip.d9.cfg.timing_frequency >> 16) & 0xffff); | ||
1101 | b[7] = (u16) ((state->chip.d9.cfg.timing_frequency) & 0xffff); | ||
1102 | b[29] = state->chip.d9.cfg.if_drives; | ||
1103 | if (dib9000_mbx_send(state, OUT_MSG_INIT_DEMOD, b, ARRAY_SIZE(b)) != 0) | ||
1104 | return -EIO; | ||
1105 | |||
1106 | if (dib9000_mbx_send(state, OUT_MSG_FE_FW_DL, NULL, 0) != 0) | ||
1107 | return -EIO; | ||
1108 | |||
1109 | if (dib9000_mbx_get_message(state, IN_MSG_FE_FW_DL_DONE, b, &size) < 0) | ||
1110 | return -EIO; | ||
1111 | |||
1112 | if (size > ARRAY_SIZE(b)) { | ||
1113 | dprintk("error : firmware returned %dbytes needed but the used buffer has only %dbytes\n Firmware init ABORTED", size, | ||
1114 | (int)ARRAY_SIZE(b)); | ||
1115 | return -EINVAL; | ||
1116 | } | ||
1117 | |||
1118 | for (i = 0; i < size; i += 2) { | ||
1119 | state->platform.risc.fe_mm[i / 2].addr = b[i + 0]; | ||
1120 | state->platform.risc.fe_mm[i / 2].size = b[i + 1]; | ||
1121 | } | ||
1122 | |||
1123 | return 0; | ||
1124 | } | ||
1125 | |||
1126 | static void dib9000_fw_set_channel_head(struct dib9000_state *state, struct dvb_frontend_parameters *ch) | ||
1127 | { | ||
1128 | u8 b[9]; | ||
1129 | u32 freq = state->fe[0]->dtv_property_cache.frequency / 1000; | ||
1130 | if (state->fe_id % 2) | ||
1131 | freq += 101; | ||
1132 | |||
1133 | b[0] = (u8) ((freq >> 0) & 0xff); | ||
1134 | b[1] = (u8) ((freq >> 8) & 0xff); | ||
1135 | b[2] = (u8) ((freq >> 16) & 0xff); | ||
1136 | b[3] = (u8) ((freq >> 24) & 0xff); | ||
1137 | b[4] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 0) & 0xff); | ||
1138 | b[5] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 8) & 0xff); | ||
1139 | b[6] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 16) & 0xff); | ||
1140 | b[7] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 24) & 0xff); | ||
1141 | b[8] = 0x80; /* do not wait for CELL ID when doing autosearch */ | ||
1142 | if (state->fe[0]->dtv_property_cache.delivery_system == SYS_DVBT) | ||
1143 | b[8] |= 1; | ||
1144 | dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_HEAD, b); | ||
1145 | } | ||
1146 | |||
1147 | static int dib9000_fw_get_channel(struct dvb_frontend *fe, struct dvb_frontend_parameters *channel) | ||
1148 | { | ||
1149 | struct dib9000_state *state = fe->demodulator_priv; | ||
1150 | struct dibDVBTChannel { | ||
1151 | s8 spectrum_inversion; | ||
1152 | |||
1153 | s8 nfft; | ||
1154 | s8 guard; | ||
1155 | s8 constellation; | ||
1156 | |||
1157 | s8 hrch; | ||
1158 | s8 alpha; | ||
1159 | s8 code_rate_hp; | ||
1160 | s8 code_rate_lp; | ||
1161 | s8 select_hp; | ||
1162 | |||
1163 | s8 intlv_native; | ||
1164 | }; | ||
1165 | struct dibDVBTChannel *ch; | ||
1166 | int ret = 0; | ||
1167 | |||
1168 | DibAcquireLock(&state->platform.risc.mem_mbx_lock); | ||
1169 | if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { | ||
1170 | goto error; | ||
1171 | ret = -EIO; | ||
1172 | } | ||
1173 | |||
1174 | dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_UNION, | ||
1175 | state->i2c_read_buffer, sizeof(struct dibDVBTChannel)); | ||
1176 | ch = (struct dibDVBTChannel *)state->i2c_read_buffer; | ||
1177 | |||
1178 | |||
1179 | switch (ch->spectrum_inversion & 0x7) { | ||
1180 | case 1: | ||
1181 | state->fe[0]->dtv_property_cache.inversion = INVERSION_ON; | ||
1182 | break; | ||
1183 | case 0: | ||
1184 | state->fe[0]->dtv_property_cache.inversion = INVERSION_OFF; | ||
1185 | break; | ||
1186 | default: | ||
1187 | case -1: | ||
1188 | state->fe[0]->dtv_property_cache.inversion = INVERSION_AUTO; | ||
1189 | break; | ||
1190 | } | ||
1191 | switch (ch->nfft) { | ||
1192 | case 0: | ||
1193 | state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K; | ||
1194 | break; | ||
1195 | case 2: | ||
1196 | state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_4K; | ||
1197 | break; | ||
1198 | case 1: | ||
1199 | state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K; | ||
1200 | break; | ||
1201 | default: | ||
1202 | case -1: | ||
1203 | state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_AUTO; | ||
1204 | break; | ||
1205 | } | ||
1206 | switch (ch->guard) { | ||
1207 | case 0: | ||
1208 | state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32; | ||
1209 | break; | ||
1210 | case 1: | ||
1211 | state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16; | ||
1212 | break; | ||
1213 | case 2: | ||
1214 | state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8; | ||
1215 | break; | ||
1216 | case 3: | ||
1217 | state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4; | ||
1218 | break; | ||
1219 | default: | ||
1220 | case -1: | ||
1221 | state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_AUTO; | ||
1222 | break; | ||
1223 | } | ||
1224 | switch (ch->constellation) { | ||
1225 | case 2: | ||
1226 | state->fe[0]->dtv_property_cache.modulation = QAM_64; | ||
1227 | break; | ||
1228 | case 1: | ||
1229 | state->fe[0]->dtv_property_cache.modulation = QAM_16; | ||
1230 | break; | ||
1231 | case 0: | ||
1232 | state->fe[0]->dtv_property_cache.modulation = QPSK; | ||
1233 | break; | ||
1234 | default: | ||
1235 | case -1: | ||
1236 | state->fe[0]->dtv_property_cache.modulation = QAM_AUTO; | ||
1237 | break; | ||
1238 | } | ||
1239 | switch (ch->hrch) { | ||
1240 | case 0: | ||
1241 | state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_NONE; | ||
1242 | break; | ||
1243 | case 1: | ||
1244 | state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_1; | ||
1245 | break; | ||
1246 | default: | ||
1247 | case -1: | ||
1248 | state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_AUTO; | ||
1249 | break; | ||
1250 | } | ||
1251 | switch (ch->code_rate_hp) { | ||
1252 | case 1: | ||
1253 | state->fe[0]->dtv_property_cache.code_rate_HP = FEC_1_2; | ||
1254 | break; | ||
1255 | case 2: | ||
1256 | state->fe[0]->dtv_property_cache.code_rate_HP = FEC_2_3; | ||
1257 | break; | ||
1258 | case 3: | ||
1259 | state->fe[0]->dtv_property_cache.code_rate_HP = FEC_3_4; | ||
1260 | break; | ||
1261 | case 5: | ||
1262 | state->fe[0]->dtv_property_cache.code_rate_HP = FEC_5_6; | ||
1263 | break; | ||
1264 | case 7: | ||
1265 | state->fe[0]->dtv_property_cache.code_rate_HP = FEC_7_8; | ||
1266 | break; | ||
1267 | default: | ||
1268 | case -1: | ||
1269 | state->fe[0]->dtv_property_cache.code_rate_HP = FEC_AUTO; | ||
1270 | break; | ||
1271 | } | ||
1272 | switch (ch->code_rate_lp) { | ||
1273 | case 1: | ||
1274 | state->fe[0]->dtv_property_cache.code_rate_LP = FEC_1_2; | ||
1275 | break; | ||
1276 | case 2: | ||
1277 | state->fe[0]->dtv_property_cache.code_rate_LP = FEC_2_3; | ||
1278 | break; | ||
1279 | case 3: | ||
1280 | state->fe[0]->dtv_property_cache.code_rate_LP = FEC_3_4; | ||
1281 | break; | ||
1282 | case 5: | ||
1283 | state->fe[0]->dtv_property_cache.code_rate_LP = FEC_5_6; | ||
1284 | break; | ||
1285 | case 7: | ||
1286 | state->fe[0]->dtv_property_cache.code_rate_LP = FEC_7_8; | ||
1287 | break; | ||
1288 | default: | ||
1289 | case -1: | ||
1290 | state->fe[0]->dtv_property_cache.code_rate_LP = FEC_AUTO; | ||
1291 | break; | ||
1292 | } | ||
1293 | |||
1294 | error: | ||
1295 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
1296 | return ret; | ||
1297 | } | ||
1298 | |||
1299 | static int dib9000_fw_set_channel_union(struct dvb_frontend *fe, struct dvb_frontend_parameters *channel) | ||
1300 | { | ||
1301 | struct dib9000_state *state = fe->demodulator_priv; | ||
1302 | struct dibDVBTChannel { | ||
1303 | s8 spectrum_inversion; | ||
1304 | |||
1305 | s8 nfft; | ||
1306 | s8 guard; | ||
1307 | s8 constellation; | ||
1308 | |||
1309 | s8 hrch; | ||
1310 | s8 alpha; | ||
1311 | s8 code_rate_hp; | ||
1312 | s8 code_rate_lp; | ||
1313 | s8 select_hp; | ||
1314 | |||
1315 | s8 intlv_native; | ||
1316 | }; | ||
1317 | struct dibDVBTChannel ch; | ||
1318 | |||
1319 | switch (state->fe[0]->dtv_property_cache.inversion) { | ||
1320 | case INVERSION_ON: | ||
1321 | ch.spectrum_inversion = 1; | ||
1322 | break; | ||
1323 | case INVERSION_OFF: | ||
1324 | ch.spectrum_inversion = 0; | ||
1325 | break; | ||
1326 | default: | ||
1327 | case INVERSION_AUTO: | ||
1328 | ch.spectrum_inversion = -1; | ||
1329 | break; | ||
1330 | } | ||
1331 | switch (state->fe[0]->dtv_property_cache.transmission_mode) { | ||
1332 | case TRANSMISSION_MODE_2K: | ||
1333 | ch.nfft = 0; | ||
1334 | break; | ||
1335 | case TRANSMISSION_MODE_4K: | ||
1336 | ch.nfft = 2; | ||
1337 | break; | ||
1338 | case TRANSMISSION_MODE_8K: | ||
1339 | ch.nfft = 1; | ||
1340 | break; | ||
1341 | default: | ||
1342 | case TRANSMISSION_MODE_AUTO: | ||
1343 | ch.nfft = 1; | ||
1344 | break; | ||
1345 | } | ||
1346 | switch (state->fe[0]->dtv_property_cache.guard_interval) { | ||
1347 | case GUARD_INTERVAL_1_32: | ||
1348 | ch.guard = 0; | ||
1349 | break; | ||
1350 | case GUARD_INTERVAL_1_16: | ||
1351 | ch.guard = 1; | ||
1352 | break; | ||
1353 | case GUARD_INTERVAL_1_8: | ||
1354 | ch.guard = 2; | ||
1355 | break; | ||
1356 | case GUARD_INTERVAL_1_4: | ||
1357 | ch.guard = 3; | ||
1358 | break; | ||
1359 | default: | ||
1360 | case GUARD_INTERVAL_AUTO: | ||
1361 | ch.guard = -1; | ||
1362 | break; | ||
1363 | } | ||
1364 | switch (state->fe[0]->dtv_property_cache.modulation) { | ||
1365 | case QAM_64: | ||
1366 | ch.constellation = 2; | ||
1367 | break; | ||
1368 | case QAM_16: | ||
1369 | ch.constellation = 1; | ||
1370 | break; | ||
1371 | case QPSK: | ||
1372 | ch.constellation = 0; | ||
1373 | break; | ||
1374 | default: | ||
1375 | case QAM_AUTO: | ||
1376 | ch.constellation = -1; | ||
1377 | break; | ||
1378 | } | ||
1379 | switch (state->fe[0]->dtv_property_cache.hierarchy) { | ||
1380 | case HIERARCHY_NONE: | ||
1381 | ch.hrch = 0; | ||
1382 | break; | ||
1383 | case HIERARCHY_1: | ||
1384 | case HIERARCHY_2: | ||
1385 | case HIERARCHY_4: | ||
1386 | ch.hrch = 1; | ||
1387 | break; | ||
1388 | default: | ||
1389 | case HIERARCHY_AUTO: | ||
1390 | ch.hrch = -1; | ||
1391 | break; | ||
1392 | } | ||
1393 | ch.alpha = 1; | ||
1394 | switch (state->fe[0]->dtv_property_cache.code_rate_HP) { | ||
1395 | case FEC_1_2: | ||
1396 | ch.code_rate_hp = 1; | ||
1397 | break; | ||
1398 | case FEC_2_3: | ||
1399 | ch.code_rate_hp = 2; | ||
1400 | break; | ||
1401 | case FEC_3_4: | ||
1402 | ch.code_rate_hp = 3; | ||
1403 | break; | ||
1404 | case FEC_5_6: | ||
1405 | ch.code_rate_hp = 5; | ||
1406 | break; | ||
1407 | case FEC_7_8: | ||
1408 | ch.code_rate_hp = 7; | ||
1409 | break; | ||
1410 | default: | ||
1411 | case FEC_AUTO: | ||
1412 | ch.code_rate_hp = -1; | ||
1413 | break; | ||
1414 | } | ||
1415 | switch (state->fe[0]->dtv_property_cache.code_rate_LP) { | ||
1416 | case FEC_1_2: | ||
1417 | ch.code_rate_lp = 1; | ||
1418 | break; | ||
1419 | case FEC_2_3: | ||
1420 | ch.code_rate_lp = 2; | ||
1421 | break; | ||
1422 | case FEC_3_4: | ||
1423 | ch.code_rate_lp = 3; | ||
1424 | break; | ||
1425 | case FEC_5_6: | ||
1426 | ch.code_rate_lp = 5; | ||
1427 | break; | ||
1428 | case FEC_7_8: | ||
1429 | ch.code_rate_lp = 7; | ||
1430 | break; | ||
1431 | default: | ||
1432 | case FEC_AUTO: | ||
1433 | ch.code_rate_lp = -1; | ||
1434 | break; | ||
1435 | } | ||
1436 | ch.select_hp = 1; | ||
1437 | ch.intlv_native = 1; | ||
1438 | |||
1439 | dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_UNION, (u8 *) &ch); | ||
1440 | |||
1441 | return 0; | ||
1442 | } | ||
1443 | |||
1444 | static int dib9000_fw_tune(struct dvb_frontend *fe, struct dvb_frontend_parameters *ch) | ||
1445 | { | ||
1446 | struct dib9000_state *state = fe->demodulator_priv; | ||
1447 | int ret = 10, search = state->channel_status.status == CHANNEL_STATUS_PARAMETERS_UNKNOWN; | ||
1448 | s8 i; | ||
1449 | |||
1450 | switch (state->tune_state) { | ||
1451 | case CT_DEMOD_START: | ||
1452 | dib9000_fw_set_channel_head(state, ch); | ||
1453 | |||
1454 | /* write the channel context - a channel is initialized to 0, so it is OK */ | ||
1455 | dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_CONTEXT, (u8 *) fe_info); | ||
1456 | dib9000_risc_mem_write(state, FE_MM_W_FE_INFO, (u8 *) fe_info); | ||
1457 | |||
1458 | if (search) | ||
1459 | dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_SEARCH, NULL, 0); | ||
1460 | else { | ||
1461 | dib9000_fw_set_channel_union(fe, ch); | ||
1462 | dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_TUNE, NULL, 0); | ||
1463 | } | ||
1464 | state->tune_state = CT_DEMOD_STEP_1; | ||
1465 | break; | ||
1466 | case CT_DEMOD_STEP_1: | ||
1467 | if (search) | ||
1468 | dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_SEARCH_STATE, state->i2c_read_buffer, 1); | ||
1469 | else | ||
1470 | dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_TUNE_STATE, state->i2c_read_buffer, 1); | ||
1471 | i = (s8)state->i2c_read_buffer[0]; | ||
1472 | switch (i) { /* something happened */ | ||
1473 | case 0: | ||
1474 | break; | ||
1475 | case -2: /* tps locks are "slower" than MPEG locks -> even in autosearch data is OK here */ | ||
1476 | if (search) | ||
1477 | state->status = FE_STATUS_DEMOD_SUCCESS; | ||
1478 | else { | ||
1479 | state->tune_state = CT_DEMOD_STOP; | ||
1480 | state->status = FE_STATUS_LOCKED; | ||
1481 | } | ||
1482 | break; | ||
1483 | default: | ||
1484 | state->status = FE_STATUS_TUNE_FAILED; | ||
1485 | state->tune_state = CT_DEMOD_STOP; | ||
1486 | break; | ||
1487 | } | ||
1488 | break; | ||
1489 | default: | ||
1490 | ret = FE_CALLBACK_TIME_NEVER; | ||
1491 | break; | ||
1492 | } | ||
1493 | |||
1494 | return ret; | ||
1495 | } | ||
1496 | |||
1497 | static int dib9000_fw_set_diversity_in(struct dvb_frontend *fe, int onoff) | ||
1498 | { | ||
1499 | struct dib9000_state *state = fe->demodulator_priv; | ||
1500 | u16 mode = (u16) onoff; | ||
1501 | return dib9000_mbx_send(state, OUT_MSG_ENABLE_DIVERSITY, &mode, 1); | ||
1502 | } | ||
1503 | |||
1504 | static int dib9000_fw_set_output_mode(struct dvb_frontend *fe, int mode) | ||
1505 | { | ||
1506 | struct dib9000_state *state = fe->demodulator_priv; | ||
1507 | u16 outreg, smo_mode; | ||
1508 | |||
1509 | dprintk("setting output mode for demod %p to %d", fe, mode); | ||
1510 | |||
1511 | switch (mode) { | ||
1512 | case OUTMODE_MPEG2_PAR_GATED_CLK: | ||
1513 | outreg = (1 << 10); /* 0x0400 */ | ||
1514 | break; | ||
1515 | case OUTMODE_MPEG2_PAR_CONT_CLK: | ||
1516 | outreg = (1 << 10) | (1 << 6); /* 0x0440 */ | ||
1517 | break; | ||
1518 | case OUTMODE_MPEG2_SERIAL: | ||
1519 | outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ | ||
1520 | break; | ||
1521 | case OUTMODE_DIVERSITY: | ||
1522 | outreg = (1 << 10) | (4 << 6); /* 0x0500 */ | ||
1523 | break; | ||
1524 | case OUTMODE_MPEG2_FIFO: | ||
1525 | outreg = (1 << 10) | (5 << 6); | ||
1526 | break; | ||
1527 | case OUTMODE_HIGH_Z: | ||
1528 | outreg = 0; | ||
1529 | break; | ||
1530 | default: | ||
1531 | dprintk("Unhandled output_mode passed to be set for demod %p", &state->fe[0]); | ||
1532 | return -EINVAL; | ||
1533 | } | ||
1534 | |||
1535 | dib9000_write_word(state, 1795, outreg); | ||
1536 | |||
1537 | switch (mode) { | ||
1538 | case OUTMODE_MPEG2_PAR_GATED_CLK: | ||
1539 | case OUTMODE_MPEG2_PAR_CONT_CLK: | ||
1540 | case OUTMODE_MPEG2_SERIAL: | ||
1541 | case OUTMODE_MPEG2_FIFO: | ||
1542 | smo_mode = (dib9000_read_word(state, 295) & 0x0010) | (1 << 1); | ||
1543 | if (state->chip.d9.cfg.output_mpeg2_in_188_bytes) | ||
1544 | smo_mode |= (1 << 5); | ||
1545 | dib9000_write_word(state, 295, smo_mode); | ||
1546 | break; | ||
1547 | } | ||
1548 | |||
1549 | outreg = to_fw_output_mode(mode); | ||
1550 | return dib9000_mbx_send(state, OUT_MSG_SET_OUTPUT_MODE, &outreg, 1); | ||
1551 | } | ||
1552 | |||
1553 | static int dib9000_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) | ||
1554 | { | ||
1555 | struct dib9000_state *state = i2c_get_adapdata(i2c_adap); | ||
1556 | u16 i, len, t, index_msg; | ||
1557 | |||
1558 | for (index_msg = 0; index_msg < num; index_msg++) { | ||
1559 | if (msg[index_msg].flags & I2C_M_RD) { /* read */ | ||
1560 | len = msg[index_msg].len; | ||
1561 | if (len > 16) | ||
1562 | len = 16; | ||
1563 | |||
1564 | if (dib9000_read_word(state, 790) != 0) | ||
1565 | dprintk("TunerITF: read busy"); | ||
1566 | |||
1567 | dib9000_write_word(state, 784, (u16) (msg[index_msg].addr)); | ||
1568 | dib9000_write_word(state, 787, (len / 2) - 1); | ||
1569 | dib9000_write_word(state, 786, 1); /* start read */ | ||
1570 | |||
1571 | i = 1000; | ||
1572 | while (dib9000_read_word(state, 790) != (len / 2) && i) | ||
1573 | i--; | ||
1574 | |||
1575 | if (i == 0) | ||
1576 | dprintk("TunerITF: read failed"); | ||
1577 | |||
1578 | for (i = 0; i < len; i += 2) { | ||
1579 | t = dib9000_read_word(state, 785); | ||
1580 | msg[index_msg].buf[i] = (t >> 8) & 0xff; | ||
1581 | msg[index_msg].buf[i + 1] = (t) & 0xff; | ||
1582 | } | ||
1583 | if (dib9000_read_word(state, 790) != 0) | ||
1584 | dprintk("TunerITF: read more data than expected"); | ||
1585 | } else { | ||
1586 | i = 1000; | ||
1587 | while (dib9000_read_word(state, 789) && i) | ||
1588 | i--; | ||
1589 | if (i == 0) | ||
1590 | dprintk("TunerITF: write busy"); | ||
1591 | |||
1592 | len = msg[index_msg].len; | ||
1593 | if (len > 16) | ||
1594 | len = 16; | ||
1595 | |||
1596 | for (i = 0; i < len; i += 2) | ||
1597 | dib9000_write_word(state, 785, (msg[index_msg].buf[i] << 8) | msg[index_msg].buf[i + 1]); | ||
1598 | dib9000_write_word(state, 784, (u16) msg[index_msg].addr); | ||
1599 | dib9000_write_word(state, 787, (len / 2) - 1); | ||
1600 | dib9000_write_word(state, 786, 0); /* start write */ | ||
1601 | |||
1602 | i = 1000; | ||
1603 | while (dib9000_read_word(state, 791) > 0 && i) | ||
1604 | i--; | ||
1605 | if (i == 0) | ||
1606 | dprintk("TunerITF: write failed"); | ||
1607 | } | ||
1608 | } | ||
1609 | return num; | ||
1610 | } | ||
1611 | |||
1612 | int dib9000_fw_set_component_bus_speed(struct dvb_frontend *fe, u16 speed) | ||
1613 | { | ||
1614 | struct dib9000_state *state = fe->demodulator_priv; | ||
1615 | |||
1616 | state->component_bus_speed = speed; | ||
1617 | return 0; | ||
1618 | } | ||
1619 | EXPORT_SYMBOL(dib9000_fw_set_component_bus_speed); | ||
1620 | |||
1621 | static int dib9000_fw_component_bus_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) | ||
1622 | { | ||
1623 | struct dib9000_state *state = i2c_get_adapdata(i2c_adap); | ||
1624 | u8 type = 0; /* I2C */ | ||
1625 | u8 port = DIBX000_I2C_INTERFACE_GPIO_3_4; | ||
1626 | u16 scl = state->component_bus_speed; /* SCL frequency */ | ||
1627 | struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[FE_MM_RW_COMPONENT_ACCESS_BUFFER]; | ||
1628 | u8 p[13] = { 0 }; | ||
1629 | |||
1630 | p[0] = type; | ||
1631 | p[1] = port; | ||
1632 | p[2] = msg[0].addr << 1; | ||
1633 | |||
1634 | p[3] = (u8) scl & 0xff; /* scl */ | ||
1635 | p[4] = (u8) (scl >> 8); | ||
1636 | |||
1637 | p[7] = 0; | ||
1638 | p[8] = 0; | ||
1639 | |||
1640 | p[9] = (u8) (msg[0].len); | ||
1641 | p[10] = (u8) (msg[0].len >> 8); | ||
1642 | if ((num > 1) && (msg[1].flags & I2C_M_RD)) { | ||
1643 | p[11] = (u8) (msg[1].len); | ||
1644 | p[12] = (u8) (msg[1].len >> 8); | ||
1645 | } else { | ||
1646 | p[11] = 0; | ||
1647 | p[12] = 0; | ||
1648 | } | ||
1649 | |||
1650 | DibAcquireLock(&state->platform.risc.mem_mbx_lock); | ||
1651 | |||
1652 | dib9000_risc_mem_write(state, FE_MM_W_COMPONENT_ACCESS, p); | ||
1653 | |||
1654 | { /* write-part */ | ||
1655 | dib9000_risc_mem_setup_cmd(state, m->addr, msg[0].len, 0); | ||
1656 | dib9000_risc_mem_write_chunks(state, msg[0].buf, msg[0].len); | ||
1657 | } | ||
1658 | |||
1659 | /* do the transaction */ | ||
1660 | if (dib9000_fw_memmbx_sync(state, FE_SYNC_COMPONENT_ACCESS) < 0) { | ||
1661 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
1662 | return 0; | ||
1663 | } | ||
1664 | |||
1665 | /* read back any possible result */ | ||
1666 | if ((num > 1) && (msg[1].flags & I2C_M_RD)) | ||
1667 | dib9000_risc_mem_read(state, FE_MM_RW_COMPONENT_ACCESS_BUFFER, msg[1].buf, msg[1].len); | ||
1668 | |||
1669 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
1670 | |||
1671 | return num; | ||
1672 | } | ||
1673 | |||
1674 | static u32 dib9000_i2c_func(struct i2c_adapter *adapter) | ||
1675 | { | ||
1676 | return I2C_FUNC_I2C; | ||
1677 | } | ||
1678 | |||
1679 | static struct i2c_algorithm dib9000_tuner_algo = { | ||
1680 | .master_xfer = dib9000_tuner_xfer, | ||
1681 | .functionality = dib9000_i2c_func, | ||
1682 | }; | ||
1683 | |||
1684 | static struct i2c_algorithm dib9000_component_bus_algo = { | ||
1685 | .master_xfer = dib9000_fw_component_bus_xfer, | ||
1686 | .functionality = dib9000_i2c_func, | ||
1687 | }; | ||
1688 | |||
1689 | struct i2c_adapter *dib9000_get_tuner_interface(struct dvb_frontend *fe) | ||
1690 | { | ||
1691 | struct dib9000_state *st = fe->demodulator_priv; | ||
1692 | return &st->tuner_adap; | ||
1693 | } | ||
1694 | EXPORT_SYMBOL(dib9000_get_tuner_interface); | ||
1695 | |||
1696 | struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe) | ||
1697 | { | ||
1698 | struct dib9000_state *st = fe->demodulator_priv; | ||
1699 | return &st->component_bus; | ||
1700 | } | ||
1701 | EXPORT_SYMBOL(dib9000_get_component_bus_interface); | ||
1702 | |||
1703 | struct i2c_adapter *dib9000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating) | ||
1704 | { | ||
1705 | struct dib9000_state *st = fe->demodulator_priv; | ||
1706 | return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); | ||
1707 | } | ||
1708 | EXPORT_SYMBOL(dib9000_get_i2c_master); | ||
1709 | |||
1710 | int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c) | ||
1711 | { | ||
1712 | struct dib9000_state *st = fe->demodulator_priv; | ||
1713 | |||
1714 | st->i2c.i2c_adap = i2c; | ||
1715 | return 0; | ||
1716 | } | ||
1717 | EXPORT_SYMBOL(dib9000_set_i2c_adapter); | ||
1718 | |||
1719 | static int dib9000_cfg_gpio(struct dib9000_state *st, u8 num, u8 dir, u8 val) | ||
1720 | { | ||
1721 | st->gpio_dir = dib9000_read_word(st, 773); | ||
1722 | st->gpio_dir &= ~(1 << num); /* reset the direction bit */ | ||
1723 | st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */ | ||
1724 | dib9000_write_word(st, 773, st->gpio_dir); | ||
1725 | |||
1726 | st->gpio_val = dib9000_read_word(st, 774); | ||
1727 | st->gpio_val &= ~(1 << num); /* reset the direction bit */ | ||
1728 | st->gpio_val |= (val & 0x01) << num; /* set the new value */ | ||
1729 | dib9000_write_word(st, 774, st->gpio_val); | ||
1730 | |||
1731 | dprintk("gpio dir: %04x: gpio val: %04x", st->gpio_dir, st->gpio_val); | ||
1732 | |||
1733 | return 0; | ||
1734 | } | ||
1735 | |||
1736 | int dib9000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val) | ||
1737 | { | ||
1738 | struct dib9000_state *state = fe->demodulator_priv; | ||
1739 | return dib9000_cfg_gpio(state, num, dir, val); | ||
1740 | } | ||
1741 | EXPORT_SYMBOL(dib9000_set_gpio); | ||
1742 | |||
1743 | int dib9000_fw_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) | ||
1744 | { | ||
1745 | struct dib9000_state *state = fe->demodulator_priv; | ||
1746 | u16 val = dib9000_read_word(state, 294 + 1) & 0xffef; | ||
1747 | val |= (onoff & 0x1) << 4; | ||
1748 | |||
1749 | dprintk("PID filter enabled %d", onoff); | ||
1750 | return dib9000_write_word(state, 294 + 1, val); | ||
1751 | } | ||
1752 | EXPORT_SYMBOL(dib9000_fw_pid_filter_ctrl); | ||
1753 | |||
1754 | int dib9000_fw_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) | ||
1755 | { | ||
1756 | struct dib9000_state *state = fe->demodulator_priv; | ||
1757 | dprintk("Index %x, PID %d, OnOff %d", id, pid, onoff); | ||
1758 | return dib9000_write_word(state, 300 + 1 + id, onoff ? (1 << 13) | pid : 0); | ||
1759 | } | ||
1760 | EXPORT_SYMBOL(dib9000_fw_pid_filter); | ||
1761 | |||
1762 | int dib9000_firmware_post_pll_init(struct dvb_frontend *fe) | ||
1763 | { | ||
1764 | struct dib9000_state *state = fe->demodulator_priv; | ||
1765 | return dib9000_fw_init(state); | ||
1766 | } | ||
1767 | EXPORT_SYMBOL(dib9000_firmware_post_pll_init); | ||
1768 | |||
1769 | static void dib9000_release(struct dvb_frontend *demod) | ||
1770 | { | ||
1771 | struct dib9000_state *st = demod->demodulator_priv; | ||
1772 | u8 index_frontend; | ||
1773 | |||
1774 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++) | ||
1775 | dvb_frontend_detach(st->fe[index_frontend]); | ||
1776 | |||
1777 | DibFreeLock(&state->platform.risc.mbx_if_lock); | ||
1778 | DibFreeLock(&state->platform.risc.mbx_lock); | ||
1779 | DibFreeLock(&state->platform.risc.mem_lock); | ||
1780 | DibFreeLock(&state->platform.risc.mem_mbx_lock); | ||
1781 | dibx000_exit_i2c_master(&st->i2c_master); | ||
1782 | |||
1783 | i2c_del_adapter(&st->tuner_adap); | ||
1784 | i2c_del_adapter(&st->component_bus); | ||
1785 | kfree(st->fe[0]); | ||
1786 | kfree(st); | ||
1787 | } | ||
1788 | |||
1789 | static int dib9000_wakeup(struct dvb_frontend *fe) | ||
1790 | { | ||
1791 | return 0; | ||
1792 | } | ||
1793 | |||
1794 | static int dib9000_sleep(struct dvb_frontend *fe) | ||
1795 | { | ||
1796 | struct dib9000_state *state = fe->demodulator_priv; | ||
1797 | u8 index_frontend; | ||
1798 | int ret; | ||
1799 | |||
1800 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1801 | ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]); | ||
1802 | if (ret < 0) | ||
1803 | return ret; | ||
1804 | } | ||
1805 | return dib9000_mbx_send(state, OUT_MSG_FE_SLEEP, NULL, 0); | ||
1806 | } | ||
1807 | |||
1808 | static int dib9000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) | ||
1809 | { | ||
1810 | tune->min_delay_ms = 1000; | ||
1811 | return 0; | ||
1812 | } | ||
1813 | |||
1814 | static int dib9000_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep) | ||
1815 | { | ||
1816 | struct dib9000_state *state = fe->demodulator_priv; | ||
1817 | u8 index_frontend, sub_index_frontend; | ||
1818 | fe_status_t stat; | ||
1819 | int ret; | ||
1820 | |||
1821 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1822 | state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat); | ||
1823 | if (stat & FE_HAS_SYNC) { | ||
1824 | dprintk("TPS lock on the slave%i", index_frontend); | ||
1825 | |||
1826 | /* synchronize the cache with the other frontends */ | ||
1827 | state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], fep); | ||
1828 | for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); | ||
1829 | sub_index_frontend++) { | ||
1830 | if (sub_index_frontend != index_frontend) { | ||
1831 | state->fe[sub_index_frontend]->dtv_property_cache.modulation = | ||
1832 | state->fe[index_frontend]->dtv_property_cache.modulation; | ||
1833 | state->fe[sub_index_frontend]->dtv_property_cache.inversion = | ||
1834 | state->fe[index_frontend]->dtv_property_cache.inversion; | ||
1835 | state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = | ||
1836 | state->fe[index_frontend]->dtv_property_cache.transmission_mode; | ||
1837 | state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = | ||
1838 | state->fe[index_frontend]->dtv_property_cache.guard_interval; | ||
1839 | state->fe[sub_index_frontend]->dtv_property_cache.hierarchy = | ||
1840 | state->fe[index_frontend]->dtv_property_cache.hierarchy; | ||
1841 | state->fe[sub_index_frontend]->dtv_property_cache.code_rate_HP = | ||
1842 | state->fe[index_frontend]->dtv_property_cache.code_rate_HP; | ||
1843 | state->fe[sub_index_frontend]->dtv_property_cache.code_rate_LP = | ||
1844 | state->fe[index_frontend]->dtv_property_cache.code_rate_LP; | ||
1845 | state->fe[sub_index_frontend]->dtv_property_cache.rolloff = | ||
1846 | state->fe[index_frontend]->dtv_property_cache.rolloff; | ||
1847 | } | ||
1848 | } | ||
1849 | return 0; | ||
1850 | } | ||
1851 | } | ||
1852 | |||
1853 | /* get the channel from master chip */ | ||
1854 | ret = dib9000_fw_get_channel(fe, fep); | ||
1855 | if (ret != 0) | ||
1856 | return ret; | ||
1857 | |||
1858 | /* synchronize the cache with the other frontends */ | ||
1859 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1860 | state->fe[index_frontend]->dtv_property_cache.inversion = fe->dtv_property_cache.inversion; | ||
1861 | state->fe[index_frontend]->dtv_property_cache.transmission_mode = fe->dtv_property_cache.transmission_mode; | ||
1862 | state->fe[index_frontend]->dtv_property_cache.guard_interval = fe->dtv_property_cache.guard_interval; | ||
1863 | state->fe[index_frontend]->dtv_property_cache.modulation = fe->dtv_property_cache.modulation; | ||
1864 | state->fe[index_frontend]->dtv_property_cache.hierarchy = fe->dtv_property_cache.hierarchy; | ||
1865 | state->fe[index_frontend]->dtv_property_cache.code_rate_HP = fe->dtv_property_cache.code_rate_HP; | ||
1866 | state->fe[index_frontend]->dtv_property_cache.code_rate_LP = fe->dtv_property_cache.code_rate_LP; | ||
1867 | state->fe[index_frontend]->dtv_property_cache.rolloff = fe->dtv_property_cache.rolloff; | ||
1868 | } | ||
1869 | |||
1870 | return 0; | ||
1871 | } | ||
1872 | |||
1873 | static int dib9000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) | ||
1874 | { | ||
1875 | struct dib9000_state *state = fe->demodulator_priv; | ||
1876 | state->tune_state = tune_state; | ||
1877 | if (tune_state == CT_DEMOD_START) | ||
1878 | state->status = FE_STATUS_TUNE_PENDING; | ||
1879 | |||
1880 | return 0; | ||
1881 | } | ||
1882 | |||
1883 | static u32 dib9000_get_status(struct dvb_frontend *fe) | ||
1884 | { | ||
1885 | struct dib9000_state *state = fe->demodulator_priv; | ||
1886 | return state->status; | ||
1887 | } | ||
1888 | |||
1889 | static int dib9000_set_channel_status(struct dvb_frontend *fe, struct dvb_frontend_parametersContext *channel_status) | ||
1890 | { | ||
1891 | struct dib9000_state *state = fe->demodulator_priv; | ||
1892 | |||
1893 | memcpy(&state->channel_status, channel_status, sizeof(struct dvb_frontend_parametersContext)); | ||
1894 | return 0; | ||
1895 | } | ||
1896 | |||
1897 | static int dib9000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep) | ||
1898 | { | ||
1899 | struct dib9000_state *state = fe->demodulator_priv; | ||
1900 | int sleep_time, sleep_time_slave; | ||
1901 | u32 frontend_status; | ||
1902 | u8 nbr_pending, exit_condition, index_frontend, index_frontend_success; | ||
1903 | struct dvb_frontend_parametersContext channel_status; | ||
1904 | |||
1905 | /* check that the correct parameters are set */ | ||
1906 | if (state->fe[0]->dtv_property_cache.frequency == 0) { | ||
1907 | dprintk("dib9000: must specify frequency "); | ||
1908 | return 0; | ||
1909 | } | ||
1910 | |||
1911 | if (state->fe[0]->dtv_property_cache.bandwidth_hz == 0) { | ||
1912 | dprintk("dib9000: must specify bandwidth "); | ||
1913 | return 0; | ||
1914 | } | ||
1915 | fe->dtv_property_cache.delivery_system = SYS_DVBT; | ||
1916 | |||
1917 | /* set the master status */ | ||
1918 | if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || | ||
1919 | fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.code_rate_HP == FEC_AUTO) { | ||
1920 | /* no channel specified, autosearch the channel */ | ||
1921 | state->channel_status.status = CHANNEL_STATUS_PARAMETERS_UNKNOWN; | ||
1922 | } else | ||
1923 | state->channel_status.status = CHANNEL_STATUS_PARAMETERS_SET; | ||
1924 | |||
1925 | /* set mode and status for the different frontends */ | ||
1926 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1927 | dib9000_fw_set_diversity_in(state->fe[index_frontend], 1); | ||
1928 | |||
1929 | /* synchronization of the cache */ | ||
1930 | memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties)); | ||
1931 | |||
1932 | state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_DVBT; | ||
1933 | dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_HIGH_Z); | ||
1934 | |||
1935 | dib9000_set_channel_status(state->fe[index_frontend], &state->channel_status); | ||
1936 | dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); | ||
1937 | } | ||
1938 | |||
1939 | /* actual tune */ | ||
1940 | exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */ | ||
1941 | index_frontend_success = 0; | ||
1942 | do { | ||
1943 | sleep_time = dib9000_fw_tune(state->fe[0], NULL); | ||
1944 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1945 | sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend], NULL); | ||
1946 | if (sleep_time == FE_CALLBACK_TIME_NEVER) | ||
1947 | sleep_time = sleep_time_slave; | ||
1948 | else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time)) | ||
1949 | sleep_time = sleep_time_slave; | ||
1950 | } | ||
1951 | if (sleep_time != FE_CALLBACK_TIME_NEVER) | ||
1952 | msleep(sleep_time / 10); | ||
1953 | else | ||
1954 | break; | ||
1955 | |||
1956 | nbr_pending = 0; | ||
1957 | exit_condition = 0; | ||
1958 | index_frontend_success = 0; | ||
1959 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1960 | frontend_status = -dib9000_get_status(state->fe[index_frontend]); | ||
1961 | if (frontend_status > -FE_STATUS_TUNE_PENDING) { | ||
1962 | exit_condition = 2; /* tune success */ | ||
1963 | index_frontend_success = index_frontend; | ||
1964 | break; | ||
1965 | } | ||
1966 | if (frontend_status == -FE_STATUS_TUNE_PENDING) | ||
1967 | nbr_pending++; /* some frontends are still tuning */ | ||
1968 | } | ||
1969 | if ((exit_condition != 2) && (nbr_pending == 0)) | ||
1970 | exit_condition = 1; /* if all tune are done and no success, exit: tune failed */ | ||
1971 | |||
1972 | } while (exit_condition == 0); | ||
1973 | |||
1974 | /* check the tune result */ | ||
1975 | if (exit_condition == 1) { /* tune failed */ | ||
1976 | dprintk("tune failed"); | ||
1977 | return 0; | ||
1978 | } | ||
1979 | |||
1980 | dprintk("tune success on frontend%i", index_frontend_success); | ||
1981 | |||
1982 | /* synchronize all the channel cache */ | ||
1983 | dib9000_get_frontend(state->fe[0], fep); | ||
1984 | |||
1985 | /* retune the other frontends with the found channel */ | ||
1986 | channel_status.status = CHANNEL_STATUS_PARAMETERS_SET; | ||
1987 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1988 | /* only retune the frontends which was not tuned success */ | ||
1989 | if (index_frontend != index_frontend_success) { | ||
1990 | dib9000_set_channel_status(state->fe[index_frontend], &channel_status); | ||
1991 | dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); | ||
1992 | } | ||
1993 | } | ||
1994 | do { | ||
1995 | sleep_time = FE_CALLBACK_TIME_NEVER; | ||
1996 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
1997 | if (index_frontend != index_frontend_success) { | ||
1998 | sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend], NULL); | ||
1999 | if (sleep_time == FE_CALLBACK_TIME_NEVER) | ||
2000 | sleep_time = sleep_time_slave; | ||
2001 | else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time)) | ||
2002 | sleep_time = sleep_time_slave; | ||
2003 | } | ||
2004 | } | ||
2005 | if (sleep_time != FE_CALLBACK_TIME_NEVER) | ||
2006 | msleep(sleep_time / 10); | ||
2007 | else | ||
2008 | break; | ||
2009 | |||
2010 | nbr_pending = 0; | ||
2011 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
2012 | if (index_frontend != index_frontend_success) { | ||
2013 | frontend_status = -dib9000_get_status(state->fe[index_frontend]); | ||
2014 | if ((index_frontend != index_frontend_success) && (frontend_status == -FE_STATUS_TUNE_PENDING)) | ||
2015 | nbr_pending++; /* some frontends are still tuning */ | ||
2016 | } | ||
2017 | } | ||
2018 | } while (nbr_pending != 0); | ||
2019 | |||
2020 | /* set the output mode */ | ||
2021 | dib9000_fw_set_output_mode(state->fe[0], state->chip.d9.cfg.output_mode); | ||
2022 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) | ||
2023 | dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY); | ||
2024 | |||
2025 | /* turn off the diversity for the last frontend */ | ||
2026 | dib9000_fw_set_diversity_in(state->fe[index_frontend - 1], 0); | ||
2027 | |||
2028 | return 0; | ||
2029 | } | ||
2030 | |||
2031 | static u16 dib9000_read_lock(struct dvb_frontend *fe) | ||
2032 | { | ||
2033 | struct dib9000_state *state = fe->demodulator_priv; | ||
2034 | |||
2035 | return dib9000_read_word(state, 535); | ||
2036 | } | ||
2037 | |||
2038 | static int dib9000_read_status(struct dvb_frontend *fe, fe_status_t * stat) | ||
2039 | { | ||
2040 | struct dib9000_state *state = fe->demodulator_priv; | ||
2041 | u8 index_frontend; | ||
2042 | u16 lock = 0, lock_slave = 0; | ||
2043 | |||
2044 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) | ||
2045 | lock_slave |= dib9000_read_lock(state->fe[index_frontend]); | ||
2046 | |||
2047 | lock = dib9000_read_word(state, 535); | ||
2048 | |||
2049 | *stat = 0; | ||
2050 | |||
2051 | if ((lock & 0x8000) || (lock_slave & 0x8000)) | ||
2052 | *stat |= FE_HAS_SIGNAL; | ||
2053 | if ((lock & 0x3000) || (lock_slave & 0x3000)) | ||
2054 | *stat |= FE_HAS_CARRIER; | ||
2055 | if ((lock & 0x0100) || (lock_slave & 0x0100)) | ||
2056 | *stat |= FE_HAS_VITERBI; | ||
2057 | if (((lock & 0x0038) == 0x38) || ((lock_slave & 0x0038) == 0x38)) | ||
2058 | *stat |= FE_HAS_SYNC; | ||
2059 | if ((lock & 0x0008) || (lock_slave & 0x0008)) | ||
2060 | *stat |= FE_HAS_LOCK; | ||
2061 | |||
2062 | return 0; | ||
2063 | } | ||
2064 | |||
2065 | static int dib9000_read_ber(struct dvb_frontend *fe, u32 * ber) | ||
2066 | { | ||
2067 | struct dib9000_state *state = fe->demodulator_priv; | ||
2068 | u16 *c; | ||
2069 | |||
2070 | DibAcquireLock(&state->platform.risc.mem_mbx_lock); | ||
2071 | if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) | ||
2072 | return -EIO; | ||
2073 | dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, | ||
2074 | state->i2c_read_buffer, 16 * 2); | ||
2075 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
2076 | |||
2077 | c = (u16 *)state->i2c_read_buffer; | ||
2078 | |||
2079 | *ber = c[10] << 16 | c[11]; | ||
2080 | return 0; | ||
2081 | } | ||
2082 | |||
2083 | static int dib9000_read_signal_strength(struct dvb_frontend *fe, u16 * strength) | ||
2084 | { | ||
2085 | struct dib9000_state *state = fe->demodulator_priv; | ||
2086 | u8 index_frontend; | ||
2087 | u16 *c = (u16 *)state->i2c_read_buffer; | ||
2088 | u16 val; | ||
2089 | |||
2090 | *strength = 0; | ||
2091 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { | ||
2092 | state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val); | ||
2093 | if (val > 65535 - *strength) | ||
2094 | *strength = 65535; | ||
2095 | else | ||
2096 | *strength += val; | ||
2097 | } | ||
2098 | |||
2099 | DibAcquireLock(&state->platform.risc.mem_mbx_lock); | ||
2100 | if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) | ||
2101 | return -EIO; | ||
2102 | dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); | ||
2103 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
2104 | |||
2105 | val = 65535 - c[4]; | ||
2106 | if (val > 65535 - *strength) | ||
2107 | *strength = 65535; | ||
2108 | else | ||
2109 | *strength += val; | ||
2110 | return 0; | ||
2111 | } | ||
2112 | |||
2113 | static u32 dib9000_get_snr(struct dvb_frontend *fe) | ||
2114 | { | ||
2115 | struct dib9000_state *state = fe->demodulator_priv; | ||
2116 | u16 *c = (u16 *)state->i2c_read_buffer; | ||
2117 | u32 n, s, exp; | ||
2118 | u16 val; | ||
2119 | |||
2120 | DibAcquireLock(&state->platform.risc.mem_mbx_lock); | ||
2121 | if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) | ||
2122 | return -EIO; | ||
2123 | dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); | ||
2124 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
2125 | |||
2126 | val = c[7]; | ||
2127 | n = (val >> 4) & 0xff; | ||
2128 | exp = ((val & 0xf) << 2); | ||
2129 | val = c[8]; | ||
2130 | exp += ((val >> 14) & 0x3); | ||
2131 | if ((exp & 0x20) != 0) | ||
2132 | exp -= 0x40; | ||
2133 | n <<= exp + 16; | ||
2134 | |||
2135 | s = (val >> 6) & 0xFF; | ||
2136 | exp = (val & 0x3F); | ||
2137 | if ((exp & 0x20) != 0) | ||
2138 | exp -= 0x40; | ||
2139 | s <<= exp + 16; | ||
2140 | |||
2141 | if (n > 0) { | ||
2142 | u32 t = (s / n) << 16; | ||
2143 | return t + ((s << 16) - n * t) / n; | ||
2144 | } | ||
2145 | return 0xffffffff; | ||
2146 | } | ||
2147 | |||
2148 | static int dib9000_read_snr(struct dvb_frontend *fe, u16 * snr) | ||
2149 | { | ||
2150 | struct dib9000_state *state = fe->demodulator_priv; | ||
2151 | u8 index_frontend; | ||
2152 | u32 snr_master; | ||
2153 | |||
2154 | snr_master = dib9000_get_snr(fe); | ||
2155 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) | ||
2156 | snr_master += dib9000_get_snr(state->fe[index_frontend]); | ||
2157 | |||
2158 | if ((snr_master >> 16) != 0) { | ||
2159 | snr_master = 10 * intlog10(snr_master >> 16); | ||
2160 | *snr = snr_master / ((1 << 24) / 10); | ||
2161 | } else | ||
2162 | *snr = 0; | ||
2163 | |||
2164 | return 0; | ||
2165 | } | ||
2166 | |||
2167 | static int dib9000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) | ||
2168 | { | ||
2169 | struct dib9000_state *state = fe->demodulator_priv; | ||
2170 | u16 *c = (u16 *)state->i2c_read_buffer; | ||
2171 | |||
2172 | DibAcquireLock(&state->platform.risc.mem_mbx_lock); | ||
2173 | if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) | ||
2174 | return -EIO; | ||
2175 | dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); | ||
2176 | DibReleaseLock(&state->platform.risc.mem_mbx_lock); | ||
2177 | |||
2178 | *unc = c[12]; | ||
2179 | return 0; | ||
2180 | } | ||
2181 | |||
2182 | int dib9000_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, u8 first_addr) | ||
2183 | { | ||
2184 | int k = 0, ret = 0; | ||
2185 | u8 new_addr = 0; | ||
2186 | struct i2c_device client = {.i2c_adap = i2c }; | ||
2187 | |||
2188 | client.i2c_write_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL); | ||
2189 | if (!client.i2c_write_buffer) { | ||
2190 | dprintk("%s: not enough memory", __func__); | ||
2191 | return -ENOMEM; | ||
2192 | } | ||
2193 | client.i2c_read_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL); | ||
2194 | if (!client.i2c_read_buffer) { | ||
2195 | dprintk("%s: not enough memory", __func__); | ||
2196 | ret = -ENOMEM; | ||
2197 | goto error_memory; | ||
2198 | } | ||
2199 | |||
2200 | client.i2c_addr = default_addr + 16; | ||
2201 | dib9000_i2c_write16(&client, 1796, 0x0); | ||
2202 | |||
2203 | for (k = no_of_demods - 1; k >= 0; k--) { | ||
2204 | /* designated i2c address */ | ||
2205 | new_addr = first_addr + (k << 1); | ||
2206 | client.i2c_addr = default_addr; | ||
2207 | |||
2208 | dib9000_i2c_write16(&client, 1817, 3); | ||
2209 | dib9000_i2c_write16(&client, 1796, 0); | ||
2210 | dib9000_i2c_write16(&client, 1227, 1); | ||
2211 | dib9000_i2c_write16(&client, 1227, 0); | ||
2212 | |||
2213 | client.i2c_addr = new_addr; | ||
2214 | dib9000_i2c_write16(&client, 1817, 3); | ||
2215 | dib9000_i2c_write16(&client, 1796, 0); | ||
2216 | dib9000_i2c_write16(&client, 1227, 1); | ||
2217 | dib9000_i2c_write16(&client, 1227, 0); | ||
2218 | |||
2219 | if (dib9000_identify(&client) == 0) { | ||
2220 | client.i2c_addr = default_addr; | ||
2221 | if (dib9000_identify(&client) == 0) { | ||
2222 | dprintk("DiB9000 #%d: not identified", k); | ||
2223 | ret = -EIO; | ||
2224 | goto error; | ||
2225 | } | ||
2226 | } | ||
2227 | |||
2228 | dib9000_i2c_write16(&client, 1795, (1 << 10) | (4 << 6)); | ||
2229 | dib9000_i2c_write16(&client, 1794, (new_addr << 2) | 2); | ||
2230 | |||
2231 | dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr); | ||
2232 | } | ||
2233 | |||
2234 | for (k = 0; k < no_of_demods; k++) { | ||
2235 | new_addr = first_addr | (k << 1); | ||
2236 | client.i2c_addr = new_addr; | ||
2237 | |||
2238 | dib9000_i2c_write16(&client, 1794, (new_addr << 2)); | ||
2239 | dib9000_i2c_write16(&client, 1795, 0); | ||
2240 | } | ||
2241 | |||
2242 | error: | ||
2243 | kfree(client.i2c_read_buffer); | ||
2244 | error_memory: | ||
2245 | kfree(client.i2c_write_buffer); | ||
2246 | |||
2247 | return ret; | ||
2248 | } | ||
2249 | EXPORT_SYMBOL(dib9000_i2c_enumeration); | ||
2250 | |||
2251 | int dib9000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave) | ||
2252 | { | ||
2253 | struct dib9000_state *state = fe->demodulator_priv; | ||
2254 | u8 index_frontend = 1; | ||
2255 | |||
2256 | while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) | ||
2257 | index_frontend++; | ||
2258 | if (index_frontend < MAX_NUMBER_OF_FRONTENDS) { | ||
2259 | dprintk("set slave fe %p to index %i", fe_slave, index_frontend); | ||
2260 | state->fe[index_frontend] = fe_slave; | ||
2261 | return 0; | ||
2262 | } | ||
2263 | |||
2264 | dprintk("too many slave frontend"); | ||
2265 | return -ENOMEM; | ||
2266 | } | ||
2267 | EXPORT_SYMBOL(dib9000_set_slave_frontend); | ||
2268 | |||
2269 | int dib9000_remove_slave_frontend(struct dvb_frontend *fe) | ||
2270 | { | ||
2271 | struct dib9000_state *state = fe->demodulator_priv; | ||
2272 | u8 index_frontend = 1; | ||
2273 | |||
2274 | while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) | ||
2275 | index_frontend++; | ||
2276 | if (index_frontend != 1) { | ||
2277 | dprintk("remove slave fe %p (index %i)", state->fe[index_frontend - 1], index_frontend - 1); | ||
2278 | state->fe[index_frontend] = NULL; | ||
2279 | return 0; | ||
2280 | } | ||
2281 | |||
2282 | dprintk("no frontend to be removed"); | ||
2283 | return -ENODEV; | ||
2284 | } | ||
2285 | EXPORT_SYMBOL(dib9000_remove_slave_frontend); | ||
2286 | |||
2287 | struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) | ||
2288 | { | ||
2289 | struct dib9000_state *state = fe->demodulator_priv; | ||
2290 | |||
2291 | if (slave_index >= MAX_NUMBER_OF_FRONTENDS) | ||
2292 | return NULL; | ||
2293 | return state->fe[slave_index]; | ||
2294 | } | ||
2295 | EXPORT_SYMBOL(dib9000_get_slave_frontend); | ||
2296 | |||
2297 | static struct dvb_frontend_ops dib9000_ops; | ||
2298 | struct dvb_frontend *dib9000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, const struct dib9000_config *cfg) | ||
2299 | { | ||
2300 | struct dvb_frontend *fe; | ||
2301 | struct dib9000_state *st; | ||
2302 | st = kzalloc(sizeof(struct dib9000_state), GFP_KERNEL); | ||
2303 | if (st == NULL) | ||
2304 | return NULL; | ||
2305 | fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL); | ||
2306 | if (fe == NULL) { | ||
2307 | kfree(st); | ||
2308 | return NULL; | ||
2309 | } | ||
2310 | |||
2311 | memcpy(&st->chip.d9.cfg, cfg, sizeof(struct dib9000_config)); | ||
2312 | st->i2c.i2c_adap = i2c_adap; | ||
2313 | st->i2c.i2c_addr = i2c_addr; | ||
2314 | st->i2c.i2c_write_buffer = st->i2c_write_buffer; | ||
2315 | st->i2c.i2c_read_buffer = st->i2c_read_buffer; | ||
2316 | |||
2317 | st->gpio_dir = DIB9000_GPIO_DEFAULT_DIRECTIONS; | ||
2318 | st->gpio_val = DIB9000_GPIO_DEFAULT_VALUES; | ||
2319 | st->gpio_pwm_pos = DIB9000_GPIO_DEFAULT_PWM_POS; | ||
2320 | |||
2321 | DibInitLock(&st->platform.risc.mbx_if_lock); | ||
2322 | DibInitLock(&st->platform.risc.mbx_lock); | ||
2323 | DibInitLock(&st->platform.risc.mem_lock); | ||
2324 | DibInitLock(&st->platform.risc.mem_mbx_lock); | ||
2325 | |||
2326 | st->fe[0] = fe; | ||
2327 | fe->demodulator_priv = st; | ||
2328 | memcpy(&st->fe[0]->ops, &dib9000_ops, sizeof(struct dvb_frontend_ops)); | ||
2329 | |||
2330 | /* Ensure the output mode remains at the previous default if it's | ||
2331 | * not specifically set by the caller. | ||
2332 | */ | ||
2333 | if ((st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) | ||
2334 | st->chip.d9.cfg.output_mode = OUTMODE_MPEG2_FIFO; | ||
2335 | |||
2336 | if (dib9000_identify(&st->i2c) == 0) | ||
2337 | goto error; | ||
2338 | |||
2339 | dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c.i2c_adap, st->i2c.i2c_addr); | ||
2340 | |||
2341 | st->tuner_adap.dev.parent = i2c_adap->dev.parent; | ||
2342 | strncpy(st->tuner_adap.name, "DIB9000_FW TUNER ACCESS", sizeof(st->tuner_adap.name)); | ||
2343 | st->tuner_adap.algo = &dib9000_tuner_algo; | ||
2344 | st->tuner_adap.algo_data = NULL; | ||
2345 | i2c_set_adapdata(&st->tuner_adap, st); | ||
2346 | if (i2c_add_adapter(&st->tuner_adap) < 0) | ||
2347 | goto error; | ||
2348 | |||
2349 | st->component_bus.dev.parent = i2c_adap->dev.parent; | ||
2350 | strncpy(st->component_bus.name, "DIB9000_FW COMPONENT BUS ACCESS", sizeof(st->component_bus.name)); | ||
2351 | st->component_bus.algo = &dib9000_component_bus_algo; | ||
2352 | st->component_bus.algo_data = NULL; | ||
2353 | st->component_bus_speed = 340; | ||
2354 | i2c_set_adapdata(&st->component_bus, st); | ||
2355 | if (i2c_add_adapter(&st->component_bus) < 0) | ||
2356 | goto component_bus_add_error; | ||
2357 | |||
2358 | dib9000_fw_reset(fe); | ||
2359 | |||
2360 | return fe; | ||
2361 | |||
2362 | component_bus_add_error: | ||
2363 | i2c_del_adapter(&st->tuner_adap); | ||
2364 | error: | ||
2365 | kfree(st); | ||
2366 | return NULL; | ||
2367 | } | ||
2368 | EXPORT_SYMBOL(dib9000_attach); | ||
2369 | |||
2370 | static struct dvb_frontend_ops dib9000_ops = { | ||
2371 | .info = { | ||
2372 | .name = "DiBcom 9000", | ||
2373 | .type = FE_OFDM, | ||
2374 | .frequency_min = 44250000, | ||
2375 | .frequency_max = 867250000, | ||
2376 | .frequency_stepsize = 62500, | ||
2377 | .caps = FE_CAN_INVERSION_AUTO | | ||
2378 | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | | ||
2379 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | | ||
2380 | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | | ||
2381 | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, | ||
2382 | }, | ||
2383 | |||
2384 | .release = dib9000_release, | ||
2385 | |||
2386 | .init = dib9000_wakeup, | ||
2387 | .sleep = dib9000_sleep, | ||
2388 | |||
2389 | .set_frontend = dib9000_set_frontend, | ||
2390 | .get_tune_settings = dib9000_fe_get_tune_settings, | ||
2391 | .get_frontend = dib9000_get_frontend, | ||
2392 | |||
2393 | .read_status = dib9000_read_status, | ||
2394 | .read_ber = dib9000_read_ber, | ||
2395 | .read_signal_strength = dib9000_read_signal_strength, | ||
2396 | .read_snr = dib9000_read_snr, | ||
2397 | .read_ucblocks = dib9000_read_unc_blocks, | ||
2398 | }; | ||
2399 | |||
2400 | MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); | ||
2401 | MODULE_AUTHOR("Olivier Grenie <ogrenie@dibcom.fr>"); | ||
2402 | MODULE_DESCRIPTION("Driver for the DiBcom 9000 COFDM demodulator"); | ||
2403 | MODULE_LICENSE("GPL"); | ||