/*
* OMAP3 Power Management Routines
*
* Copyright (C) 2006-2008 Nokia Corporation
* Tony Lindgren <tony@atomide.com>
* Jouni Hogander
*
* Copyright (C) 2007 Texas Instruments, Inc.
* Rajendra Nayak <rnayak@ti.com>
*
* Copyright (C) 2005 Texas Instruments, Inc.
* Richard Woodruff <r-woodruff2@ti.com>
*
* Based on pm.c for omap1
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/pm.h>
#include <linux/suspend.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/clk.h>
#include <plat/sram.h>
#include <plat/clockdomain.h>
#include <plat/powerdomain.h>
#include <plat/control.h>
#include <plat/serial.h>
#include <plat/sdrc.h>
#include <plat/prcm.h>
#include <plat/gpmc.h>
#include <plat/dma.h>
#include <plat/dmtimer.h>
#include <asm/tlbflush.h>
#include "cm.h"
#include "cm-regbits-34xx.h"
#include "prm-regbits-34xx.h"
#include "prm.h"
#include "pm.h"
#include "sdrc.h"
/* Scratchpad offsets */
#define OMAP343X_TABLE_ADDRESS_OFFSET 0x31
#define OMAP343X_TABLE_VALUE_OFFSET 0x30
#define OMAP343X_CONTROL_REG_VALUE_OFFSET 0x32
u32 enable_off_mode;
u32 sleep_while_idle;
u32 wakeup_timer_seconds;
struct power_state {
struct powerdomain *pwrdm;
u32 next_state;
#ifdef CONFIG_SUSPEND
u32 saved_state;
#endif
struct list_head node;
};
static LIST_HEAD(pwrst_list);
static void (*_omap_sram_idle)(u32 *addr, int save_state);
static int (*_omap_save_secure_sram)(u32 *addr);
static struct powerdomain *mpu_pwrdm, *neon_pwrdm;
static struct powerdomain *core_pwrdm, *per_pwrdm;
static struct powerdomain *cam_pwrdm;
static inline void omap3_per_save_context(void)
{
omap_gpio_save_context();
}
static inline void omap3_per_restore_context(void)
{
omap_gpio_restore_context();
}
static void omap3_enable_io_chain(void)
{
int timeout = 0;
if (omap_rev() >= OMAP3430_REV_ES3_1) {
prm_set_mod_reg_bits(OMAP3430_EN_IO_CHAIN, WKUP_MOD, PM_WKEN);
/* Do a readback to assure write has been done */
prm_read_mod_reg(WKUP_MOD, PM_WKEN);
while (!(prm_read_mod_reg(WKUP_MOD, PM_WKST) &
OMAP3430_ST_IO_CHAIN)) {
timeout++;
if (timeout > 1000) {
printk(KERN_ERR "Wake up daisy chain "
"activation failed.\n");
return;
}
prm_set_mod_reg_bits(OMAP3430_ST_IO_CHAIN,
WKUP_MOD, PM_WKST);
}
}
}
static void omap3_disable_io_chain(void)
{
if (omap_rev() >= OMAP3430_REV_ES3_1)
prm_clear_mod_reg_bits(OMAP3430_EN_IO_CHAIN, WKUP_MOD, PM_WKEN);
}
static void omap3_core_save_context(void)
{
u32 control_padconf_off;
/* Save the padconf registers */
control_padconf_off = omap_ctrl_readl(OMAP343X_CONTROL_PADCONF_OFF);
control_padconf_off |= START_PADCONF_SAVE;
omap_ctrl_writel(control_padconf_off, OMAP343X_CONTROL_PADCONF_OFF);
/* wait for the save to complete */
while (!omap_ctrl_readl(OMAP343X_CONTROL_GENERAL_PURPOSE_STATUS)
& PADCONF_SAVE_DONE)
;
/* Save the Interrupt controller context */
omap_intc_save_context();
/* Save the GPMC context */
omap3_gpmc_save_context();
/* Save the system control module context, padconf already save above*/
omap3_control_save_context();
omap_dma_global_context_save();
}
static void omap3_core_restore_context(void)
{
/* Restore the control module context, padconf restored by h/w */
omap3_control_restore_context();
/* Restore the GPMC context */
omap3_gpmc_restore_context();
/* Restore the interrupt controller context */
omap_intc_restore_context();
omap_dma_global_context_restore();
}
/*
* FIXME: This function should be called before entering off-mode after
* OMAP3 secure services have been accessed. Currently it is only called
* once during boot sequence, but this works as we are not using secure
* services.
*/
static void omap3_save_secure_ram_context(u32 target_mpu_state)
{
u32 ret;
if (omap_type() != OMAP2_DEVICE_TYPE_GP) {
/*
* MPU next state must be set to POWER_ON temporarily,
* otherwise the WFI executed inside the ROM code
* will hang the system.
*/
pwrdm_set_next_pwrst(mpu_pwrdm, PWRDM_POWER_ON);
ret = _omap_save_secure_sram((u32 *)
__pa(omap3_secure_ram_storage));
pwrdm_set_next_pwrst(mpu_pwrdm, target_mpu_state);
/* Following is for error tracking, it should not happen */
if (ret) {
printk(KERN_ERR "save_secure_sram() returns %08x\n",
ret);
while (1)
;
}
}
}
/*
* PRCM Interrupt Handler Helper Function
*
* The purpose of this function is to clear any wake-up events latched
* in the PRCM PM_WKST_x registers. It is possible that a wake-up event
* may occur whilst attempting to clear a PM_WKST_x register and thus
* set another bit in this register. A while loop is used to ensure
* that any peripheral wake-up events occurring while attempting to
* clear the PM_WKST_x are detected and cleared.
*/
static int prcm_clear_mod_irqs(s16 module, u8 regs)
{
u32 wkst, fclk, iclk, clken;
u16 wkst_off = (regs == 3) ? OMAP3430ES2_PM_WKST3 : PM_WKST1;
u16 fclk_off = (regs == 3) ? OMAP3430ES2_CM_FCLKEN3 : CM_FCLKEN1;
u16 iclk_off = (regs == 3) ? CM_ICLKEN3 : CM_ICLKEN1;
u16 grpsel_off = (regs == 3) ?
OMAP3430ES2_PM_MPUGRPSEL3 : OMAP3430_PM_MPUGRPSEL;
int c = 0;
wkst = prm_read_mod_reg(module, wkst_off);
wkst &= prm_read_mod_reg(module, grpsel_off);
if (wkst) {
iclk = cm_read_mod_reg(module, iclk_off);
fclk = cm_read_mod_reg(module, fclk_off);
while (wkst) {
clken = wkst;
cm_set_mod_reg_bits(clken, module, iclk_off);
/*
* For USBHOST, we don't know whether HOST1 or
* HOST2 woke us up, so enable both f-clocks
*/
if (module == OMAP3430ES2_USBHOST_MOD)
clken |= 1 << OMAP3430ES2_EN_USBHOST2_SHIFT;
cm_set_mod_reg_bits(clken, module, fclk_off);
prm_write_mod_reg(wkst, module, wkst_off);
wkst = prm_read_mod_reg(module, wkst_off);
c++;
}
cm_write_mod_reg(iclk, module, iclk_off);
cm_write_mod_reg(fclk, module, fclk_off);
}
return c;
}
static int _prcm_int_handle_wakeup(void)
{
int c;
c = prcm_clear_mod_irqs(WKUP_MOD, 1);
c += prcm_clear_mod_irqs(CORE_MOD, 1);
c += prcm_clear_mod_irqs(OMAP3430_PER_MOD, 1);
if (omap_rev() > OMAP3430_REV_ES1_0) {
c += prcm_clear_mod_irqs(CORE_MOD, 3);
c += prcm_clear_mod_irqs(OMAP3430ES2_USBHOST_MOD, 1);
}
return c;
}
/*
* PRCM Interrupt Handler
*
* The PRM_IRQSTATUS_MPU register indicates if there are any pending
* interrupts from the PRCM for the MPU. These bits must be cleared in
* order to clear the PRCM interrupt. The PRCM interrupt handler is
* implemented to simply clear the PRM_IRQSTATUS_MPU in order to clear
* the PRCM interrupt. Please note that bit 0 of the PRM_IRQSTATUS_MPU
* register indicates that a wake-up event is pending for the MPU and
* this bit can only be cleared if the all the wake-up events latched
* in the various PM_WKST_x registers have been cleared. The interrupt
* handler is implemented using a do-while loop so that if a wake-up
* event occurred during the processing of the prcm interrupt handler
* (setting a bit in the corresponding PM_WKST_x register and thus
* preventing us from clearing bit 0 of the PRM_IRQSTATUS_MPU register)
* this would be handled.
*/
static irqreturn_t prcm_interrupt_handler (int irq, void *dev_id)
{
u32 irqstatus_mpu;
int c = 0;
do {
irqstatus_mpu = prm_read_mod_reg(OCP_MOD,
OMAP3_PRM_IRQSTATUS_MPU_OFFSET);
if (irqstatus_mpu & (OMAP3430_WKUP_ST | OMAP3430_IO_ST)) {
c = _prcm_int_handle_wakeup();
/*
* Is the MPU PRCM interrupt handler racing with the
* IVA2 PRCM interrupt handler ?
*/
WARN(c == 0, "prcm: WARNING: PRCM indicated MPU wakeup "
"but no wakeup sources are marked\n");
} else {
/* XXX we need to expand our PRCM interrupt handler */
WARN(1, "prcm: WARNING: PRCM interrupt received, but "
"no code to handle it (%08x)\n", irqstatus_mpu);
}
prm_write_mod_reg(irqstatus_mpu, OCP_MOD,
OMAP3_PRM_IRQSTATUS_MPU_OFFSET);
} while (prm_read_mod_reg(OCP_MOD, OMAP3_PRM_IRQSTATUS_MPU_OFFSET));
return IRQ_HANDLED;
}
static void restore_control_register(u32 val)
{
__asm__ __volatile__ ("mcr p15, 0, %0, c1, c0, 0" : : "r" (val));
}
/* Function to restore the table entry that was modified for enabling MMU */
static void restore_table_entry(void)
{
u32 *scratchpad_address;
u32 previous_value, control_reg_value;
u32 *address;
scratchpad_address = OMAP2_L4_IO_ADDRESS(OMAP343X_SCRATCHPAD);
/* Get address of entry that was modified */
address = (u32 *)__raw_readl(scratchpad_address +
OMAP343X_TABLE_ADDRESS_OFFSET);
/* Get the previous value which needs to be restored */
previous_value = __raw_readl(scratchpad_address +
OMAP343X_TABLE_VALUE_OFFSET);
address = __va(address);
*address = previous_value;
flush_tlb_all();
control_reg_value = __raw_readl(scratchpad_address
+ OMAP343X_CONTROL_REG_VALUE_OFFSET);
/* This will enable caches and prediction */
restore_control_register(control_reg_value);
}
void omap_sram_idle(void)
{
/* Variable to tell what needs to be saved and restored
* in omap_sram_idle*/
/* save_state = 0 => Nothing to save and restored */
/* save_state = 1 => Only L1 and logic lost */
/* save_state = 2 => Only L2 lost */
/* save_state = 3 => L1, L2 and logic lost */
int save_state = 0;
int mpu_next_state = PWRDM_POWER_ON;
int per_next_state = PWRDM_POWER_ON;
int core_next_state = PWRDM_POWER_ON;
int core_prev_state, per_prev_state;
u32 sdrc_pwr = 0;
int per_state_modified = 0;
if (!_omap_sram_idle)
return;
pwrdm_clear_all_prev_pwrst(mpu_pwrdm);
pwrdm_clear_all_prev_pwrst(neon_pwrdm);
pwrdm_clear_all_prev_pwrst(core_pwrdm);
pwrdm_clear_all_prev_pwrst(per_pwrdm);
mpu_next_state = pwrdm_read_next_pwrst(mpu_pwrdm);
switch (mpu_next_state) {
case PWRDM_POWER_ON:
case PWRDM_POWER_RET:
/* No need to save context */
save_state = 0;
break;
case PWRDM_POWER_OFF:
save_state = 3;
break;
default:
/* Invalid state */
printk(KERN_ERR "Invalid mpu state in sram_idle\n");
return;
}
pwrdm_pre_transition();
/* NEON control */
if (pwrdm_read_pwrst(neon_pwrdm) == PWRDM_POWER_ON)
pwrdm_set_next_pwrst(neon_pwrdm, mpu_next_state);
/* PER */
per_next_state = pwrdm_read_next_pwrst(per_pwrdm);
core_next_state = pwrdm_read_next_pwrst(core_pwrdm);
if (per_next_state < PWRDM_POWER_ON) {
omap_uart_prepare_idle(2);
omap2_gpio_prepare_for_retention();
if (per_next_state == PWRDM_POWER_OFF) {
if (core_next_state == PWRDM_POWER_ON) {
per_next_state = PWRDM_POWER_RET;
pwrdm_set_next_pwrst(per_pwrdm, per_next_state);
per_state_modified = 1;
} else
omap3_per_save_context();
}
}
if (pwrdm_read_pwrst(cam_pwrdm) == PWRDM_POWER_ON)
omap2_clkdm_deny_idle(mpu_pwrdm->pwrdm_clkdms[0]);
/* CORE */
if (core_next_state < PWRDM_POWER_ON) {
omap_uart_prepare_idle(0);
omap_uart_prepare_idle(1);
if (core_next_state == PWRDM_POWER_OFF) {
omap3_core_save_context();
omap3_prcm_save_context();
}
/* Enable IO-PAD and IO-CHAIN wakeups */
prm_set_mod_reg_bits(OMAP3430_EN_IO, WKUP_MOD, PM_WKEN);
omap3_enable_io_chain();
}
/*
* On EMU/HS devices ROM code restores a SRDC value
* from scratchpad which has automatic self refresh on timeout
* of AUTO_CNT = 1 enabled. This takes care of errata 1.142.
* Hence store/restore the SDRC_POWER register here.
*/
if (omap_rev() >= OMAP3430_REV_ES3_0 &&
omap_type() != OMAP2_DEVICE_TYPE_GP &&
core_next_state == PWRDM_POWER_OFF)
sdrc_pwr = sdrc_read_reg(SDRC_POWER);
/*
* omap3_arm_context is the location where ARM registers
* get saved. The restore path then reads from this
* location and restores them back.
*/
_omap_sram_idle(omap3_arm_context, save_state);
cpu_init();
/* Restore normal SDRC POWER settings */
if (omap_rev() >= OMAP3430_REV_ES3_0 &&
omap_type() != OMAP2_DEVICE_TYPE_GP &&
core_next_state == PWRDM_POWER_OFF)
sdrc_write_reg(sdrc_pwr, SDRC_POWER);
/* Restore table entry modified during MMU restoration */
if (pwrdm_read_prev_pwrst(mpu_pwrdm) == PWRDM_POWER_OFF)
restore_table_entry();
/* CORE */
if (core_next_state < PWRDM_POWER_ON) {
core_prev_state = pwrdm_read_prev_pwrst(core_pwrdm);
if (core_prev_state == PWRDM_POWER_OFF) {
omap3_core_restore_context();
omap3_prcm_restore_context();
omap3_sram_restore_context();
omap2_sms_restore_context();
}
omap_uart_resume_idle(0);
omap_uart_resume_idle(1);
if (core_next_state == PWRDM_POWER_OFF)
prm_clear_mod_reg_bits(OMAP3430_AUTO_OFF,
OMAP3430_GR_MOD,
OMAP3_PRM_VOLTCTRL_OFFSET);
}
/* PER */
if (per_next_state < PWRDM_POWER_ON) {
per_prev_state = pwrdm_read_prev_pwrst(per_pwrdm);
if (per_prev_state == PWRDM_POWER_OFF)
omap3_per_restore_context();
omap2_gpio_resume_after_retention();
omap_uart_resume_idle(2);
if (per_state_modified)
pwrdm_set_next_pwrst(per_pwrdm, PWRDM_POWER_OFF);
}
/* Disable IO-PAD and IO-CHAIN wakeup */
if (core_next_state < PWRDM_POWER_ON) {
prm_clear_mod_reg_bits(OMAP3430_EN_IO, WKUP_MOD, PM_WKEN);
omap3_disable_io_chain();
}
pwrdm_post_transition();
omap2_clkdm_allow_idle(mpu_pwrdm->pwrdm_clkdms[0]);
}
int omap3_can_sleep(void)
{
if (!sleep_while_idle)
return 0;
if (!omap_uart_can_sleep())
return 0;
return 1;
}
/* This sets pwrdm state (other than mpu & core. Currently only ON &
* RET are supported. Function is assuming that clkdm doesn't have
* hw_sup mode enabled. */
int set_pwrdm_state(struct powerdomain *pwrdm, u32 state)
{
u32 cur_state;
int sleep_switch = 0;
int ret = 0;
if (pwrdm == NULL || IS_ERR(pwrdm))
return -EINVAL;
while (!(pwrdm->pwrsts & (1 << state))) {
if (state == PWRDM_POWER_OFF)
return ret;
state--;
}
cur_state = pwrdm_read_next_pwrst(pwrdm);
if (cur_state == state)
return ret;
if (pwrdm_read_pwrst(pwrdm) < PWRDM_POWER_ON) {
omap2_clkdm_wakeup(pwrdm->pwrdm_clkdms[0]);
sleep_switch = 1;
pwrdm_wait_transition(pwrdm);
}
ret = pwrdm_set_next_pwrst(pwrdm, state);
if (ret) {
printk(KERN_ERR "Unable to set state of powerdomain: %s\n",
pwrdm->name);
goto err;
}
if (sleep_switch) {
omap2_clkdm_allow_idle(pwrdm->pwrdm_clkdms[0]);
pwrdm_wait_transition(pwrdm);
pwrdm_state_switch(pwrdm);
}
err:
return ret;
}
static void omap3_pm_idle(void)
{
local_irq_disable();
local_fiq_disable();
if (!omap3_can_sleep())
goto out;
if (omap_irq_pending() || need_resched())
goto out;
omap_sram_idle();
out:
local_fiq_enable();
local_irq_enable();
}
#ifdef CONFIG_SUSPEND
static suspend_state_t suspend_state;
static void omap2_pm_wakeup_on_timer(u32 seconds)
{
u32 tick_rate, cycles;
if (!seconds)
return;
tick_rate = clk_get_rate(omap_dm_timer_get_fclk(gptimer_wakeup));
cycles = tick_rate * seconds;
omap_dm_timer_stop(gptimer_wakeup);
omap_dm_timer_set_load_start(gptimer_wakeup, 0, 0xffffffff - cycles);
pr_info("PM: Resume timer in %d secs (%d ticks at %d ticks/sec.)\n",
seconds, cycles, tick_rate);
}
static int omap3_pm_prepare(void)
{
disable_hlt();
return 0;
}
static int omap3_pm_suspend(void)
{
struct power_state *pwrst;
int state, ret = 0;
if (wakeup_timer_seconds)
omap2_pm_wakeup_on_timer(wakeup_timer_seconds);
/* Read current next_pwrsts */
list_for_each_entry(pwrst, &pwrst_list, node)
pwrst->saved_state = pwrdm_read_next_pwrst(pwrst->pwrdm);
/* Set ones wanted by suspend */
list_for_each_entry(pwrst, &pwrst_list, node) {
if (set_pwrdm_state(pwrst->pwrdm, pwrst->next_state))
goto restore;
if (pwrdm_clear_all_prev_pwrst(pwrst->pwrdm))
goto restore;
}
omap_uart_prepare_suspend();
omap_sram_idle();
restore:
/* Restore next_pwrsts */
list_for_each_entry(pwrst, &pwrst_list, node) {
state = pwrdm_read_prev_pwrst(pwrst->pwrdm);
if (state > pwrst->next_state) {
printk(KERN_INFO "Powerdomain (%s) didn't enter "
"target state %d\n",
pwrst->pwrdm->name, pwrst->next_state);
ret = -1;
}
set_pwrdm_state(pwrst->pwrdm, pwrst->saved_state);
}
if (ret)
printk(KERN_ERR "Could not enter target state in pm_suspend\n");
else
printk(KERN_INFO "Successfully put all powerdomains "
"to target state\n");
return ret;
}
static int omap3_pm_enter(suspend_state_t unused)
{
int ret = 0;
switch (suspend_state) {
case PM_SUSPEND_STANDBY:
case PM_SUSPEND_MEM:
ret = omap3_pm_suspend();
break;
default:
ret = -EINVAL;
}
return ret;
}
static void omap3_pm_finish(void)
{
enable_hlt();
}
/* Hooks to enable / disable UART interrupts during suspend */
static int omap3_pm_begin(suspend_state_t state)
{
suspend_state = state;
omap_uart_enable_irqs(0);
return 0;
}
static void omap3_pm_end(void)
{
suspend_state = PM_SUSPEND_ON;
omap_uart_enable_irqs(1);
return;
}
static struct platform_suspend_ops omap_pm_ops = {
.begin = omap3_pm_begin,
.end = omap3_pm_end,
.prepare = omap3_pm_prepare,
.enter = omap3_pm_enter,
.finish = omap3_pm_finish,
.valid = suspend_valid_only_mem,
};
#endif /* CONFIG_SUSPEND */
/**
* omap3_iva_idle(): ensure IVA is in idle so it can be put into
* retention
*
* In cases where IVA2 is activated by bootcode, it may prevent
* full-chip retention or off-mode because it is not idle. This
* function forces the IVA2 into idle state so it can go
* into retention/off and thus allow full-chip retention/off.
*
**/
static void __init omap3_iva_idle(void)
{
/* ensure IVA2 clock is disabled */
cm_write_mod_reg(0, OMAP3430_IVA2_MOD, CM_FCLKEN);
/* if no clock activity, nothing else to do */
if (!(cm_read_mod_reg(OMAP3430_IVA2_MOD, OMAP3430_CM_CLKSTST) &
OMAP3430_CLKACTIVITY_IVA2_MASK))
return;
/* Reset IVA2 */
prm_write_mod_reg(OMAP3430_RST1_IVA2 |
OMAP3430_RST2_IVA2 |
OMAP3430_RST3_IVA2,
OMAP3430_IVA2_MOD, RM_RSTCTRL);
/* Enable IVA2 clock */
cm_write_mod_reg(OMAP3430_CM_FCLKEN_IVA2_EN_IVA2,
OMAP3430_IVA2_MOD, CM_FCLKEN);
/* Set IVA2 boot mode to 'idle' */
omap_ctrl_writel(OMAP3_IVA2_BOOTMOD_IDLE,
OMAP343X_CONTROL_IVA2_BOOTMOD);
/* Un-reset IVA2 */
prm_write_mod_reg(0, OMAP3430_IVA2_MOD, RM_RSTCTRL);
/* Disable IVA2 clock */
cm_write_mod_reg(0, OMAP3430_IVA2_MOD, CM_FCLKEN);
/* Reset IVA2 */
prm_write_mod_reg(OMAP3430_RST1_IVA2 |
OMAP3430_RST2_IVA2 |
OMAP3430_RST3_IVA2,
OMAP3430_IVA2_MOD, RM_RSTCTRL);
}
static void __init omap3_d2d_idle(void)
{
u16 mask, padconf;
/* In a stand alone OMAP3430 where there is not a stacked
* modem for the D2D Idle Ack and D2D MStandby must be pulled
* high. S CONTROL_PADCONF_SAD2D_IDLEACK and
* CONTROL_PADCONF_SAD2D_MSTDBY to have a pull up. */
mask = (1 << 4) | (1 << 3); /* pull-up, enabled */
padconf = omap_ctrl_readw(OMAP3_PADCONF_SAD2D_MSTANDBY);
padconf |= mask;
omap_ctrl_writew(padconf, OMAP3_PADCONF_SAD2D_MSTANDBY);
padconf = omap_ctrl_readw(OMAP3_PADCONF_SAD2D_IDLEACK);
padconf |= mask;
omap_ctrl_writew(padconf, OMAP3_PADCONF_SAD2D_IDLEACK);
/* reset modem */
prm_write_mod_reg(OMAP3430_RM_RSTCTRL_CORE_MODEM_SW_RSTPWRON |
OMAP3430_RM_RSTCTRL_CORE_MODEM_SW_RST,
CORE_MOD, RM_RSTCTRL);
prm_write_mod_reg(0, CORE_MOD, RM_RSTCTRL);
}
static void __init prcm_setup_regs(void)
{
/* XXX Reset all wkdeps. This should be done when initializing
* powerdomains */
prm_write_mod_reg(0, OMAP3430_IVA2_MOD, PM_WKDEP);
prm_write_mod_reg(0, MPU_MOD, PM_WKDEP);
prm_write_mod_reg(0, OMAP3430_DSS_MOD, PM_WKDEP);
prm_write_mod_reg(0, OMAP3430_NEON_MOD, PM_WKDEP);
prm_write_mod_reg(0, OMAP3430_CAM_MOD, PM_WKDEP);
prm_write_mod_reg(0, OMAP3430_PER_MOD, PM_WKDEP);
if (omap_rev() > OMAP3430_REV_ES1_0) {
prm_write_mod_reg(0, OMAP3430ES2_SGX_MOD, PM_WKDEP);
prm_write_mod_reg(0, OMAP3430ES2_USBHOST_MOD, PM_WKDEP);
} else
prm_write_mod_reg(0, GFX_MOD, PM_WKDEP);
/*
* Enable interface clock autoidle for all modules.
* Note that in the long run this should be done by clockfw
*/
cm_write_mod_reg(
OMAP3430_AUTO_MODEM |
OMAP3430ES2_AUTO_MMC3 |
OMAP3430ES2_AUTO_ICR |
OMAP3430_AUTO_AES2 |
OMAP3430_AUTO_SHA12 |
OMAP3430_AUTO_DES2 |
OMAP3430_AUTO_MMC2 |
OMAP3430_AUTO_MMC1 |
OMAP3430_AUTO_MSPRO |
OMAP3430_AUTO_HDQ |
OMAP3430_AUTO_MCSPI4 |
OMAP3430_AUTO_MCSPI3 |
OMAP3430_AUTO_MCSPI2 |
OMAP3430_AUTO_MCSPI1 |
OMAP3430_AUTO_I2C3 |
OMAP3430_AUTO_I2C2 |
OMAP3430_AUTO_I2C1 |
OMAP3430_AUTO_UART2 |
OMAP3430_AUTO_UART1 |
OMAP3430_AUTO_GPT11 |
OMAP3430_AUTO_GPT10 |
OMAP3430_AUTO_MCBSP5 |
OMAP3430_AUTO_MCBSP1 |
OMAP3430ES1_AUTO_FAC | /* This is es1 only */
OMAP3430_AUTO_MAILBOXES |
OMAP3430_AUTO_OMAPCTRL |
OMAP3430ES1_AUTO_FSHOSTUSB |
OMAP3430_AUTO_HSOTGUSB |
OMAP3430_AUTO_SAD2D |
OMAP3430_AUTO_SSI,
CORE_MOD, CM_AUTOIDLE1);
cm_write_mod_reg(
OMAP3430_AUTO_PKA |
OMAP3430_AUTO_AES1 |
OMAP3430_AUTO_RNG |
OMAP3430_AUTO_SHA11 |
OMAP3430_AUTO_DES1,
CORE_MOD, CM_AUTOIDLE2);
if (omap_rev() > OMAP3430_REV_ES1_0) {
cm_write_mod_reg(
OMAP3430_AUTO_MAD2D |
OMAP3430ES2_AUTO_USBTLL,
CORE_MOD, CM_AUTOIDLE3);
}
cm_write_mod_reg(
OMAP3430_AUTO_WDT2 |
OMAP3430_AUTO_WDT1 |
OMAP3430_AUTO_GPIO1 |
OMAP3430_AUTO_32KSYNC |
OMAP3430_AUTO_GPT12 |
OMAP3430_AUTO_GPT1 ,
WKUP_MOD, CM_AUTOIDLE);
cm_write_mod_reg(
OMAP3430_AUTO_DSS,
OMAP3430_DSS_MOD,
CM_AUTOIDLE);
cm_write_mod_reg(
OMAP3430_AUTO_CAM,
OMAP3430_CAM_MOD,
CM_AUTOIDLE);
cm_write_mod_reg(
OMAP3430_AUTO_GPIO6 |
OMAP3430_AUTO_GPIO5 |
OMAP3430_AUTO_GPIO4 |
OMAP3430_AUTO_GPIO3 |
OMAP3430_AUTO_GPIO2 |
OMAP3430_AUTO_WDT3 |
OMAP3430_AUTO_UART3 |
OMAP3430_AUTO_GPT9 |
OMAP3430_AUTO_GPT8 |
OMAP3430_AUTO_GPT7 |
OMAP3430_AUTO_GPT6 |
OMAP3430_AUTO_GPT5 |
OMAP3430_AUTO_GPT4 |
OMAP3430_AUTO_GPT3 |
OMAP3430_AUTO_GPT2 |
OMAP3430_AUTO_MCBSP4 |
OMAP3430_AUTO_MCBSP3 |
OMAP3430_AUTO_MCBSP2,
OMAP3430_PER_MOD,
CM_AUTOIDLE);
if (omap_rev() > OMAP3430_REV_ES1_0) {
cm_write_mod_reg(
OMAP3430ES2_AUTO_USBHOST,
OMAP3430ES2_USBHOST_MOD,
CM_AUTOIDLE);
}
/*
* Set all plls to autoidle. This is needed until autoidle is
* enabled by clockfw
*/
cm_write_mod_reg(1 << OMAP3430_AUTO_IVA2_DPLL_SHIFT,
OMAP3430_IVA2_MOD, CM_AUTOIDLE2);
cm_write_mod_reg(1 << OMAP3430_AUTO_MPU_DPLL_SHIFT,
MPU_MOD,
CM_AUTOIDLE2);
cm_write_mod_reg((1 << OMAP3430_AUTO_PERIPH_DPLL_SHIFT) |
(1 << OMAP3430_AUTO_CORE_DPLL_SHIFT),
PLL_MOD,
CM_AUTOIDLE);
cm_write_mod_reg(1 << OMAP3430ES2_AUTO_PERIPH2_DPLL_SHIFT,
PLL_MOD,
CM_AUTOIDLE2);
/*
* Enable control of expternal oscillator through
* sys_clkreq. In the long run clock framework should
* take care of this.
*/
prm_rmw_mod_reg_bits(OMAP_AUTOEXTCLKMODE_MASK,
1 << OMAP_AUTOEXTCLKMODE_SHIFT,
OMAP3430_GR_MOD,
OMAP3_PRM_CLKSRC_CTRL_OFFSET);
/* setup wakup source */
prm_write_mod_reg(OMAP3430_EN_IO | OMAP3430_EN_GPIO1 |
OMAP3430_EN_GPT1 | OMAP3430_EN_GPT12,
WKUP_MOD, PM_WKEN);
/* No need to write EN_IO, that is always enabled */
prm_write_mod_reg(OMAP3430_EN_GPIO1 | OMAP3430_EN_GPT1 |
OMAP3430_EN_GPT12,
WKUP_MOD, OMAP3430_PM_MPUGRPSEL);
/* For some reason IO doesn't generate wakeup event even if
* it is selected to mpu wakeup goup */
prm_write_mod_reg(OMAP3430_IO_EN | OMAP3430_WKUP_EN,
OCP_MOD, OMAP3_PRM_IRQENABLE_MPU_OFFSET);
/* Enable wakeups in PER */
prm_write_mod_reg(OMAP3430_EN_GPIO2 | OMAP3430_EN_GPIO3 |
OMAP3430_EN_GPIO4 | OMAP3430_EN_GPIO5 |
OMAP3430_EN_GPIO6 | OMAP3430_EN_UART3,
OMAP3430_PER_MOD, PM_WKEN);
/* and allow them to wake up MPU */
prm_write_mod_reg(OMAP3430_GRPSEL_GPIO2 | OMAP3430_EN_GPIO3 |
OMAP3430_GRPSEL_GPIO4 | OMAP3430_EN_GPIO5 |
OMAP3430_GRPSEL_GPIO6 | OMAP3430_EN_UART3,
OMAP3430_PER_MOD, OMAP3430_PM_MPUGRPSEL);
/* Don't attach IVA interrupts */
prm_write_mod_reg(0, WKUP_MOD, OMAP3430_PM_IVAGRPSEL);
prm_write_mod_reg(0, CORE_MOD, OMAP3430_PM_IVAGRPSEL1);
prm_write_mod_reg(0, CORE_MOD, OMAP3430ES2_PM_IVAGRPSEL3);
prm_write_mod_reg(0, OMAP3430_PER_MOD, OMAP3430_PM_IVAGRPSEL);
/* Clear any pending 'reset' flags */
prm_write_mod_reg(0xffffffff, MPU_MOD, RM_RSTST);
prm_write_mod_reg(0xffffffff, CORE_MOD, RM_RSTST);
prm_write_mod_reg(0xffffffff, OMAP3430_PER_MOD, RM_RSTST);
prm_write_mod_reg(0xffffffff, OMAP3430_EMU_MOD, RM_RSTST);
prm_write_mod_reg(0xffffffff, OMAP3430_NEON_MOD, RM_RSTST);
prm_write_mod_reg(0xffffffff, OMAP3430_DSS_MOD, RM_RSTST);
prm_write_mod_reg(0xffffffff, OMAP3430ES2_USBHOST_MOD, RM_RSTST);
/* Clear any pending PRCM interrupts */
prm_write_mod_reg(0, OCP_MOD, OMAP3_PRM_IRQSTATUS_MPU_OFFSET);
/* Don't attach IVA interrupts */
prm_write_mod_reg(0, WKUP_MOD, OMAP3430_PM_IVAGRPSEL);
prm_write_mod_reg(0, CORE_MOD, OMAP3430_PM_IVAGRPSEL1);
prm_write_mod_reg(0, CORE_MOD, OMAP3430ES2_PM_IVAGRPSEL3);
prm_write_mod_reg(0, OMAP3430_PER_MOD, OMAP3430_PM_IVAGRPSEL);
/* Clear any pending 'reset' flags */
prm_write_mod_reg(0xffffffff, MPU_MOD, RM_RSTST);
prm_write_mod_reg(0xffffffff, CORE_MOD, RM_RSTST);
prm_write_mod_reg(0xffffffff, OMAP3430_PER_MOD, RM_RSTST);
prm_write_mod_reg(0xffffffff, OMAP3430_EMU_MOD, RM_RSTST);
prm_write_mod_reg(0xffffffff, OMAP3430_NEON_MOD, RM_RSTST);
prm_write_mod_reg(0xffffffff, OMAP3430_DSS_MOD, RM_RSTST);
prm_write_mod_reg(0xffffffff, OMAP3430ES2_USBHOST_MOD, RM_RSTST);
/* Clear any pending PRCM interrupts */
prm_write_mod_reg(0, OCP_MOD, OMAP3_PRM_IRQSTATUS_MPU_OFFSET);
omap3_iva_idle();
omap3_d2d_idle();
}
void omap3_pm_off_mode_enable(int enable)
{
struct power_state *pwrst;
u32 state;
if (enable)
state = PWRDM_POWER_OFF;
else
state = PWRDM_POWER_RET;
list_for_each_entry(pwrst, &pwrst_list, node) {
pwrst->next_state = state;
set_pwrdm_state(pwrst->pwrdm, state);
}
}
int omap3_pm_get_suspend_state(struct powerdomain *pwrdm)
{
struct power_state *pwrst;
list_for_each_entry(pwrst, &pwrst_list, node) {
if (pwrst->pwrdm == pwrdm)
return pwrst->next_state;
}
return -EINVAL;
}
int omap3_pm_set_suspend_state(struct powerdomain *pwrdm, int state)
{
struct power_state *pwrst;
list_for_each_entry(pwrst, &pwrst_list, node) {
if (pwrst->pwrdm == pwrdm) {
pwrst->next_state = state;
return 0;
}
}
return -EINVAL;
}
static int __init pwrdms_setup(struct powerdomain *pwrdm, void *unused)
{
struct power_state *pwrst;
if (!pwrdm->pwrsts)
return 0;
pwrst = kmalloc(sizeof(struct power_state), GFP_ATOMIC);
if (!pwrst)
return -ENOMEM;
pwrst->pwrdm = pwrdm;
pwrst->next_state = PWRDM_POWER_RET;
list_add(&pwrst->node, &pwrst_list);
if (pwrdm_has_hdwr_sar(pwrdm))
pwrdm_enable_hdwr_sar(pwrdm);
return set_pwrdm_state(pwrst->pwrdm, pwrst->next_state);
}
/*
* Enable hw supervised mode for all clockdomains if it's
* supported. Initiate sleep transition for other clockdomains, if
* they are not used
*/
static int __init clkdms_setup(struct clockdomain *clkdm, void *unused)
{
if (clkdm->flags & CLKDM_CAN_ENABLE_AUTO)
omap2_clkdm_allow_idle(clkdm);
else if (clkdm->flags & CLKDM_CAN_FORCE_SLEEP &&
atomic_read(&clkdm->usecount) == 0)
omap2_clkdm_sleep(clkdm);
return 0;
}
void omap_push_sram_idle(void)
{
_omap_sram_idle = omap_sram_push(omap34xx_cpu_suspend,
omap34xx_cpu_suspend_sz);
if (omap_type() != OMAP2_DEVICE_TYPE_GP)
_omap_save_secure_sram = omap_sram_push(save_secure_ram_context,
save_secure_ram_context_sz);
}
static int __init omap3_pm_init(void)
{
struct power_state *pwrst, *tmp;
int ret;
if (!cpu_is_omap34xx())
return -ENODEV;
printk(KERN_ERR "Power Management for TI OMAP3.\n");
/* XXX prcm_setup_regs needs to be before enabling hw
* supervised mode for powerdomains */
prcm_setup_regs();
ret = request_irq(INT_34XX_PRCM_MPU_IRQ,
(irq_handler_t)prcm_interrupt_handler,
IRQF_DISABLED, "prcm", NULL);
if (ret) {
printk(KERN_ERR "request_irq failed to register for 0x%x\n",
INT_34XX_PRCM_MPU_IRQ);
goto err1;
}
ret = pwrdm_for_each(pwrdms_setup, NULL);
if (ret) {
printk(KERN_ERR "Failed to setup powerdomains\n");
goto err2;
}
(void) clkdm_for_each(clkdms_setup, NULL);
mpu_pwrdm = pwrdm_lookup("mpu_pwrdm");
if (mpu_pwrdm == NULL) {
printk(KERN_ERR "Failed to get mpu_pwrdm\n");
goto err2;
}
neon_pwrdm = pwrdm_lookup("neon_pwrdm");
per_pwrdm = pwrdm_lookup("per_pwrdm");
core_pwrdm = pwrdm_lookup("core_pwrdm");
cam_pwrdm = pwrdm_lookup("cam_pwrdm");
omap_push_sram_idle();
#ifdef CONFIG_SUSPEND
suspend_set_ops(&omap_pm_ops);
#endif /* CONFIG_SUSPEND */
pm_idle = omap3_pm_idle;
omap3_idle_init();
pwrdm_add_wkdep(neon_pwrdm, mpu_pwrdm);
/*
* REVISIT: This wkdep is only necessary when GPIO2-6 are enabled for
* IO-pad wakeup. Otherwise it will unnecessarily waste power
* waking up PER with every CORE wakeup - see
* http://marc.info/?l=linux-omap&m=121852150710062&w=2
*/
pwrdm_add_wkdep(per_pwrdm, core_pwrdm);
if (omap_type() != OMAP2_DEVICE_TYPE_GP) {
omap3_secure_ram_storage =
kmalloc(0x803F, GFP_KERNEL);
if (!omap3_secure_ram_storage)
printk(KERN_ERR "Memory allocation failed when"
"allocating for secure sram context\n");
local_irq_disable();
local_fiq_disable();
omap_dma_global_context_save();
omap3_save_secure_ram_context(PWRDM_POWER_ON);
omap_dma_global_context_restore();
local_irq_enable();
local_fiq_enable();
}
omap3_save_scratchpad_contents();
err1:
return ret;
err2:
free_irq(INT_34XX_PRCM_MPU_IRQ, NULL);
list_for_each_entry_safe(pwrst, tmp, &pwrst_list, node) {
list_del(&pwrst->node);
kfree(pwrst);
}
return ret;
}
late_initcall(omap3_pm_init);