/*
* Kernel Probes (KProbes)
* arch/mips/kernel/kprobes.c
*
* Copyright 2006 Sony Corp.
* Copyright 2010 Cavium Networks
*
* Some portions copied from the powerpc version.
*
* Copyright (C) IBM Corporation, 2002, 2004
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kprobes.h>
#include <linux/preempt.h>
#include <linux/uaccess.h>
#include <linux/kdebug.h>
#include <linux/slab.h>
#include <asm/ptrace.h>
#include <asm/branch.h>
#include <asm/break.h>
#include <asm/inst.h>
static const union mips_instruction breakpoint_insn = {
.b_format = {
.opcode = spec_op,
.code = BRK_KPROBE_BP,
.func = break_op
}
};
static const union mips_instruction breakpoint2_insn = {
.b_format = {
.opcode = spec_op,
.code = BRK_KPROBE_SSTEPBP,
.func = break_op
}
};
DEFINE_PER_CPU(struct kprobe *, current_kprobe);
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
static int __kprobes insn_has_delayslot(union mips_instruction insn)
{
switch (insn.i_format.opcode) {
/*
* This group contains:
* jr and jalr are in r_format format.
*/
case spec_op:
switch (insn.r_format.func) {
case jr_op:
case jalr_op:
break;
default:
goto insn_ok;
}
/*
* This group contains:
* bltz_op, bgez_op, bltzl_op, bgezl_op,
* bltzal_op, bgezal_op, bltzall_op, bgezall_op.
*/
case bcond_op:
/*
* These are unconditional and in j_format.
*/
case jal_op:
case j_op:
/*
* These are conditional and in i_format.
*/
case beq_op:
case beql_op:
case bne_op:
case bnel_op:
case blez_op:
case blezl_op:
case bgtz_op:
case bgtzl_op:
/*
* These are the FPA/cp1 branch instructions.
*/
case cop1_op:
#ifdef CONFIG_CPU_CAVIUM_OCTEON
case lwc2_op: /* This is bbit0 on Octeon */
case ldc2_op: /* This is bbit032 on Octeon */
case swc2_op: /* This is bbit1 on Octeon */
case sdc2_op: /* This is bbit132 on Octeon */
#endif
return 1;
default:
break;
}
insn_ok:
return 0;
}
/*
* insn_has_ll_or_sc function checks whether instruction is ll or sc
* one; putting breakpoint on top of atomic ll/sc pair is bad idea;
* so we need to prevent it and refuse kprobes insertion for such
* instructions; cannot do much about breakpoint in the middle of
* ll/sc pair; it is upto user to avoid those places
*/
static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
{
int ret = 0;
switch (insn.i_format.opcode) {
case ll_op:
case lld_op:
case sc_op:
case scd_op:
ret = 1;
break;
default:
break;
}
return ret;
}
int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
union mips_instruction insn;
union mips_instruction prev_insn;
int ret = 0;
insn = p->addr[0];
if (insn_has_ll_or_sc(insn)) {
pr_notice("Kprobes for ll and sc instructions are not"
"supported\n");
ret = -EINVAL;
goto out;
}
if ((probe_kernel_read(&prev_insn, p->addr - 1,
sizeof(mips_instruction)) == 0) &&
insn_has_delayslot(prev_insn)) {
pr_notice("Kprobes for branch delayslot are not supported\n");
ret = -EINVAL;
goto out;
}
/* insn: must be on special executable page on mips. */
p->ainsn.insn = get_insn_slot();
if (!p->ainsn.insn) {
ret = -ENOMEM;
goto out;
}
/*
* In the kprobe->ainsn.insn[] array we store the original
* instruction at index zero and a break trap instruction at
* index one.
*
* On MIPS arch if the instruction at probed address is a
* branch instruction, we need to execute the instruction at
* Branch Delayslot (BD) at the time of probe hit. As MIPS also
* doesn't have single stepping support, the BD instruction can
* not be executed in-line and it would be executed on SSOL slot
* using a normal breakpoint instruction in the next slot.
* So, read the instruction and save it for later execution.
*/
if (insn_has_delayslot(insn))
memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
else
memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
p->ainsn.insn[1] = breakpoint2_insn;
p->opcode = *p->addr;
out:
return ret;
}
void __kprobes arch_arm_kprobe(struct kprobe *p)
{
*p->addr = breakpoint_insn;
flush_insn_slot(p);
}
void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
*p->addr = p->opcode;
flush_insn_slot(p);
}
void __kprobes arch_remove_kprobe(struct kprobe *p)
{
free_insn_slot(p->ainsn.insn, 0);
}
static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
}
static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
kcb->kprobe_status = kcb->prev_kprobe.status;
kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
}
static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
__get_cpu_var(current_kprobe) = p;
kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
kcb->kprobe_saved_epc = regs->cp0_epc;
}
/**
* evaluate_branch_instrucion -
*
* Evaluate the branch instruction at probed address during probe hit. The
* result of evaluation would be the updated epc. The insturction in delayslot
* would actually be single stepped using a normal breakpoint) on SSOL slot.
*
* The result is also saved in the kprobe control block for later use,
* in case we need to execute the delayslot instruction. The latter will be
* false for NOP instruction in dealyslot and the branch-likely instructions
* when the branch is taken. And for those cases we set a flag as
* SKIP_DELAYSLOT in the kprobe control block
*/
static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
union mips_instruction insn = p->opcode;
long epc;
int ret = 0;
epc = regs->cp0_epc;
if (epc & 3)
goto unaligned;
if (p->ainsn.insn->word == 0)
kcb->flags |= SKIP_DELAYSLOT;
else
kcb->flags &= ~SKIP_DELAYSLOT;
ret = __compute_return_epc_for_insn(regs, insn);
if (ret < 0)
return ret;
if (ret == BRANCH_LIKELY_TAKEN)
kcb->flags |= SKIP_DELAYSLOT;
kcb->target_epc = regs->cp0_epc;
return 0;
unaligned:
pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
force_sig(SIGBUS, current);
return -EFAULT;
}
static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
int ret = 0;
regs->cp0_status &= ~ST0_IE;
/* single step inline if the instruction is a break */
if (p->opcode.word == breakpoint_insn.word ||
p->opcode.word == breakpoint2_insn.word)
regs->cp0_epc = (unsigned long)p->addr;
else if (insn_has_delayslot(p->opcode)) {
ret = evaluate_branch_instruction(p, regs, kcb);
if (ret < 0) {
pr_notice("Kprobes: Error in evaluating branch\n");
return;
}
}
regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
}
/*
* Called after single-stepping. p->addr is the address of the
* instruction whose first byte has been replaced by the "break 0"
* instruction. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction. The address of this
* copy is p->ainsn.insn.
*
* This function prepares to return from the post-single-step
* breakpoint trap. In case of branch instructions, the target
* epc to be restored.
*/
static void __kprobes resume_execution(struct kprobe *p,
struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
if (insn_has_delayslot(p->opcode))
regs->cp0_epc = kcb->target_epc;
else {
unsigned long orig_epc = kcb->kprobe_saved_epc;
regs->cp0_epc = orig_epc + 4;
}
}
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
struct kprobe *p;
int ret = 0;
kprobe_opcode_t *addr;
struct kprobe_ctlblk *kcb;
addr = (kprobe_opcode_t *) regs->cp0_epc;
/*
* We don't want to be preempted for the entire
* duration of kprobe processing
*/
preempt_disable();
kcb = get_kprobe_ctlblk();
/* Check we're not actually recursing */
if (kprobe_running()) {
p = get_kprobe(addr);
if (p) {
if (kcb->kprobe_status == KPROBE_HIT_SS &&
p->ainsn.insn->word == breakpoint_insn.word) {
regs->cp0_status &= ~ST0_IE;
regs->cp0_status |= kcb->kprobe_saved_SR;
goto no_kprobe;
}
/*
* We have reentered the kprobe_handler(), since
* another probe was hit while within the handler.
* We here save the original kprobes variables and
* just single step on the instruction of the new probe
* without calling any user handlers.
*/
save_previous_kprobe(kcb);
set_current_kprobe(p, regs, kcb);
kprobes_inc_nmissed_count(p);
prepare_singlestep(p, regs, kcb);
kcb->kprobe_status = KPROBE_REENTER;
if (kcb->flags & SKIP_DELAYSLOT) {
resume_execution(p, regs, kcb);
restore_previous_kprobe(kcb);
preempt_enable_no_resched();
}
return 1;
} else {
if (addr->word != breakpoint_insn.word) {
/*
* The breakpoint instruction was removed by
* another cpu right after we hit, no further
* handling of this interrupt is appropriate
*/
ret = 1;
goto no_kprobe;
}
p = __get_cpu_var(current_kprobe);
if (p->break_handler && p->break_handler(p, regs))
goto ss_probe;
}
goto no_kprobe;
}
p = get_kprobe(addr);
if (!p) {
if (addr->word != breakpoint_insn.word) {
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
*/
ret = 1;
}
/* Not one of ours: let kernel handle it */
goto no_kprobe;
}
set_current_kprobe(p, regs, kcb);
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
if (p->pre_handler && p->pre_handler(p, regs)) {
/* handler has already set things up, so skip ss setup */
return 1;
}
ss_probe:
prepare_singlestep(p, regs, kcb);
if (kcb->flags & SKIP_DELAYSLOT) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
if (p->post_handler)
p->post_handler(p, regs, 0);
resume_execution(p, regs, kcb);
preempt_enable_no_resched();
} else
kcb->kprobe_status = KPROBE_HIT_SS;
return 1;
no_kprobe:
preempt_enable_no_resched();
return ret;
}
static inline int post_kprobe_handler(struct pt_regs *regs)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (!cur)
return 0;
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
cur->post_handler(cur, regs, 0);
}
resume_execution(cur, regs, kcb);
regs->cp0_status |= kcb->kprobe_saved_SR;
/* Restore back the original saved kprobes variables and continue. */
if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb);
goto out;
}
reset_current_kprobe();
out:
preempt_enable_no_resched();
return 1;
}
static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
return 1;
if (kcb->kprobe_status & KPROBE_HIT_SS) {
resume_execution(cur, regs, kcb);
regs->cp0_status |= kcb->kprobe_old_SR;
reset_current_kprobe();
preempt_enable_no_resched();
}
return 0;
}
/*
* Wrapper routine for handling exceptions.
*/
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
unsigned long val, void *data)
{
struct die_args *args = (struct die_args *)data;
int ret = NOTIFY_DONE;
switch (val) {
case DIE_BREAK:
if (kprobe_handler(args->regs))
ret = NOTIFY_STOP;
break;
case DIE_SSTEPBP:
if (post_kprobe_handler(args->regs))
ret = NOTIFY_STOP;
break;
case DIE_PAGE_FAULT:
/* kprobe_running() needs smp_processor_id() */
preempt_disable();
if (kprobe_running()
&& kprobe_fault_handler(args->regs, args->trapnr))
ret = NOTIFY_STOP;
preempt_enable();
break;
default:
break;
}
return ret;
}
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
struct jprobe *jp = container_of(p, struct jprobe, kp);
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
kcb->jprobe_saved_regs = *regs;
kcb->jprobe_saved_sp = regs->regs[29];
memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
regs->cp0_epc = (unsigned long)(jp->entry);
return 1;
}
/* Defined in the inline asm below. */
void jprobe_return_end(void);
void __kprobes jprobe_return(void)
{
/* Assembler quirk necessitates this '0,code' business. */
asm volatile(
"break 0,%0\n\t"
".globl jprobe_return_end\n"
"jprobe_return_end:\n"
: : "n" (BRK_KPROBE_BP) : "memory");
}
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (regs->cp0_epc >= (unsigned long)jprobe_return &&
regs->cp0_epc <= (unsigned long)jprobe_return_end) {
*regs = kcb->jprobe_saved_regs;
memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
preempt_enable_no_resched();
return 1;
}
return 0;
}
/*
* Function return probe trampoline:
* - init_kprobes() establishes a probepoint here
* - When the probed function returns, this probe causes the
* handlers to fire
*/
static void __used kretprobe_trampoline_holder(void)
{
asm volatile(
".set push\n\t"
/* Keep the assembler from reordering and placing JR here. */
".set noreorder\n\t"
"nop\n\t"
".global kretprobe_trampoline\n"
"kretprobe_trampoline:\n\t"
"nop\n\t"
".set pop"
: : : "memory");
}
void kretprobe_trampoline(void);
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
struct pt_regs *regs)
{
ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
/* Replace the return addr with trampoline addr */
regs->regs[31] = (unsigned long)kretprobe_trampoline;
}
/*
* Called when the probe at kretprobe trampoline is hit
*/
static int __kprobes trampoline_probe_handler(struct kprobe *p,
struct pt_regs *regs)
{
struct kretprobe_instance *ri = NULL;
struct hlist_head *head, empty_rp;
struct hlist_node *node, *tmp;
unsigned long flags, orig_ret_address = 0;
unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
INIT_HLIST_HEAD(&empty_rp);
kretprobe_hash_lock(current, &head, &flags);
/*
* It is possible to have multiple instances associated with a given
* task either because an multiple functions in the call path
* have a return probe installed on them, and/or more than one return
* return probe was registered for a target function.
*
* We can handle this because:
* - instances are always inserted at the head of the list
* - when multiple return probes are registered for the same
* function, the first instance's ret_addr will point to the
* real return address, and all the rest will point to
* kretprobe_trampoline
*/
hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
if (ri->task != current)
/* another task is sharing our hash bucket */
continue;
if (ri->rp && ri->rp->handler)
ri->rp->handler(ri, regs);
orig_ret_address = (unsigned long)ri->ret_addr;
recycle_rp_inst(ri, &empty_rp);
if (orig_ret_address != trampoline_address)
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
kretprobe_assert(ri, orig_ret_address, trampoline_address);
instruction_pointer(regs) = orig_ret_address;
reset_current_kprobe();
kretprobe_hash_unlock(current, &flags);
preempt_enable_no_resched();
hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
hlist_del(&ri->hlist);
kfree(ri);
}
/*
* By returning a non-zero value, we are telling
* kprobe_handler() that we don't want the post_handler
* to run (and have re-enabled preemption)
*/
return 1;
}
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
return 1;
return 0;
}
static struct kprobe trampoline_p = {
.addr = (kprobe_opcode_t *)kretprobe_trampoline,
.pre_handler = trampoline_probe_handler
};
int __init arch_init_kprobes(void)
{
return register_kprobe(&trampoline_p);
}