/*
* linux/arch/cris/arch-v32/kernel/time.c
*
* Copyright (C) 2003-2007 Axis Communications AB
*
*/
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/interrupt.h>
#include <linux/swap.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/cpufreq.h>
#include <asm/types.h>
#include <asm/signal.h>
#include <asm/io.h>
#include <asm/delay.h>
#include <asm/rtc.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <hwregs/reg_map.h>
#include <hwregs/reg_rdwr.h>
#include <hwregs/timer_defs.h>
#include <hwregs/intr_vect_defs.h>
#ifdef CONFIG_CRIS_MACH_ARTPEC3
#include <hwregs/clkgen_defs.h>
#endif
/* Watchdog defines */
#define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
#define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
/* Number of 763 counts before watchdog bites */
#define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
unsigned long timer_regs[NR_CPUS] =
{
regi_timer0,
#ifdef CONFIG_SMP
regi_timer2
#endif
};
extern void update_xtime_from_cmos(void);
extern int set_rtc_mmss(unsigned long nowtime);
extern int setup_irq(int, struct irqaction *);
extern int have_rtc;
#ifdef CONFIG_CPU_FREQ
static int
cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
void *data);
static struct notifier_block cris_time_freq_notifier_block = {
.notifier_call = cris_time_freq_notifier,
};
#endif
unsigned long get_ns_in_jiffie(void)
{
reg_timer_r_tmr0_data data;
unsigned long ns;
data = REG_RD(timer, regi_timer0, r_tmr0_data);
ns = (TIMER0_DIV - data) * 10;
return ns;
}
unsigned long do_slow_gettimeoffset(void)
{
unsigned long count;
unsigned long usec_count = 0;
/* For the first call after boot */
static unsigned long count_p = TIMER0_DIV;
static unsigned long jiffies_p = 0;
/* Cache volatile jiffies temporarily; we have IRQs turned off. */
unsigned long jiffies_t;
/* The timer interrupt comes from Etrax timer 0. In order to get
* better precision, we check the current value. It might have
* underflowed already though. */
count = REG_RD(timer, regi_timer0, r_tmr0_data);
jiffies_t = jiffies;
/* Avoiding timer inconsistencies (they are rare, but they happen)
* There is one problem that must be avoided here:
* 1. the timer counter underflows
*/
if( jiffies_t == jiffies_p ) {
if( count > count_p ) {
/* Timer wrapped, use new count and prescale.
* Increase the time corresponding to one jiffy.
*/
usec_count = 1000000/HZ;
}
} else
jiffies_p = jiffies_t;
count_p = count;
/* Convert timer value to usec */
/* 100 MHz timer, divide by 100 to get usec */
usec_count += (TIMER0_DIV - count) / 100;
return usec_count;
}
/* From timer MDS describing the hardware watchdog:
* 4.3.1 Watchdog Operation
* The watchdog timer is an 8-bit timer with a configurable start value.
* Once started the watchdog counts downwards with a frequency of 763 Hz
* (100/131072 MHz). When the watchdog counts down to 1, it generates an
* NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
* chip.
*/
/* This gives us 1.3 ms to do something useful when the NMI comes */
/* Right now, starting the watchdog is the same as resetting it */
#define start_watchdog reset_watchdog
#if defined(CONFIG_ETRAX_WATCHDOG)
static short int watchdog_key = 42; /* arbitrary 7 bit number */
#endif
/* Number of pages to consider "out of memory". It is normal that the memory
* is used though, so set this really low. */
#define WATCHDOG_MIN_FREE_PAGES 8
void
reset_watchdog(void)
{
#if defined(CONFIG_ETRAX_WATCHDOG)
reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
/* Only keep watchdog happy as long as we have memory left! */
if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
/* Reset the watchdog with the inverse of the old key */
/* Invert key, which is 7 bits */
watchdog_key ^= ETRAX_WD_KEY_MASK;
wd_ctrl.cnt = ETRAX_WD_CNT;
wd_ctrl.cmd = regk_timer_start;
wd_ctrl.key = watchdog_key;
REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
}
#endif
}
/* stop the watchdog - we still need the correct key */
void
stop_watchdog(void)
{
#if defined(CONFIG_ETRAX_WATCHDOG)
reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
wd_ctrl.cnt = ETRAX_WD_CNT;
wd_ctrl.cmd = regk_timer_stop;
wd_ctrl.key = watchdog_key;
REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
#endif
}
extern void show_registers(struct pt_regs *regs);
void
handle_watchdog_bite(struct pt_regs* regs)
{
#if defined(CONFIG_ETRAX_WATCHDOG)
extern int cause_of_death;
oops_in_progress = 1;
printk(KERN_WARNING "Watchdog bite\n");
/* Check if forced restart or unexpected watchdog */
if (cause_of_death == 0xbedead) {
#ifdef CONFIG_CRIS_MACH_ARTPEC3
/* There is a bug in Artpec-3 (voodoo TR 78) that requires
* us to go to lower frequency for the reset to be reliable
*/
reg_clkgen_rw_clk_ctrl ctrl =
REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
ctrl.pll = 0;
REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
#endif
while(1);
}
/* Unexpected watchdog, stop the watchdog and dump registers. */
stop_watchdog();
printk(KERN_WARNING "Oops: bitten by watchdog\n");
show_registers(regs);
oops_in_progress = 0;
#ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
reset_watchdog();
#endif
while(1) /* nothing */;
#endif
}
/* Last time the cmos clock got updated. */
static long last_rtc_update = 0;
/*
* timer_interrupt() needs to keep up the real-time clock,
* as well as call the "do_timer()" routine every clocktick.
*/
extern void cris_do_profile(struct pt_regs *regs);
static inline irqreturn_t
timer_interrupt(int irq, void *dev_id)
{
struct pt_regs *regs = get_irq_regs();
int cpu = smp_processor_id();
reg_timer_r_masked_intr masked_intr;
reg_timer_rw_ack_intr ack_intr = { 0 };
/* Check if the timer interrupt is for us (a tmr0 int) */
masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
if (!masked_intr.tmr0)
return IRQ_NONE;
/* Acknowledge the timer irq. */
ack_intr.tmr0 = 1;
REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
/* Reset watchdog otherwise it resets us! */
reset_watchdog();
/* Update statistics. */
update_process_times(user_mode(regs));
cris_do_profile(regs); /* Save profiling information */
/* The master CPU is responsible for the time keeping. */
if (cpu != 0)
return IRQ_HANDLED;
/* Call the real timer interrupt handler */
do_timer(1);
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
*
* The division here is not time critical since it will run once in
* 11 minutes
*/
if ((time_status & STA_UNSYNC) == 0 &&
xtime.tv_sec > last_rtc_update + 660 &&
(xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
(xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
/* Do it again in 60 s */
last_rtc_update = xtime.tv_sec - 600;
}
return IRQ_HANDLED;
}
/* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain.
* It needs to be IRQF_DISABLED to make the jiffies update work properly.
*/
static struct irqaction irq_timer = {
.handler = timer_interrupt,
.flags = IRQF_SHARED | IRQF_DISABLED,
.name = "timer"
};
void __init
cris_timer_init(void)
{
int cpu = smp_processor_id();
reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
reg_timer_rw_intr_mask timer_intr_mask;
/* Setup the etrax timers.
* Base frequency is 100MHz, divider 1000000 -> 100 HZ
* We use timer0, so timer1 is free.
* The trig timer is used by the fasttimer API if enabled.
*/
tmr0_ctrl.op = regk_timer_ld;
tmr0_ctrl.freq = regk_timer_f100;
REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
tmr0_ctrl.op = regk_timer_run;
REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
/* Enable the timer irq. */
timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
timer_intr_mask.tmr0 = 1;
REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
}
void __init
time_init(void)
{
reg_intr_vect_rw_mask intr_mask;
/* Probe for the RTC and read it if it exists.
* Before the RTC can be probed the loops_per_usec variable needs
* to be initialized to make usleep work. A better value for
* loops_per_usec is calculated by the kernel later once the
* clock has started.
*/
loops_per_usec = 50;
if(RTC_INIT() < 0) {
/* No RTC, start at 1980 */
xtime.tv_sec = 0;
xtime.tv_nsec = 0;
have_rtc = 0;
} else {
/* Get the current time */
have_rtc = 1;
update_xtime_from_cmos();
}
/*
* Initialize wall_to_monotonic such that adding it to
* xtime will yield zero, the tv_nsec field must be normalized
* (i.e., 0 <= nsec < NSEC_PER_SEC).
*/
set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
/* Start CPU local timer. */
cris_timer_init();
/* Enable the timer irq in global config. */
intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
intr_mask.timer0 = 1;
REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
/* Now actually register the timer irq handler that calls
* timer_interrupt(). */
setup_irq(TIMER0_INTR_VECT, &irq_timer);
/* Enable watchdog if we should use one. */
#if defined(CONFIG_ETRAX_WATCHDOG)
printk(KERN_INFO "Enabling watchdog...\n");
start_watchdog();
/* If we use the hardware watchdog, we want to trap it as an NMI
* and dump registers before it resets us. For this to happen, we
* must set the "m" NMI enable flag (which once set, is unset only
* when an NMI is taken). */
{
unsigned long flags;
local_save_flags(flags);
flags |= (1<<30); /* NMI M flag is at bit 30 */
local_irq_restore(flags);
}
#endif
#ifdef CONFIG_CPU_FREQ
cpufreq_register_notifier(&cris_time_freq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
#endif
}
#ifdef CONFIG_CPU_FREQ
static int
cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freqs = data;
if (val == CPUFREQ_POSTCHANGE) {
reg_timer_r_tmr0_data data;
reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
do {
data = REG_RD(timer, timer_regs[freqs->cpu],
r_tmr0_data);
} while (data > 20);
REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
}
return 0;
}
#endif