aboutsummaryrefslogtreecommitdiffstats
path: root/arch/mips/kernel/kprobes.c
diff options
context:
space:
mode:
authorManeesh Soni <manesoni@cisco.com>2011-11-08 06:38:26 -0500
committerRalf Baechle <ralf@linux-mips.org>2011-12-07 17:04:03 -0500
commit6457a396bbc20656009eaf950ca165912a943520 (patch)
tree5a940616d2b1b55f182d4022a39c4d37a9cda1e7 /arch/mips/kernel/kprobes.c
parentd8d4e3ae0b5c179c0bfd3f0af5b352d13bea9cfa (diff)
MIPS Kprobes: Support branch instructions probing
This patch provides support for kprobes on branch instructions. The branch instruction at the probed address is actually emulated and not executed out-of-line like other normal instructions. Instead the delay-slot instruction is copied and single stepped out of line. At the time of probe hit, the original branch instruction is evaluated and the target cp0_epc is computed similar to compute_retrun_epc(). It is also checked if the delay slot instruction can be skipped, which is true if there is a NOP in delay slot or branch is taken in case of branch likely instructions. Once the delay slot instruction is single stepped the normal execution resume with the cp0_epc updated the earlier computed cp0_epc as per the branch instructions. Signed-off-by: Maneesh Soni <manesoni@cisco.com> Signed-off-by: Victor Kamensky <kamensky@cisco.com> Cc: David Daney <david.daney@cavium.com> Cc: ananth@in.ibm.com Cc: linux-kernel@vger.kernel.org Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/2914/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Diffstat (limited to 'arch/mips/kernel/kprobes.c')
-rw-r--r--arch/mips/kernel/kprobes.c145
1 files changed, 112 insertions, 33 deletions
diff --git a/arch/mips/kernel/kprobes.c b/arch/mips/kernel/kprobes.c
index 0ab1a5ff1049..158467da9bc1 100644
--- a/arch/mips/kernel/kprobes.c
+++ b/arch/mips/kernel/kprobes.c
@@ -30,6 +30,7 @@
30#include <linux/slab.h> 30#include <linux/slab.h>
31 31
32#include <asm/ptrace.h> 32#include <asm/ptrace.h>
33#include <asm/branch.h>
33#include <asm/break.h> 34#include <asm/break.h>
34#include <asm/inst.h> 35#include <asm/inst.h>
35 36
@@ -152,13 +153,6 @@ int __kprobes arch_prepare_kprobe(struct kprobe *p)
152 goto out; 153 goto out;
153 } 154 }
154 155
155 if (insn_has_delayslot(insn)) {
156 pr_notice("Kprobes for branch and jump instructions are not"
157 "supported\n");
158 ret = -EINVAL;
159 goto out;
160 }
161
162 if ((probe_kernel_read(&prev_insn, p->addr - 1, 156 if ((probe_kernel_read(&prev_insn, p->addr - 1,
163 sizeof(mips_instruction)) == 0) && 157 sizeof(mips_instruction)) == 0) &&
164 insn_has_delayslot(prev_insn)) { 158 insn_has_delayslot(prev_insn)) {
@@ -178,9 +172,20 @@ int __kprobes arch_prepare_kprobe(struct kprobe *p)
178 * In the kprobe->ainsn.insn[] array we store the original 172 * In the kprobe->ainsn.insn[] array we store the original
179 * instruction at index zero and a break trap instruction at 173 * instruction at index zero and a break trap instruction at
180 * index one. 174 * index one.
175 *
176 * On MIPS arch if the instruction at probed address is a
177 * branch instruction, we need to execute the instruction at
178 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
179 * doesn't have single stepping support, the BD instruction can
180 * not be executed in-line and it would be executed on SSOL slot
181 * using a normal breakpoint instruction in the next slot.
182 * So, read the instruction and save it for later execution.
181 */ 183 */
184 if (insn_has_delayslot(insn))
185 memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
186 else
187 memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
182 188
183 memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
184 p->ainsn.insn[1] = breakpoint2_insn; 189 p->ainsn.insn[1] = breakpoint2_insn;
185 p->opcode = *p->addr; 190 p->opcode = *p->addr;
186 191
@@ -231,16 +236,96 @@ static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
231 kcb->kprobe_saved_epc = regs->cp0_epc; 236 kcb->kprobe_saved_epc = regs->cp0_epc;
232} 237}
233 238
234static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 239/**
240 * evaluate_branch_instrucion -
241 *
242 * Evaluate the branch instruction at probed address during probe hit. The
243 * result of evaluation would be the updated epc. The insturction in delayslot
244 * would actually be single stepped using a normal breakpoint) on SSOL slot.
245 *
246 * The result is also saved in the kprobe control block for later use,
247 * in case we need to execute the delayslot instruction. The latter will be
248 * false for NOP instruction in dealyslot and the branch-likely instructions
249 * when the branch is taken. And for those cases we set a flag as
250 * SKIP_DELAYSLOT in the kprobe control block
251 */
252static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
253 struct kprobe_ctlblk *kcb)
235{ 254{
255 union mips_instruction insn = p->opcode;
256 long epc;
257 int ret = 0;
258
259 epc = regs->cp0_epc;
260 if (epc & 3)
261 goto unaligned;
262
263 if (p->ainsn.insn->word == 0)
264 kcb->flags |= SKIP_DELAYSLOT;
265 else
266 kcb->flags &= ~SKIP_DELAYSLOT;
267
268 ret = __compute_return_epc_for_insn(regs, insn);
269 if (ret < 0)
270 return ret;
271
272 if (ret == BRANCH_LIKELY_TAKEN)
273 kcb->flags |= SKIP_DELAYSLOT;
274
275 kcb->target_epc = regs->cp0_epc;
276
277 return 0;
278
279unaligned:
280 pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
281 force_sig(SIGBUS, current);
282 return -EFAULT;
283
284}
285
286static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
287 struct kprobe_ctlblk *kcb)
288{
289 int ret = 0;
290
236 regs->cp0_status &= ~ST0_IE; 291 regs->cp0_status &= ~ST0_IE;
237 292
238 /* single step inline if the instruction is a break */ 293 /* single step inline if the instruction is a break */
239 if (p->opcode.word == breakpoint_insn.word || 294 if (p->opcode.word == breakpoint_insn.word ||
240 p->opcode.word == breakpoint2_insn.word) 295 p->opcode.word == breakpoint2_insn.word)
241 regs->cp0_epc = (unsigned long)p->addr; 296 regs->cp0_epc = (unsigned long)p->addr;
242 else 297 else if (insn_has_delayslot(p->opcode)) {
243 regs->cp0_epc = (unsigned long)&p->ainsn.insn[0]; 298 ret = evaluate_branch_instruction(p, regs, kcb);
299 if (ret < 0) {
300 pr_notice("Kprobes: Error in evaluating branch\n");
301 return;
302 }
303 }
304 regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
305}
306
307/*
308 * Called after single-stepping. p->addr is the address of the
309 * instruction whose first byte has been replaced by the "break 0"
310 * instruction. To avoid the SMP problems that can occur when we
311 * temporarily put back the original opcode to single-step, we
312 * single-stepped a copy of the instruction. The address of this
313 * copy is p->ainsn.insn.
314 *
315 * This function prepares to return from the post-single-step
316 * breakpoint trap. In case of branch instructions, the target
317 * epc to be restored.
318 */
319static void __kprobes resume_execution(struct kprobe *p,
320 struct pt_regs *regs,
321 struct kprobe_ctlblk *kcb)
322{
323 if (insn_has_delayslot(p->opcode))
324 regs->cp0_epc = kcb->target_epc;
325 else {
326 unsigned long orig_epc = kcb->kprobe_saved_epc;
327 regs->cp0_epc = orig_epc + 4;
328 }
244} 329}
245 330
246static int __kprobes kprobe_handler(struct pt_regs *regs) 331static int __kprobes kprobe_handler(struct pt_regs *regs)
@@ -279,8 +364,13 @@ static int __kprobes kprobe_handler(struct pt_regs *regs)
279 save_previous_kprobe(kcb); 364 save_previous_kprobe(kcb);
280 set_current_kprobe(p, regs, kcb); 365 set_current_kprobe(p, regs, kcb);
281 kprobes_inc_nmissed_count(p); 366 kprobes_inc_nmissed_count(p);
282 prepare_singlestep(p, regs); 367 prepare_singlestep(p, regs, kcb);
283 kcb->kprobe_status = KPROBE_REENTER; 368 kcb->kprobe_status = KPROBE_REENTER;
369 if (kcb->flags & SKIP_DELAYSLOT) {
370 resume_execution(p, regs, kcb);
371 restore_previous_kprobe(kcb);
372 preempt_enable_no_resched();
373 }
284 return 1; 374 return 1;
285 } else { 375 } else {
286 if (addr->word != breakpoint_insn.word) { 376 if (addr->word != breakpoint_insn.word) {
@@ -324,8 +414,16 @@ static int __kprobes kprobe_handler(struct pt_regs *regs)
324 } 414 }
325 415
326ss_probe: 416ss_probe:
327 prepare_singlestep(p, regs); 417 prepare_singlestep(p, regs, kcb);
328 kcb->kprobe_status = KPROBE_HIT_SS; 418 if (kcb->flags & SKIP_DELAYSLOT) {
419 kcb->kprobe_status = KPROBE_HIT_SSDONE;
420 if (p->post_handler)
421 p->post_handler(p, regs, 0);
422 resume_execution(p, regs, kcb);
423 preempt_enable_no_resched();
424 } else
425 kcb->kprobe_status = KPROBE_HIT_SS;
426
329 return 1; 427 return 1;
330 428
331no_kprobe: 429no_kprobe:
@@ -334,25 +432,6 @@ no_kprobe:
334 432
335} 433}
336 434
337/*
338 * Called after single-stepping. p->addr is the address of the
339 * instruction whose first byte has been replaced by the "break 0"
340 * instruction. To avoid the SMP problems that can occur when we
341 * temporarily put back the original opcode to single-step, we
342 * single-stepped a copy of the instruction. The address of this
343 * copy is p->ainsn.insn.
344 *
345 * This function prepares to return from the post-single-step
346 * breakpoint trap.
347 */
348static void __kprobes resume_execution(struct kprobe *p,
349 struct pt_regs *regs,
350 struct kprobe_ctlblk *kcb)
351{
352 unsigned long orig_epc = kcb->kprobe_saved_epc;
353 regs->cp0_epc = orig_epc + 4;
354}
355
356static inline int post_kprobe_handler(struct pt_regs *regs) 435static inline int post_kprobe_handler(struct pt_regs *regs)
357{ 436{
358 struct kprobe *cur = kprobe_running(); 437 struct kprobe *cur = kprobe_running();