diff options
Diffstat (limited to 'arch/arm/mm/dma-mapping.c')
-rw-r--r-- | arch/arm/mm/dma-mapping.c | 616 |
1 files changed, 616 insertions, 0 deletions
diff --git a/arch/arm/mm/dma-mapping.c b/arch/arm/mm/dma-mapping.c new file mode 100644 index 000000000000..67960017dc8f --- /dev/null +++ b/arch/arm/mm/dma-mapping.c | |||
@@ -0,0 +1,616 @@ | |||
1 | /* | ||
2 | * linux/arch/arm/mm/dma-mapping.c | ||
3 | * | ||
4 | * Copyright (C) 2000-2004 Russell King | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License version 2 as | ||
8 | * published by the Free Software Foundation. | ||
9 | * | ||
10 | * DMA uncached mapping support. | ||
11 | */ | ||
12 | #include <linux/module.h> | ||
13 | #include <linux/mm.h> | ||
14 | #include <linux/slab.h> | ||
15 | #include <linux/errno.h> | ||
16 | #include <linux/list.h> | ||
17 | #include <linux/init.h> | ||
18 | #include <linux/device.h> | ||
19 | #include <linux/dma-mapping.h> | ||
20 | |||
21 | #include <asm/memory.h> | ||
22 | #include <asm/cacheflush.h> | ||
23 | #include <asm/tlbflush.h> | ||
24 | #include <asm/sizes.h> | ||
25 | |||
26 | /* Sanity check size */ | ||
27 | #if (CONSISTENT_DMA_SIZE % SZ_2M) | ||
28 | #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB" | ||
29 | #endif | ||
30 | |||
31 | #define CONSISTENT_END (0xffe00000) | ||
32 | #define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE) | ||
33 | |||
34 | #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT) | ||
35 | #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT) | ||
36 | #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT) | ||
37 | |||
38 | |||
39 | /* | ||
40 | * These are the page tables (2MB each) covering uncached, DMA consistent allocations | ||
41 | */ | ||
42 | static pte_t *consistent_pte[NUM_CONSISTENT_PTES]; | ||
43 | static DEFINE_SPINLOCK(consistent_lock); | ||
44 | |||
45 | /* | ||
46 | * VM region handling support. | ||
47 | * | ||
48 | * This should become something generic, handling VM region allocations for | ||
49 | * vmalloc and similar (ioremap, module space, etc). | ||
50 | * | ||
51 | * I envisage vmalloc()'s supporting vm_struct becoming: | ||
52 | * | ||
53 | * struct vm_struct { | ||
54 | * struct vm_region region; | ||
55 | * unsigned long flags; | ||
56 | * struct page **pages; | ||
57 | * unsigned int nr_pages; | ||
58 | * unsigned long phys_addr; | ||
59 | * }; | ||
60 | * | ||
61 | * get_vm_area() would then call vm_region_alloc with an appropriate | ||
62 | * struct vm_region head (eg): | ||
63 | * | ||
64 | * struct vm_region vmalloc_head = { | ||
65 | * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list), | ||
66 | * .vm_start = VMALLOC_START, | ||
67 | * .vm_end = VMALLOC_END, | ||
68 | * }; | ||
69 | * | ||
70 | * However, vmalloc_head.vm_start is variable (typically, it is dependent on | ||
71 | * the amount of RAM found at boot time.) I would imagine that get_vm_area() | ||
72 | * would have to initialise this each time prior to calling vm_region_alloc(). | ||
73 | */ | ||
74 | struct vm_region { | ||
75 | struct list_head vm_list; | ||
76 | unsigned long vm_start; | ||
77 | unsigned long vm_end; | ||
78 | struct page *vm_pages; | ||
79 | int vm_active; | ||
80 | }; | ||
81 | |||
82 | static struct vm_region consistent_head = { | ||
83 | .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), | ||
84 | .vm_start = CONSISTENT_BASE, | ||
85 | .vm_end = CONSISTENT_END, | ||
86 | }; | ||
87 | |||
88 | static struct vm_region * | ||
89 | vm_region_alloc(struct vm_region *head, size_t size, gfp_t gfp) | ||
90 | { | ||
91 | unsigned long addr = head->vm_start, end = head->vm_end - size; | ||
92 | unsigned long flags; | ||
93 | struct vm_region *c, *new; | ||
94 | |||
95 | new = kmalloc(sizeof(struct vm_region), gfp); | ||
96 | if (!new) | ||
97 | goto out; | ||
98 | |||
99 | spin_lock_irqsave(&consistent_lock, flags); | ||
100 | |||
101 | list_for_each_entry(c, &head->vm_list, vm_list) { | ||
102 | if ((addr + size) < addr) | ||
103 | goto nospc; | ||
104 | if ((addr + size) <= c->vm_start) | ||
105 | goto found; | ||
106 | addr = c->vm_end; | ||
107 | if (addr > end) | ||
108 | goto nospc; | ||
109 | } | ||
110 | |||
111 | found: | ||
112 | /* | ||
113 | * Insert this entry _before_ the one we found. | ||
114 | */ | ||
115 | list_add_tail(&new->vm_list, &c->vm_list); | ||
116 | new->vm_start = addr; | ||
117 | new->vm_end = addr + size; | ||
118 | new->vm_active = 1; | ||
119 | |||
120 | spin_unlock_irqrestore(&consistent_lock, flags); | ||
121 | return new; | ||
122 | |||
123 | nospc: | ||
124 | spin_unlock_irqrestore(&consistent_lock, flags); | ||
125 | kfree(new); | ||
126 | out: | ||
127 | return NULL; | ||
128 | } | ||
129 | |||
130 | static struct vm_region *vm_region_find(struct vm_region *head, unsigned long addr) | ||
131 | { | ||
132 | struct vm_region *c; | ||
133 | |||
134 | list_for_each_entry(c, &head->vm_list, vm_list) { | ||
135 | if (c->vm_active && c->vm_start == addr) | ||
136 | goto out; | ||
137 | } | ||
138 | c = NULL; | ||
139 | out: | ||
140 | return c; | ||
141 | } | ||
142 | |||
143 | #ifdef CONFIG_HUGETLB_PAGE | ||
144 | #error ARM Coherent DMA allocator does not (yet) support huge TLB | ||
145 | #endif | ||
146 | |||
147 | static void * | ||
148 | __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, | ||
149 | pgprot_t prot) | ||
150 | { | ||
151 | struct page *page; | ||
152 | struct vm_region *c; | ||
153 | unsigned long order; | ||
154 | u64 mask = ISA_DMA_THRESHOLD, limit; | ||
155 | |||
156 | if (!consistent_pte[0]) { | ||
157 | printk(KERN_ERR "%s: not initialised\n", __func__); | ||
158 | dump_stack(); | ||
159 | return NULL; | ||
160 | } | ||
161 | |||
162 | if (dev) { | ||
163 | mask = dev->coherent_dma_mask; | ||
164 | |||
165 | /* | ||
166 | * Sanity check the DMA mask - it must be non-zero, and | ||
167 | * must be able to be satisfied by a DMA allocation. | ||
168 | */ | ||
169 | if (mask == 0) { | ||
170 | dev_warn(dev, "coherent DMA mask is unset\n"); | ||
171 | goto no_page; | ||
172 | } | ||
173 | |||
174 | if ((~mask) & ISA_DMA_THRESHOLD) { | ||
175 | dev_warn(dev, "coherent DMA mask %#llx is smaller " | ||
176 | "than system GFP_DMA mask %#llx\n", | ||
177 | mask, (unsigned long long)ISA_DMA_THRESHOLD); | ||
178 | goto no_page; | ||
179 | } | ||
180 | } | ||
181 | |||
182 | /* | ||
183 | * Sanity check the allocation size. | ||
184 | */ | ||
185 | size = PAGE_ALIGN(size); | ||
186 | limit = (mask + 1) & ~mask; | ||
187 | if ((limit && size >= limit) || | ||
188 | size >= (CONSISTENT_END - CONSISTENT_BASE)) { | ||
189 | printk(KERN_WARNING "coherent allocation too big " | ||
190 | "(requested %#x mask %#llx)\n", size, mask); | ||
191 | goto no_page; | ||
192 | } | ||
193 | |||
194 | order = get_order(size); | ||
195 | |||
196 | if (mask != 0xffffffff) | ||
197 | gfp |= GFP_DMA; | ||
198 | |||
199 | page = alloc_pages(gfp, order); | ||
200 | if (!page) | ||
201 | goto no_page; | ||
202 | |||
203 | /* | ||
204 | * Invalidate any data that might be lurking in the | ||
205 | * kernel direct-mapped region for device DMA. | ||
206 | */ | ||
207 | { | ||
208 | void *ptr = page_address(page); | ||
209 | memset(ptr, 0, size); | ||
210 | dmac_flush_range(ptr, ptr + size); | ||
211 | outer_flush_range(__pa(ptr), __pa(ptr) + size); | ||
212 | } | ||
213 | |||
214 | /* | ||
215 | * Allocate a virtual address in the consistent mapping region. | ||
216 | */ | ||
217 | c = vm_region_alloc(&consistent_head, size, | ||
218 | gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); | ||
219 | if (c) { | ||
220 | pte_t *pte; | ||
221 | struct page *end = page + (1 << order); | ||
222 | int idx = CONSISTENT_PTE_INDEX(c->vm_start); | ||
223 | u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); | ||
224 | |||
225 | pte = consistent_pte[idx] + off; | ||
226 | c->vm_pages = page; | ||
227 | |||
228 | split_page(page, order); | ||
229 | |||
230 | /* | ||
231 | * Set the "dma handle" | ||
232 | */ | ||
233 | *handle = page_to_dma(dev, page); | ||
234 | |||
235 | do { | ||
236 | BUG_ON(!pte_none(*pte)); | ||
237 | |||
238 | /* | ||
239 | * x86 does not mark the pages reserved... | ||
240 | */ | ||
241 | SetPageReserved(page); | ||
242 | set_pte_ext(pte, mk_pte(page, prot), 0); | ||
243 | page++; | ||
244 | pte++; | ||
245 | off++; | ||
246 | if (off >= PTRS_PER_PTE) { | ||
247 | off = 0; | ||
248 | pte = consistent_pte[++idx]; | ||
249 | } | ||
250 | } while (size -= PAGE_SIZE); | ||
251 | |||
252 | /* | ||
253 | * Free the otherwise unused pages. | ||
254 | */ | ||
255 | while (page < end) { | ||
256 | __free_page(page); | ||
257 | page++; | ||
258 | } | ||
259 | |||
260 | return (void *)c->vm_start; | ||
261 | } | ||
262 | |||
263 | if (page) | ||
264 | __free_pages(page, order); | ||
265 | no_page: | ||
266 | *handle = ~0; | ||
267 | return NULL; | ||
268 | } | ||
269 | |||
270 | /* | ||
271 | * Allocate DMA-coherent memory space and return both the kernel remapped | ||
272 | * virtual and bus address for that space. | ||
273 | */ | ||
274 | void * | ||
275 | dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) | ||
276 | { | ||
277 | void *memory; | ||
278 | |||
279 | if (dma_alloc_from_coherent(dev, size, handle, &memory)) | ||
280 | return memory; | ||
281 | |||
282 | if (arch_is_coherent()) { | ||
283 | void *virt; | ||
284 | |||
285 | virt = kmalloc(size, gfp); | ||
286 | if (!virt) | ||
287 | return NULL; | ||
288 | *handle = virt_to_dma(dev, virt); | ||
289 | |||
290 | return virt; | ||
291 | } | ||
292 | |||
293 | return __dma_alloc(dev, size, handle, gfp, | ||
294 | pgprot_noncached(pgprot_kernel)); | ||
295 | } | ||
296 | EXPORT_SYMBOL(dma_alloc_coherent); | ||
297 | |||
298 | /* | ||
299 | * Allocate a writecombining region, in much the same way as | ||
300 | * dma_alloc_coherent above. | ||
301 | */ | ||
302 | void * | ||
303 | dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) | ||
304 | { | ||
305 | return __dma_alloc(dev, size, handle, gfp, | ||
306 | pgprot_writecombine(pgprot_kernel)); | ||
307 | } | ||
308 | EXPORT_SYMBOL(dma_alloc_writecombine); | ||
309 | |||
310 | static int dma_mmap(struct device *dev, struct vm_area_struct *vma, | ||
311 | void *cpu_addr, dma_addr_t dma_addr, size_t size) | ||
312 | { | ||
313 | unsigned long flags, user_size, kern_size; | ||
314 | struct vm_region *c; | ||
315 | int ret = -ENXIO; | ||
316 | |||
317 | user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; | ||
318 | |||
319 | spin_lock_irqsave(&consistent_lock, flags); | ||
320 | c = vm_region_find(&consistent_head, (unsigned long)cpu_addr); | ||
321 | spin_unlock_irqrestore(&consistent_lock, flags); | ||
322 | |||
323 | if (c) { | ||
324 | unsigned long off = vma->vm_pgoff; | ||
325 | |||
326 | kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT; | ||
327 | |||
328 | if (off < kern_size && | ||
329 | user_size <= (kern_size - off)) { | ||
330 | ret = remap_pfn_range(vma, vma->vm_start, | ||
331 | page_to_pfn(c->vm_pages) + off, | ||
332 | user_size << PAGE_SHIFT, | ||
333 | vma->vm_page_prot); | ||
334 | } | ||
335 | } | ||
336 | |||
337 | return ret; | ||
338 | } | ||
339 | |||
340 | int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma, | ||
341 | void *cpu_addr, dma_addr_t dma_addr, size_t size) | ||
342 | { | ||
343 | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); | ||
344 | return dma_mmap(dev, vma, cpu_addr, dma_addr, size); | ||
345 | } | ||
346 | EXPORT_SYMBOL(dma_mmap_coherent); | ||
347 | |||
348 | int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma, | ||
349 | void *cpu_addr, dma_addr_t dma_addr, size_t size) | ||
350 | { | ||
351 | vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); | ||
352 | return dma_mmap(dev, vma, cpu_addr, dma_addr, size); | ||
353 | } | ||
354 | EXPORT_SYMBOL(dma_mmap_writecombine); | ||
355 | |||
356 | /* | ||
357 | * free a page as defined by the above mapping. | ||
358 | * Must not be called with IRQs disabled. | ||
359 | */ | ||
360 | void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle) | ||
361 | { | ||
362 | struct vm_region *c; | ||
363 | unsigned long flags, addr; | ||
364 | pte_t *ptep; | ||
365 | int idx; | ||
366 | u32 off; | ||
367 | |||
368 | WARN_ON(irqs_disabled()); | ||
369 | |||
370 | if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) | ||
371 | return; | ||
372 | |||
373 | if (arch_is_coherent()) { | ||
374 | kfree(cpu_addr); | ||
375 | return; | ||
376 | } | ||
377 | |||
378 | size = PAGE_ALIGN(size); | ||
379 | |||
380 | spin_lock_irqsave(&consistent_lock, flags); | ||
381 | c = vm_region_find(&consistent_head, (unsigned long)cpu_addr); | ||
382 | if (!c) | ||
383 | goto no_area; | ||
384 | |||
385 | c->vm_active = 0; | ||
386 | spin_unlock_irqrestore(&consistent_lock, flags); | ||
387 | |||
388 | if ((c->vm_end - c->vm_start) != size) { | ||
389 | printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", | ||
390 | __func__, c->vm_end - c->vm_start, size); | ||
391 | dump_stack(); | ||
392 | size = c->vm_end - c->vm_start; | ||
393 | } | ||
394 | |||
395 | idx = CONSISTENT_PTE_INDEX(c->vm_start); | ||
396 | off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); | ||
397 | ptep = consistent_pte[idx] + off; | ||
398 | addr = c->vm_start; | ||
399 | do { | ||
400 | pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); | ||
401 | unsigned long pfn; | ||
402 | |||
403 | ptep++; | ||
404 | addr += PAGE_SIZE; | ||
405 | off++; | ||
406 | if (off >= PTRS_PER_PTE) { | ||
407 | off = 0; | ||
408 | ptep = consistent_pte[++idx]; | ||
409 | } | ||
410 | |||
411 | if (!pte_none(pte) && pte_present(pte)) { | ||
412 | pfn = pte_pfn(pte); | ||
413 | |||
414 | if (pfn_valid(pfn)) { | ||
415 | struct page *page = pfn_to_page(pfn); | ||
416 | |||
417 | /* | ||
418 | * x86 does not mark the pages reserved... | ||
419 | */ | ||
420 | ClearPageReserved(page); | ||
421 | |||
422 | __free_page(page); | ||
423 | continue; | ||
424 | } | ||
425 | } | ||
426 | |||
427 | printk(KERN_CRIT "%s: bad page in kernel page table\n", | ||
428 | __func__); | ||
429 | } while (size -= PAGE_SIZE); | ||
430 | |||
431 | flush_tlb_kernel_range(c->vm_start, c->vm_end); | ||
432 | |||
433 | spin_lock_irqsave(&consistent_lock, flags); | ||
434 | list_del(&c->vm_list); | ||
435 | spin_unlock_irqrestore(&consistent_lock, flags); | ||
436 | |||
437 | kfree(c); | ||
438 | return; | ||
439 | |||
440 | no_area: | ||
441 | spin_unlock_irqrestore(&consistent_lock, flags); | ||
442 | printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", | ||
443 | __func__, cpu_addr); | ||
444 | dump_stack(); | ||
445 | } | ||
446 | EXPORT_SYMBOL(dma_free_coherent); | ||
447 | |||
448 | /* | ||
449 | * Initialise the consistent memory allocation. | ||
450 | */ | ||
451 | static int __init consistent_init(void) | ||
452 | { | ||
453 | pgd_t *pgd; | ||
454 | pmd_t *pmd; | ||
455 | pte_t *pte; | ||
456 | int ret = 0, i = 0; | ||
457 | u32 base = CONSISTENT_BASE; | ||
458 | |||
459 | do { | ||
460 | pgd = pgd_offset(&init_mm, base); | ||
461 | pmd = pmd_alloc(&init_mm, pgd, base); | ||
462 | if (!pmd) { | ||
463 | printk(KERN_ERR "%s: no pmd tables\n", __func__); | ||
464 | ret = -ENOMEM; | ||
465 | break; | ||
466 | } | ||
467 | WARN_ON(!pmd_none(*pmd)); | ||
468 | |||
469 | pte = pte_alloc_kernel(pmd, base); | ||
470 | if (!pte) { | ||
471 | printk(KERN_ERR "%s: no pte tables\n", __func__); | ||
472 | ret = -ENOMEM; | ||
473 | break; | ||
474 | } | ||
475 | |||
476 | consistent_pte[i++] = pte; | ||
477 | base += (1 << PGDIR_SHIFT); | ||
478 | } while (base < CONSISTENT_END); | ||
479 | |||
480 | return ret; | ||
481 | } | ||
482 | |||
483 | core_initcall(consistent_init); | ||
484 | |||
485 | /* | ||
486 | * Make an area consistent for devices. | ||
487 | * Note: Drivers should NOT use this function directly, as it will break | ||
488 | * platforms with CONFIG_DMABOUNCE. | ||
489 | * Use the driver DMA support - see dma-mapping.h (dma_sync_*) | ||
490 | */ | ||
491 | void dma_cache_maint(const void *start, size_t size, int direction) | ||
492 | { | ||
493 | const void *end = start + size; | ||
494 | |||
495 | BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(end - 1)); | ||
496 | |||
497 | switch (direction) { | ||
498 | case DMA_FROM_DEVICE: /* invalidate only */ | ||
499 | dmac_inv_range(start, end); | ||
500 | outer_inv_range(__pa(start), __pa(end)); | ||
501 | break; | ||
502 | case DMA_TO_DEVICE: /* writeback only */ | ||
503 | dmac_clean_range(start, end); | ||
504 | outer_clean_range(__pa(start), __pa(end)); | ||
505 | break; | ||
506 | case DMA_BIDIRECTIONAL: /* writeback and invalidate */ | ||
507 | dmac_flush_range(start, end); | ||
508 | outer_flush_range(__pa(start), __pa(end)); | ||
509 | break; | ||
510 | default: | ||
511 | BUG(); | ||
512 | } | ||
513 | } | ||
514 | EXPORT_SYMBOL(dma_cache_maint); | ||
515 | |||
516 | /** | ||
517 | * dma_map_sg - map a set of SG buffers for streaming mode DMA | ||
518 | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | ||
519 | * @sg: list of buffers | ||
520 | * @nents: number of buffers to map | ||
521 | * @dir: DMA transfer direction | ||
522 | * | ||
523 | * Map a set of buffers described by scatterlist in streaming mode for DMA. | ||
524 | * This is the scatter-gather version of the dma_map_single interface. | ||
525 | * Here the scatter gather list elements are each tagged with the | ||
526 | * appropriate dma address and length. They are obtained via | ||
527 | * sg_dma_{address,length}. | ||
528 | * | ||
529 | * Device ownership issues as mentioned for dma_map_single are the same | ||
530 | * here. | ||
531 | */ | ||
532 | int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, | ||
533 | enum dma_data_direction dir) | ||
534 | { | ||
535 | struct scatterlist *s; | ||
536 | int i, j; | ||
537 | |||
538 | for_each_sg(sg, s, nents, i) { | ||
539 | s->dma_address = dma_map_page(dev, sg_page(s), s->offset, | ||
540 | s->length, dir); | ||
541 | if (dma_mapping_error(dev, s->dma_address)) | ||
542 | goto bad_mapping; | ||
543 | } | ||
544 | return nents; | ||
545 | |||
546 | bad_mapping: | ||
547 | for_each_sg(sg, s, i, j) | ||
548 | dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); | ||
549 | return 0; | ||
550 | } | ||
551 | EXPORT_SYMBOL(dma_map_sg); | ||
552 | |||
553 | /** | ||
554 | * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg | ||
555 | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | ||
556 | * @sg: list of buffers | ||
557 | * @nents: number of buffers to unmap (returned from dma_map_sg) | ||
558 | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | ||
559 | * | ||
560 | * Unmap a set of streaming mode DMA translations. Again, CPU access | ||
561 | * rules concerning calls here are the same as for dma_unmap_single(). | ||
562 | */ | ||
563 | void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | ||
564 | enum dma_data_direction dir) | ||
565 | { | ||
566 | struct scatterlist *s; | ||
567 | int i; | ||
568 | |||
569 | for_each_sg(sg, s, nents, i) | ||
570 | dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); | ||
571 | } | ||
572 | EXPORT_SYMBOL(dma_unmap_sg); | ||
573 | |||
574 | /** | ||
575 | * dma_sync_sg_for_cpu | ||
576 | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | ||
577 | * @sg: list of buffers | ||
578 | * @nents: number of buffers to map (returned from dma_map_sg) | ||
579 | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | ||
580 | */ | ||
581 | void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, | ||
582 | int nents, enum dma_data_direction dir) | ||
583 | { | ||
584 | struct scatterlist *s; | ||
585 | int i; | ||
586 | |||
587 | for_each_sg(sg, s, nents, i) { | ||
588 | dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0, | ||
589 | sg_dma_len(s), dir); | ||
590 | } | ||
591 | } | ||
592 | EXPORT_SYMBOL(dma_sync_sg_for_cpu); | ||
593 | |||
594 | /** | ||
595 | * dma_sync_sg_for_device | ||
596 | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | ||
597 | * @sg: list of buffers | ||
598 | * @nents: number of buffers to map (returned from dma_map_sg) | ||
599 | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | ||
600 | */ | ||
601 | void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, | ||
602 | int nents, enum dma_data_direction dir) | ||
603 | { | ||
604 | struct scatterlist *s; | ||
605 | int i; | ||
606 | |||
607 | for_each_sg(sg, s, nents, i) { | ||
608 | if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0, | ||
609 | sg_dma_len(s), dir)) | ||
610 | continue; | ||
611 | |||
612 | if (!arch_is_coherent()) | ||
613 | dma_cache_maint(sg_virt(s), s->length, dir); | ||
614 | } | ||
615 | } | ||
616 | EXPORT_SYMBOL(dma_sync_sg_for_device); | ||