aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/wireless')
-rw-r--r--drivers/net/wireless/ath5k/Makefile12
-rw-r--r--drivers/net/wireless/ath5k/ath5k.h390
-rw-r--r--drivers/net/wireless/ath5k/attach.c315
-rw-r--r--drivers/net/wireless/ath5k/base.c32
-rw-r--r--drivers/net/wireless/ath5k/caps.c193
-rw-r--r--drivers/net/wireless/ath5k/debug.c4
-rw-r--r--drivers/net/wireless/ath5k/desc.c667
-rw-r--r--drivers/net/wireless/ath5k/desc.h (renamed from drivers/net/wireless/ath5k/hw.h)400
-rw-r--r--drivers/net/wireless/ath5k/dma.c566
-rw-r--r--drivers/net/wireless/ath5k/eeprom.c466
-rw-r--r--drivers/net/wireless/ath5k/eeprom.h215
-rw-r--r--drivers/net/wireless/ath5k/gpio.c176
-rw-r--r--drivers/net/wireless/ath5k/hw.c4492
-rw-r--r--drivers/net/wireless/ath5k/initvals.c22
-rw-r--r--drivers/net/wireless/ath5k/pcu.c1002
-rw-r--r--drivers/net/wireless/ath5k/phy.c10
-rw-r--r--drivers/net/wireless/ath5k/qcu.c488
-rw-r--r--drivers/net/wireless/ath5k/reg.h102
-rw-r--r--drivers/net/wireless/ath5k/reset.c925
19 files changed, 5435 insertions, 5042 deletions
diff --git a/drivers/net/wireless/ath5k/Makefile b/drivers/net/wireless/ath5k/Makefile
index 564ecd0c5d4..719cfaef708 100644
--- a/drivers/net/wireless/ath5k/Makefile
+++ b/drivers/net/wireless/ath5k/Makefile
@@ -1,6 +1,14 @@
1ath5k-y += base.o 1ath5k-y += caps.o
2ath5k-y += hw.o
3ath5k-y += initvals.o 2ath5k-y += initvals.o
3ath5k-y += eeprom.o
4ath5k-y += gpio.o
5ath5k-y += desc.o
6ath5k-y += dma.o
7ath5k-y += qcu.o
8ath5k-y += pcu.o
4ath5k-y += phy.o 9ath5k-y += phy.o
10ath5k-y += reset.o
11ath5k-y += attach.o
12ath5k-y += base.o
5ath5k-$(CONFIG_ATH5K_DEBUG) += debug.o 13ath5k-$(CONFIG_ATH5K_DEBUG) += debug.o
6obj-$(CONFIG_ATH5K) += ath5k.o 14obj-$(CONFIG_ATH5K) += ath5k.o
diff --git a/drivers/net/wireless/ath5k/ath5k.h b/drivers/net/wireless/ath5k/ath5k.h
index c1b49787366..4c0211798a7 100644
--- a/drivers/net/wireless/ath5k/ath5k.h
+++ b/drivers/net/wireless/ath5k/ath5k.h
@@ -18,18 +18,23 @@
18#ifndef _ATH5K_H 18#ifndef _ATH5K_H
19#define _ATH5K_H 19#define _ATH5K_H
20 20
21/* Set this to 1 to disable regulatory domain restrictions for channel tests. 21/* TODO: Clean up channel debuging -doesn't work anyway- and start
22 * WARNING: This is for debuging only and has side effects (eg. scan takes too 22 * working on reg. control code using all available eeprom information
23 * long and results timeouts). It's also illegal to tune to some of the 23 * -rev. engineering needed- */
24 * supported frequencies in some countries, so use this at your own risk,
25 * you've been warned. */
26#define CHAN_DEBUG 0 24#define CHAN_DEBUG 0
27 25
28#include <linux/io.h> 26#include <linux/io.h>
29#include <linux/types.h> 27#include <linux/types.h>
30#include <net/mac80211.h> 28#include <net/mac80211.h>
31 29
32#include "hw.h" 30/* RX/TX descriptor hw structs
31 * TODO: Driver part should only see sw structs */
32#include "desc.h"
33
34/* EEPROM structs/offsets
35 * TODO: Make a more generic struct (eg. add more stuff to ath5k_capabilities)
36 * and clean up common bits, then introduce set/get functions in eeprom.c */
37#include "eeprom.h"
33 38
34/* PCI IDs */ 39/* PCI IDs */
35#define PCI_DEVICE_ID_ATHEROS_AR5210 0x0007 /* AR5210 */ 40#define PCI_DEVICE_ID_ATHEROS_AR5210 0x0007 /* AR5210 */
@@ -87,7 +92,92 @@
87 ATH5K_PRINTK_LIMIT(_sc, KERN_ERR, _fmt, ##__VA_ARGS__) 92 ATH5K_PRINTK_LIMIT(_sc, KERN_ERR, _fmt, ##__VA_ARGS__)
88 93
89/* 94/*
95 * AR5K REGISTER ACCESS
96 */
97
98/* Some macros to read/write fields */
99
100/* First shift, then mask */
101#define AR5K_REG_SM(_val, _flags) \
102 (((_val) << _flags##_S) & (_flags))
103
104/* First mask, then shift */
105#define AR5K_REG_MS(_val, _flags) \
106 (((_val) & (_flags)) >> _flags##_S)
107
108/* Some registers can hold multiple values of interest. For this
109 * reason when we want to write to these registers we must first
110 * retrieve the values which we do not want to clear (lets call this
111 * old_data) and then set the register with this and our new_value:
112 * ( old_data | new_value) */
113#define AR5K_REG_WRITE_BITS(ah, _reg, _flags, _val) \
114 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, _reg) & ~(_flags)) | \
115 (((_val) << _flags##_S) & (_flags)), _reg)
116
117#define AR5K_REG_MASKED_BITS(ah, _reg, _flags, _mask) \
118 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, _reg) & \
119 (_mask)) | (_flags), _reg)
120
121#define AR5K_REG_ENABLE_BITS(ah, _reg, _flags) \
122 ath5k_hw_reg_write(ah, ath5k_hw_reg_read(ah, _reg) | (_flags), _reg)
123
124#define AR5K_REG_DISABLE_BITS(ah, _reg, _flags) \
125 ath5k_hw_reg_write(ah, ath5k_hw_reg_read(ah, _reg) & ~(_flags), _reg)
126
127/* Access to PHY registers */
128#define AR5K_PHY_READ(ah, _reg) \
129 ath5k_hw_reg_read(ah, (ah)->ah_phy + ((_reg) << 2))
130
131#define AR5K_PHY_WRITE(ah, _reg, _val) \
132 ath5k_hw_reg_write(ah, _val, (ah)->ah_phy + ((_reg) << 2))
133
134/* Access QCU registers per queue */
135#define AR5K_REG_READ_Q(ah, _reg, _queue) \
136 (ath5k_hw_reg_read(ah, _reg) & (1 << _queue)) \
137
138#define AR5K_REG_WRITE_Q(ah, _reg, _queue) \
139 ath5k_hw_reg_write(ah, (1 << _queue), _reg)
140
141#define AR5K_Q_ENABLE_BITS(_reg, _queue) do { \
142 _reg |= 1 << _queue; \
143} while (0)
144
145#define AR5K_Q_DISABLE_BITS(_reg, _queue) do { \
146 _reg &= ~(1 << _queue); \
147} while (0)
148
149/* Used while writing initvals */
150#define AR5K_REG_WAIT(_i) do { \
151 if (_i % 64) \
152 udelay(1); \
153} while (0)
154
155/* Register dumps are done per operation mode */
156#define AR5K_INI_RFGAIN_5GHZ 0
157#define AR5K_INI_RFGAIN_2GHZ 1
158
159/* TODO: Clean this up */
160#define AR5K_INI_VAL_11A 0
161#define AR5K_INI_VAL_11A_TURBO 1
162#define AR5K_INI_VAL_11B 2
163#define AR5K_INI_VAL_11G 3
164#define AR5K_INI_VAL_11G_TURBO 4
165#define AR5K_INI_VAL_XR 0
166#define AR5K_INI_VAL_MAX 5
167
168#define AR5K_RF5111_INI_RF_MAX_BANKS AR5K_MAX_RF_BANKS
169#define AR5K_RF5112_INI_RF_MAX_BANKS AR5K_MAX_RF_BANKS
170
171/* Used for BSSID etc manipulation */
172#define AR5K_LOW_ID(_a)( \
173(_a)[0] | (_a)[1] << 8 | (_a)[2] << 16 | (_a)[3] << 24 \
174)
175
176#define AR5K_HIGH_ID(_a) ((_a)[4] | (_a)[5] << 8)
177
178/*
90 * Some tuneable values (these should be changeable by the user) 179 * Some tuneable values (these should be changeable by the user)
180 * TODO: Make use of them and add more options OR use debug/configfs
91 */ 181 */
92#define AR5K_TUNE_DMA_BEACON_RESP 2 182#define AR5K_TUNE_DMA_BEACON_RESP 2
93#define AR5K_TUNE_SW_BEACON_RESP 10 183#define AR5K_TUNE_SW_BEACON_RESP 10
@@ -98,13 +188,13 @@
98#define AR5K_TUNE_REGISTER_TIMEOUT 20000 188#define AR5K_TUNE_REGISTER_TIMEOUT 20000
99/* Register for RSSI threshold has a mask of 0xff, so 255 seems to 189/* Register for RSSI threshold has a mask of 0xff, so 255 seems to
100 * be the max value. */ 190 * be the max value. */
101#define AR5K_TUNE_RSSI_THRES 129 191#define AR5K_TUNE_RSSI_THRES 129
102/* This must be set when setting the RSSI threshold otherwise it can 192/* This must be set when setting the RSSI threshold otherwise it can
103 * prevent a reset. If AR5K_RSSI_THR is read after writing to it 193 * prevent a reset. If AR5K_RSSI_THR is read after writing to it
104 * the BMISS_THRES will be seen as 0, seems harware doesn't keep 194 * the BMISS_THRES will be seen as 0, seems harware doesn't keep
105 * track of it. Max value depends on harware. For AR5210 this is just 7. 195 * track of it. Max value depends on harware. For AR5210 this is just 7.
106 * For AR5211+ this seems to be up to 255. */ 196 * For AR5211+ this seems to be up to 255. */
107#define AR5K_TUNE_BMISS_THRES 7 197#define AR5K_TUNE_BMISS_THRES 7
108#define AR5K_TUNE_REGISTER_DWELL_TIME 20000 198#define AR5K_TUNE_REGISTER_DWELL_TIME 20000
109#define AR5K_TUNE_BEACON_INTERVAL 100 199#define AR5K_TUNE_BEACON_INTERVAL 100
110#define AR5K_TUNE_AIFS 2 200#define AR5K_TUNE_AIFS 2
@@ -123,6 +213,55 @@
123#define AR5K_TUNE_ANT_DIVERSITY true 213#define AR5K_TUNE_ANT_DIVERSITY true
124#define AR5K_TUNE_HWTXTRIES 4 214#define AR5K_TUNE_HWTXTRIES 4
125 215
216#define AR5K_INIT_CARR_SENSE_EN 1
217
218/*Swap RX/TX Descriptor for big endian archs*/
219#if defined(__BIG_ENDIAN)
220#define AR5K_INIT_CFG ( \
221 AR5K_CFG_SWTD | AR5K_CFG_SWRD \
222)
223#else
224#define AR5K_INIT_CFG 0x00000000
225#endif
226
227/* Initial values */
228#define AR5K_INIT_TX_LATENCY 502
229#define AR5K_INIT_USEC 39
230#define AR5K_INIT_USEC_TURBO 79
231#define AR5K_INIT_USEC_32 31
232#define AR5K_INIT_SLOT_TIME 396
233#define AR5K_INIT_SLOT_TIME_TURBO 480
234#define AR5K_INIT_ACK_CTS_TIMEOUT 1024
235#define AR5K_INIT_ACK_CTS_TIMEOUT_TURBO 0x08000800
236#define AR5K_INIT_PROG_IFS 920
237#define AR5K_INIT_PROG_IFS_TURBO 960
238#define AR5K_INIT_EIFS 3440
239#define AR5K_INIT_EIFS_TURBO 6880
240#define AR5K_INIT_SIFS 560
241#define AR5K_INIT_SIFS_TURBO 480
242#define AR5K_INIT_SH_RETRY 10
243#define AR5K_INIT_LG_RETRY AR5K_INIT_SH_RETRY
244#define AR5K_INIT_SSH_RETRY 32
245#define AR5K_INIT_SLG_RETRY AR5K_INIT_SSH_RETRY
246#define AR5K_INIT_TX_RETRY 10
247
248#define AR5K_INIT_TRANSMIT_LATENCY ( \
249 (AR5K_INIT_TX_LATENCY << 14) | (AR5K_INIT_USEC_32 << 7) | \
250 (AR5K_INIT_USEC) \
251)
252#define AR5K_INIT_TRANSMIT_LATENCY_TURBO ( \
253 (AR5K_INIT_TX_LATENCY << 14) | (AR5K_INIT_USEC_32 << 7) | \
254 (AR5K_INIT_USEC_TURBO) \
255)
256#define AR5K_INIT_PROTO_TIME_CNTRL ( \
257 (AR5K_INIT_CARR_SENSE_EN << 26) | (AR5K_INIT_EIFS << 12) | \
258 (AR5K_INIT_PROG_IFS) \
259)
260#define AR5K_INIT_PROTO_TIME_CNTRL_TURBO ( \
261 (AR5K_INIT_CARR_SENSE_EN << 26) | (AR5K_INIT_EIFS_TURBO << 12) | \
262 (AR5K_INIT_PROG_IFS_TURBO) \
263)
264
126/* token to use for aifs, cwmin, cwmax in MadWiFi */ 265/* token to use for aifs, cwmin, cwmax in MadWiFi */
127#define AR5K_TXQ_USEDEFAULT ((u32) -1) 266#define AR5K_TXQ_USEDEFAULT ((u32) -1)
128 267
@@ -196,7 +335,6 @@ struct ath5k_srev_name {
196#define AR5K_SREV_RAD_5133 0xc0 /* MIMO found on 5418 */ 335#define AR5K_SREV_RAD_5133 0xc0 /* MIMO found on 5418 */
197 336
198/* IEEE defs */ 337/* IEEE defs */
199
200#define IEEE80211_MAX_LEN 2500 338#define IEEE80211_MAX_LEN 2500
201 339
202/* TODO add support to mac80211 for vendor-specific rates and modes */ 340/* TODO add support to mac80211 for vendor-specific rates and modes */
@@ -268,16 +406,13 @@ enum ath5k_driver_mode {
268 AR5K_MODE_MAX = 5 406 AR5K_MODE_MAX = 5
269}; 407};
270 408
271/* adding this flag to rate_code enables short preamble, see ar5212_reg.h */
272#define AR5K_SET_SHORT_PREAMBLE 0x04
273
274 409
275/****************\ 410/****************\
276 TX DEFINITIONS 411 TX DEFINITIONS
277\****************/ 412\****************/
278 413
279/* 414/*
280 * TX Status 415 * TX Status descriptor
281 */ 416 */
282struct ath5k_tx_status { 417struct ath5k_tx_status {
283 u16 ts_seqnum; 418 u16 ts_seqnum;
@@ -349,7 +484,6 @@ enum ath5k_tx_queue_id {
349 AR5K_TX_QUEUE_ID_XR_DATA = 9, 484 AR5K_TX_QUEUE_ID_XR_DATA = 9,
350}; 485};
351 486
352
353/* 487/*
354 * Flags to set hw queue's parameters... 488 * Flags to set hw queue's parameters...
355 */ 489 */
@@ -382,7 +516,8 @@ struct ath5k_txq_info {
382 516
383/* 517/*
384 * Transmit packet types. 518 * Transmit packet types.
385 * These are not fully used inside OpenHAL yet 519 * used on tx control descriptor
520 * TODO: Use them inside base.c corectly
386 */ 521 */
387enum ath5k_pkt_type { 522enum ath5k_pkt_type {
388 AR5K_PKT_TYPE_NORMAL = 0, 523 AR5K_PKT_TYPE_NORMAL = 0,
@@ -425,7 +560,7 @@ enum ath5k_dmasize {
425\****************/ 560\****************/
426 561
427/* 562/*
428 * RX Status 563 * RX Status descriptor
429 */ 564 */
430struct ath5k_rx_status { 565struct ath5k_rx_status {
431 u16 rs_datalen; 566 u16 rs_datalen;
@@ -489,34 +624,59 @@ struct ath5k_beacon_state {
489#define TSF_TO_TU(_tsf) (u32)((_tsf) >> 10) 624#define TSF_TO_TU(_tsf) (u32)((_tsf) >> 10)
490 625
491 626
627/*******************************\
628 GAIN OPTIMIZATION DEFINITIONS
629\*******************************/
630
631enum ath5k_rfgain {
632 AR5K_RFGAIN_INACTIVE = 0,
633 AR5K_RFGAIN_READ_REQUESTED,
634 AR5K_RFGAIN_NEED_CHANGE,
635};
636
637#define AR5K_GAIN_CRN_FIX_BITS_5111 4
638#define AR5K_GAIN_CRN_FIX_BITS_5112 7
639#define AR5K_GAIN_CRN_MAX_FIX_BITS AR5K_GAIN_CRN_FIX_BITS_5112
640#define AR5K_GAIN_DYN_ADJUST_HI_MARGIN 15
641#define AR5K_GAIN_DYN_ADJUST_LO_MARGIN 20
642#define AR5K_GAIN_CCK_PROBE_CORR 5
643#define AR5K_GAIN_CCK_OFDM_GAIN_DELTA 15
644#define AR5K_GAIN_STEP_COUNT 10
645#define AR5K_GAIN_PARAM_TX_CLIP 0
646#define AR5K_GAIN_PARAM_PD_90 1
647#define AR5K_GAIN_PARAM_PD_84 2
648#define AR5K_GAIN_PARAM_GAIN_SEL 3
649#define AR5K_GAIN_PARAM_MIX_ORN 0
650#define AR5K_GAIN_PARAM_PD_138 1
651#define AR5K_GAIN_PARAM_PD_137 2
652#define AR5K_GAIN_PARAM_PD_136 3
653#define AR5K_GAIN_PARAM_PD_132 4
654#define AR5K_GAIN_PARAM_PD_131 5
655#define AR5K_GAIN_PARAM_PD_130 6
656#define AR5K_GAIN_CHECK_ADJUST(_g) \
657 ((_g)->g_current <= (_g)->g_low || (_g)->g_current >= (_g)->g_high)
658
659struct ath5k_gain_opt_step {
660 s16 gos_param[AR5K_GAIN_CRN_MAX_FIX_BITS];
661 s32 gos_gain;
662};
663
664struct ath5k_gain {
665 u32 g_step_idx;
666 u32 g_current;
667 u32 g_target;
668 u32 g_low;
669 u32 g_high;
670 u32 g_f_corr;
671 u32 g_active;
672 const struct ath5k_gain_opt_step *g_step;
673};
674
675
492/********************\ 676/********************\
493 COMMON DEFINITIONS 677 COMMON DEFINITIONS
494\********************/ 678\********************/
495 679
496/*
497 * Atheros hardware descriptor
498 * This is read and written to by the hardware
499 */
500struct ath5k_desc {
501 u32 ds_link; /* physical address of the next descriptor */
502 u32 ds_data; /* physical address of data buffer (skb) */
503
504 union {
505 struct ath5k_hw_5210_tx_desc ds_tx5210;
506 struct ath5k_hw_5212_tx_desc ds_tx5212;
507 struct ath5k_hw_all_rx_desc ds_rx;
508 } ud;
509} __packed;
510
511#define AR5K_RXDESC_INTREQ 0x0020
512
513#define AR5K_TXDESC_CLRDMASK 0x0001
514#define AR5K_TXDESC_NOACK 0x0002 /*[5211+]*/
515#define AR5K_TXDESC_RTSENA 0x0004
516#define AR5K_TXDESC_CTSENA 0x0008
517#define AR5K_TXDESC_INTREQ 0x0010
518#define AR5K_TXDESC_VEOL 0x0020 /*[5211+]*/
519
520#define AR5K_SLOT_TIME_9 396 680#define AR5K_SLOT_TIME_9 396
521#define AR5K_SLOT_TIME_20 880 681#define AR5K_SLOT_TIME_20 880
522#define AR5K_SLOT_TIME_MAX 0xffff 682#define AR5K_SLOT_TIME_MAX 0xffff
@@ -548,15 +708,16 @@ struct ath5k_desc {
548#define CHANNEL_MODES CHANNEL_ALL 708#define CHANNEL_MODES CHANNEL_ALL
549 709
550/* 710/*
551 * Used internaly in OpenHAL (ar5211.c/ar5212.c 711 * Used internaly for reset_tx_queue).
552 * for reset_tx_queue). Also see struct struct ieee80211_channel. 712 * Also see struct struct ieee80211_channel.
553 */ 713 */
554#define IS_CHAN_XR(_c) ((_c.hw_value & CHANNEL_XR) != 0) 714#define IS_CHAN_XR(_c) ((_c.hw_value & CHANNEL_XR) != 0)
555#define IS_CHAN_B(_c) ((_c.hw_value & CHANNEL_B) != 0) 715#define IS_CHAN_B(_c) ((_c.hw_value & CHANNEL_B) != 0)
556 716
557/* 717/*
558 * The following structure will be used to map 2GHz channels to 718 * The following structure is used to map 2GHz channels to
559 * 5GHz Atheros channels. 719 * 5GHz Atheros channels.
720 * TODO: Clean up
560 */ 721 */
561struct ath5k_athchan_2ghz { 722struct ath5k_athchan_2ghz {
562 u32 a2_flags; 723 u32 a2_flags;
@@ -564,9 +725,9 @@ struct ath5k_athchan_2ghz {
564}; 725};
565 726
566 727
567/* 728/******************\
568 * Rate definitions 729 RATE DEFINITIONS
569 */ 730\******************/
570 731
571/** 732/**
572 * Seems the ar5xxx harware supports up to 32 rates, indexed by 1-32. 733 * Seems the ar5xxx harware supports up to 32 rates, indexed by 1-32.
@@ -618,6 +779,8 @@ struct ath5k_athchan_2ghz {
618#define ATH5K_RATE_CODE_XR_2M 0x06 779#define ATH5K_RATE_CODE_XR_2M 0x06
619#define ATH5K_RATE_CODE_XR_3M 0x01 780#define ATH5K_RATE_CODE_XR_3M 0x01
620 781
782/* adding this flag to rate_code enables short preamble */
783#define AR5K_SET_SHORT_PREAMBLE 0x04
621 784
622/* 785/*
623 * Crypto definitions 786 * Crypto definitions
@@ -639,7 +802,6 @@ struct ath5k_athchan_2ghz {
639 return (false); \ 802 return (false); \
640} while (0) 803} while (0)
641 804
642
643enum ath5k_ant_setting { 805enum ath5k_ant_setting {
644 AR5K_ANT_VARIABLE = 0, /* variable by programming */ 806 AR5K_ANT_VARIABLE = 0, /* variable by programming */
645 AR5K_ANT_FIXED_A = 1, /* fixed to 11a frequencies */ 807 AR5K_ANT_FIXED_A = 1, /* fixed to 11a frequencies */
@@ -750,7 +912,8 @@ enum ath5k_power_mode {
750 912
751/* 913/*
752 * These match net80211 definitions (not used in 914 * These match net80211 definitions (not used in
753 * d80211). 915 * mac80211).
916 * TODO: Clean this up
754 */ 917 */
755#define AR5K_LED_INIT 0 /*IEEE80211_S_INIT*/ 918#define AR5K_LED_INIT 0 /*IEEE80211_S_INIT*/
756#define AR5K_LED_SCAN 1 /*IEEE80211_S_SCAN*/ 919#define AR5K_LED_SCAN 1 /*IEEE80211_S_SCAN*/
@@ -766,7 +929,8 @@ enum ath5k_power_mode {
766/* 929/*
767 * Chipset capabilities -see ath5k_hw_get_capability- 930 * Chipset capabilities -see ath5k_hw_get_capability-
768 * get_capability function is not yet fully implemented 931 * get_capability function is not yet fully implemented
769 * in OpenHAL so most of these don't work yet... 932 * in ath5k so most of these don't work yet...
933 * TODO: Implement these & merge with _TUNE_ stuff above
770 */ 934 */
771enum ath5k_capability_type { 935enum ath5k_capability_type {
772 AR5K_CAP_REG_DMN = 0, /* Used to get current reg. domain id */ 936 AR5K_CAP_REG_DMN = 0, /* Used to get current reg. domain id */
@@ -835,6 +999,7 @@ struct ath5k_capabilities {
835#define AR5K_MAX_GPIO 10 999#define AR5K_MAX_GPIO 10
836#define AR5K_MAX_RF_BANKS 8 1000#define AR5K_MAX_RF_BANKS 8
837 1001
1002/* TODO: Clean up and merge with ath5k_softc */
838struct ath5k_hw { 1003struct ath5k_hw {
839 u32 ah_magic; 1004 u32 ah_magic;
840 1005
@@ -927,11 +1092,13 @@ struct ath5k_hw {
927 /* 1092 /*
928 * Function pointers 1093 * Function pointers
929 */ 1094 */
1095 int (*ah_setup_rx_desc)(struct ath5k_hw *ah, struct ath5k_desc *desc,
1096 u32 size, unsigned int flags);
930 int (*ah_setup_tx_desc)(struct ath5k_hw *, struct ath5k_desc *, 1097 int (*ah_setup_tx_desc)(struct ath5k_hw *, struct ath5k_desc *,
931 unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int, 1098 unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
932 unsigned int, unsigned int, unsigned int, unsigned int, 1099 unsigned int, unsigned int, unsigned int, unsigned int,
933 unsigned int, unsigned int, unsigned int); 1100 unsigned int, unsigned int, unsigned int);
934 int (*ah_setup_xtx_desc)(struct ath5k_hw *, struct ath5k_desc *, 1101 int (*ah_setup_mrr_tx_desc)(struct ath5k_hw *, struct ath5k_desc *,
935 unsigned int, unsigned int, unsigned int, unsigned int, 1102 unsigned int, unsigned int, unsigned int, unsigned int,
936 unsigned int, unsigned int); 1103 unsigned int, unsigned int);
937 int (*ah_proc_tx_desc)(struct ath5k_hw *, struct ath5k_desc *, 1104 int (*ah_proc_tx_desc)(struct ath5k_hw *, struct ath5k_desc *,
@@ -944,33 +1111,38 @@ struct ath5k_hw {
944 * Prototypes 1111 * Prototypes
945 */ 1112 */
946 1113
947/* General Functions */
948extern int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val, bool is_set);
949/* Attach/Detach Functions */ 1114/* Attach/Detach Functions */
950extern struct ath5k_hw *ath5k_hw_attach(struct ath5k_softc *sc, u8 mac_version); 1115extern struct ath5k_hw *ath5k_hw_attach(struct ath5k_softc *sc, u8 mac_version);
951extern const struct ath5k_rate_table *ath5k_hw_get_rate_table(struct ath5k_hw *ah, unsigned int mode);
952extern void ath5k_hw_detach(struct ath5k_hw *ah); 1116extern void ath5k_hw_detach(struct ath5k_hw *ah);
1117
953/* Reset Functions */ 1118/* Reset Functions */
1119extern int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial);
954extern int ath5k_hw_reset(struct ath5k_hw *ah, enum ieee80211_if_types op_mode, struct ieee80211_channel *channel, bool change_channel); 1120extern int ath5k_hw_reset(struct ath5k_hw *ah, enum ieee80211_if_types op_mode, struct ieee80211_channel *channel, bool change_channel);
955/* Power management functions */ 1121/* Power management functions */
956extern int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode, bool set_chip, u16 sleep_duration); 1122extern int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode, bool set_chip, u16 sleep_duration);
1123
957/* DMA Related Functions */ 1124/* DMA Related Functions */
958extern void ath5k_hw_start_rx(struct ath5k_hw *ah); 1125extern void ath5k_hw_start_rx_dma(struct ath5k_hw *ah);
959extern int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah); 1126extern int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah);
960extern u32 ath5k_hw_get_rx_buf(struct ath5k_hw *ah); 1127extern u32 ath5k_hw_get_rxdp(struct ath5k_hw *ah);
961extern void ath5k_hw_put_rx_buf(struct ath5k_hw *ah, u32 phys_addr); 1128extern void ath5k_hw_set_rxdp(struct ath5k_hw *ah, u32 phys_addr);
962extern int ath5k_hw_tx_start(struct ath5k_hw *ah, unsigned int queue); 1129extern int ath5k_hw_start_tx_dma(struct ath5k_hw *ah, unsigned int queue);
963extern int ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue); 1130extern int ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue);
964extern u32 ath5k_hw_get_tx_buf(struct ath5k_hw *ah, unsigned int queue); 1131extern u32 ath5k_hw_get_txdp(struct ath5k_hw *ah, unsigned int queue);
965extern int ath5k_hw_put_tx_buf(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr); 1132extern int ath5k_hw_set_txdp(struct ath5k_hw *ah, unsigned int queue,
1133 u32 phys_addr);
966extern int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase); 1134extern int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase);
967/* Interrupt handling */ 1135/* Interrupt handling */
968extern bool ath5k_hw_is_intr_pending(struct ath5k_hw *ah); 1136extern bool ath5k_hw_is_intr_pending(struct ath5k_hw *ah);
969extern int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask); 1137extern int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask);
970extern enum ath5k_int ath5k_hw_set_intr(struct ath5k_hw *ah, enum ath5k_int new_mask); 1138extern enum ath5k_int ath5k_hw_set_imr(struct ath5k_hw *ah, enum
1139ath5k_int new_mask);
971extern void ath5k_hw_update_mib_counters(struct ath5k_hw *ah, struct ieee80211_low_level_stats *stats); 1140extern void ath5k_hw_update_mib_counters(struct ath5k_hw *ah, struct ieee80211_low_level_stats *stats);
1141
972/* EEPROM access functions */ 1142/* EEPROM access functions */
973extern int ath5k_hw_set_regdomain(struct ath5k_hw *ah, u16 regdomain); 1143extern int ath5k_eeprom_init(struct ath5k_hw *ah);
1144extern int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac);
1145
974/* Protocol Control Unit Functions */ 1146/* Protocol Control Unit Functions */
975extern int ath5k_hw_set_opmode(struct ath5k_hw *ah); 1147extern int ath5k_hw_set_opmode(struct ath5k_hw *ah);
976/* BSSID Functions */ 1148/* BSSID Functions */
@@ -980,14 +1152,14 @@ extern void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc
980extern int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask); 1152extern int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask);
981/* Receive start/stop functions */ 1153/* Receive start/stop functions */
982extern void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah); 1154extern void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah);
983extern void ath5k_hw_stop_pcu_recv(struct ath5k_hw *ah); 1155extern void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah);
984/* RX Filter functions */ 1156/* RX Filter functions */
985extern void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1); 1157extern void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1);
986extern int ath5k_hw_set_mcast_filterindex(struct ath5k_hw *ah, u32 index); 1158extern int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index);
987extern int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index); 1159extern int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index);
988extern u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah); 1160extern u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah);
989extern void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter); 1161extern void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter);
990/* Beacon related functions */ 1162/* Beacon control functions */
991extern u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah); 1163extern u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah);
992extern u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah); 1164extern u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah);
993extern void ath5k_hw_reset_tsf(struct ath5k_hw *ah); 1165extern void ath5k_hw_reset_tsf(struct ath5k_hw *ah);
@@ -1009,61 +1181,129 @@ extern int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry);
1009extern int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry); 1181extern int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry);
1010extern int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry, const struct ieee80211_key_conf *key, const u8 *mac); 1182extern int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry, const struct ieee80211_key_conf *key, const u8 *mac);
1011extern int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac); 1183extern int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac);
1184
1012/* Queue Control Unit, DFS Control Unit Functions */ 1185/* Queue Control Unit, DFS Control Unit Functions */
1013extern int ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type, struct ath5k_txq_info *queue_info);
1014extern int ath5k_hw_setup_tx_queueprops(struct ath5k_hw *ah, int queue, const struct ath5k_txq_info *queue_info);
1015extern int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue, struct ath5k_txq_info *queue_info); 1186extern int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue, struct ath5k_txq_info *queue_info);
1187extern int ath5k_hw_set_tx_queueprops(struct ath5k_hw *ah, int queue,
1188 const struct ath5k_txq_info *queue_info);
1189extern int ath5k_hw_setup_tx_queue(struct ath5k_hw *ah,
1190 enum ath5k_tx_queue queue_type,
1191 struct ath5k_txq_info *queue_info);
1192extern u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue);
1016extern void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue); 1193extern void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue);
1017extern int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue); 1194extern int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue);
1018extern u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue);
1019extern int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time);
1020extern unsigned int ath5k_hw_get_slot_time(struct ath5k_hw *ah); 1195extern unsigned int ath5k_hw_get_slot_time(struct ath5k_hw *ah);
1196extern int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time);
1197
1021/* Hardware Descriptor Functions */ 1198/* Hardware Descriptor Functions */
1022extern int ath5k_hw_setup_rx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc, u32 size, unsigned int flags); 1199extern int ath5k_hw_init_desc_functions(struct ath5k_hw *ah);
1200
1023/* GPIO Functions */ 1201/* GPIO Functions */
1024extern void ath5k_hw_set_ledstate(struct ath5k_hw *ah, unsigned int state); 1202extern void ath5k_hw_set_ledstate(struct ath5k_hw *ah, unsigned int state);
1025extern int ath5k_hw_set_gpio_output(struct ath5k_hw *ah, u32 gpio);
1026extern int ath5k_hw_set_gpio_input(struct ath5k_hw *ah, u32 gpio); 1203extern int ath5k_hw_set_gpio_input(struct ath5k_hw *ah, u32 gpio);
1204extern int ath5k_hw_set_gpio_output(struct ath5k_hw *ah, u32 gpio);
1027extern u32 ath5k_hw_get_gpio(struct ath5k_hw *ah, u32 gpio); 1205extern u32 ath5k_hw_get_gpio(struct ath5k_hw *ah, u32 gpio);
1028extern int ath5k_hw_set_gpio(struct ath5k_hw *ah, u32 gpio, u32 val); 1206extern int ath5k_hw_set_gpio(struct ath5k_hw *ah, u32 gpio, u32 val);
1029extern void ath5k_hw_set_gpio_intr(struct ath5k_hw *ah, unsigned int gpio, u32 interrupt_level); 1207extern void ath5k_hw_set_gpio_intr(struct ath5k_hw *ah, unsigned int gpio, u32 interrupt_level);
1208
1030/* Misc functions */ 1209/* Misc functions */
1210int ath5k_hw_set_capabilities(struct ath5k_hw *ah);
1031extern int ath5k_hw_get_capability(struct ath5k_hw *ah, enum ath5k_capability_type cap_type, u32 capability, u32 *result); 1211extern int ath5k_hw_get_capability(struct ath5k_hw *ah, enum ath5k_capability_type cap_type, u32 capability, u32 *result);
1032 1212extern int ath5k_hw_enable_pspoll(struct ath5k_hw *ah, u8 *bssid, u16 assoc_id);
1213extern int ath5k_hw_disable_pspoll(struct ath5k_hw *ah);
1033 1214
1034/* Initial register settings functions */ 1215/* Initial register settings functions */
1035extern int ath5k_hw_write_initvals(struct ath5k_hw *ah, u8 mode, bool change_channel); 1216extern int ath5k_hw_write_initvals(struct ath5k_hw *ah, u8 mode, bool change_channel);
1217
1036/* Initialize RF */ 1218/* Initialize RF */
1037extern int ath5k_hw_rfregs(struct ath5k_hw *ah, struct ieee80211_channel *channel, unsigned int mode); 1219extern int ath5k_hw_rfregs(struct ath5k_hw *ah, struct ieee80211_channel *channel, unsigned int mode);
1038extern int ath5k_hw_rfgain(struct ath5k_hw *ah, unsigned int freq); 1220extern int ath5k_hw_rfgain(struct ath5k_hw *ah, unsigned int freq);
1039extern enum ath5k_rfgain ath5k_hw_get_rf_gain(struct ath5k_hw *ah); 1221extern enum ath5k_rfgain ath5k_hw_get_rf_gain(struct ath5k_hw *ah);
1040extern int ath5k_hw_set_rfgain_opt(struct ath5k_hw *ah); 1222extern int ath5k_hw_set_rfgain_opt(struct ath5k_hw *ah);
1041
1042
1043/* PHY/RF channel functions */ 1223/* PHY/RF channel functions */
1044extern bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags); 1224extern bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags);
1045extern int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel); 1225extern int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel);
1046/* PHY calibration */ 1226/* PHY calibration */
1047extern int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, struct ieee80211_channel *channel); 1227extern int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, struct ieee80211_channel *channel);
1048extern int ath5k_hw_phy_disable(struct ath5k_hw *ah); 1228extern int ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq);
1049/* Misc PHY functions */ 1229/* Misc PHY functions */
1050extern u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan); 1230extern u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan);
1051extern void ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant); 1231extern void ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant);
1052extern unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah); 1232extern unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah);
1053extern int ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq); 1233extern int ath5k_hw_phy_disable(struct ath5k_hw *ah);
1054/* TX power setup */ 1234/* TX power setup */
1055extern int ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, unsigned int txpower); 1235extern int ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, unsigned int txpower);
1056extern int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, unsigned int power); 1236extern int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, unsigned int power);
1057 1237
1238/*
1239 * Functions used internaly
1240 */
1241
1242/*
1243 * Translate usec to hw clock units
1244 */
1245static inline unsigned int ath5k_hw_htoclock(unsigned int usec, bool turbo)
1246{
1247 return turbo ? (usec * 80) : (usec * 40);
1248}
1058 1249
1250/*
1251 * Translate hw clock units to usec
1252 */
1253static inline unsigned int ath5k_hw_clocktoh(unsigned int clock, bool turbo)
1254{
1255 return turbo ? (clock / 80) : (clock / 40);
1256}
1257
1258/*
1259 * Read from a register
1260 */
1059static inline u32 ath5k_hw_reg_read(struct ath5k_hw *ah, u16 reg) 1261static inline u32 ath5k_hw_reg_read(struct ath5k_hw *ah, u16 reg)
1060{ 1262{
1061 return ioread32(ah->ah_iobase + reg); 1263 return ioread32(ah->ah_iobase + reg);
1062} 1264}
1063 1265
1266/*
1267 * Write to a register
1268 */
1064static inline void ath5k_hw_reg_write(struct ath5k_hw *ah, u32 val, u16 reg) 1269static inline void ath5k_hw_reg_write(struct ath5k_hw *ah, u32 val, u16 reg)
1065{ 1270{
1066 iowrite32(val, ah->ah_iobase + reg); 1271 iowrite32(val, ah->ah_iobase + reg);
1067} 1272}
1068 1273
1274#if defined(_ATH5K_RESET) || defined(_ATH5K_PHY)
1275/*
1276 * Check if a register write has been completed
1277 */
1278static int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag,
1279 u32 val, bool is_set)
1280{
1281 int i;
1282 u32 data;
1283
1284 for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
1285 data = ath5k_hw_reg_read(ah, reg);
1286 if (is_set && (data & flag))
1287 break;
1288 else if ((data & flag) == val)
1289 break;
1290 udelay(15);
1291 }
1292
1293 return (i <= 0) ? -EAGAIN : 0;
1294}
1295#endif
1296
1297static inline u32 ath5k_hw_bitswap(u32 val, unsigned int bits)
1298{
1299 u32 retval = 0, bit, i;
1300
1301 for (i = 0; i < bits; i++) {
1302 bit = (val >> i) & 1;
1303 retval = (retval << 1) | bit;
1304 }
1305
1306 return retval;
1307}
1308
1069#endif 1309#endif
diff --git a/drivers/net/wireless/ath5k/attach.c b/drivers/net/wireless/ath5k/attach.c
new file mode 100644
index 00000000000..0eb2511fe14
--- /dev/null
+++ b/drivers/net/wireless/ath5k/attach.c
@@ -0,0 +1,315 @@
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 */
18
19/*************************************\
20* Attach/Detach Functions and helpers *
21\*************************************/
22
23#include <linux/pci.h>
24#include "ath5k.h"
25#include "reg.h"
26#include "debug.h"
27#include "base.h"
28
29/**
30 * ath5k_hw_post - Power On Self Test helper function
31 *
32 * @ah: The &struct ath5k_hw
33 */
34static int ath5k_hw_post(struct ath5k_hw *ah)
35{
36
37 int i, c;
38 u16 cur_reg;
39 u16 regs[2] = {AR5K_STA_ID0, AR5K_PHY(8)};
40 u32 var_pattern;
41 u32 static_pattern[4] = {
42 0x55555555, 0xaaaaaaaa,
43 0x66666666, 0x99999999
44 };
45 u32 init_val;
46 u32 cur_val;
47
48 for (c = 0; c < 2; c++) {
49
50 cur_reg = regs[c];
51
52 /* Save previous value */
53 init_val = ath5k_hw_reg_read(ah, cur_reg);
54
55 for (i = 0; i < 256; i++) {
56 var_pattern = i << 16 | i;
57 ath5k_hw_reg_write(ah, var_pattern, cur_reg);
58 cur_val = ath5k_hw_reg_read(ah, cur_reg);
59
60 if (cur_val != var_pattern) {
61 ATH5K_ERR(ah->ah_sc, "POST Failed !!!\n");
62 return -EAGAIN;
63 }
64
65 /* Found on ndiswrapper dumps */
66 var_pattern = 0x0039080f;
67 ath5k_hw_reg_write(ah, var_pattern, cur_reg);
68 }
69
70 for (i = 0; i < 4; i++) {
71 var_pattern = static_pattern[i];
72 ath5k_hw_reg_write(ah, var_pattern, cur_reg);
73 cur_val = ath5k_hw_reg_read(ah, cur_reg);
74
75 if (cur_val != var_pattern) {
76 ATH5K_ERR(ah->ah_sc, "POST Failed !!!\n");
77 return -EAGAIN;
78 }
79
80 /* Found on ndiswrapper dumps */
81 var_pattern = 0x003b080f;
82 ath5k_hw_reg_write(ah, var_pattern, cur_reg);
83 }
84
85 /* Restore previous value */
86 ath5k_hw_reg_write(ah, init_val, cur_reg);
87
88 }
89
90 return 0;
91
92}
93
94/**
95 * ath5k_hw_attach - Check if hw is supported and init the needed structs
96 *
97 * @sc: The &struct ath5k_softc we got from the driver's attach function
98 * @mac_version: The mac version id (check out ath5k.h) based on pci id
99 *
100 * Check if the device is supported, perform a POST and initialize the needed
101 * structs. Returns -ENOMEM if we don't have memory for the needed structs,
102 * -ENODEV if the device is not supported or prints an error msg if something
103 * else went wrong.
104 */
105struct ath5k_hw *ath5k_hw_attach(struct ath5k_softc *sc, u8 mac_version)
106{
107 struct ath5k_hw *ah;
108 struct pci_dev *pdev = sc->pdev;
109 u8 mac[ETH_ALEN];
110 int ret;
111 u32 srev;
112
113 /*If we passed the test malloc a ath5k_hw struct*/
114 ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
115 if (ah == NULL) {
116 ret = -ENOMEM;
117 ATH5K_ERR(sc, "out of memory\n");
118 goto err;
119 }
120
121 ah->ah_sc = sc;
122 ah->ah_iobase = sc->iobase;
123
124 /*
125 * HW information
126 */
127 ah->ah_op_mode = IEEE80211_IF_TYPE_STA;
128 ah->ah_radar.r_enabled = AR5K_TUNE_RADAR_ALERT;
129 ah->ah_turbo = false;
130 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
131 ah->ah_imr = 0;
132 ah->ah_atim_window = 0;
133 ah->ah_aifs = AR5K_TUNE_AIFS;
134 ah->ah_cw_min = AR5K_TUNE_CWMIN;
135 ah->ah_limit_tx_retries = AR5K_INIT_TX_RETRY;
136 ah->ah_software_retry = false;
137 ah->ah_ant_diversity = AR5K_TUNE_ANT_DIVERSITY;
138
139 /*
140 * Set the mac revision based on the pci id
141 */
142 ah->ah_version = mac_version;
143
144 /*Fill the ath5k_hw struct with the needed functions*/
145 ret = ath5k_hw_init_desc_functions(ah);
146 if (ret)
147 goto err_free;
148
149 /* Bring device out of sleep and reset it's units */
150 ret = ath5k_hw_nic_wakeup(ah, CHANNEL_B, true);
151 if (ret)
152 goto err_free;
153
154 /* Get MAC, PHY and RADIO revisions */
155 srev = ath5k_hw_reg_read(ah, AR5K_SREV);
156 ah->ah_mac_srev = srev;
157 ah->ah_mac_version = AR5K_REG_MS(srev, AR5K_SREV_VER);
158 ah->ah_mac_revision = AR5K_REG_MS(srev, AR5K_SREV_REV);
159 ah->ah_phy_revision = ath5k_hw_reg_read(ah, AR5K_PHY_CHIP_ID) &
160 0xffffffff;
161 ah->ah_radio_5ghz_revision = ath5k_hw_radio_revision(ah,
162 CHANNEL_5GHZ);
163
164 if (ah->ah_version == AR5K_AR5210)
165 ah->ah_radio_2ghz_revision = 0;
166 else
167 ah->ah_radio_2ghz_revision = ath5k_hw_radio_revision(ah,
168 CHANNEL_2GHZ);
169
170 /* Return on unsuported chips (unsupported eeprom etc) */
171 if ((srev >= AR5K_SREV_VER_AR5416) &&
172 (srev < AR5K_SREV_VER_AR2425)) {
173 ATH5K_ERR(sc, "Device not yet supported.\n");
174 ret = -ENODEV;
175 goto err_free;
176 } else if (srev == AR5K_SREV_VER_AR2425) {
177 ATH5K_WARN(sc, "Support for RF2425 is under development.\n");
178 }
179
180 /* Identify single chip solutions */
181 if (((srev <= AR5K_SREV_VER_AR5414) &&
182 (srev >= AR5K_SREV_VER_AR2413)) ||
183 (srev == AR5K_SREV_VER_AR2425)) {
184 ah->ah_single_chip = true;
185 } else {
186 ah->ah_single_chip = false;
187 }
188
189 /* Single chip radio */
190 if (ah->ah_radio_2ghz_revision == ah->ah_radio_5ghz_revision)
191 ah->ah_radio_2ghz_revision = 0;
192
193 /* Identify the radio chip*/
194 if (ah->ah_version == AR5K_AR5210) {
195 ah->ah_radio = AR5K_RF5110;
196 /*
197 * Register returns 0x0/0x04 for radio revision
198 * so ath5k_hw_radio_revision doesn't parse the value
199 * correctly. For now we are based on mac's srev to
200 * identify RF2425 radio.
201 */
202 } else if (srev == AR5K_SREV_VER_AR2425) {
203 ah->ah_radio = AR5K_RF2425;
204 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF2425;
205 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112) {
206 ah->ah_radio = AR5K_RF5111;
207 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5111;
208 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC0) {
209 ah->ah_radio = AR5K_RF5112;
210 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5112;
211 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC1) {
212 ah->ah_radio = AR5K_RF2413;
213 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF2413;
214 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC2) {
215 ah->ah_radio = AR5K_RF5413;
216 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5413;
217 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5133) {
218 /* AR5424 */
219 if (srev >= AR5K_SREV_VER_AR5424) {
220 ah->ah_radio = AR5K_RF5413;
221 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5413;
222 /* AR2424 */
223 } else {
224 ah->ah_radio = AR5K_RF2413; /* For testing */
225 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF2413;
226 }
227 }
228 ah->ah_phy = AR5K_PHY(0);
229
230 /*
231 * Write PCI-E power save settings
232 */
233 if ((ah->ah_version == AR5K_AR5212) && (pdev->is_pcie)) {
234 ath5k_hw_reg_write(ah, 0x9248fc00, 0x4080);
235 ath5k_hw_reg_write(ah, 0x24924924, 0x4080);
236 ath5k_hw_reg_write(ah, 0x28000039, 0x4080);
237 ath5k_hw_reg_write(ah, 0x53160824, 0x4080);
238 ath5k_hw_reg_write(ah, 0xe5980579, 0x4080);
239 ath5k_hw_reg_write(ah, 0x001defff, 0x4080);
240 ath5k_hw_reg_write(ah, 0x1aaabe40, 0x4080);
241 ath5k_hw_reg_write(ah, 0xbe105554, 0x4080);
242 ath5k_hw_reg_write(ah, 0x000e3007, 0x4080);
243 ath5k_hw_reg_write(ah, 0x00000000, 0x4084);
244 }
245
246 /*
247 * POST
248 */
249 ret = ath5k_hw_post(ah);
250 if (ret)
251 goto err_free;
252
253 /* Write AR5K_PCICFG_UNK on 2112B and later chips */
254 if (ah->ah_radio_5ghz_revision > AR5K_SREV_RAD_2112B ||
255 srev > AR5K_SREV_VER_AR2413) {
256 ath5k_hw_reg_write(ah, AR5K_PCICFG_UNK, AR5K_PCICFG);
257 }
258
259 /*
260 * Get card capabilities, values, ...
261 */
262 ret = ath5k_eeprom_init(ah);
263 if (ret) {
264 ATH5K_ERR(sc, "unable to init EEPROM\n");
265 goto err_free;
266 }
267
268 /* Get misc capabilities */
269 ret = ath5k_hw_set_capabilities(ah);
270 if (ret) {
271 ATH5K_ERR(sc, "unable to get device capabilities: 0x%04x\n",
272 sc->pdev->device);
273 goto err_free;
274 }
275
276 /* Get MAC address */
277 ret = ath5k_eeprom_read_mac(ah, mac);
278 if (ret) {
279 ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
280 sc->pdev->device);
281 goto err_free;
282 }
283
284 ath5k_hw_set_lladdr(ah, mac);
285 /* Set BSSID to bcast address: ff:ff:ff:ff:ff:ff for now */
286 memset(ah->ah_bssid, 0xff, ETH_ALEN);
287 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
288 ath5k_hw_set_opmode(ah);
289
290 ath5k_hw_set_rfgain_opt(ah);
291
292 return ah;
293err_free:
294 kfree(ah);
295err:
296 return ERR_PTR(ret);
297}
298
299/**
300 * ath5k_hw_detach - Free the ath5k_hw struct
301 *
302 * @ah: The &struct ath5k_hw
303 */
304void ath5k_hw_detach(struct ath5k_hw *ah)
305{
306 ATH5K_TRACE(ah->ah_sc);
307
308 __set_bit(ATH_STAT_INVALID, ah->ah_sc->status);
309
310 if (ah->ah_rf_banks != NULL)
311 kfree(ah->ah_rf_banks);
312
313 /* assume interrupts are down */
314 kfree(ah);
315}
diff --git a/drivers/net/wireless/ath5k/base.c b/drivers/net/wireless/ath5k/base.c
index bcec74e839e..7989ab5c2bb 100644
--- a/drivers/net/wireless/ath5k/base.c
+++ b/drivers/net/wireless/ath5k/base.c
@@ -707,7 +707,7 @@ ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
707 * return false w/o doing anything. MAC's that do 707 * return false w/o doing anything. MAC's that do
708 * support it will return true w/o doing anything. 708 * support it will return true w/o doing anything.
709 */ 709 */
710 ret = ah->ah_setup_xtx_desc(ah, NULL, 0, 0, 0, 0, 0, 0); 710 ret = ah->ah_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
711 if (ret < 0) 711 if (ret < 0)
712 goto err; 712 goto err;
713 if (ret > 0) 713 if (ret > 0)
@@ -1137,7 +1137,7 @@ ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1137 ds = bf->desc; 1137 ds = bf->desc;
1138 ds->ds_link = bf->daddr; /* link to self */ 1138 ds->ds_link = bf->daddr; /* link to self */
1139 ds->ds_data = bf->skbaddr; 1139 ds->ds_data = bf->skbaddr;
1140 ath5k_hw_setup_rx_desc(ah, ds, 1140 ah->ah_setup_rx_desc(ah, ds,
1141 skb_tailroom(skb), /* buffer size */ 1141 skb_tailroom(skb), /* buffer size */
1142 0); 1142 0);
1143 1143
@@ -1188,12 +1188,12 @@ ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1188 list_add_tail(&bf->list, &txq->q); 1188 list_add_tail(&bf->list, &txq->q);
1189 sc->tx_stats[txq->qnum].len++; 1189 sc->tx_stats[txq->qnum].len++;
1190 if (txq->link == NULL) /* is this first packet? */ 1190 if (txq->link == NULL) /* is this first packet? */
1191 ath5k_hw_put_tx_buf(ah, txq->qnum, bf->daddr); 1191 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
1192 else /* no, so only link it */ 1192 else /* no, so only link it */
1193 *txq->link = bf->daddr; 1193 *txq->link = bf->daddr;
1194 1194
1195 txq->link = &ds->ds_link; 1195 txq->link = &ds->ds_link;
1196 ath5k_hw_tx_start(ah, txq->qnum); 1196 ath5k_hw_start_tx_dma(ah, txq->qnum);
1197 mmiowb(); 1197 mmiowb();
1198 spin_unlock_bh(&txq->lock); 1198 spin_unlock_bh(&txq->lock);
1199 1199
@@ -1393,7 +1393,7 @@ ath5k_beaconq_config(struct ath5k_softc *sc)
1393 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n", 1393 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1394 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max); 1394 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1395 1395
1396 ret = ath5k_hw_setup_tx_queueprops(ah, sc->bhalq, &qi); 1396 ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1397 if (ret) { 1397 if (ret) {
1398 ATH5K_ERR(sc, "%s: unable to update parameters for beacon " 1398 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1399 "hardware queue!\n", __func__); 1399 "hardware queue!\n", __func__);
@@ -1442,14 +1442,14 @@ ath5k_txq_cleanup(struct ath5k_softc *sc)
1442 /* don't touch the hardware if marked invalid */ 1442 /* don't touch the hardware if marked invalid */
1443 ath5k_hw_stop_tx_dma(ah, sc->bhalq); 1443 ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1444 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n", 1444 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1445 ath5k_hw_get_tx_buf(ah, sc->bhalq)); 1445 ath5k_hw_get_txdp(ah, sc->bhalq));
1446 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) 1446 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1447 if (sc->txqs[i].setup) { 1447 if (sc->txqs[i].setup) {
1448 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum); 1448 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1449 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, " 1449 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1450 "link %p\n", 1450 "link %p\n",
1451 sc->txqs[i].qnum, 1451 sc->txqs[i].qnum,
1452 ath5k_hw_get_tx_buf(ah, 1452 ath5k_hw_get_txdp(ah,
1453 sc->txqs[i].qnum), 1453 sc->txqs[i].qnum),
1454 sc->txqs[i].link); 1454 sc->txqs[i].link);
1455 } 1455 }
@@ -1509,8 +1509,8 @@ ath5k_rx_start(struct ath5k_softc *sc)
1509 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list); 1509 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1510 spin_unlock_bh(&sc->rxbuflock); 1510 spin_unlock_bh(&sc->rxbuflock);
1511 1511
1512 ath5k_hw_put_rx_buf(ah, bf->daddr); 1512 ath5k_hw_set_rxdp(ah, bf->daddr);
1513 ath5k_hw_start_rx(ah); /* enable recv descriptors */ 1513 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1514 ath5k_mode_setup(sc); /* set filters, etc. */ 1514 ath5k_mode_setup(sc); /* set filters, etc. */
1515 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */ 1515 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1516 1516
@@ -1527,7 +1527,7 @@ ath5k_rx_stop(struct ath5k_softc *sc)
1527{ 1527{
1528 struct ath5k_hw *ah = sc->ah; 1528 struct ath5k_hw *ah = sc->ah;
1529 1529
1530 ath5k_hw_stop_pcu_recv(ah); /* disable PCU */ 1530 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1531 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */ 1531 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1532 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */ 1532 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
1533 1533
@@ -1976,8 +1976,8 @@ ath5k_beacon_send(struct ath5k_softc *sc)
1976 /* NB: hw still stops DMA, so proceed */ 1976 /* NB: hw still stops DMA, so proceed */
1977 } 1977 }
1978 1978
1979 ath5k_hw_put_tx_buf(ah, sc->bhalq, bf->daddr); 1979 ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
1980 ath5k_hw_tx_start(ah, sc->bhalq); 1980 ath5k_hw_start_tx_dma(ah, sc->bhalq);
1981 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n", 1981 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1982 sc->bhalq, (unsigned long long)bf->daddr, bf->desc); 1982 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
1983 1983
@@ -2106,7 +2106,7 @@ ath5k_beacon_config(struct ath5k_softc *sc)
2106{ 2106{
2107 struct ath5k_hw *ah = sc->ah; 2107 struct ath5k_hw *ah = sc->ah;
2108 2108
2109 ath5k_hw_set_intr(ah, 0); 2109 ath5k_hw_set_imr(ah, 0);
2110 sc->bmisscount = 0; 2110 sc->bmisscount = 0;
2111 sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA); 2111 sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2112 2112
@@ -2132,7 +2132,7 @@ ath5k_beacon_config(struct ath5k_softc *sc)
2132 } 2132 }
2133 /* TODO else AP */ 2133 /* TODO else AP */
2134 2134
2135 ath5k_hw_set_intr(ah, sc->imask); 2135 ath5k_hw_set_imr(ah, sc->imask);
2136} 2136}
2137 2137
2138 2138
@@ -2211,7 +2211,7 @@ ath5k_stop_locked(struct ath5k_softc *sc)
2211 2211
2212 if (!test_bit(ATH_STAT_INVALID, sc->status)) { 2212 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2213 ath5k_led_off(sc); 2213 ath5k_led_off(sc);
2214 ath5k_hw_set_intr(ah, 0); 2214 ath5k_hw_set_imr(ah, 0);
2215 synchronize_irq(sc->pdev->irq); 2215 synchronize_irq(sc->pdev->irq);
2216 } 2216 }
2217 ath5k_txq_cleanup(sc); 2217 ath5k_txq_cleanup(sc);
@@ -2604,7 +2604,7 @@ ath5k_reset(struct ath5k_softc *sc, bool stop, bool change_channel)
2604 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n"); 2604 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2605 2605
2606 if (stop) { 2606 if (stop) {
2607 ath5k_hw_set_intr(ah, 0); 2607 ath5k_hw_set_imr(ah, 0);
2608 ath5k_txq_cleanup(sc); 2608 ath5k_txq_cleanup(sc);
2609 ath5k_rx_stop(sc); 2609 ath5k_rx_stop(sc);
2610 } 2610 }
diff --git a/drivers/net/wireless/ath5k/caps.c b/drivers/net/wireless/ath5k/caps.c
new file mode 100644
index 00000000000..150f5ed204a
--- /dev/null
+++ b/drivers/net/wireless/ath5k/caps.c
@@ -0,0 +1,193 @@
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 */
19
20/**************\
21* Capabilities *
22\**************/
23
24#include "ath5k.h"
25#include "reg.h"
26#include "debug.h"
27#include "base.h"
28
29/*
30 * Fill the capabilities struct
31 * TODO: Merge this with EEPROM code when we are done with it
32 */
33int ath5k_hw_set_capabilities(struct ath5k_hw *ah)
34{
35 u16 ee_header;
36
37 ATH5K_TRACE(ah->ah_sc);
38 /* Capabilities stored in the EEPROM */
39 ee_header = ah->ah_capabilities.cap_eeprom.ee_header;
40
41 if (ah->ah_version == AR5K_AR5210) {
42 /*
43 * Set radio capabilities
44 * (The AR5110 only supports the middle 5GHz band)
45 */
46 ah->ah_capabilities.cap_range.range_5ghz_min = 5120;
47 ah->ah_capabilities.cap_range.range_5ghz_max = 5430;
48 ah->ah_capabilities.cap_range.range_2ghz_min = 0;
49 ah->ah_capabilities.cap_range.range_2ghz_max = 0;
50
51 /* Set supported modes */
52 __set_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode);
53 __set_bit(AR5K_MODE_11A_TURBO, ah->ah_capabilities.cap_mode);
54 } else {
55 /*
56 * XXX The tranceiver supports frequencies from 4920 to 6100GHz
57 * XXX and from 2312 to 2732GHz. There are problems with the
58 * XXX current ieee80211 implementation because the IEEE
59 * XXX channel mapping does not support negative channel
60 * XXX numbers (2312MHz is channel -19). Of course, this
61 * XXX doesn't matter because these channels are out of range
62 * XXX but some regulation domains like MKK (Japan) will
63 * XXX support frequencies somewhere around 4.8GHz.
64 */
65
66 /*
67 * Set radio capabilities
68 */
69
70 if (AR5K_EEPROM_HDR_11A(ee_header)) {
71 /* 4920 */
72 ah->ah_capabilities.cap_range.range_5ghz_min = 5005;
73 ah->ah_capabilities.cap_range.range_5ghz_max = 6100;
74
75 /* Set supported modes */
76 __set_bit(AR5K_MODE_11A,
77 ah->ah_capabilities.cap_mode);
78 __set_bit(AR5K_MODE_11A_TURBO,
79 ah->ah_capabilities.cap_mode);
80 if (ah->ah_version == AR5K_AR5212)
81 __set_bit(AR5K_MODE_11G_TURBO,
82 ah->ah_capabilities.cap_mode);
83 }
84
85 /* Enable 802.11b if a 2GHz capable radio (2111/5112) is
86 * connected */
87 if (AR5K_EEPROM_HDR_11B(ee_header) ||
88 AR5K_EEPROM_HDR_11G(ee_header)) {
89 /* 2312 */
90 ah->ah_capabilities.cap_range.range_2ghz_min = 2412;
91 ah->ah_capabilities.cap_range.range_2ghz_max = 2732;
92
93 if (AR5K_EEPROM_HDR_11B(ee_header))
94 __set_bit(AR5K_MODE_11B,
95 ah->ah_capabilities.cap_mode);
96
97 if (AR5K_EEPROM_HDR_11G(ee_header))
98 __set_bit(AR5K_MODE_11G,
99 ah->ah_capabilities.cap_mode);
100 }
101 }
102
103 /* GPIO */
104 ah->ah_gpio_npins = AR5K_NUM_GPIO;
105
106 /* Set number of supported TX queues */
107 if (ah->ah_version == AR5K_AR5210)
108 ah->ah_capabilities.cap_queues.q_tx_num =
109 AR5K_NUM_TX_QUEUES_NOQCU;
110 else
111 ah->ah_capabilities.cap_queues.q_tx_num = AR5K_NUM_TX_QUEUES;
112
113 return 0;
114}
115
116/* Main function used by the driver part to check caps */
117int ath5k_hw_get_capability(struct ath5k_hw *ah,
118 enum ath5k_capability_type cap_type,
119 u32 capability, u32 *result)
120{
121 ATH5K_TRACE(ah->ah_sc);
122
123 switch (cap_type) {
124 case AR5K_CAP_NUM_TXQUEUES:
125 if (result) {
126 if (ah->ah_version == AR5K_AR5210)
127 *result = AR5K_NUM_TX_QUEUES_NOQCU;
128 else
129 *result = AR5K_NUM_TX_QUEUES;
130 goto yes;
131 }
132 case AR5K_CAP_VEOL:
133 goto yes;
134 case AR5K_CAP_COMPRESSION:
135 if (ah->ah_version == AR5K_AR5212)
136 goto yes;
137 else
138 goto no;
139 case AR5K_CAP_BURST:
140 goto yes;
141 case AR5K_CAP_TPC:
142 goto yes;
143 case AR5K_CAP_BSSIDMASK:
144 if (ah->ah_version == AR5K_AR5212)
145 goto yes;
146 else
147 goto no;
148 case AR5K_CAP_XR:
149 if (ah->ah_version == AR5K_AR5212)
150 goto yes;
151 else
152 goto no;
153 default:
154 goto no;
155 }
156
157no:
158 return -EINVAL;
159yes:
160 return 0;
161}
162
163/*
164 * TODO: Following functions should be part of a new function
165 * set_capability
166 */
167
168int ath5k_hw_enable_pspoll(struct ath5k_hw *ah, u8 *bssid,
169 u16 assoc_id)
170{
171 ATH5K_TRACE(ah->ah_sc);
172
173 if (ah->ah_version == AR5K_AR5210) {
174 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
175 AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
176 return 0;
177 }
178
179 return -EIO;
180}
181
182int ath5k_hw_disable_pspoll(struct ath5k_hw *ah)
183{
184 ATH5K_TRACE(ah->ah_sc);
185
186 if (ah->ah_version == AR5K_AR5210) {
187 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
188 AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
189 return 0;
190 }
191
192 return -EIO;
193}
diff --git a/drivers/net/wireless/ath5k/debug.c b/drivers/net/wireless/ath5k/debug.c
index 6fa6c8e04ff..8f92d670f61 100644
--- a/drivers/net/wireless/ath5k/debug.c
+++ b/drivers/net/wireless/ath5k/debug.c
@@ -58,8 +58,8 @@
58 * THE POSSIBILITY OF SUCH DAMAGES. 58 * THE POSSIBILITY OF SUCH DAMAGES.
59 */ 59 */
60 60
61#include "debug.h"
62#include "base.h" 61#include "base.h"
62#include "debug.h"
63 63
64static unsigned int ath5k_debug; 64static unsigned int ath5k_debug;
65module_param_named(debug, ath5k_debug, uint, 0); 65module_param_named(debug, ath5k_debug, uint, 0);
@@ -525,7 +525,7 @@ ath5k_debug_printrxbuffs(struct ath5k_softc *sc, struct ath5k_hw *ah)
525 return; 525 return;
526 526
527 printk(KERN_DEBUG "rx queue %x, link %p\n", 527 printk(KERN_DEBUG "rx queue %x, link %p\n",
528 ath5k_hw_get_rx_buf(ah), sc->rxlink); 528 ath5k_hw_get_rxdp(ah), sc->rxlink);
529 529
530 spin_lock_bh(&sc->rxbuflock); 530 spin_lock_bh(&sc->rxbuflock);
531 list_for_each_entry(bf, &sc->rxbuf, list) { 531 list_for_each_entry(bf, &sc->rxbuf, list) {
diff --git a/drivers/net/wireless/ath5k/desc.c b/drivers/net/wireless/ath5k/desc.c
new file mode 100644
index 00000000000..d45b90a6e06
--- /dev/null
+++ b/drivers/net/wireless/ath5k/desc.c
@@ -0,0 +1,667 @@
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 */
19
20/******************************\
21 Hardware Descriptor Functions
22\******************************/
23
24#include "ath5k.h"
25#include "reg.h"
26#include "debug.h"
27#include "base.h"
28
29/*
30 * TX Descriptors
31 */
32
33/*
34 * Initialize the 2-word tx control descriptor on 5210/5211
35 */
36static int
37ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
38 unsigned int pkt_len, unsigned int hdr_len, enum ath5k_pkt_type type,
39 unsigned int tx_power, unsigned int tx_rate0, unsigned int tx_tries0,
40 unsigned int key_index, unsigned int antenna_mode, unsigned int flags,
41 unsigned int rtscts_rate, unsigned int rtscts_duration)
42{
43 u32 frame_type;
44 struct ath5k_hw_2w_tx_ctl *tx_ctl;
45 unsigned int frame_len;
46
47 tx_ctl = &desc->ud.ds_tx5210.tx_ctl;
48
49 /*
50 * Validate input
51 * - Zero retries don't make sense.
52 * - A zero rate will put the HW into a mode where it continously sends
53 * noise on the channel, so it is important to avoid this.
54 */
55 if (unlikely(tx_tries0 == 0)) {
56 ATH5K_ERR(ah->ah_sc, "zero retries\n");
57 WARN_ON(1);
58 return -EINVAL;
59 }
60 if (unlikely(tx_rate0 == 0)) {
61 ATH5K_ERR(ah->ah_sc, "zero rate\n");
62 WARN_ON(1);
63 return -EINVAL;
64 }
65
66 /* Clear descriptor */
67 memset(&desc->ud.ds_tx5210, 0, sizeof(struct ath5k_hw_5210_tx_desc));
68
69 /* Setup control descriptor */
70
71 /* Verify and set frame length */
72
73 /* remove padding we might have added before */
74 frame_len = pkt_len - (hdr_len & 3) + FCS_LEN;
75
76 if (frame_len & ~AR5K_2W_TX_DESC_CTL0_FRAME_LEN)
77 return -EINVAL;
78
79 tx_ctl->tx_control_0 = frame_len & AR5K_2W_TX_DESC_CTL0_FRAME_LEN;
80
81 /* Verify and set buffer length */
82
83 /* NB: beacon's BufLen must be a multiple of 4 bytes */
84 if (type == AR5K_PKT_TYPE_BEACON)
85 pkt_len = roundup(pkt_len, 4);
86
87 if (pkt_len & ~AR5K_2W_TX_DESC_CTL1_BUF_LEN)
88 return -EINVAL;
89
90 tx_ctl->tx_control_1 = pkt_len & AR5K_2W_TX_DESC_CTL1_BUF_LEN;
91
92 /*
93 * Verify and set header length
94 * XXX: I only found that on 5210 code, does it work on 5211 ?
95 */
96 if (ah->ah_version == AR5K_AR5210) {
97 if (hdr_len & ~AR5K_2W_TX_DESC_CTL0_HEADER_LEN)
98 return -EINVAL;
99 tx_ctl->tx_control_0 |=
100 AR5K_REG_SM(hdr_len, AR5K_2W_TX_DESC_CTL0_HEADER_LEN);
101 }
102
103 /*Diferences between 5210-5211*/
104 if (ah->ah_version == AR5K_AR5210) {
105 switch (type) {
106 case AR5K_PKT_TYPE_BEACON:
107 case AR5K_PKT_TYPE_PROBE_RESP:
108 frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_NO_DELAY;
109 case AR5K_PKT_TYPE_PIFS:
110 frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_PIFS;
111 default:
112 frame_type = type /*<< 2 ?*/;
113 }
114
115 tx_ctl->tx_control_0 |=
116 AR5K_REG_SM(frame_type, AR5K_2W_TX_DESC_CTL0_FRAME_TYPE) |
117 AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
118
119 } else {
120 tx_ctl->tx_control_0 |=
121 AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE) |
122 AR5K_REG_SM(antenna_mode,
123 AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT);
124 tx_ctl->tx_control_1 |=
125 AR5K_REG_SM(type, AR5K_2W_TX_DESC_CTL1_FRAME_TYPE);
126 }
127#define _TX_FLAGS(_c, _flag) \
128 if (flags & AR5K_TXDESC_##_flag) { \
129 tx_ctl->tx_control_##_c |= \
130 AR5K_2W_TX_DESC_CTL##_c##_##_flag; \
131 }
132
133 _TX_FLAGS(0, CLRDMASK);
134 _TX_FLAGS(0, VEOL);
135 _TX_FLAGS(0, INTREQ);
136 _TX_FLAGS(0, RTSENA);
137 _TX_FLAGS(1, NOACK);
138
139#undef _TX_FLAGS
140
141 /*
142 * WEP crap
143 */
144 if (key_index != AR5K_TXKEYIX_INVALID) {
145 tx_ctl->tx_control_0 |=
146 AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
147 tx_ctl->tx_control_1 |=
148 AR5K_REG_SM(key_index,
149 AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
150 }
151
152 /*
153 * RTS/CTS Duration [5210 ?]
154 */
155 if ((ah->ah_version == AR5K_AR5210) &&
156 (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)))
157 tx_ctl->tx_control_1 |= rtscts_duration &
158 AR5K_2W_TX_DESC_CTL1_RTS_DURATION;
159
160 return 0;
161}
162
163/*
164 * Initialize the 4-word tx control descriptor on 5212
165 */
166static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah,
167 struct ath5k_desc *desc, unsigned int pkt_len, unsigned int hdr_len,
168 enum ath5k_pkt_type type, unsigned int tx_power, unsigned int tx_rate0,
169 unsigned int tx_tries0, unsigned int key_index,
170 unsigned int antenna_mode, unsigned int flags,
171 unsigned int rtscts_rate,
172 unsigned int rtscts_duration)
173{
174 struct ath5k_hw_4w_tx_ctl *tx_ctl;
175 unsigned int frame_len;
176
177 ATH5K_TRACE(ah->ah_sc);
178 tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
179
180 /*
181 * Validate input
182 * - Zero retries don't make sense.
183 * - A zero rate will put the HW into a mode where it continously sends
184 * noise on the channel, so it is important to avoid this.
185 */
186 if (unlikely(tx_tries0 == 0)) {
187 ATH5K_ERR(ah->ah_sc, "zero retries\n");
188 WARN_ON(1);
189 return -EINVAL;
190 }
191 if (unlikely(tx_rate0 == 0)) {
192 ATH5K_ERR(ah->ah_sc, "zero rate\n");
193 WARN_ON(1);
194 return -EINVAL;
195 }
196
197 /* Clear descriptor */
198 memset(&desc->ud.ds_tx5212, 0, sizeof(struct ath5k_hw_5212_tx_desc));
199
200 /* Setup control descriptor */
201
202 /* Verify and set frame length */
203
204 /* remove padding we might have added before */
205 frame_len = pkt_len - (hdr_len & 3) + FCS_LEN;
206
207 if (frame_len & ~AR5K_4W_TX_DESC_CTL0_FRAME_LEN)
208 return -EINVAL;
209
210 tx_ctl->tx_control_0 = frame_len & AR5K_4W_TX_DESC_CTL0_FRAME_LEN;
211
212 /* Verify and set buffer length */
213
214 /* NB: beacon's BufLen must be a multiple of 4 bytes */
215 if (type == AR5K_PKT_TYPE_BEACON)
216 pkt_len = roundup(pkt_len, 4);
217
218 if (pkt_len & ~AR5K_4W_TX_DESC_CTL1_BUF_LEN)
219 return -EINVAL;
220
221 tx_ctl->tx_control_1 = pkt_len & AR5K_4W_TX_DESC_CTL1_BUF_LEN;
222
223 tx_ctl->tx_control_0 |=
224 AR5K_REG_SM(tx_power, AR5K_4W_TX_DESC_CTL0_XMIT_POWER) |
225 AR5K_REG_SM(antenna_mode, AR5K_4W_TX_DESC_CTL0_ANT_MODE_XMIT);
226 tx_ctl->tx_control_1 |= AR5K_REG_SM(type,
227 AR5K_4W_TX_DESC_CTL1_FRAME_TYPE);
228 tx_ctl->tx_control_2 = AR5K_REG_SM(tx_tries0 + AR5K_TUNE_HWTXTRIES,
229 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES0);
230 tx_ctl->tx_control_3 = tx_rate0 & AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
231
232#define _TX_FLAGS(_c, _flag) \
233 if (flags & AR5K_TXDESC_##_flag) { \
234 tx_ctl->tx_control_##_c |= \
235 AR5K_4W_TX_DESC_CTL##_c##_##_flag; \
236 }
237
238 _TX_FLAGS(0, CLRDMASK);
239 _TX_FLAGS(0, VEOL);
240 _TX_FLAGS(0, INTREQ);
241 _TX_FLAGS(0, RTSENA);
242 _TX_FLAGS(0, CTSENA);
243 _TX_FLAGS(1, NOACK);
244
245#undef _TX_FLAGS
246
247 /*
248 * WEP crap
249 */
250 if (key_index != AR5K_TXKEYIX_INVALID) {
251 tx_ctl->tx_control_0 |= AR5K_4W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
252 tx_ctl->tx_control_1 |= AR5K_REG_SM(key_index,
253 AR5K_4W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
254 }
255
256 /*
257 * RTS/CTS
258 */
259 if (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)) {
260 if ((flags & AR5K_TXDESC_RTSENA) &&
261 (flags & AR5K_TXDESC_CTSENA))
262 return -EINVAL;
263 tx_ctl->tx_control_2 |= rtscts_duration &
264 AR5K_4W_TX_DESC_CTL2_RTS_DURATION;
265 tx_ctl->tx_control_3 |= AR5K_REG_SM(rtscts_rate,
266 AR5K_4W_TX_DESC_CTL3_RTS_CTS_RATE);
267 }
268
269 return 0;
270}
271
272/*
273 * Initialize a 4-word multi rate retry tx control descriptor on 5212
274 */
275static int
276ath5k_hw_setup_mrr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
277 unsigned int tx_rate1, u_int tx_tries1, u_int tx_rate2,
278 u_int tx_tries2, unsigned int tx_rate3, u_int tx_tries3)
279{
280 struct ath5k_hw_4w_tx_ctl *tx_ctl;
281
282 /*
283 * Rates can be 0 as long as the retry count is 0 too.
284 * A zero rate and nonzero retry count will put the HW into a mode where
285 * it continously sends noise on the channel, so it is important to
286 * avoid this.
287 */
288 if (unlikely((tx_rate1 == 0 && tx_tries1 != 0) ||
289 (tx_rate2 == 0 && tx_tries2 != 0) ||
290 (tx_rate3 == 0 && tx_tries3 != 0))) {
291 ATH5K_ERR(ah->ah_sc, "zero rate\n");
292 WARN_ON(1);
293 return -EINVAL;
294 }
295
296 if (ah->ah_version == AR5K_AR5212) {
297 tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
298
299#define _XTX_TRIES(_n) \
300 if (tx_tries##_n) { \
301 tx_ctl->tx_control_2 |= \
302 AR5K_REG_SM(tx_tries##_n, \
303 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES##_n); \
304 tx_ctl->tx_control_3 |= \
305 AR5K_REG_SM(tx_rate##_n, \
306 AR5K_4W_TX_DESC_CTL3_XMIT_RATE##_n); \
307 }
308
309 _XTX_TRIES(1);
310 _XTX_TRIES(2);
311 _XTX_TRIES(3);
312
313#undef _XTX_TRIES
314
315 return 1;
316 }
317
318 return 0;
319}
320
321/*
322 * Proccess the tx status descriptor on 5210/5211
323 */
324static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *ah,
325 struct ath5k_desc *desc, struct ath5k_tx_status *ts)
326{
327 struct ath5k_hw_2w_tx_ctl *tx_ctl;
328 struct ath5k_hw_tx_status *tx_status;
329
330 ATH5K_TRACE(ah->ah_sc);
331
332 tx_ctl = &desc->ud.ds_tx5210.tx_ctl;
333 tx_status = &desc->ud.ds_tx5210.tx_stat;
334
335 /* No frame has been send or error */
336 if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
337 return -EINPROGRESS;
338
339 /*
340 * Get descriptor status
341 */
342 ts->ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
343 AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
344 ts->ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
345 AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
346 ts->ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
347 AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
348 /*TODO: ts->ts_virtcol + test*/
349 ts->ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
350 AR5K_DESC_TX_STATUS1_SEQ_NUM);
351 ts->ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
352 AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
353 ts->ts_antenna = 1;
354 ts->ts_status = 0;
355 ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_0,
356 AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
357
358 if (!(tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK)) {
359 if (tx_status->tx_status_0 &
360 AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
361 ts->ts_status |= AR5K_TXERR_XRETRY;
362
363 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
364 ts->ts_status |= AR5K_TXERR_FIFO;
365
366 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
367 ts->ts_status |= AR5K_TXERR_FILT;
368 }
369
370 return 0;
371}
372
373/*
374 * Proccess a tx status descriptor on 5212
375 */
376static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *ah,
377 struct ath5k_desc *desc, struct ath5k_tx_status *ts)
378{
379 struct ath5k_hw_4w_tx_ctl *tx_ctl;
380 struct ath5k_hw_tx_status *tx_status;
381
382 ATH5K_TRACE(ah->ah_sc);
383
384 tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
385 tx_status = &desc->ud.ds_tx5212.tx_stat;
386
387 /* No frame has been send or error */
388 if (unlikely(!(tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE)))
389 return -EINPROGRESS;
390
391 /*
392 * Get descriptor status
393 */
394 ts->ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
395 AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
396 ts->ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
397 AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
398 ts->ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
399 AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
400 ts->ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
401 AR5K_DESC_TX_STATUS1_SEQ_NUM);
402 ts->ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
403 AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
404 ts->ts_antenna = (tx_status->tx_status_1 &
405 AR5K_DESC_TX_STATUS1_XMIT_ANTENNA) ? 2 : 1;
406 ts->ts_status = 0;
407
408 switch (AR5K_REG_MS(tx_status->tx_status_1,
409 AR5K_DESC_TX_STATUS1_FINAL_TS_INDEX)) {
410 case 0:
411 ts->ts_rate = tx_ctl->tx_control_3 &
412 AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
413 break;
414 case 1:
415 ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_3,
416 AR5K_4W_TX_DESC_CTL3_XMIT_RATE1);
417 ts->ts_longretry += AR5K_REG_MS(tx_ctl->tx_control_2,
418 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES1);
419 break;
420 case 2:
421 ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_3,
422 AR5K_4W_TX_DESC_CTL3_XMIT_RATE2);
423 ts->ts_longretry += AR5K_REG_MS(tx_ctl->tx_control_2,
424 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES2);
425 break;
426 case 3:
427 ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_3,
428 AR5K_4W_TX_DESC_CTL3_XMIT_RATE3);
429 ts->ts_longretry += AR5K_REG_MS(tx_ctl->tx_control_2,
430 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES3);
431 break;
432 }
433
434 /* TX error */
435 if (!(tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK)) {
436 if (tx_status->tx_status_0 &
437 AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
438 ts->ts_status |= AR5K_TXERR_XRETRY;
439
440 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
441 ts->ts_status |= AR5K_TXERR_FIFO;
442
443 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
444 ts->ts_status |= AR5K_TXERR_FILT;
445 }
446
447 return 0;
448}
449
450/*
451 * RX Descriptors
452 */
453
454/*
455 * Initialize an rx control descriptor
456 */
457static int ath5k_hw_setup_rx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
458 u32 size, unsigned int flags)
459{
460 struct ath5k_hw_rx_ctl *rx_ctl;
461
462 ATH5K_TRACE(ah->ah_sc);
463 rx_ctl = &desc->ud.ds_rx.rx_ctl;
464
465 /*
466 * Clear the descriptor
467 * If we don't clean the status descriptor,
468 * while scanning we get too many results,
469 * most of them virtual, after some secs
470 * of scanning system hangs. M.F.
471 */
472 memset(&desc->ud.ds_rx, 0, sizeof(struct ath5k_hw_all_rx_desc));
473
474 /* Setup descriptor */
475 rx_ctl->rx_control_1 = size & AR5K_DESC_RX_CTL1_BUF_LEN;
476 if (unlikely(rx_ctl->rx_control_1 != size))
477 return -EINVAL;
478
479 if (flags & AR5K_RXDESC_INTREQ)
480 rx_ctl->rx_control_1 |= AR5K_DESC_RX_CTL1_INTREQ;
481
482 return 0;
483}
484
485/*
486 * Proccess the rx status descriptor on 5210/5211
487 */
488static int ath5k_hw_proc_5210_rx_status(struct ath5k_hw *ah,
489 struct ath5k_desc *desc, struct ath5k_rx_status *rs)
490{
491 struct ath5k_hw_rx_status *rx_status;
492
493 rx_status = &desc->ud.ds_rx.u.rx_stat;
494
495 /* No frame received / not ready */
496 if (unlikely(!(rx_status->rx_status_1 &
497 AR5K_5210_RX_DESC_STATUS1_DONE)))
498 return -EINPROGRESS;
499
500 /*
501 * Frame receive status
502 */
503 rs->rs_datalen = rx_status->rx_status_0 &
504 AR5K_5210_RX_DESC_STATUS0_DATA_LEN;
505 rs->rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
506 AR5K_5210_RX_DESC_STATUS0_RECEIVE_SIGNAL);
507 rs->rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
508 AR5K_5210_RX_DESC_STATUS0_RECEIVE_RATE);
509 rs->rs_antenna = rx_status->rx_status_0 &
510 AR5K_5210_RX_DESC_STATUS0_RECEIVE_ANTENNA;
511 rs->rs_more = rx_status->rx_status_0 &
512 AR5K_5210_RX_DESC_STATUS0_MORE;
513 /* TODO: this timestamp is 13 bit, later on we assume 15 bit */
514 rs->rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
515 AR5K_5210_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
516 rs->rs_status = 0;
517 rs->rs_phyerr = 0;
518
519 /*
520 * Key table status
521 */
522 if (rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_KEY_INDEX_VALID)
523 rs->rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
524 AR5K_5210_RX_DESC_STATUS1_KEY_INDEX);
525 else
526 rs->rs_keyix = AR5K_RXKEYIX_INVALID;
527
528 /*
529 * Receive/descriptor errors
530 */
531 if (!(rx_status->rx_status_1 &
532 AR5K_5210_RX_DESC_STATUS1_FRAME_RECEIVE_OK)) {
533 if (rx_status->rx_status_1 &
534 AR5K_5210_RX_DESC_STATUS1_CRC_ERROR)
535 rs->rs_status |= AR5K_RXERR_CRC;
536
537 if (rx_status->rx_status_1 &
538 AR5K_5210_RX_DESC_STATUS1_FIFO_OVERRUN)
539 rs->rs_status |= AR5K_RXERR_FIFO;
540
541 if (rx_status->rx_status_1 &
542 AR5K_5210_RX_DESC_STATUS1_PHY_ERROR) {
543 rs->rs_status |= AR5K_RXERR_PHY;
544 rs->rs_phyerr |= AR5K_REG_MS(rx_status->rx_status_1,
545 AR5K_5210_RX_DESC_STATUS1_PHY_ERROR);
546 }
547
548 if (rx_status->rx_status_1 &
549 AR5K_5210_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
550 rs->rs_status |= AR5K_RXERR_DECRYPT;
551 }
552
553 return 0;
554}
555
556/*
557 * Proccess the rx status descriptor on 5212
558 */
559static int ath5k_hw_proc_5212_rx_status(struct ath5k_hw *ah,
560 struct ath5k_desc *desc, struct ath5k_rx_status *rs)
561{
562 struct ath5k_hw_rx_status *rx_status;
563 struct ath5k_hw_rx_error *rx_err;
564
565 ATH5K_TRACE(ah->ah_sc);
566 rx_status = &desc->ud.ds_rx.u.rx_stat;
567
568 /* Overlay on error */
569 rx_err = &desc->ud.ds_rx.u.rx_err;
570
571 /* No frame received / not ready */
572 if (unlikely(!(rx_status->rx_status_1 &
573 AR5K_5212_RX_DESC_STATUS1_DONE)))
574 return -EINPROGRESS;
575
576 /*
577 * Frame receive status
578 */
579 rs->rs_datalen = rx_status->rx_status_0 &
580 AR5K_5212_RX_DESC_STATUS0_DATA_LEN;
581 rs->rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
582 AR5K_5212_RX_DESC_STATUS0_RECEIVE_SIGNAL);
583 rs->rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
584 AR5K_5212_RX_DESC_STATUS0_RECEIVE_RATE);
585 rs->rs_antenna = rx_status->rx_status_0 &
586 AR5K_5212_RX_DESC_STATUS0_RECEIVE_ANTENNA;
587 rs->rs_more = rx_status->rx_status_0 &
588 AR5K_5212_RX_DESC_STATUS0_MORE;
589 rs->rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
590 AR5K_5212_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
591 rs->rs_status = 0;
592 rs->rs_phyerr = 0;
593
594 /*
595 * Key table status
596 */
597 if (rx_status->rx_status_1 & AR5K_5212_RX_DESC_STATUS1_KEY_INDEX_VALID)
598 rs->rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
599 AR5K_5212_RX_DESC_STATUS1_KEY_INDEX);
600 else
601 rs->rs_keyix = AR5K_RXKEYIX_INVALID;
602
603 /*
604 * Receive/descriptor errors
605 */
606 if (!(rx_status->rx_status_1 &
607 AR5K_5212_RX_DESC_STATUS1_FRAME_RECEIVE_OK)) {
608 if (rx_status->rx_status_1 &
609 AR5K_5212_RX_DESC_STATUS1_CRC_ERROR)
610 rs->rs_status |= AR5K_RXERR_CRC;
611
612 if (rx_status->rx_status_1 &
613 AR5K_5212_RX_DESC_STATUS1_PHY_ERROR) {
614 rs->rs_status |= AR5K_RXERR_PHY;
615 rs->rs_phyerr |= AR5K_REG_MS(rx_err->rx_error_1,
616 AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE);
617 }
618
619 if (rx_status->rx_status_1 &
620 AR5K_5212_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
621 rs->rs_status |= AR5K_RXERR_DECRYPT;
622
623 if (rx_status->rx_status_1 &
624 AR5K_5212_RX_DESC_STATUS1_MIC_ERROR)
625 rs->rs_status |= AR5K_RXERR_MIC;
626 }
627
628 return 0;
629}
630
631/*
632 * Init function pointers inside ath5k_hw struct
633 */
634int ath5k_hw_init_desc_functions(struct ath5k_hw *ah)
635{
636
637 if (ah->ah_version != AR5K_AR5210 &&
638 ah->ah_version != AR5K_AR5211 &&
639 ah->ah_version != AR5K_AR5212)
640 return -ENOTSUPP;
641
642 /* XXX: What is this magic value and where is it used ? */
643 if (ah->ah_version == AR5K_AR5212)
644 ah->ah_magic = AR5K_EEPROM_MAGIC_5212;
645 else if (ah->ah_version == AR5K_AR5211)
646 ah->ah_magic = AR5K_EEPROM_MAGIC_5211;
647
648 if (ah->ah_version == AR5K_AR5212) {
649 ah->ah_setup_rx_desc = ath5k_hw_setup_rx_desc;
650 ah->ah_setup_tx_desc = ath5k_hw_setup_4word_tx_desc;
651 ah->ah_setup_mrr_tx_desc = ath5k_hw_setup_mrr_tx_desc;
652 ah->ah_proc_tx_desc = ath5k_hw_proc_4word_tx_status;
653 } else {
654 ah->ah_setup_rx_desc = ath5k_hw_setup_rx_desc;
655 ah->ah_setup_tx_desc = ath5k_hw_setup_2word_tx_desc;
656 ah->ah_setup_mrr_tx_desc = ath5k_hw_setup_mrr_tx_desc;
657 ah->ah_proc_tx_desc = ath5k_hw_proc_2word_tx_status;
658 }
659
660 if (ah->ah_version == AR5K_AR5212)
661 ah->ah_proc_rx_desc = ath5k_hw_proc_5212_rx_status;
662 else if (ah->ah_version <= AR5K_AR5211)
663 ah->ah_proc_rx_desc = ath5k_hw_proc_5210_rx_status;
664
665 return 0;
666}
667
diff --git a/drivers/net/wireless/ath5k/hw.h b/drivers/net/wireless/ath5k/desc.h
index 64fca8dcb38..56158c804e3 100644
--- a/drivers/net/wireless/ath5k/hw.h
+++ b/drivers/net/wireless/ath5k/desc.h
@@ -1,8 +1,6 @@
1/* 1/*
2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> 2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2007 Nick Kossifidis <mickflemm@gmail.com> 3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * 4 *
7 * Permission to use, copy, modify, and distribute this software for any 5 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above 6 * purpose with or without fee is hereby granted, provided that the above
@@ -15,159 +13,9 @@
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
18 */ 17 */
19 18
20#include <linux/delay.h>
21
22/*
23 * Gain settings
24 */
25
26enum ath5k_rfgain {
27 AR5K_RFGAIN_INACTIVE = 0,
28 AR5K_RFGAIN_READ_REQUESTED,
29 AR5K_RFGAIN_NEED_CHANGE,
30};
31
32#define AR5K_GAIN_CRN_FIX_BITS_5111 4
33#define AR5K_GAIN_CRN_FIX_BITS_5112 7
34#define AR5K_GAIN_CRN_MAX_FIX_BITS AR5K_GAIN_CRN_FIX_BITS_5112
35#define AR5K_GAIN_DYN_ADJUST_HI_MARGIN 15
36#define AR5K_GAIN_DYN_ADJUST_LO_MARGIN 20
37#define AR5K_GAIN_CCK_PROBE_CORR 5
38#define AR5K_GAIN_CCK_OFDM_GAIN_DELTA 15
39#define AR5K_GAIN_STEP_COUNT 10
40#define AR5K_GAIN_PARAM_TX_CLIP 0
41#define AR5K_GAIN_PARAM_PD_90 1
42#define AR5K_GAIN_PARAM_PD_84 2
43#define AR5K_GAIN_PARAM_GAIN_SEL 3
44#define AR5K_GAIN_PARAM_MIX_ORN 0
45#define AR5K_GAIN_PARAM_PD_138 1
46#define AR5K_GAIN_PARAM_PD_137 2
47#define AR5K_GAIN_PARAM_PD_136 3
48#define AR5K_GAIN_PARAM_PD_132 4
49#define AR5K_GAIN_PARAM_PD_131 5
50#define AR5K_GAIN_PARAM_PD_130 6
51#define AR5K_GAIN_CHECK_ADJUST(_g) \
52 ((_g)->g_current <= (_g)->g_low || (_g)->g_current >= (_g)->g_high)
53
54struct ath5k_gain_opt_step {
55 s16 gos_param[AR5K_GAIN_CRN_MAX_FIX_BITS];
56 s32 gos_gain;
57};
58
59struct ath5k_gain {
60 u32 g_step_idx;
61 u32 g_current;
62 u32 g_target;
63 u32 g_low;
64 u32 g_high;
65 u32 g_f_corr;
66 u32 g_active;
67 const struct ath5k_gain_opt_step *g_step;
68};
69
70
71/*
72 * HW SPECIFIC STRUCTS
73 */
74
75/* Some EEPROM defines */
76#define AR5K_EEPROM_EEP_SCALE 100
77#define AR5K_EEPROM_EEP_DELTA 10
78#define AR5K_EEPROM_N_MODES 3
79#define AR5K_EEPROM_N_5GHZ_CHAN 10
80#define AR5K_EEPROM_N_2GHZ_CHAN 3
81#define AR5K_EEPROM_MAX_CHAN 10
82#define AR5K_EEPROM_N_PCDAC 11
83#define AR5K_EEPROM_N_TEST_FREQ 8
84#define AR5K_EEPROM_N_EDGES 8
85#define AR5K_EEPROM_N_INTERCEPTS 11
86#define AR5K_EEPROM_FREQ_M(_v) AR5K_EEPROM_OFF(_v, 0x7f, 0xff)
87#define AR5K_EEPROM_PCDAC_M 0x3f
88#define AR5K_EEPROM_PCDAC_START 1
89#define AR5K_EEPROM_PCDAC_STOP 63
90#define AR5K_EEPROM_PCDAC_STEP 1
91#define AR5K_EEPROM_NON_EDGE_M 0x40
92#define AR5K_EEPROM_CHANNEL_POWER 8
93#define AR5K_EEPROM_N_OBDB 4
94#define AR5K_EEPROM_OBDB_DIS 0xffff
95#define AR5K_EEPROM_CHANNEL_DIS 0xff
96#define AR5K_EEPROM_SCALE_OC_DELTA(_x) (((_x) * 2) / 10)
97#define AR5K_EEPROM_N_CTLS(_v) AR5K_EEPROM_OFF(_v, 16, 32)
98#define AR5K_EEPROM_MAX_CTLS 32
99#define AR5K_EEPROM_N_XPD_PER_CHANNEL 4
100#define AR5K_EEPROM_N_XPD0_POINTS 4
101#define AR5K_EEPROM_N_XPD3_POINTS 3
102#define AR5K_EEPROM_N_INTERCEPT_10_2GHZ 35
103#define AR5K_EEPROM_N_INTERCEPT_10_5GHZ 55
104#define AR5K_EEPROM_POWER_M 0x3f
105#define AR5K_EEPROM_POWER_MIN 0
106#define AR5K_EEPROM_POWER_MAX 3150
107#define AR5K_EEPROM_POWER_STEP 50
108#define AR5K_EEPROM_POWER_TABLE_SIZE 64
109#define AR5K_EEPROM_N_POWER_LOC_11B 4
110#define AR5K_EEPROM_N_POWER_LOC_11G 6
111#define AR5K_EEPROM_I_GAIN 10
112#define AR5K_EEPROM_CCK_OFDM_DELTA 15
113#define AR5K_EEPROM_N_IQ_CAL 2
114
115/* Struct to hold EEPROM calibration data */
116struct ath5k_eeprom_info {
117 u16 ee_magic;
118 u16 ee_protect;
119 u16 ee_regdomain;
120 u16 ee_version;
121 u16 ee_header;
122 u16 ee_ant_gain;
123 u16 ee_misc0;
124 u16 ee_misc1;
125 u16 ee_cck_ofdm_gain_delta;
126 u16 ee_cck_ofdm_power_delta;
127 u16 ee_scaled_cck_delta;
128
129 /* Used for tx thermal adjustment (eeprom_init, rfregs) */
130 u16 ee_tx_clip;
131 u16 ee_pwd_84;
132 u16 ee_pwd_90;
133 u16 ee_gain_select;
134
135 /* RF Calibration settings (reset, rfregs) */
136 u16 ee_i_cal[AR5K_EEPROM_N_MODES];
137 u16 ee_q_cal[AR5K_EEPROM_N_MODES];
138 u16 ee_fixed_bias[AR5K_EEPROM_N_MODES];
139 u16 ee_turbo_max_power[AR5K_EEPROM_N_MODES];
140 u16 ee_xr_power[AR5K_EEPROM_N_MODES];
141 u16 ee_switch_settling[AR5K_EEPROM_N_MODES];
142 u16 ee_ant_tx_rx[AR5K_EEPROM_N_MODES];
143 u16 ee_ant_control[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_PCDAC];
144 u16 ee_ob[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB];
145 u16 ee_db[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB];
146 u16 ee_tx_end2xlna_enable[AR5K_EEPROM_N_MODES];
147 u16 ee_tx_end2xpa_disable[AR5K_EEPROM_N_MODES];
148 u16 ee_tx_frm2xpa_enable[AR5K_EEPROM_N_MODES];
149 u16 ee_thr_62[AR5K_EEPROM_N_MODES];
150 u16 ee_xlna_gain[AR5K_EEPROM_N_MODES];
151 u16 ee_xpd[AR5K_EEPROM_N_MODES];
152 u16 ee_x_gain[AR5K_EEPROM_N_MODES];
153 u16 ee_i_gain[AR5K_EEPROM_N_MODES];
154 u16 ee_margin_tx_rx[AR5K_EEPROM_N_MODES];
155
156 /* Unused */
157 u16 ee_false_detect[AR5K_EEPROM_N_MODES];
158 u16 ee_cal_pier[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_2GHZ_CHAN];
159 u16 ee_channel[AR5K_EEPROM_N_MODES][AR5K_EEPROM_MAX_CHAN]; /*empty*/
160
161 /* Conformance test limits (Unused) */
162 u16 ee_ctls;
163 u16 ee_ctl[AR5K_EEPROM_MAX_CTLS];
164
165 /* Noise Floor Calibration settings */
166 s16 ee_noise_floor_thr[AR5K_EEPROM_N_MODES];
167 s8 ee_adc_desired_size[AR5K_EEPROM_N_MODES];
168 s8 ee_pga_desired_size[AR5K_EEPROM_N_MODES];
169};
170
171/* 19/*
172 * Internal RX/TX descriptor structures 20 * Internal RX/TX descriptor structures
173 * (rX: reserved fields possibily used by future versions of the ar5k chipset) 21 * (rX: reserved fields possibily used by future versions of the ar5k chipset)
@@ -178,14 +26,15 @@ struct ath5k_eeprom_info {
178 */ 26 */
179struct ath5k_hw_rx_ctl { 27struct ath5k_hw_rx_ctl {
180 u32 rx_control_0; /* RX control word 0 */ 28 u32 rx_control_0; /* RX control word 0 */
29 u32 rx_control_1; /* RX control word 1 */
30} __packed;
181 31
32/* RX control word 0 field/sflags */
182#define AR5K_DESC_RX_CTL0 0x00000000 33#define AR5K_DESC_RX_CTL0 0x00000000
183 34
184 u32 rx_control_1; /* RX control word 1 */ 35/* RX control word 1 fields/flags */
185
186#define AR5K_DESC_RX_CTL1_BUF_LEN 0x00000fff 36#define AR5K_DESC_RX_CTL1_BUF_LEN 0x00000fff
187#define AR5K_DESC_RX_CTL1_INTREQ 0x00002000 37#define AR5K_DESC_RX_CTL1_INTREQ 0x00002000
188} __packed;
189 38
190/* 39/*
191 * common hardware RX status descriptor 40 * common hardware RX status descriptor
@@ -197,6 +46,7 @@ struct ath5k_hw_rx_status {
197} __packed; 46} __packed;
198 47
199/* 5210/5211 */ 48/* 5210/5211 */
49/* RX status word 0 fields/flags */
200#define AR5K_5210_RX_DESC_STATUS0_DATA_LEN 0x00000fff 50#define AR5K_5210_RX_DESC_STATUS0_DATA_LEN 0x00000fff
201#define AR5K_5210_RX_DESC_STATUS0_MORE 0x00001000 51#define AR5K_5210_RX_DESC_STATUS0_MORE 0x00001000
202#define AR5K_5210_RX_DESC_STATUS0_RECEIVE_RATE 0x00078000 52#define AR5K_5210_RX_DESC_STATUS0_RECEIVE_RATE 0x00078000
@@ -205,6 +55,8 @@ struct ath5k_hw_rx_status {
205#define AR5K_5210_RX_DESC_STATUS0_RECEIVE_SIGNAL_S 19 55#define AR5K_5210_RX_DESC_STATUS0_RECEIVE_SIGNAL_S 19
206#define AR5K_5210_RX_DESC_STATUS0_RECEIVE_ANTENNA 0x38000000 56#define AR5K_5210_RX_DESC_STATUS0_RECEIVE_ANTENNA 0x38000000
207#define AR5K_5210_RX_DESC_STATUS0_RECEIVE_ANTENNA_S 27 57#define AR5K_5210_RX_DESC_STATUS0_RECEIVE_ANTENNA_S 27
58
59/* RX status word 1 fields/flags */
208#define AR5K_5210_RX_DESC_STATUS1_DONE 0x00000001 60#define AR5K_5210_RX_DESC_STATUS1_DONE 0x00000001
209#define AR5K_5210_RX_DESC_STATUS1_FRAME_RECEIVE_OK 0x00000002 61#define AR5K_5210_RX_DESC_STATUS1_FRAME_RECEIVE_OK 0x00000002
210#define AR5K_5210_RX_DESC_STATUS1_CRC_ERROR 0x00000004 62#define AR5K_5210_RX_DESC_STATUS1_CRC_ERROR 0x00000004
@@ -220,6 +72,7 @@ struct ath5k_hw_rx_status {
220#define AR5K_5210_RX_DESC_STATUS1_KEY_CACHE_MISS 0x10000000 72#define AR5K_5210_RX_DESC_STATUS1_KEY_CACHE_MISS 0x10000000
221 73
222/* 5212 */ 74/* 5212 */
75/* RX status word 0 fields/flags */
223#define AR5K_5212_RX_DESC_STATUS0_DATA_LEN 0x00000fff 76#define AR5K_5212_RX_DESC_STATUS0_DATA_LEN 0x00000fff
224#define AR5K_5212_RX_DESC_STATUS0_MORE 0x00001000 77#define AR5K_5212_RX_DESC_STATUS0_MORE 0x00001000
225#define AR5K_5212_RX_DESC_STATUS0_DECOMP_CRC_ERROR 0x00002000 78#define AR5K_5212_RX_DESC_STATUS0_DECOMP_CRC_ERROR 0x00002000
@@ -229,6 +82,8 @@ struct ath5k_hw_rx_status {
229#define AR5K_5212_RX_DESC_STATUS0_RECEIVE_SIGNAL_S 20 82#define AR5K_5212_RX_DESC_STATUS0_RECEIVE_SIGNAL_S 20
230#define AR5K_5212_RX_DESC_STATUS0_RECEIVE_ANTENNA 0xf0000000 83#define AR5K_5212_RX_DESC_STATUS0_RECEIVE_ANTENNA 0xf0000000
231#define AR5K_5212_RX_DESC_STATUS0_RECEIVE_ANTENNA_S 28 84#define AR5K_5212_RX_DESC_STATUS0_RECEIVE_ANTENNA_S 28
85
86/* RX status word 1 fields/flags */
232#define AR5K_5212_RX_DESC_STATUS1_DONE 0x00000001 87#define AR5K_5212_RX_DESC_STATUS1_DONE 0x00000001
233#define AR5K_5212_RX_DESC_STATUS1_FRAME_RECEIVE_OK 0x00000002 88#define AR5K_5212_RX_DESC_STATUS1_FRAME_RECEIVE_OK 0x00000002
234#define AR5K_5212_RX_DESC_STATUS1_CRC_ERROR 0x00000004 89#define AR5K_5212_RX_DESC_STATUS1_CRC_ERROR 0x00000004
@@ -246,16 +101,18 @@ struct ath5k_hw_rx_status {
246 * common hardware RX error descriptor 101 * common hardware RX error descriptor
247 */ 102 */
248struct ath5k_hw_rx_error { 103struct ath5k_hw_rx_error {
249 u32 rx_error_0; /* RX error word 0 */ 104 u32 rx_error_0; /* RX status word 0 */
105 u32 rx_error_1; /* RX status word 1 */
106} __packed;
250 107
108/* RX error word 0 fields/flags */
251#define AR5K_RX_DESC_ERROR0 0x00000000 109#define AR5K_RX_DESC_ERROR0 0x00000000
252 110
253 u32 rx_error_1; /* RX error word 1 */ 111/* RX error word 1 fields/flags */
254
255#define AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE 0x0000ff00 112#define AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE 0x0000ff00
256#define AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE_S 8 113#define AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE_S 8
257} __packed;
258 114
115/* PHY Error codes */
259#define AR5K_DESC_RX_PHY_ERROR_NONE 0x00 116#define AR5K_DESC_RX_PHY_ERROR_NONE 0x00
260#define AR5K_DESC_RX_PHY_ERROR_TIMING 0x20 117#define AR5K_DESC_RX_PHY_ERROR_TIMING 0x20
261#define AR5K_DESC_RX_PHY_ERROR_PARITY 0x40 118#define AR5K_DESC_RX_PHY_ERROR_PARITY 0x40
@@ -270,7 +127,10 @@ struct ath5k_hw_rx_error {
270 */ 127 */
271struct ath5k_hw_2w_tx_ctl { 128struct ath5k_hw_2w_tx_ctl {
272 u32 tx_control_0; /* TX control word 0 */ 129 u32 tx_control_0; /* TX control word 0 */
130 u32 tx_control_1; /* TX control word 1 */
131} __packed;
273 132
133/* TX control word 0 fields/flags */
274#define AR5K_2W_TX_DESC_CTL0_FRAME_LEN 0x00000fff 134#define AR5K_2W_TX_DESC_CTL0_FRAME_LEN 0x00000fff
275#define AR5K_2W_TX_DESC_CTL0_HEADER_LEN 0x0003f000 /*[5210 ?]*/ 135#define AR5K_2W_TX_DESC_CTL0_HEADER_LEN 0x0003f000 /*[5210 ?]*/
276#define AR5K_2W_TX_DESC_CTL0_HEADER_LEN_S 12 136#define AR5K_2W_TX_DESC_CTL0_HEADER_LEN_S 12
@@ -284,29 +144,34 @@ struct ath5k_hw_2w_tx_ctl {
284#define AR5K_2W_TX_DESC_CTL0_FRAME_TYPE_S 26 144#define AR5K_2W_TX_DESC_CTL0_FRAME_TYPE_S 26
285#define AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_5210 0x02000000 145#define AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_5210 0x02000000
286#define AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_5211 0x1e000000 146#define AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_5211 0x1e000000
287#define AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT (ah->ah_version == AR5K_AR5210 ? \ 147
288 AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_5210 : \ 148#define AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT \
289 AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_5211) 149 (ah->ah_version == AR5K_AR5210 ? \
150 AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_5210 : \
151 AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_5211)
152
290#define AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_S 25 153#define AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT_S 25
291#define AR5K_2W_TX_DESC_CTL0_INTREQ 0x20000000 154#define AR5K_2W_TX_DESC_CTL0_INTREQ 0x20000000
292#define AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID 0x40000000 155#define AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID 0x40000000
293 156
294 u32 tx_control_1; /* TX control word 1 */ 157/* TX control word 1 fields/flags */
295
296#define AR5K_2W_TX_DESC_CTL1_BUF_LEN 0x00000fff 158#define AR5K_2W_TX_DESC_CTL1_BUF_LEN 0x00000fff
297#define AR5K_2W_TX_DESC_CTL1_MORE 0x00001000 159#define AR5K_2W_TX_DESC_CTL1_MORE 0x00001000
298#define AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_5210 0x0007e000 160#define AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_5210 0x0007e000
299#define AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_5211 0x000fe000 161#define AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_5211 0x000fe000
300#define AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX (ah->ah_version == AR5K_AR5210 ? \ 162
301 AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_5210 : \ 163#define AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX \
302 AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_5211) 164 (ah->ah_version == AR5K_AR5210 ? \
165 AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_5210 : \
166 AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_5211)
167
303#define AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_S 13 168#define AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX_S 13
304#define AR5K_2W_TX_DESC_CTL1_FRAME_TYPE 0x00700000 /*[5211]*/ 169#define AR5K_2W_TX_DESC_CTL1_FRAME_TYPE 0x00700000 /*[5211]*/
305#define AR5K_2W_TX_DESC_CTL1_FRAME_TYPE_S 20 170#define AR5K_2W_TX_DESC_CTL1_FRAME_TYPE_S 20
306#define AR5K_2W_TX_DESC_CTL1_NOACK 0x00800000 /*[5211]*/ 171#define AR5K_2W_TX_DESC_CTL1_NOACK 0x00800000 /*[5211]*/
307#define AR5K_2W_TX_DESC_CTL1_RTS_DURATION 0xfff80000 /*[5210 ?]*/ 172#define AR5K_2W_TX_DESC_CTL1_RTS_DURATION 0xfff80000 /*[5210 ?]*/
308} __packed;
309 173
174/* Frame types */
310#define AR5K_AR5210_TX_DESC_FRAME_TYPE_NORMAL 0x00 175#define AR5K_AR5210_TX_DESC_FRAME_TYPE_NORMAL 0x00
311#define AR5K_AR5210_TX_DESC_FRAME_TYPE_ATIM 0x04 176#define AR5K_AR5210_TX_DESC_FRAME_TYPE_ATIM 0x04
312#define AR5K_AR5210_TX_DESC_FRAME_TYPE_PSPOLL 0x08 177#define AR5K_AR5210_TX_DESC_FRAME_TYPE_PSPOLL 0x08
@@ -378,7 +243,10 @@ struct ath5k_hw_4w_tx_ctl {
378 */ 243 */
379struct ath5k_hw_tx_status { 244struct ath5k_hw_tx_status {
380 u32 tx_status_0; /* TX status word 0 */ 245 u32 tx_status_0; /* TX status word 0 */
246 u32 tx_status_1; /* TX status word 1 */
247} __packed;
381 248
249/* TX status word 0 fields/flags */
382#define AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK 0x00000001 250#define AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK 0x00000001
383#define AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES 0x00000002 251#define AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES 0x00000002
384#define AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN 0x00000004 252#define AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN 0x00000004
@@ -400,8 +268,7 @@ struct ath5k_hw_tx_status {
400#define AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP 0xffff0000 268#define AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP 0xffff0000
401#define AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP_S 16 269#define AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP_S 16
402 270
403 u32 tx_status_1; /* TX status word 1 */ 271/* TX status word 1 fields/flags */
404
405#define AR5K_DESC_TX_STATUS1_DONE 0x00000001 272#define AR5K_DESC_TX_STATUS1_DONE 0x00000001
406#define AR5K_DESC_TX_STATUS1_SEQ_NUM 0x00001ffe 273#define AR5K_DESC_TX_STATUS1_SEQ_NUM 0x00001ffe
407#define AR5K_DESC_TX_STATUS1_SEQ_NUM_S 1 274#define AR5K_DESC_TX_STATUS1_SEQ_NUM_S 1
@@ -411,8 +278,6 @@ struct ath5k_hw_tx_status {
411#define AR5K_DESC_TX_STATUS1_FINAL_TS_INDEX_S 21 278#define AR5K_DESC_TX_STATUS1_FINAL_TS_INDEX_S 21
412#define AR5K_DESC_TX_STATUS1_COMP_SUCCESS 0x00800000 279#define AR5K_DESC_TX_STATUS1_COMP_SUCCESS 0x00800000
413#define AR5K_DESC_TX_STATUS1_XMIT_ANTENNA 0x01000000 280#define AR5K_DESC_TX_STATUS1_XMIT_ANTENNA 0x01000000
414} __packed;
415
416 281
417/* 282/*
418 * 5210/5211 hardware TX descriptor 283 * 5210/5211 hardware TX descriptor
@@ -441,176 +306,27 @@ struct ath5k_hw_all_rx_desc {
441 } u; 306 } u;
442} __packed; 307} __packed;
443 308
444
445/* 309/*
446 * AR5K REGISTER ACCESS 310 * Atheros hardware descriptor
311 * This is read and written to by the hardware
447 */ 312 */
313struct ath5k_desc {
314 u32 ds_link; /* physical address of the next descriptor */
315 u32 ds_data; /* physical address of data buffer (skb) */
448 316
449/*Swap RX/TX Descriptor for big endian archs*/ 317 union {
450#if defined(__BIG_ENDIAN) 318 struct ath5k_hw_5210_tx_desc ds_tx5210;
451#define AR5K_INIT_CFG ( \ 319 struct ath5k_hw_5212_tx_desc ds_tx5212;
452 AR5K_CFG_SWTD | AR5K_CFG_SWRD \ 320 struct ath5k_hw_all_rx_desc ds_rx;
453) 321 } ud;
454#else 322} __packed;
455#define AR5K_INIT_CFG 0x00000000
456#endif
457
458/*#define AR5K_REG_READ(_reg) ath5k_hw_reg_read(ah, _reg)
459
460#define AR5K_REG_WRITE(_reg, _val) ath5k_hw_reg_write(ah, _val, _reg)*/
461
462#define AR5K_REG_SM(_val, _flags) \
463 (((_val) << _flags##_S) & (_flags))
464
465#define AR5K_REG_MS(_val, _flags) \
466 (((_val) & (_flags)) >> _flags##_S)
467
468/* Some registers can hold multiple values of interest. For this
469 * reason when we want to write to these registers we must first
470 * retrieve the values which we do not want to clear (lets call this
471 * old_data) and then set the register with this and our new_value:
472 * ( old_data | new_value) */
473#define AR5K_REG_WRITE_BITS(ah, _reg, _flags, _val) \
474 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, _reg) & ~(_flags)) | \
475 (((_val) << _flags##_S) & (_flags)), _reg)
476
477#define AR5K_REG_MASKED_BITS(ah, _reg, _flags, _mask) \
478 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, _reg) & \
479 (_mask)) | (_flags), _reg)
480
481#define AR5K_REG_ENABLE_BITS(ah, _reg, _flags) \
482 ath5k_hw_reg_write(ah, ath5k_hw_reg_read(ah, _reg) | (_flags), _reg)
483
484#define AR5K_REG_DISABLE_BITS(ah, _reg, _flags) \
485 ath5k_hw_reg_write(ah, ath5k_hw_reg_read(ah, _reg) & ~(_flags), _reg)
486
487#define AR5K_PHY_WRITE(ah, _reg, _val) \
488 ath5k_hw_reg_write(ah, _val, (ah)->ah_phy + ((_reg) << 2))
489
490#define AR5K_PHY_READ(ah, _reg) \
491 ath5k_hw_reg_read(ah, (ah)->ah_phy + ((_reg) << 2))
492
493#define AR5K_REG_WAIT(_i) do { \
494 if (_i % 64) \
495 udelay(1); \
496} while (0)
497
498#define AR5K_EEPROM_READ(_o, _v) do { \
499 if ((ret = ath5k_hw_eeprom_read(ah, (_o), &(_v))) != 0) \
500 return (ret); \
501} while (0)
502
503#define AR5K_EEPROM_READ_HDR(_o, _v) \
504 AR5K_EEPROM_READ(_o, ah->ah_capabilities.cap_eeprom._v); \
505
506/* Read status of selected queue */
507#define AR5K_REG_READ_Q(ah, _reg, _queue) \
508 (ath5k_hw_reg_read(ah, _reg) & (1 << _queue)) \
509
510#define AR5K_REG_WRITE_Q(ah, _reg, _queue) \
511 ath5k_hw_reg_write(ah, (1 << _queue), _reg)
512
513#define AR5K_Q_ENABLE_BITS(_reg, _queue) do { \
514 _reg |= 1 << _queue; \
515} while (0)
516
517#define AR5K_Q_DISABLE_BITS(_reg, _queue) do { \
518 _reg &= ~(1 << _queue); \
519} while (0)
520
521#define AR5K_LOW_ID(_a)( \
522(_a)[0] | (_a)[1] << 8 | (_a)[2] << 16 | (_a)[3] << 24 \
523)
524
525#define AR5K_HIGH_ID(_a) ((_a)[4] | (_a)[5] << 8)
526
527/*
528 * Initial register values
529 */
530
531/*
532 * Common initial register values
533 */
534#define AR5K_INIT_MODE CHANNEL_B
535
536#define AR5K_INIT_TX_LATENCY 502
537#define AR5K_INIT_USEC 39
538#define AR5K_INIT_USEC_TURBO 79
539#define AR5K_INIT_USEC_32 31
540#define AR5K_INIT_CARR_SENSE_EN 1
541#define AR5K_INIT_PROG_IFS 920
542#define AR5K_INIT_PROG_IFS_TURBO 960
543#define AR5K_INIT_EIFS 3440
544#define AR5K_INIT_EIFS_TURBO 6880
545#define AR5K_INIT_SLOT_TIME 396
546#define AR5K_INIT_SLOT_TIME_TURBO 480
547#define AR5K_INIT_ACK_CTS_TIMEOUT 1024
548#define AR5K_INIT_ACK_CTS_TIMEOUT_TURBO 0x08000800
549#define AR5K_INIT_SIFS 560
550#define AR5K_INIT_SIFS_TURBO 480
551#define AR5K_INIT_SH_RETRY 10
552#define AR5K_INIT_LG_RETRY AR5K_INIT_SH_RETRY
553#define AR5K_INIT_SSH_RETRY 32
554#define AR5K_INIT_SLG_RETRY AR5K_INIT_SSH_RETRY
555#define AR5K_INIT_TX_RETRY 10
556#define AR5K_INIT_TOPS 8
557#define AR5K_INIT_RXNOFRM 8
558#define AR5K_INIT_RPGTO 0
559#define AR5K_INIT_TXNOFRM 0
560#define AR5K_INIT_BEACON_PERIOD 65535
561#define AR5K_INIT_TIM_OFFSET 0
562#define AR5K_INIT_BEACON_EN 0
563#define AR5K_INIT_RESET_TSF 0
564
565#define AR5K_INIT_TRANSMIT_LATENCY ( \
566 (AR5K_INIT_TX_LATENCY << 14) | (AR5K_INIT_USEC_32 << 7) | \
567 (AR5K_INIT_USEC) \
568)
569#define AR5K_INIT_TRANSMIT_LATENCY_TURBO ( \
570 (AR5K_INIT_TX_LATENCY << 14) | (AR5K_INIT_USEC_32 << 7) | \
571 (AR5K_INIT_USEC_TURBO) \
572)
573#define AR5K_INIT_PROTO_TIME_CNTRL ( \
574 (AR5K_INIT_CARR_SENSE_EN << 26) | (AR5K_INIT_EIFS << 12) | \
575 (AR5K_INIT_PROG_IFS) \
576)
577#define AR5K_INIT_PROTO_TIME_CNTRL_TURBO ( \
578 (AR5K_INIT_CARR_SENSE_EN << 26) | (AR5K_INIT_EIFS_TURBO << 12) | \
579 (AR5K_INIT_PROG_IFS_TURBO) \
580)
581#define AR5K_INIT_BEACON_CONTROL ( \
582 (AR5K_INIT_RESET_TSF << 24) | (AR5K_INIT_BEACON_EN << 23) | \
583 (AR5K_INIT_TIM_OFFSET << 16) | (AR5K_INIT_BEACON_PERIOD) \
584)
585
586/*
587 * Non-common initial register values which have to be loaded into the
588 * card at boot time and after each reset.
589 */
590
591/* Register dumps are done per operation mode */
592#define AR5K_INI_RFGAIN_5GHZ 0
593#define AR5K_INI_RFGAIN_2GHZ 1
594
595#define AR5K_INI_VAL_11A 0
596#define AR5K_INI_VAL_11A_TURBO 1
597#define AR5K_INI_VAL_11B 2
598#define AR5K_INI_VAL_11G 3
599#define AR5K_INI_VAL_11G_TURBO 4
600#define AR5K_INI_VAL_XR 0
601#define AR5K_INI_VAL_MAX 5
602
603#define AR5K_RF5111_INI_RF_MAX_BANKS AR5K_MAX_RF_BANKS
604#define AR5K_RF5112_INI_RF_MAX_BANKS AR5K_MAX_RF_BANKS
605 323
606static inline u32 ath5k_hw_bitswap(u32 val, unsigned int bits) 324#define AR5K_RXDESC_INTREQ 0x0020
607{
608 u32 retval = 0, bit, i;
609 325
610 for (i = 0; i < bits; i++) { 326#define AR5K_TXDESC_CLRDMASK 0x0001
611 bit = (val >> i) & 1; 327#define AR5K_TXDESC_NOACK 0x0002 /*[5211+]*/
612 retval = (retval << 1) | bit; 328#define AR5K_TXDESC_RTSENA 0x0004
613 } 329#define AR5K_TXDESC_CTSENA 0x0008
330#define AR5K_TXDESC_INTREQ 0x0010
331#define AR5K_TXDESC_VEOL 0x0020 /*[5211+]*/
614 332
615 return retval;
616}
diff --git a/drivers/net/wireless/ath5k/dma.c b/drivers/net/wireless/ath5k/dma.c
new file mode 100644
index 00000000000..a28090be960
--- /dev/null
+++ b/drivers/net/wireless/ath5k/dma.c
@@ -0,0 +1,566 @@
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 */
18
19/*************************************\
20* DMA and interrupt masking functions *
21\*************************************/
22
23/*
24 * dma.c - DMA and interrupt masking functions
25 *
26 * Here we setup descriptor pointers (rxdp/txdp) start/stop dma engine and
27 * handle queue setup for 5210 chipset (rest are handled on qcu.c).
28 * Also we setup interrupt mask register (IMR) and read the various iterrupt
29 * status registers (ISR).
30 *
31 * TODO: Handle SISR on 5211+ and introduce a function to return the queue
32 * number that resulted the interrupt.
33 */
34
35#include "ath5k.h"
36#include "reg.h"
37#include "debug.h"
38#include "base.h"
39
40/*********\
41* Receive *
42\*********/
43
44/**
45 * ath5k_hw_start_rx_dma - Start DMA receive
46 *
47 * @ah: The &struct ath5k_hw
48 */
49void ath5k_hw_start_rx_dma(struct ath5k_hw *ah)
50{
51 ATH5K_TRACE(ah->ah_sc);
52 ath5k_hw_reg_write(ah, AR5K_CR_RXE, AR5K_CR);
53 ath5k_hw_reg_read(ah, AR5K_CR);
54}
55
56/**
57 * ath5k_hw_stop_rx_dma - Stop DMA receive
58 *
59 * @ah: The &struct ath5k_hw
60 */
61int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah)
62{
63 unsigned int i;
64
65 ATH5K_TRACE(ah->ah_sc);
66 ath5k_hw_reg_write(ah, AR5K_CR_RXD, AR5K_CR);
67
68 /*
69 * It may take some time to disable the DMA receive unit
70 */
71 for (i = 2000; i > 0 &&
72 (ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) != 0;
73 i--)
74 udelay(10);
75
76 return i ? 0 : -EBUSY;
77}
78
79/**
80 * ath5k_hw_get_rxdp - Get RX Descriptor's address
81 *
82 * @ah: The &struct ath5k_hw
83 *
84 * XXX: Is RXDP read and clear ?
85 */
86u32 ath5k_hw_get_rxdp(struct ath5k_hw *ah)
87{
88 return ath5k_hw_reg_read(ah, AR5K_RXDP);
89}
90
91/**
92 * ath5k_hw_set_rxdp - Set RX Descriptor's address
93 *
94 * @ah: The &struct ath5k_hw
95 * @phys_addr: RX descriptor address
96 *
97 * XXX: Should we check if rx is enabled before setting rxdp ?
98 */
99void ath5k_hw_set_rxdp(struct ath5k_hw *ah, u32 phys_addr)
100{
101 ATH5K_TRACE(ah->ah_sc);
102
103 ath5k_hw_reg_write(ah, phys_addr, AR5K_RXDP);
104}
105
106
107/**********\
108* Transmit *
109\**********/
110
111/**
112 * ath5k_hw_start_tx_dma - Start DMA transmit for a specific queue
113 *
114 * @ah: The &struct ath5k_hw
115 * @queue: The hw queue number
116 *
117 * Start DMA transmit for a specific queue and since 5210 doesn't have
118 * QCU/DCU, set up queue parameters for 5210 here based on queue type (one
119 * queue for normal data and one queue for beacons). For queue setup
120 * on newer chips check out qcu.c. Returns -EINVAL if queue number is out
121 * of range or if queue is already disabled.
122 *
123 * NOTE: Must be called after setting up tx control descriptor for that
124 * queue (see below).
125 */
126int ath5k_hw_start_tx_dma(struct ath5k_hw *ah, unsigned int queue)
127{
128 u32 tx_queue;
129
130 ATH5K_TRACE(ah->ah_sc);
131 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
132
133 /* Return if queue is declared inactive */
134 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
135 return -EIO;
136
137 if (ah->ah_version == AR5K_AR5210) {
138 tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
139
140 /*
141 * Set the queue by type on 5210
142 */
143 switch (ah->ah_txq[queue].tqi_type) {
144 case AR5K_TX_QUEUE_DATA:
145 tx_queue |= AR5K_CR_TXE0 & ~AR5K_CR_TXD0;
146 break;
147 case AR5K_TX_QUEUE_BEACON:
148 tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
149 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
150 AR5K_BSR);
151 break;
152 case AR5K_TX_QUEUE_CAB:
153 tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
154 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1FV | AR5K_BCR_TQ1V |
155 AR5K_BCR_BDMAE, AR5K_BSR);
156 break;
157 default:
158 return -EINVAL;
159 }
160 /* Start queue */
161 ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
162 ath5k_hw_reg_read(ah, AR5K_CR);
163 } else {
164 /* Return if queue is disabled */
165 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXD, queue))
166 return -EIO;
167
168 /* Start queue */
169 AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXE, queue);
170 }
171
172 return 0;
173}
174
175/**
176 * ath5k_hw_stop_tx_dma - Stop DMA transmit on a specific queue
177 *
178 * @ah: The &struct ath5k_hw
179 * @queue: The hw queue number
180 *
181 * Stop DMA transmit on a specific hw queue and drain queue so we don't
182 * have any pending frames. Returns -EBUSY if we still have pending frames,
183 * -EINVAL if queue number is out of range.
184 *
185 * TODO: Test queue drain code
186 */
187int ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue)
188{
189 unsigned int i = 100;
190 u32 tx_queue, pending;
191
192 ATH5K_TRACE(ah->ah_sc);
193 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
194
195 /* Return if queue is declared inactive */
196 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
197 return -EIO;
198
199 if (ah->ah_version == AR5K_AR5210) {
200 tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
201
202 /*
203 * Set by queue type
204 */
205 switch (ah->ah_txq[queue].tqi_type) {
206 case AR5K_TX_QUEUE_DATA:
207 tx_queue |= AR5K_CR_TXD0 & ~AR5K_CR_TXE0;
208 break;
209 case AR5K_TX_QUEUE_BEACON:
210 case AR5K_TX_QUEUE_CAB:
211 /* XXX Fix me... */
212 tx_queue |= AR5K_CR_TXD1 & ~AR5K_CR_TXD1;
213 ath5k_hw_reg_write(ah, 0, AR5K_BSR);
214 break;
215 default:
216 return -EINVAL;
217 }
218
219 /* Stop queue */
220 ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
221 ath5k_hw_reg_read(ah, AR5K_CR);
222 } else {
223 /*
224 * Schedule TX disable and wait until queue is empty
225 */
226 AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXD, queue);
227
228 /*Check for pending frames*/
229 do {
230 pending = ath5k_hw_reg_read(ah,
231 AR5K_QUEUE_STATUS(queue)) &
232 AR5K_QCU_STS_FRMPENDCNT;
233 udelay(100);
234 } while (--i && pending);
235
236 /* Clear register */
237 ath5k_hw_reg_write(ah, 0, AR5K_QCU_TXD);
238 if (pending)
239 return -EBUSY;
240 }
241
242 /* TODO: Check for success else return error */
243 return 0;
244}
245
246/**
247 * ath5k_hw_get_txdp - Get TX Descriptor's address for a specific queue
248 *
249 * @ah: The &struct ath5k_hw
250 * @queue: The hw queue number
251 *
252 * Get TX descriptor's address for a specific queue. For 5210 we ignore
253 * the queue number and use tx queue type since we only have 2 queues.
254 * We use TXDP0 for normal data queue and TXDP1 for beacon queue.
255 * For newer chips with QCU/DCU we just read the corresponding TXDP register.
256 *
257 * XXX: Is TXDP read and clear ?
258 */
259u32 ath5k_hw_get_txdp(struct ath5k_hw *ah, unsigned int queue)
260{
261 u16 tx_reg;
262
263 ATH5K_TRACE(ah->ah_sc);
264 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
265
266 /*
267 * Get the transmit queue descriptor pointer from the selected queue
268 */
269 /*5210 doesn't have QCU*/
270 if (ah->ah_version == AR5K_AR5210) {
271 switch (ah->ah_txq[queue].tqi_type) {
272 case AR5K_TX_QUEUE_DATA:
273 tx_reg = AR5K_NOQCU_TXDP0;
274 break;
275 case AR5K_TX_QUEUE_BEACON:
276 case AR5K_TX_QUEUE_CAB:
277 tx_reg = AR5K_NOQCU_TXDP1;
278 break;
279 default:
280 return 0xffffffff;
281 }
282 } else {
283 tx_reg = AR5K_QUEUE_TXDP(queue);
284 }
285
286 return ath5k_hw_reg_read(ah, tx_reg);
287}
288
289/**
290 * ath5k_hw_set_txdp - Set TX Descriptor's address for a specific queue
291 *
292 * @ah: The &struct ath5k_hw
293 * @queue: The hw queue number
294 *
295 * Set TX descriptor's address for a specific queue. For 5210 we ignore
296 * the queue number and we use tx queue type since we only have 2 queues
297 * so as above we use TXDP0 for normal data queue and TXDP1 for beacon queue.
298 * For newer chips with QCU/DCU we just set the corresponding TXDP register.
299 * Returns -EINVAL if queue type is invalid for 5210 and -EIO if queue is still
300 * active.
301 */
302int ath5k_hw_set_txdp(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr)
303{
304 u16 tx_reg;
305
306 ATH5K_TRACE(ah->ah_sc);
307 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
308
309 /*
310 * Set the transmit queue descriptor pointer register by type
311 * on 5210
312 */
313 if (ah->ah_version == AR5K_AR5210) {
314 switch (ah->ah_txq[queue].tqi_type) {
315 case AR5K_TX_QUEUE_DATA:
316 tx_reg = AR5K_NOQCU_TXDP0;
317 break;
318 case AR5K_TX_QUEUE_BEACON:
319 case AR5K_TX_QUEUE_CAB:
320 tx_reg = AR5K_NOQCU_TXDP1;
321 break;
322 default:
323 return -EINVAL;
324 }
325 } else {
326 /*
327 * Set the transmit queue descriptor pointer for
328 * the selected queue on QCU for 5211+
329 * (this won't work if the queue is still active)
330 */
331 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
332 return -EIO;
333
334 tx_reg = AR5K_QUEUE_TXDP(queue);
335 }
336
337 /* Set descriptor pointer */
338 ath5k_hw_reg_write(ah, phys_addr, tx_reg);
339
340 return 0;
341}
342
343/**
344 * ath5k_hw_update_tx_triglevel - Update tx trigger level
345 *
346 * @ah: The &struct ath5k_hw
347 * @increase: Flag to force increase of trigger level
348 *
349 * This function increases/decreases the tx trigger level for the tx fifo
350 * buffer (aka FIFO threshold) that is used to indicate when PCU flushes
351 * the buffer and transmits it's data. Lowering this results sending small
352 * frames more quickly but can lead to tx underruns, raising it a lot can
353 * result other problems (i think bmiss is related). Right now we start with
354 * the lowest possible (64Bytes) and if we get tx underrun we increase it using
355 * the increase flag. Returns -EIO if we have have reached maximum/minimum.
356 *
357 * XXX: Link this with tx DMA size ?
358 * XXX: Use it to save interrupts ?
359 * TODO: Needs testing, i think it's related to bmiss...
360 */
361int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase)
362{
363 u32 trigger_level, imr;
364 int ret = -EIO;
365
366 ATH5K_TRACE(ah->ah_sc);
367
368 /*
369 * Disable interrupts by setting the mask
370 */
371 imr = ath5k_hw_set_imr(ah, ah->ah_imr & ~AR5K_INT_GLOBAL);
372
373 trigger_level = AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TXCFG),
374 AR5K_TXCFG_TXFULL);
375
376 if (!increase) {
377 if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
378 goto done;
379 } else
380 trigger_level +=
381 ((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
382
383 /*
384 * Update trigger level on success
385 */
386 if (ah->ah_version == AR5K_AR5210)
387 ath5k_hw_reg_write(ah, trigger_level, AR5K_TRIG_LVL);
388 else
389 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
390 AR5K_TXCFG_TXFULL, trigger_level);
391
392 ret = 0;
393
394done:
395 /*
396 * Restore interrupt mask
397 */
398 ath5k_hw_set_imr(ah, imr);
399
400 return ret;
401}
402
403/*******************\
404* Interrupt masking *
405\*******************/
406
407/**
408 * ath5k_hw_is_intr_pending - Check if we have pending interrupts
409 *
410 * @ah: The &struct ath5k_hw
411 *
412 * Check if we have pending interrupts to process. Returns 1 if we
413 * have pending interrupts and 0 if we haven't.
414 */
415bool ath5k_hw_is_intr_pending(struct ath5k_hw *ah)
416{
417 ATH5K_TRACE(ah->ah_sc);
418 return ath5k_hw_reg_read(ah, AR5K_INTPEND);
419}
420
421/**
422 * ath5k_hw_get_isr - Get interrupt status
423 *
424 * @ah: The @struct ath5k_hw
425 * @interrupt_mask: Driver's interrupt mask used to filter out
426 * interrupts in sw.
427 *
428 * This function is used inside our interrupt handler to determine the reason
429 * for the interrupt by reading Primary Interrupt Status Register. Returns an
430 * abstract interrupt status mask which is mostly ISR with some uncommon bits
431 * being mapped on some standard non hw-specific positions
432 * (check out &ath5k_int).
433 *
434 * NOTE: We use read-and-clear register, so after this function is called ISR
435 * is zeroed.
436 *
437 * XXX: Why filter interrupts in sw with interrupt_mask ? No benefit at all
438 * plus it can be misleading (one might thing that we save interrupts this way)
439 */
440int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask)
441{
442 u32 data;
443
444 ATH5K_TRACE(ah->ah_sc);
445
446 /*
447 * Read interrupt status from the Interrupt Status register
448 * on 5210
449 */
450 if (ah->ah_version == AR5K_AR5210) {
451 data = ath5k_hw_reg_read(ah, AR5K_ISR);
452 if (unlikely(data == AR5K_INT_NOCARD)) {
453 *interrupt_mask = data;
454 return -ENODEV;
455 }
456 } else {
457 /*
458 * Read interrupt status from the Read-And-Clear
459 * shadow register.
460 * Note: PISR/SISR Not available on 5210
461 */
462 data = ath5k_hw_reg_read(ah, AR5K_RAC_PISR);
463 }
464
465 /*
466 * Get abstract interrupt mask (driver-compatible)
467 */
468 *interrupt_mask = (data & AR5K_INT_COMMON) & ah->ah_imr;
469
470 if (unlikely(data == AR5K_INT_NOCARD))
471 return -ENODEV;
472
473 if (data & (AR5K_ISR_RXOK | AR5K_ISR_RXERR))
474 *interrupt_mask |= AR5K_INT_RX;
475
476 if (data & (AR5K_ISR_TXOK | AR5K_ISR_TXERR
477 | AR5K_ISR_TXDESC | AR5K_ISR_TXEOL))
478 *interrupt_mask |= AR5K_INT_TX;
479
480 if (ah->ah_version != AR5K_AR5210) {
481 /*HIU = Host Interface Unit (PCI etc)*/
482 if (unlikely(data & (AR5K_ISR_HIUERR)))
483 *interrupt_mask |= AR5K_INT_FATAL;
484
485 /*Beacon Not Ready*/
486 if (unlikely(data & (AR5K_ISR_BNR)))
487 *interrupt_mask |= AR5K_INT_BNR;
488 }
489
490 /*
491 * XXX: BMISS interrupts may occur after association.
492 * I found this on 5210 code but it needs testing. If this is
493 * true we should disable them before assoc and re-enable them
494 * after a successfull assoc + some jiffies.
495 */
496#if 0
497 interrupt_mask &= ~AR5K_INT_BMISS;
498#endif
499
500 /*
501 * In case we didn't handle anything,
502 * print the register value.
503 */
504 if (unlikely(*interrupt_mask == 0 && net_ratelimit()))
505 ATH5K_PRINTF("0x%08x\n", data);
506
507 return 0;
508}
509
510/**
511 * ath5k_hw_set_imr - Set interrupt mask
512 *
513 * @ah: The &struct ath5k_hw
514 * @new_mask: The new interrupt mask to be set
515 *
516 * Set the interrupt mask in hw to save interrupts. We do that by mapping
517 * ath5k_int bits to hw-specific bits to remove abstraction and writing
518 * Interrupt Mask Register.
519 */
520enum ath5k_int ath5k_hw_set_imr(struct ath5k_hw *ah, enum ath5k_int new_mask)
521{
522 enum ath5k_int old_mask, int_mask;
523
524 /*
525 * Disable card interrupts to prevent any race conditions
526 * (they will be re-enabled afterwards).
527 */
528 ath5k_hw_reg_write(ah, AR5K_IER_DISABLE, AR5K_IER);
529 ath5k_hw_reg_read(ah, AR5K_IER);
530
531 old_mask = ah->ah_imr;
532
533 /*
534 * Add additional, chipset-dependent interrupt mask flags
535 * and write them to the IMR (interrupt mask register).
536 */
537 int_mask = new_mask & AR5K_INT_COMMON;
538
539 if (new_mask & AR5K_INT_RX)
540 int_mask |= AR5K_IMR_RXOK | AR5K_IMR_RXERR | AR5K_IMR_RXORN |
541 AR5K_IMR_RXDESC;
542
543 if (new_mask & AR5K_INT_TX)
544 int_mask |= AR5K_IMR_TXOK | AR5K_IMR_TXERR | AR5K_IMR_TXDESC |
545 AR5K_IMR_TXURN;
546
547 if (ah->ah_version != AR5K_AR5210) {
548 if (new_mask & AR5K_INT_FATAL) {
549 int_mask |= AR5K_IMR_HIUERR;
550 AR5K_REG_ENABLE_BITS(ah, AR5K_SIMR2, AR5K_SIMR2_MCABT |
551 AR5K_SIMR2_SSERR | AR5K_SIMR2_DPERR);
552 }
553 }
554
555 ath5k_hw_reg_write(ah, int_mask, AR5K_PIMR);
556
557 /* Store new interrupt mask */
558 ah->ah_imr = new_mask;
559
560 /* ..re-enable interrupts */
561 ath5k_hw_reg_write(ah, AR5K_IER_ENABLE, AR5K_IER);
562 ath5k_hw_reg_read(ah, AR5K_IER);
563
564 return old_mask;
565}
566
diff --git a/drivers/net/wireless/ath5k/eeprom.c b/drivers/net/wireless/ath5k/eeprom.c
new file mode 100644
index 00000000000..a883839b6a9
--- /dev/null
+++ b/drivers/net/wireless/ath5k/eeprom.c
@@ -0,0 +1,466 @@
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 */
18
19/*************************************\
20* EEPROM access functions and helpers *
21\*************************************/
22
23#include "ath5k.h"
24#include "reg.h"
25#include "debug.h"
26#include "base.h"
27
28/*
29 * Read from eeprom
30 */
31static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
32{
33 u32 status, timeout;
34
35 ATH5K_TRACE(ah->ah_sc);
36 /*
37 * Initialize EEPROM access
38 */
39 if (ah->ah_version == AR5K_AR5210) {
40 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
41 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
42 } else {
43 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
44 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
45 AR5K_EEPROM_CMD_READ);
46 }
47
48 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
49 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
50 if (status & AR5K_EEPROM_STAT_RDDONE) {
51 if (status & AR5K_EEPROM_STAT_RDERR)
52 return -EIO;
53 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
54 0xffff);
55 return 0;
56 }
57 udelay(15);
58 }
59
60 return -ETIMEDOUT;
61}
62
63/*
64 * Translate binary channel representation in EEPROM to frequency
65 */
66static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin,
67 unsigned int mode)
68{
69 u16 val;
70
71 if (bin == AR5K_EEPROM_CHANNEL_DIS)
72 return bin;
73
74 if (mode == AR5K_EEPROM_MODE_11A) {
75 if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
76 val = (5 * bin) + 4800;
77 else
78 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
79 (bin * 10) + 5100;
80 } else {
81 if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
82 val = bin + 2300;
83 else
84 val = bin + 2400;
85 }
86
87 return val;
88}
89
90/*
91 * Read antenna infos from eeprom
92 */
93static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
94 unsigned int mode)
95{
96 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
97 u32 o = *offset;
98 u16 val;
99 int ret, i = 0;
100
101 AR5K_EEPROM_READ(o++, val);
102 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
103 ee->ee_ant_tx_rx[mode] = (val >> 2) & 0x3f;
104 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
105
106 AR5K_EEPROM_READ(o++, val);
107 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
108 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
109 ee->ee_ant_control[mode][i++] = val & 0x3f;
110
111 AR5K_EEPROM_READ(o++, val);
112 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
113 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
114 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
115
116 AR5K_EEPROM_READ(o++, val);
117 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
118 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
119 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
120 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
121
122 AR5K_EEPROM_READ(o++, val);
123 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
124 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
125 ee->ee_ant_control[mode][i++] = val & 0x3f;
126
127 /* Get antenna modes */
128 ah->ah_antenna[mode][0] =
129 (ee->ee_ant_control[mode][0] << 4) | 0x1;
130 ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
131 ee->ee_ant_control[mode][1] |
132 (ee->ee_ant_control[mode][2] << 6) |
133 (ee->ee_ant_control[mode][3] << 12) |
134 (ee->ee_ant_control[mode][4] << 18) |
135 (ee->ee_ant_control[mode][5] << 24);
136 ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
137 ee->ee_ant_control[mode][6] |
138 (ee->ee_ant_control[mode][7] << 6) |
139 (ee->ee_ant_control[mode][8] << 12) |
140 (ee->ee_ant_control[mode][9] << 18) |
141 (ee->ee_ant_control[mode][10] << 24);
142
143 /* return new offset */
144 *offset = o;
145
146 return 0;
147}
148
149/*
150 * Read supported modes from eeprom
151 */
152static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
153 unsigned int mode)
154{
155 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
156 u32 o = *offset;
157 u16 val;
158 int ret;
159
160 AR5K_EEPROM_READ(o++, val);
161 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
162 ee->ee_thr_62[mode] = val & 0xff;
163
164 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
165 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
166
167 AR5K_EEPROM_READ(o++, val);
168 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
169 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
170
171 AR5K_EEPROM_READ(o++, val);
172 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
173
174 if ((val & 0xff) & 0x80)
175 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
176 else
177 ee->ee_noise_floor_thr[mode] = val & 0xff;
178
179 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
180 ee->ee_noise_floor_thr[mode] =
181 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
182
183 AR5K_EEPROM_READ(o++, val);
184 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
185 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
186 ee->ee_xpd[mode] = val & 0x1;
187
188 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
189 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
190
191 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
192 AR5K_EEPROM_READ(o++, val);
193 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
194
195 if (mode == AR5K_EEPROM_MODE_11A)
196 ee->ee_xr_power[mode] = val & 0x3f;
197 else {
198 ee->ee_ob[mode][0] = val & 0x7;
199 ee->ee_db[mode][0] = (val >> 3) & 0x7;
200 }
201 }
202
203 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
204 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
205 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
206 } else {
207 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
208
209 AR5K_EEPROM_READ(o++, val);
210 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
211
212 if (mode == AR5K_EEPROM_MODE_11G)
213 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
214 }
215
216 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
217 mode == AR5K_EEPROM_MODE_11A) {
218 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
219 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
220 }
221
222 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6 &&
223 mode == AR5K_EEPROM_MODE_11G)
224 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
225
226 /* return new offset */
227 *offset = o;
228
229 return 0;
230}
231
232/*
233 * Initialize eeprom & capabilities structs
234 */
235int ath5k_eeprom_init(struct ath5k_hw *ah)
236{
237 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
238 unsigned int mode, i;
239 int ret;
240 u32 offset;
241 u16 val;
242
243 /* Initial TX thermal adjustment values */
244 ee->ee_tx_clip = 4;
245 ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
246 ee->ee_gain_select = 1;
247
248 /*
249 * Read values from EEPROM and store them in the capability structure
250 */
251 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
252 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
253 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
254 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
255 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
256
257 /* Return if we have an old EEPROM */
258 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
259 return 0;
260
261#ifdef notyet
262 /*
263 * Validate the checksum of the EEPROM date. There are some
264 * devices with invalid EEPROMs.
265 */
266 for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
267 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
268 cksum ^= val;
269 }
270 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
271 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
272 return -EIO;
273 }
274#endif
275
276 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
277 ee_ant_gain);
278
279 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
280 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
281 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
282 }
283
284 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
285 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
286 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
287 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
288
289 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
290 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
291 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
292 }
293
294 /*
295 * Get conformance test limit values
296 */
297 offset = AR5K_EEPROM_CTL(ah->ah_ee_version);
298 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ah->ah_ee_version);
299
300 for (i = 0; i < ee->ee_ctls; i++) {
301 AR5K_EEPROM_READ(offset++, val);
302 ee->ee_ctl[i] = (val >> 8) & 0xff;
303 ee->ee_ctl[i + 1] = val & 0xff;
304 }
305
306 /*
307 * Get values for 802.11a (5GHz)
308 */
309 mode = AR5K_EEPROM_MODE_11A;
310
311 ee->ee_turbo_max_power[mode] =
312 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
313
314 offset = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
315
316 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
317 if (ret)
318 return ret;
319
320 AR5K_EEPROM_READ(offset++, val);
321 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
322 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
323 ee->ee_db[mode][3] = (val >> 2) & 0x7;
324 ee->ee_ob[mode][2] = (val << 1) & 0x7;
325
326 AR5K_EEPROM_READ(offset++, val);
327 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
328 ee->ee_db[mode][2] = (val >> 12) & 0x7;
329 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
330 ee->ee_db[mode][1] = (val >> 6) & 0x7;
331 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
332 ee->ee_db[mode][0] = val & 0x7;
333
334 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
335 if (ret)
336 return ret;
337
338 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) {
339 AR5K_EEPROM_READ(offset++, val);
340 ee->ee_margin_tx_rx[mode] = val & 0x3f;
341 }
342
343 /*
344 * Get values for 802.11b (2.4GHz)
345 */
346 mode = AR5K_EEPROM_MODE_11B;
347 offset = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
348
349 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
350 if (ret)
351 return ret;
352
353 AR5K_EEPROM_READ(offset++, val);
354 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
355 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
356 ee->ee_db[mode][1] = val & 0x7;
357
358 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
359 if (ret)
360 return ret;
361
362 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
363 AR5K_EEPROM_READ(offset++, val);
364 ee->ee_cal_pier[mode][0] =
365 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
366 ee->ee_cal_pier[mode][1] =
367 ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
368
369 AR5K_EEPROM_READ(offset++, val);
370 ee->ee_cal_pier[mode][2] =
371 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
372 }
373
374 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
375 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
376
377 /*
378 * Get values for 802.11g (2.4GHz)
379 */
380 mode = AR5K_EEPROM_MODE_11G;
381 offset = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
382
383 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
384 if (ret)
385 return ret;
386
387 AR5K_EEPROM_READ(offset++, val);
388 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
389 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
390 ee->ee_db[mode][1] = val & 0x7;
391
392 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
393 if (ret)
394 return ret;
395
396 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
397 AR5K_EEPROM_READ(offset++, val);
398 ee->ee_cal_pier[mode][0] =
399 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
400 ee->ee_cal_pier[mode][1] =
401 ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
402
403 AR5K_EEPROM_READ(offset++, val);
404 ee->ee_turbo_max_power[mode] = val & 0x7f;
405 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
406
407 AR5K_EEPROM_READ(offset++, val);
408 ee->ee_cal_pier[mode][2] =
409 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
410
411 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
412 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
413
414 AR5K_EEPROM_READ(offset++, val);
415 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
416 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
417
418 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
419 AR5K_EEPROM_READ(offset++, val);
420 ee->ee_cck_ofdm_gain_delta = val & 0xff;
421 }
422 }
423
424 /*
425 * Read 5GHz EEPROM channels
426 */
427
428 return 0;
429}
430
431/*
432 * Read the MAC address from eeprom
433 */
434int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
435{
436 u8 mac_d[ETH_ALEN];
437 u32 total, offset;
438 u16 data;
439 int octet, ret;
440
441 memset(mac, 0, ETH_ALEN);
442 memset(mac_d, 0, ETH_ALEN);
443
444 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
445 if (ret)
446 return ret;
447
448 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
449 ret = ath5k_hw_eeprom_read(ah, offset, &data);
450 if (ret)
451 return ret;
452
453 total += data;
454 mac_d[octet + 1] = data & 0xff;
455 mac_d[octet] = data >> 8;
456 octet += 2;
457 }
458
459 memcpy(mac, mac_d, ETH_ALEN);
460
461 if (!total || total == 3 * 0xffff)
462 return -EINVAL;
463
464 return 0;
465}
466
diff --git a/drivers/net/wireless/ath5k/eeprom.h b/drivers/net/wireless/ath5k/eeprom.h
new file mode 100644
index 00000000000..a468ecfbb18
--- /dev/null
+++ b/drivers/net/wireless/ath5k/eeprom.h
@@ -0,0 +1,215 @@
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 */
18
19/*
20 * Common ar5xxx EEPROM data offsets (set these on AR5K_EEPROM_BASE)
21 */
22#define AR5K_EEPROM_MAGIC 0x003d /* EEPROM Magic number */
23#define AR5K_EEPROM_MAGIC_VALUE 0x5aa5 /* Default - found on EEPROM */
24#define AR5K_EEPROM_MAGIC_5212 0x0000145c /* 5212 */
25#define AR5K_EEPROM_MAGIC_5211 0x0000145b /* 5211 */
26#define AR5K_EEPROM_MAGIC_5210 0x0000145a /* 5210 */
27
28#define AR5K_EEPROM_PROTECT 0x003f /* EEPROM protect status */
29#define AR5K_EEPROM_PROTECT_RD_0_31 0x0001 /* Read protection bit for offsets 0x0 - 0x1f */
30#define AR5K_EEPROM_PROTECT_WR_0_31 0x0002 /* Write protection bit for offsets 0x0 - 0x1f */
31#define AR5K_EEPROM_PROTECT_RD_32_63 0x0004 /* 0x20 - 0x3f */
32#define AR5K_EEPROM_PROTECT_WR_32_63 0x0008
33#define AR5K_EEPROM_PROTECT_RD_64_127 0x0010 /* 0x40 - 0x7f */
34#define AR5K_EEPROM_PROTECT_WR_64_127 0x0020
35#define AR5K_EEPROM_PROTECT_RD_128_191 0x0040 /* 0x80 - 0xbf (regdom) */
36#define AR5K_EEPROM_PROTECT_WR_128_191 0x0080
37#define AR5K_EEPROM_PROTECT_RD_192_207 0x0100 /* 0xc0 - 0xcf */
38#define AR5K_EEPROM_PROTECT_WR_192_207 0x0200
39#define AR5K_EEPROM_PROTECT_RD_208_223 0x0400 /* 0xd0 - 0xdf */
40#define AR5K_EEPROM_PROTECT_WR_208_223 0x0800
41#define AR5K_EEPROM_PROTECT_RD_224_239 0x1000 /* 0xe0 - 0xef */
42#define AR5K_EEPROM_PROTECT_WR_224_239 0x2000
43#define AR5K_EEPROM_PROTECT_RD_240_255 0x4000 /* 0xf0 - 0xff */
44#define AR5K_EEPROM_PROTECT_WR_240_255 0x8000
45#define AR5K_EEPROM_REG_DOMAIN 0x00bf /* EEPROM regdom */
46#define AR5K_EEPROM_INFO_BASE 0x00c0 /* EEPROM header */
47#define AR5K_EEPROM_INFO_MAX (0x400 - AR5K_EEPROM_INFO_BASE)
48#define AR5K_EEPROM_INFO_CKSUM 0xffff
49#define AR5K_EEPROM_INFO(_n) (AR5K_EEPROM_INFO_BASE + (_n))
50
51#define AR5K_EEPROM_VERSION AR5K_EEPROM_INFO(1) /* EEPROM Version */
52#define AR5K_EEPROM_VERSION_3_0 0x3000 /* No idea what's going on before this version */
53#define AR5K_EEPROM_VERSION_3_1 0x3001 /* ob/db values for 2Ghz (ar5211_rfregs) */
54#define AR5K_EEPROM_VERSION_3_2 0x3002 /* different frequency representation (eeprom_bin2freq) */
55#define AR5K_EEPROM_VERSION_3_3 0x3003 /* offsets changed, has 32 CTLs (see below) and ee_false_detect (eeprom_read_modes) */
56#define AR5K_EEPROM_VERSION_3_4 0x3004 /* has ee_i_gain ee_cck_ofdm_power_delta (eeprom_read_modes) */
57#define AR5K_EEPROM_VERSION_4_0 0x4000 /* has ee_misc*, ee_cal_pier, ee_turbo_max_power and ee_xr_power (eeprom_init) */
58#define AR5K_EEPROM_VERSION_4_1 0x4001 /* has ee_margin_tx_rx (eeprom_init) */
59#define AR5K_EEPROM_VERSION_4_2 0x4002 /* has ee_cck_ofdm_gain_delta (eeprom_init) */
60#define AR5K_EEPROM_VERSION_4_3 0x4003
61#define AR5K_EEPROM_VERSION_4_4 0x4004
62#define AR5K_EEPROM_VERSION_4_5 0x4005
63#define AR5K_EEPROM_VERSION_4_6 0x4006 /* has ee_scaled_cck_delta */
64#define AR5K_EEPROM_VERSION_4_7 0x4007
65
66#define AR5K_EEPROM_MODE_11A 0
67#define AR5K_EEPROM_MODE_11B 1
68#define AR5K_EEPROM_MODE_11G 2
69
70#define AR5K_EEPROM_HDR AR5K_EEPROM_INFO(2) /* Header that contains the device caps */
71#define AR5K_EEPROM_HDR_11A(_v) (((_v) >> AR5K_EEPROM_MODE_11A) & 0x1)
72#define AR5K_EEPROM_HDR_11B(_v) (((_v) >> AR5K_EEPROM_MODE_11B) & 0x1)
73#define AR5K_EEPROM_HDR_11G(_v) (((_v) >> AR5K_EEPROM_MODE_11G) & 0x1)
74#define AR5K_EEPROM_HDR_T_2GHZ_DIS(_v) (((_v) >> 3) & 0x1) /* Disable turbo for 2Ghz (?) */
75#define AR5K_EEPROM_HDR_T_5GHZ_DBM(_v) (((_v) >> 4) & 0x7f) /* Max turbo power for a/XR mode (eeprom_init) */
76#define AR5K_EEPROM_HDR_DEVICE(_v) (((_v) >> 11) & 0x7)
77#define AR5K_EEPROM_HDR_T_5GHZ_DIS(_v) (((_v) >> 15) & 0x1) /* Disable turbo for 5Ghz (?) */
78#define AR5K_EEPROM_HDR_RFKILL(_v) (((_v) >> 14) & 0x1) /* Device has RFKill support */
79
80#define AR5K_EEPROM_RFKILL_GPIO_SEL 0x0000001c
81#define AR5K_EEPROM_RFKILL_GPIO_SEL_S 2
82#define AR5K_EEPROM_RFKILL_POLARITY 0x00000002
83#define AR5K_EEPROM_RFKILL_POLARITY_S 1
84
85/* Newer EEPROMs are using a different offset */
86#define AR5K_EEPROM_OFF(_v, _v3_0, _v3_3) \
87 (((_v) >= AR5K_EEPROM_VERSION_3_3) ? _v3_3 : _v3_0)
88
89#define AR5K_EEPROM_ANT_GAIN(_v) AR5K_EEPROM_OFF(_v, 0x00c4, 0x00c3)
90#define AR5K_EEPROM_ANT_GAIN_5GHZ(_v) ((int8_t)(((_v) >> 8) & 0xff))
91#define AR5K_EEPROM_ANT_GAIN_2GHZ(_v) ((int8_t)((_v) & 0xff))
92
93/* calibration settings */
94#define AR5K_EEPROM_MODES_11A(_v) AR5K_EEPROM_OFF(_v, 0x00c5, 0x00d4)
95#define AR5K_EEPROM_MODES_11B(_v) AR5K_EEPROM_OFF(_v, 0x00d0, 0x00f2)
96#define AR5K_EEPROM_MODES_11G(_v) AR5K_EEPROM_OFF(_v, 0x00da, 0x010d)
97#define AR5K_EEPROM_CTL(_v) AR5K_EEPROM_OFF(_v, 0x00e4, 0x0128) /* Conformance test limits */
98
99/* [3.1 - 3.3] */
100#define AR5K_EEPROM_OBDB0_2GHZ 0x00ec
101#define AR5K_EEPROM_OBDB1_2GHZ 0x00ed
102
103/* Misc values available since EEPROM 4.0 */
104#define AR5K_EEPROM_MISC0 0x00c4
105#define AR5K_EEPROM_EARSTART(_v) ((_v) & 0xfff)
106#define AR5K_EEPROM_EEMAP(_v) (((_v) >> 14) & 0x3)
107#define AR5K_EEPROM_MISC1 0x00c5
108#define AR5K_EEPROM_TARGET_PWRSTART(_v) ((_v) & 0xfff)
109#define AR5K_EEPROM_HAS32KHZCRYSTAL(_v) (((_v) >> 14) & 0x1)
110
111
112/* Some EEPROM defines */
113#define AR5K_EEPROM_EEP_SCALE 100
114#define AR5K_EEPROM_EEP_DELTA 10
115#define AR5K_EEPROM_N_MODES 3
116#define AR5K_EEPROM_N_5GHZ_CHAN 10
117#define AR5K_EEPROM_N_2GHZ_CHAN 3
118#define AR5K_EEPROM_MAX_CHAN 10
119#define AR5K_EEPROM_N_PCDAC 11
120#define AR5K_EEPROM_N_TEST_FREQ 8
121#define AR5K_EEPROM_N_EDGES 8
122#define AR5K_EEPROM_N_INTERCEPTS 11
123#define AR5K_EEPROM_FREQ_M(_v) AR5K_EEPROM_OFF(_v, 0x7f, 0xff)
124#define AR5K_EEPROM_PCDAC_M 0x3f
125#define AR5K_EEPROM_PCDAC_START 1
126#define AR5K_EEPROM_PCDAC_STOP 63
127#define AR5K_EEPROM_PCDAC_STEP 1
128#define AR5K_EEPROM_NON_EDGE_M 0x40
129#define AR5K_EEPROM_CHANNEL_POWER 8
130#define AR5K_EEPROM_N_OBDB 4
131#define AR5K_EEPROM_OBDB_DIS 0xffff
132#define AR5K_EEPROM_CHANNEL_DIS 0xff
133#define AR5K_EEPROM_SCALE_OC_DELTA(_x) (((_x) * 2) / 10)
134#define AR5K_EEPROM_N_CTLS(_v) AR5K_EEPROM_OFF(_v, 16, 32)
135#define AR5K_EEPROM_MAX_CTLS 32
136#define AR5K_EEPROM_N_XPD_PER_CHANNEL 4
137#define AR5K_EEPROM_N_XPD0_POINTS 4
138#define AR5K_EEPROM_N_XPD3_POINTS 3
139#define AR5K_EEPROM_N_INTERCEPT_10_2GHZ 35
140#define AR5K_EEPROM_N_INTERCEPT_10_5GHZ 55
141#define AR5K_EEPROM_POWER_M 0x3f
142#define AR5K_EEPROM_POWER_MIN 0
143#define AR5K_EEPROM_POWER_MAX 3150
144#define AR5K_EEPROM_POWER_STEP 50
145#define AR5K_EEPROM_POWER_TABLE_SIZE 64
146#define AR5K_EEPROM_N_POWER_LOC_11B 4
147#define AR5K_EEPROM_N_POWER_LOC_11G 6
148#define AR5K_EEPROM_I_GAIN 10
149#define AR5K_EEPROM_CCK_OFDM_DELTA 15
150#define AR5K_EEPROM_N_IQ_CAL 2
151
152#define AR5K_EEPROM_READ(_o, _v) do { \
153 ret = ath5k_hw_eeprom_read(ah, (_o), &(_v)); \
154 if (ret) \
155 return ret; \
156} while (0)
157
158#define AR5K_EEPROM_READ_HDR(_o, _v) \
159 AR5K_EEPROM_READ(_o, ah->ah_capabilities.cap_eeprom._v); \
160
161/* Struct to hold EEPROM calibration data */
162struct ath5k_eeprom_info {
163 u16 ee_magic;
164 u16 ee_protect;
165 u16 ee_regdomain;
166 u16 ee_version;
167 u16 ee_header;
168 u16 ee_ant_gain;
169 u16 ee_misc0;
170 u16 ee_misc1;
171 u16 ee_cck_ofdm_gain_delta;
172 u16 ee_cck_ofdm_power_delta;
173 u16 ee_scaled_cck_delta;
174
175 /* Used for tx thermal adjustment (eeprom_init, rfregs) */
176 u16 ee_tx_clip;
177 u16 ee_pwd_84;
178 u16 ee_pwd_90;
179 u16 ee_gain_select;
180
181 /* RF Calibration settings (reset, rfregs) */
182 u16 ee_i_cal[AR5K_EEPROM_N_MODES];
183 u16 ee_q_cal[AR5K_EEPROM_N_MODES];
184 u16 ee_fixed_bias[AR5K_EEPROM_N_MODES];
185 u16 ee_turbo_max_power[AR5K_EEPROM_N_MODES];
186 u16 ee_xr_power[AR5K_EEPROM_N_MODES];
187 u16 ee_switch_settling[AR5K_EEPROM_N_MODES];
188 u16 ee_ant_tx_rx[AR5K_EEPROM_N_MODES];
189 u16 ee_ant_control[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_PCDAC];
190 u16 ee_ob[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB];
191 u16 ee_db[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB];
192 u16 ee_tx_end2xlna_enable[AR5K_EEPROM_N_MODES];
193 u16 ee_tx_end2xpa_disable[AR5K_EEPROM_N_MODES];
194 u16 ee_tx_frm2xpa_enable[AR5K_EEPROM_N_MODES];
195 u16 ee_thr_62[AR5K_EEPROM_N_MODES];
196 u16 ee_xlna_gain[AR5K_EEPROM_N_MODES];
197 u16 ee_xpd[AR5K_EEPROM_N_MODES];
198 u16 ee_x_gain[AR5K_EEPROM_N_MODES];
199 u16 ee_i_gain[AR5K_EEPROM_N_MODES];
200 u16 ee_margin_tx_rx[AR5K_EEPROM_N_MODES];
201
202 /* Unused */
203 u16 ee_false_detect[AR5K_EEPROM_N_MODES];
204 u16 ee_cal_pier[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_2GHZ_CHAN];
205 u16 ee_channel[AR5K_EEPROM_N_MODES][AR5K_EEPROM_MAX_CHAN]; /*empty*/
206
207 /* Conformance test limits (Unused) */
208 u16 ee_ctls;
209 u16 ee_ctl[AR5K_EEPROM_MAX_CTLS];
210
211 /* Noise Floor Calibration settings */
212 s16 ee_noise_floor_thr[AR5K_EEPROM_N_MODES];
213 s8 ee_adc_desired_size[AR5K_EEPROM_N_MODES];
214 s8 ee_pga_desired_size[AR5K_EEPROM_N_MODES];
215};
diff --git a/drivers/net/wireless/ath5k/gpio.c b/drivers/net/wireless/ath5k/gpio.c
new file mode 100644
index 00000000000..b77205adc18
--- /dev/null
+++ b/drivers/net/wireless/ath5k/gpio.c
@@ -0,0 +1,176 @@
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 */
18
19/****************\
20 GPIO Functions
21\****************/
22
23#include "ath5k.h"
24#include "reg.h"
25#include "debug.h"
26#include "base.h"
27
28/*
29 * Set led state
30 */
31void ath5k_hw_set_ledstate(struct ath5k_hw *ah, unsigned int state)
32{
33 u32 led;
34 /*5210 has different led mode handling*/
35 u32 led_5210;
36
37 ATH5K_TRACE(ah->ah_sc);
38
39 /*Reset led status*/
40 if (ah->ah_version != AR5K_AR5210)
41 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
42 AR5K_PCICFG_LEDMODE | AR5K_PCICFG_LED);
43 else
44 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_LED);
45
46 /*
47 * Some blinking values, define at your wish
48 */
49 switch (state) {
50 case AR5K_LED_SCAN:
51 case AR5K_LED_AUTH:
52 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_PEND;
53 led_5210 = AR5K_PCICFG_LED_PEND | AR5K_PCICFG_LED_BCTL;
54 break;
55
56 case AR5K_LED_INIT:
57 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_NONE;
58 led_5210 = AR5K_PCICFG_LED_PEND;
59 break;
60
61 case AR5K_LED_ASSOC:
62 case AR5K_LED_RUN:
63 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_ASSOC;
64 led_5210 = AR5K_PCICFG_LED_ASSOC;
65 break;
66
67 default:
68 led = AR5K_PCICFG_LEDMODE_PROM | AR5K_PCICFG_LED_NONE;
69 led_5210 = AR5K_PCICFG_LED_PEND;
70 break;
71 }
72
73 /*Write new status to the register*/
74 if (ah->ah_version != AR5K_AR5210)
75 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led);
76 else
77 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led_5210);
78}
79
80/*
81 * Set GPIO inputs
82 */
83int ath5k_hw_set_gpio_input(struct ath5k_hw *ah, u32 gpio)
84{
85 ATH5K_TRACE(ah->ah_sc);
86 if (gpio > AR5K_NUM_GPIO)
87 return -EINVAL;
88
89 ath5k_hw_reg_write(ah,
90 (ath5k_hw_reg_read(ah, AR5K_GPIOCR) & ~AR5K_GPIOCR_OUT(gpio))
91 | AR5K_GPIOCR_IN(gpio), AR5K_GPIOCR);
92
93 return 0;
94}
95
96/*
97 * Set GPIO outputs
98 */
99int ath5k_hw_set_gpio_output(struct ath5k_hw *ah, u32 gpio)
100{
101 ATH5K_TRACE(ah->ah_sc);
102 if (gpio > AR5K_NUM_GPIO)
103 return -EINVAL;
104
105 ath5k_hw_reg_write(ah,
106 (ath5k_hw_reg_read(ah, AR5K_GPIOCR) & ~AR5K_GPIOCR_OUT(gpio))
107 | AR5K_GPIOCR_OUT(gpio), AR5K_GPIOCR);
108
109 return 0;
110}
111
112/*
113 * Get GPIO state
114 */
115u32 ath5k_hw_get_gpio(struct ath5k_hw *ah, u32 gpio)
116{
117 ATH5K_TRACE(ah->ah_sc);
118 if (gpio > AR5K_NUM_GPIO)
119 return 0xffffffff;
120
121 /* GPIO input magic */
122 return ((ath5k_hw_reg_read(ah, AR5K_GPIODI) & AR5K_GPIODI_M) >> gpio) &
123 0x1;
124}
125
126/*
127 * Set GPIO state
128 */
129int ath5k_hw_set_gpio(struct ath5k_hw *ah, u32 gpio, u32 val)
130{
131 u32 data;
132 ATH5K_TRACE(ah->ah_sc);
133
134 if (gpio > AR5K_NUM_GPIO)
135 return -EINVAL;
136
137 /* GPIO output magic */
138 data = ath5k_hw_reg_read(ah, AR5K_GPIODO);
139
140 data &= ~(1 << gpio);
141 data |= (val & 1) << gpio;
142
143 ath5k_hw_reg_write(ah, data, AR5K_GPIODO);
144
145 return 0;
146}
147
148/*
149 * Initialize the GPIO interrupt (RFKill switch)
150 */
151void ath5k_hw_set_gpio_intr(struct ath5k_hw *ah, unsigned int gpio,
152 u32 interrupt_level)
153{
154 u32 data;
155
156 ATH5K_TRACE(ah->ah_sc);
157 if (gpio > AR5K_NUM_GPIO)
158 return;
159
160 /*
161 * Set the GPIO interrupt
162 */
163 data = (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &
164 ~(AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_SELH |
165 AR5K_GPIOCR_INT_ENA | AR5K_GPIOCR_OUT(gpio))) |
166 (AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_ENA);
167
168 ath5k_hw_reg_write(ah, interrupt_level ? data :
169 (data | AR5K_GPIOCR_INT_SELH), AR5K_GPIOCR);
170
171 ah->ah_imr |= AR5K_IMR_GPIO;
172
173 /* Enable GPIO interrupts */
174 AR5K_REG_ENABLE_BITS(ah, AR5K_PIMR, AR5K_IMR_GPIO);
175}
176
diff --git a/drivers/net/wireless/ath5k/hw.c b/drivers/net/wireless/ath5k/hw.c
deleted file mode 100644
index b987aa1e0f7..00000000000
--- a/drivers/net/wireless/ath5k/hw.c
+++ /dev/null
@@ -1,4492 +0,0 @@
1/*
2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2007 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23/*
24 * HW related functions for Atheros Wireless LAN devices.
25 */
26
27#include <linux/pci.h>
28#include <linux/delay.h>
29
30#include "reg.h"
31#include "base.h"
32#include "debug.h"
33
34/* Prototypes */
35static int ath5k_hw_nic_reset(struct ath5k_hw *, u32);
36static int ath5k_hw_nic_wakeup(struct ath5k_hw *, int, bool);
37static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
38 unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
39 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
40 unsigned int, unsigned int);
41static int ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
42 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
43 unsigned int);
44static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *, struct ath5k_desc *,
45 struct ath5k_tx_status *);
46static int ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
47 unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
48 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
49 unsigned int, unsigned int);
50static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *, struct ath5k_desc *,
51 struct ath5k_tx_status *);
52static int ath5k_hw_proc_5212_rx_status(struct ath5k_hw *, struct ath5k_desc *,
53 struct ath5k_rx_status *);
54static int ath5k_hw_proc_5210_rx_status(struct ath5k_hw *, struct ath5k_desc *,
55 struct ath5k_rx_status *);
56static int ath5k_hw_get_capabilities(struct ath5k_hw *);
57
58static int ath5k_eeprom_init(struct ath5k_hw *);
59static int ath5k_eeprom_read_mac(struct ath5k_hw *, u8 *);
60
61static int ath5k_hw_enable_pspoll(struct ath5k_hw *, u8 *, u16);
62static int ath5k_hw_disable_pspoll(struct ath5k_hw *);
63
64/*
65 * Enable to overwrite the country code (use "00" for debug)
66 */
67#if 0
68#define COUNTRYCODE "00"
69#endif
70
71/*******************\
72 General Functions
73\*******************/
74
75/*
76 * Functions used internaly
77 */
78
79static inline unsigned int ath5k_hw_htoclock(unsigned int usec, bool turbo)
80{
81 return turbo ? (usec * 80) : (usec * 40);
82}
83
84static inline unsigned int ath5k_hw_clocktoh(unsigned int clock, bool turbo)
85{
86 return turbo ? (clock / 80) : (clock / 40);
87}
88
89/*
90 * Check if a register write has been completed
91 */
92int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
93 bool is_set)
94{
95 int i;
96 u32 data;
97
98 for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
99 data = ath5k_hw_reg_read(ah, reg);
100 if (is_set && (data & flag))
101 break;
102 else if ((data & flag) == val)
103 break;
104 udelay(15);
105 }
106
107 return (i <= 0) ? -EAGAIN : 0;
108}
109
110
111/***************************************\
112 Attach/Detach Functions
113\***************************************/
114
115/*
116 * Power On Self Test helper function
117 */
118static int ath5k_hw_post(struct ath5k_hw *ah)
119{
120
121 int i, c;
122 u16 cur_reg;
123 u16 regs[2] = {AR5K_STA_ID0, AR5K_PHY(8)};
124 u32 var_pattern;
125 u32 static_pattern[4] = {
126 0x55555555, 0xaaaaaaaa,
127 0x66666666, 0x99999999
128 };
129 u32 init_val;
130 u32 cur_val;
131
132 for (c = 0; c < 2; c++) {
133
134 cur_reg = regs[c];
135
136 /* Save previous value */
137 init_val = ath5k_hw_reg_read(ah, cur_reg);
138
139 for (i = 0; i < 256; i++) {
140 var_pattern = i << 16 | i;
141 ath5k_hw_reg_write(ah, var_pattern, cur_reg);
142 cur_val = ath5k_hw_reg_read(ah, cur_reg);
143
144 if (cur_val != var_pattern) {
145 ATH5K_ERR(ah->ah_sc, "POST Failed !!!\n");
146 return -EAGAIN;
147 }
148
149 /* Found on ndiswrapper dumps */
150 var_pattern = 0x0039080f;
151 ath5k_hw_reg_write(ah, var_pattern, cur_reg);
152 }
153
154 for (i = 0; i < 4; i++) {
155 var_pattern = static_pattern[i];
156 ath5k_hw_reg_write(ah, var_pattern, cur_reg);
157 cur_val = ath5k_hw_reg_read(ah, cur_reg);
158
159 if (cur_val != var_pattern) {
160 ATH5K_ERR(ah->ah_sc, "POST Failed !!!\n");
161 return -EAGAIN;
162 }
163
164 /* Found on ndiswrapper dumps */
165 var_pattern = 0x003b080f;
166 ath5k_hw_reg_write(ah, var_pattern, cur_reg);
167 }
168
169 /* Restore previous value */
170 ath5k_hw_reg_write(ah, init_val, cur_reg);
171
172 }
173
174 return 0;
175
176}
177
178/*
179 * Check if the device is supported and initialize the needed structs
180 */
181struct ath5k_hw *ath5k_hw_attach(struct ath5k_softc *sc, u8 mac_version)
182{
183 struct ath5k_hw *ah;
184 struct pci_dev *pdev = sc->pdev;
185 u8 mac[ETH_ALEN];
186 int ret;
187 u32 srev;
188
189 /*If we passed the test malloc a ath5k_hw struct*/
190 ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
191 if (ah == NULL) {
192 ret = -ENOMEM;
193 ATH5K_ERR(sc, "out of memory\n");
194 goto err;
195 }
196
197 ah->ah_sc = sc;
198 ah->ah_iobase = sc->iobase;
199
200 /*
201 * HW information
202 */
203
204 ah->ah_op_mode = IEEE80211_IF_TYPE_STA;
205 ah->ah_radar.r_enabled = AR5K_TUNE_RADAR_ALERT;
206 ah->ah_turbo = false;
207 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
208 ah->ah_imr = 0;
209 ah->ah_atim_window = 0;
210 ah->ah_aifs = AR5K_TUNE_AIFS;
211 ah->ah_cw_min = AR5K_TUNE_CWMIN;
212 ah->ah_limit_tx_retries = AR5K_INIT_TX_RETRY;
213 ah->ah_software_retry = false;
214 ah->ah_ant_diversity = AR5K_TUNE_ANT_DIVERSITY;
215
216 /*
217 * Set the mac revision based on the pci id
218 */
219 ah->ah_version = mac_version;
220
221 /*Fill the ath5k_hw struct with the needed functions*/
222 if (ah->ah_version == AR5K_AR5212)
223 ah->ah_magic = AR5K_EEPROM_MAGIC_5212;
224 else if (ah->ah_version == AR5K_AR5211)
225 ah->ah_magic = AR5K_EEPROM_MAGIC_5211;
226
227 if (ah->ah_version == AR5K_AR5212) {
228 ah->ah_setup_tx_desc = ath5k_hw_setup_4word_tx_desc;
229 ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
230 ah->ah_proc_tx_desc = ath5k_hw_proc_4word_tx_status;
231 } else {
232 ah->ah_setup_tx_desc = ath5k_hw_setup_2word_tx_desc;
233 ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
234 ah->ah_proc_tx_desc = ath5k_hw_proc_2word_tx_status;
235 }
236
237 if (ah->ah_version == AR5K_AR5212)
238 ah->ah_proc_rx_desc = ath5k_hw_proc_5212_rx_status;
239 else if (ah->ah_version <= AR5K_AR5211)
240 ah->ah_proc_rx_desc = ath5k_hw_proc_5210_rx_status;
241
242 /* Bring device out of sleep and reset it's units */
243 ret = ath5k_hw_nic_wakeup(ah, AR5K_INIT_MODE, true);
244 if (ret)
245 goto err_free;
246
247 /* Get MAC, PHY and RADIO revisions */
248 srev = ath5k_hw_reg_read(ah, AR5K_SREV);
249 ah->ah_mac_srev = srev;
250 ah->ah_mac_version = AR5K_REG_MS(srev, AR5K_SREV_VER);
251 ah->ah_mac_revision = AR5K_REG_MS(srev, AR5K_SREV_REV);
252 ah->ah_phy_revision = ath5k_hw_reg_read(ah, AR5K_PHY_CHIP_ID) &
253 0xffffffff;
254 ah->ah_radio_5ghz_revision = ath5k_hw_radio_revision(ah,
255 CHANNEL_5GHZ);
256
257 if (ah->ah_version == AR5K_AR5210)
258 ah->ah_radio_2ghz_revision = 0;
259 else
260 ah->ah_radio_2ghz_revision = ath5k_hw_radio_revision(ah,
261 CHANNEL_2GHZ);
262
263 /* Return on unsuported chips (unsupported eeprom etc) */
264 if ((srev >= AR5K_SREV_VER_AR5416) &&
265 (srev < AR5K_SREV_VER_AR2425)) {
266 ATH5K_ERR(sc, "Device not yet supported.\n");
267 ret = -ENODEV;
268 goto err_free;
269 } else if (srev == AR5K_SREV_VER_AR2425) {
270 ATH5K_WARN(sc, "Support for RF2425 is under development.\n");
271 }
272
273 /* Identify single chip solutions */
274 if (((srev <= AR5K_SREV_VER_AR5414) &&
275 (srev >= AR5K_SREV_VER_AR2413)) ||
276 (srev == AR5K_SREV_VER_AR2425)) {
277 ah->ah_single_chip = true;
278 } else {
279 ah->ah_single_chip = false;
280 }
281
282 /* Single chip radio */
283 if (ah->ah_radio_2ghz_revision == ah->ah_radio_5ghz_revision)
284 ah->ah_radio_2ghz_revision = 0;
285
286 /* Identify the radio chip*/
287 if (ah->ah_version == AR5K_AR5210) {
288 ah->ah_radio = AR5K_RF5110;
289 /*
290 * Register returns 0x0/0x04 for radio revision
291 * so ath5k_hw_radio_revision doesn't parse the value
292 * correctly. For now we are based on mac's srev to
293 * identify RF2425 radio.
294 */
295 } else if (srev == AR5K_SREV_VER_AR2425) {
296 ah->ah_radio = AR5K_RF2425;
297 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF2425;
298 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112) {
299 ah->ah_radio = AR5K_RF5111;
300 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5111;
301 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC0) {
302 ah->ah_radio = AR5K_RF5112;
303 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5112;
304 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC1) {
305 ah->ah_radio = AR5K_RF2413;
306 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF2413;
307 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC2) {
308 ah->ah_radio = AR5K_RF5413;
309 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5413;
310 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5133) {
311 /* AR5424 */
312 if (srev >= AR5K_SREV_VER_AR5424) {
313 ah->ah_radio = AR5K_RF5413;
314 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5413;
315 /* AR2424 */
316 } else {
317 ah->ah_radio = AR5K_RF2413; /* For testing */
318 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF2413;
319 }
320 }
321 ah->ah_phy = AR5K_PHY(0);
322
323 /*
324 * Write PCI-E power save settings
325 */
326 if ((ah->ah_version == AR5K_AR5212) && (pdev->is_pcie)) {
327 ath5k_hw_reg_write(ah, 0x9248fc00, 0x4080);
328 ath5k_hw_reg_write(ah, 0x24924924, 0x4080);
329 ath5k_hw_reg_write(ah, 0x28000039, 0x4080);
330 ath5k_hw_reg_write(ah, 0x53160824, 0x4080);
331 ath5k_hw_reg_write(ah, 0xe5980579, 0x4080);
332 ath5k_hw_reg_write(ah, 0x001defff, 0x4080);
333 ath5k_hw_reg_write(ah, 0x1aaabe40, 0x4080);
334 ath5k_hw_reg_write(ah, 0xbe105554, 0x4080);
335 ath5k_hw_reg_write(ah, 0x000e3007, 0x4080);
336 ath5k_hw_reg_write(ah, 0x00000000, 0x4084);
337 }
338
339 /*
340 * POST
341 */
342 ret = ath5k_hw_post(ah);
343 if (ret)
344 goto err_free;
345
346 /* Write AR5K_PCICFG_UNK on 2112B and later chips */
347 if (ah->ah_radio_5ghz_revision > AR5K_SREV_RAD_2112B ||
348 srev > AR5K_SREV_VER_AR2413) {
349 ath5k_hw_reg_write(ah, AR5K_PCICFG_UNK, AR5K_PCICFG);
350 }
351
352 /*
353 * Get card capabilities, values, ...
354 */
355 ret = ath5k_eeprom_init(ah);
356 if (ret) {
357 ATH5K_ERR(sc, "unable to init EEPROM\n");
358 goto err_free;
359 }
360
361 /* Get misc capabilities */
362 ret = ath5k_hw_get_capabilities(ah);
363 if (ret) {
364 ATH5K_ERR(sc, "unable to get device capabilities: 0x%04x\n",
365 sc->pdev->device);
366 goto err_free;
367 }
368
369 /* Get MAC address */
370 ret = ath5k_eeprom_read_mac(ah, mac);
371 if (ret) {
372 ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
373 sc->pdev->device);
374 goto err_free;
375 }
376
377 ath5k_hw_set_lladdr(ah, mac);
378 /* Set BSSID to bcast address: ff:ff:ff:ff:ff:ff for now */
379 memset(ah->ah_bssid, 0xff, ETH_ALEN);
380 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
381 ath5k_hw_set_opmode(ah);
382
383 ath5k_hw_set_rfgain_opt(ah);
384
385 return ah;
386err_free:
387 kfree(ah);
388err:
389 return ERR_PTR(ret);
390}
391
392/*
393 * Bring up MAC + PHY Chips
394 */
395static int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
396{
397 struct pci_dev *pdev = ah->ah_sc->pdev;
398 u32 turbo, mode, clock, bus_flags;
399 int ret;
400
401 turbo = 0;
402 mode = 0;
403 clock = 0;
404
405 ATH5K_TRACE(ah->ah_sc);
406
407 /* Wakeup the device */
408 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
409 if (ret) {
410 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
411 return ret;
412 }
413
414 if (ah->ah_version != AR5K_AR5210) {
415 /*
416 * Get channel mode flags
417 */
418
419 if (ah->ah_radio >= AR5K_RF5112) {
420 mode = AR5K_PHY_MODE_RAD_RF5112;
421 clock = AR5K_PHY_PLL_RF5112;
422 } else {
423 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
424 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
425 }
426
427 if (flags & CHANNEL_2GHZ) {
428 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
429 clock |= AR5K_PHY_PLL_44MHZ;
430
431 if (flags & CHANNEL_CCK) {
432 mode |= AR5K_PHY_MODE_MOD_CCK;
433 } else if (flags & CHANNEL_OFDM) {
434 /* XXX Dynamic OFDM/CCK is not supported by the
435 * AR5211 so we set MOD_OFDM for plain g (no
436 * CCK headers) operation. We need to test
437 * this, 5211 might support ofdm-only g after
438 * all, there are also initial register values
439 * in the code for g mode (see initvals.c). */
440 if (ah->ah_version == AR5K_AR5211)
441 mode |= AR5K_PHY_MODE_MOD_OFDM;
442 else
443 mode |= AR5K_PHY_MODE_MOD_DYN;
444 } else {
445 ATH5K_ERR(ah->ah_sc,
446 "invalid radio modulation mode\n");
447 return -EINVAL;
448 }
449 } else if (flags & CHANNEL_5GHZ) {
450 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
451 clock |= AR5K_PHY_PLL_40MHZ;
452
453 if (flags & CHANNEL_OFDM)
454 mode |= AR5K_PHY_MODE_MOD_OFDM;
455 else {
456 ATH5K_ERR(ah->ah_sc,
457 "invalid radio modulation mode\n");
458 return -EINVAL;
459 }
460 } else {
461 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
462 return -EINVAL;
463 }
464
465 if (flags & CHANNEL_TURBO)
466 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
467 } else { /* Reset the device */
468
469 /* ...enable Atheros turbo mode if requested */
470 if (flags & CHANNEL_TURBO)
471 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
472 AR5K_PHY_TURBO);
473 }
474
475 /* reseting PCI on PCI-E cards results card to hang
476 * and always return 0xffff... so we ingore that flag
477 * for PCI-E cards */
478 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
479
480 /* Reset chipset */
481 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
482 AR5K_RESET_CTL_BASEBAND | bus_flags);
483 if (ret) {
484 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
485 return -EIO;
486 }
487
488 if (ah->ah_version == AR5K_AR5210)
489 udelay(2300);
490
491 /* ...wakeup again!*/
492 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
493 if (ret) {
494 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
495 return ret;
496 }
497
498 /* ...final warm reset */
499 if (ath5k_hw_nic_reset(ah, 0)) {
500 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
501 return -EIO;
502 }
503
504 if (ah->ah_version != AR5K_AR5210) {
505 /* ...set the PHY operating mode */
506 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
507 udelay(300);
508
509 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
510 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
511 }
512
513 return 0;
514}
515
516/*
517 * Free the ath5k_hw struct
518 */
519void ath5k_hw_detach(struct ath5k_hw *ah)
520{
521 ATH5K_TRACE(ah->ah_sc);
522
523 __set_bit(ATH_STAT_INVALID, ah->ah_sc->status);
524
525 if (ah->ah_rf_banks != NULL)
526 kfree(ah->ah_rf_banks);
527
528 /* assume interrupts are down */
529 kfree(ah);
530}
531
532/****************************\
533 Reset function and helpers
534\****************************/
535
536/**
537 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
538 *
539 * @ah: the &struct ath5k_hw
540 * @channel: the currently set channel upon reset
541 *
542 * Write the OFDM timings for the AR5212 upon reset. This is a helper for
543 * ath5k_hw_reset(). This seems to tune the PLL a specified frequency
544 * depending on the bandwidth of the channel.
545 *
546 */
547static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
548 struct ieee80211_channel *channel)
549{
550 /* Get exponent and mantissa and set it */
551 u32 coef_scaled, coef_exp, coef_man,
552 ds_coef_exp, ds_coef_man, clock;
553
554 if (!(ah->ah_version == AR5K_AR5212) ||
555 !(channel->hw_value & CHANNEL_OFDM))
556 BUG();
557
558 /* Seems there are two PLLs, one for baseband sampling and one
559 * for tuning. Tuning basebands are 40 MHz or 80MHz when in
560 * turbo. */
561 clock = channel->hw_value & CHANNEL_TURBO ? 80 : 40;
562 coef_scaled = ((5 * (clock << 24)) / 2) /
563 channel->center_freq;
564
565 for (coef_exp = 31; coef_exp > 0; coef_exp--)
566 if ((coef_scaled >> coef_exp) & 0x1)
567 break;
568
569 if (!coef_exp)
570 return -EINVAL;
571
572 coef_exp = 14 - (coef_exp - 24);
573 coef_man = coef_scaled +
574 (1 << (24 - coef_exp - 1));
575 ds_coef_man = coef_man >> (24 - coef_exp);
576 ds_coef_exp = coef_exp - 16;
577
578 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
579 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
580 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
581 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
582
583 return 0;
584}
585
586
587/*
588 * index into rates for control rates, we can set it up like this because
589 * this is only used for AR5212 and we know it supports G mode
590 */
591static int control_rates[] =
592 { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
593
594/**
595 * ath5k_hw_write_rate_duration - set rate duration during hw resets
596 *
597 * @ah: the &struct ath5k_hw
598 * @mode: one of enum ath5k_driver_mode
599 *
600 * Write the rate duration table upon hw reset. This is a helper for
601 * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout for
602 * the hardware for the current mode for each rate. The rates which are capable
603 * of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have another
604 * register for the short preamble ACK timeout calculation.
605 */
606static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
607 unsigned int mode)
608{
609 struct ath5k_softc *sc = ah->ah_sc;
610 struct ieee80211_rate *rate;
611 unsigned int i;
612
613 /* Write rate duration table */
614 for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
615 u32 reg;
616 u16 tx_time;
617
618 rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
619
620 /* Set ACK timeout */
621 reg = AR5K_RATE_DUR(rate->hw_value);
622
623 /* An ACK frame consists of 10 bytes. If you add the FCS,
624 * which ieee80211_generic_frame_duration() adds,
625 * its 14 bytes. Note we use the control rate and not the
626 * actual rate for this rate. See mac80211 tx.c
627 * ieee80211_duration() for a brief description of
628 * what rate we should choose to TX ACKs. */
629 tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
630 sc->vif, 10, rate));
631
632 ath5k_hw_reg_write(ah, tx_time, reg);
633
634 if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
635 continue;
636
637 /*
638 * We're not distinguishing short preamble here,
639 * This is true, all we'll get is a longer value here
640 * which is not necessarilly bad. We could use
641 * export ieee80211_frame_duration() but that needs to be
642 * fixed first to be properly used by mac802111 drivers:
643 *
644 * - remove erp stuff and let the routine figure ofdm
645 * erp rates
646 * - remove passing argument ieee80211_local as
647 * drivers don't have access to it
648 * - move drivers using ieee80211_generic_frame_duration()
649 * to this
650 */
651 ath5k_hw_reg_write(ah, tx_time,
652 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
653 }
654}
655
656/*
657 * Main reset function
658 */
659int ath5k_hw_reset(struct ath5k_hw *ah, enum ieee80211_if_types op_mode,
660 struct ieee80211_channel *channel, bool change_channel)
661{
662 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
663 struct pci_dev *pdev = ah->ah_sc->pdev;
664 u32 data, s_seq, s_ant, s_led[3], dma_size;
665 unsigned int i, mode, freq, ee_mode, ant[2];
666 int ret;
667
668 ATH5K_TRACE(ah->ah_sc);
669
670 s_seq = 0;
671 s_ant = 0;
672 ee_mode = 0;
673 freq = 0;
674 mode = 0;
675
676 /*
677 * Save some registers before a reset
678 */
679 /*DCU/Antenna selection not available on 5210*/
680 if (ah->ah_version != AR5K_AR5210) {
681 if (change_channel) {
682 /* Seq number for queue 0 -do this for all queues ? */
683 s_seq = ath5k_hw_reg_read(ah,
684 AR5K_QUEUE_DFS_SEQNUM(0));
685 /*Default antenna*/
686 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
687 }
688 }
689
690 /*GPIOs*/
691 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_LEDSTATE;
692 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
693 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
694
695 if (change_channel && ah->ah_rf_banks != NULL)
696 ath5k_hw_get_rf_gain(ah);
697
698
699 /*Wakeup the device*/
700 ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
701 if (ret)
702 return ret;
703
704 /*
705 * Initialize operating mode
706 */
707 ah->ah_op_mode = op_mode;
708
709 /*
710 * 5111/5112 Settings
711 * 5210 only comes with RF5110
712 */
713 if (ah->ah_version != AR5K_AR5210) {
714 if (ah->ah_radio != AR5K_RF5111 &&
715 ah->ah_radio != AR5K_RF5112 &&
716 ah->ah_radio != AR5K_RF5413 &&
717 ah->ah_radio != AR5K_RF2413 &&
718 ah->ah_radio != AR5K_RF2425) {
719 ATH5K_ERR(ah->ah_sc,
720 "invalid phy radio: %u\n", ah->ah_radio);
721 return -EINVAL;
722 }
723
724 switch (channel->hw_value & CHANNEL_MODES) {
725 case CHANNEL_A:
726 mode = AR5K_MODE_11A;
727 freq = AR5K_INI_RFGAIN_5GHZ;
728 ee_mode = AR5K_EEPROM_MODE_11A;
729 break;
730 case CHANNEL_G:
731 mode = AR5K_MODE_11G;
732 freq = AR5K_INI_RFGAIN_2GHZ;
733 ee_mode = AR5K_EEPROM_MODE_11G;
734 break;
735 case CHANNEL_B:
736 mode = AR5K_MODE_11B;
737 freq = AR5K_INI_RFGAIN_2GHZ;
738 ee_mode = AR5K_EEPROM_MODE_11B;
739 break;
740 case CHANNEL_T:
741 mode = AR5K_MODE_11A_TURBO;
742 freq = AR5K_INI_RFGAIN_5GHZ;
743 ee_mode = AR5K_EEPROM_MODE_11A;
744 break;
745 /*Is this ok on 5211 too ?*/
746 case CHANNEL_TG:
747 mode = AR5K_MODE_11G_TURBO;
748 freq = AR5K_INI_RFGAIN_2GHZ;
749 ee_mode = AR5K_EEPROM_MODE_11G;
750 break;
751 case CHANNEL_XR:
752 if (ah->ah_version == AR5K_AR5211) {
753 ATH5K_ERR(ah->ah_sc,
754 "XR mode not available on 5211");
755 return -EINVAL;
756 }
757 mode = AR5K_MODE_XR;
758 freq = AR5K_INI_RFGAIN_5GHZ;
759 ee_mode = AR5K_EEPROM_MODE_11A;
760 break;
761 default:
762 ATH5K_ERR(ah->ah_sc,
763 "invalid channel: %d\n", channel->center_freq);
764 return -EINVAL;
765 }
766
767 /* PHY access enable */
768 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
769
770 }
771
772 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
773 if (ret)
774 return ret;
775
776 /*
777 * 5211/5212 Specific
778 */
779 if (ah->ah_version != AR5K_AR5210) {
780 /*
781 * Write initial RF gain settings
782 * This should work for both 5111/5112
783 */
784 ret = ath5k_hw_rfgain(ah, freq);
785 if (ret)
786 return ret;
787
788 mdelay(1);
789
790 /*
791 * Write some more initial register settings
792 */
793 if (ah->ah_version == AR5K_AR5212) {
794 ath5k_hw_reg_write(ah, 0x0002a002, 0x982c);
795
796 if (channel->hw_value == CHANNEL_G)
797 if (ah->ah_mac_srev < AR5K_SREV_VER_AR2413)
798 ath5k_hw_reg_write(ah, 0x00f80d80,
799 0x994c);
800 else if (ah->ah_mac_srev < AR5K_SREV_VER_AR2424)
801 ath5k_hw_reg_write(ah, 0x00380140,
802 0x994c);
803 else if (ah->ah_mac_srev < AR5K_SREV_VER_AR2425)
804 ath5k_hw_reg_write(ah, 0x00fc0ec0,
805 0x994c);
806 else /* 2425 */
807 ath5k_hw_reg_write(ah, 0x00fc0fc0,
808 0x994c);
809 else
810 ath5k_hw_reg_write(ah, 0x00000000, 0x994c);
811
812 /* Some bits are disabled here, we know nothing about
813 * register 0xa228 yet, most of the times this ends up
814 * with a value 0x9b5 -haven't seen any dump with
815 * a different value- */
816 /* Got this from decompiling binary HAL */
817 data = ath5k_hw_reg_read(ah, 0xa228);
818 data &= 0xfffffdff;
819 ath5k_hw_reg_write(ah, data, 0xa228);
820
821 data = ath5k_hw_reg_read(ah, 0xa228);
822 data &= 0xfffe03ff;
823 ath5k_hw_reg_write(ah, data, 0xa228);
824 data = 0;
825
826 /* Just write 0x9b5 ? */
827 /* ath5k_hw_reg_write(ah, 0x000009b5, 0xa228); */
828 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
829 ath5k_hw_reg_write(ah, 0x00000000, 0xa254);
830 ath5k_hw_reg_write(ah, 0x0000000e, AR5K_PHY_SCAL);
831 }
832
833 /* Fix for first revision of the RF5112 RF chipset */
834 if (ah->ah_radio >= AR5K_RF5112 &&
835 ah->ah_radio_5ghz_revision <
836 AR5K_SREV_RAD_5112A) {
837 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
838 AR5K_PHY_CCKTXCTL);
839 if (channel->hw_value & CHANNEL_5GHZ)
840 data = 0xffb81020;
841 else
842 data = 0xffb80d20;
843 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
844 data = 0;
845 }
846
847 /*
848 * Set TX power (FIXME)
849 */
850 ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER);
851 if (ret)
852 return ret;
853
854 /* Write rate duration table only on AR5212 and if
855 * virtual interface has already been brought up
856 * XXX: rethink this after new mode changes to
857 * mac80211 are integrated */
858 if (ah->ah_version == AR5K_AR5212 &&
859 ah->ah_sc->vif != NULL)
860 ath5k_hw_write_rate_duration(ah, mode);
861
862 /*
863 * Write RF registers
864 */
865 ret = ath5k_hw_rfregs(ah, channel, mode);
866 if (ret)
867 return ret;
868
869 /*
870 * Configure additional registers
871 */
872
873 /* Write OFDM timings on 5212*/
874 if (ah->ah_version == AR5K_AR5212 &&
875 channel->hw_value & CHANNEL_OFDM) {
876 ret = ath5k_hw_write_ofdm_timings(ah, channel);
877 if (ret)
878 return ret;
879 }
880
881 /*Enable/disable 802.11b mode on 5111
882 (enable 2111 frequency converter + CCK)*/
883 if (ah->ah_radio == AR5K_RF5111) {
884 if (mode == AR5K_MODE_11B)
885 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
886 AR5K_TXCFG_B_MODE);
887 else
888 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
889 AR5K_TXCFG_B_MODE);
890 }
891
892 /*
893 * Set channel and calibrate the PHY
894 */
895 ret = ath5k_hw_channel(ah, channel);
896 if (ret)
897 return ret;
898
899 /* Set antenna mode */
900 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_ANT_CTL,
901 ah->ah_antenna[ee_mode][0], 0xfffffc06);
902
903 /*
904 * In case a fixed antenna was set as default
905 * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
906 * registers.
907 */
908 if (s_ant != 0){
909 if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
910 ant[0] = ant[1] = AR5K_ANT_FIXED_A;
911 else /* 2 - Aux */
912 ant[0] = ant[1] = AR5K_ANT_FIXED_B;
913 } else {
914 ant[0] = AR5K_ANT_FIXED_A;
915 ant[1] = AR5K_ANT_FIXED_B;
916 }
917
918 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
919 AR5K_PHY_ANT_SWITCH_TABLE_0);
920 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
921 AR5K_PHY_ANT_SWITCH_TABLE_1);
922
923 /* Commit values from EEPROM */
924 if (ah->ah_radio == AR5K_RF5111)
925 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
926 AR5K_PHY_FRAME_CTL_TX_CLIP, ee->ee_tx_clip);
927
928 ath5k_hw_reg_write(ah,
929 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
930 AR5K_PHY_NFTHRES);
931
932 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_SETTLING,
933 (ee->ee_switch_settling[ee_mode] << 7) & 0x3f80,
934 0xffffc07f);
935 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_GAIN,
936 (ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000,
937 0xfffc0fff);
938 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_DESIRED_SIZE,
939 (ee->ee_adc_desired_size[ee_mode] & 0x00ff) |
940 ((ee->ee_pga_desired_size[ee_mode] << 8) & 0xff00),
941 0xffff0000);
942
943 ath5k_hw_reg_write(ah,
944 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
945 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
946 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
947 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
948
949 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_RF_CTL3,
950 ee->ee_tx_end2xlna_enable[ee_mode] << 8, 0xffff00ff);
951 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_NF,
952 (ee->ee_thr_62[ee_mode] << 12) & 0x7f000, 0xfff80fff);
953 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_OFDM_SELFCORR, 4, 0xffffff01);
954
955 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
956 AR5K_PHY_IQ_CORR_ENABLE |
957 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
958 ee->ee_q_cal[ee_mode]);
959
960 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
961 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
962 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
963 ee->ee_margin_tx_rx[ee_mode]);
964
965 } else {
966 mdelay(1);
967 /* Disable phy and wait */
968 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
969 mdelay(1);
970 }
971
972 /*
973 * Restore saved values
974 */
975 /*DCU/Antenna selection not available on 5210*/
976 if (ah->ah_version != AR5K_AR5210) {
977 ath5k_hw_reg_write(ah, s_seq, AR5K_QUEUE_DFS_SEQNUM(0));
978 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
979 }
980 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
981 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
982 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
983
984 /*
985 * Misc
986 */
987 /* XXX: add ah->aid once mac80211 gives this to us */
988 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
989
990 ath5k_hw_set_opmode(ah);
991 /*PISR/SISR Not available on 5210*/
992 if (ah->ah_version != AR5K_AR5210) {
993 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
994 /* If we later allow tuning for this, store into sc structure */
995 data = AR5K_TUNE_RSSI_THRES |
996 AR5K_TUNE_BMISS_THRES << AR5K_RSSI_THR_BMISS_S;
997 ath5k_hw_reg_write(ah, data, AR5K_RSSI_THR);
998 }
999
1000 /*
1001 * Set Rx/Tx DMA Configuration
1002 *
1003 * Set maximum DMA size (512) except for PCI-E cards since
1004 * it causes rx overruns and tx errors (tested on 5424 but since
1005 * rx overruns also occur on 5416/5418 with madwifi we set 128
1006 * for all PCI-E cards to be safe).
1007 *
1008 * In dumps this is 128 for allchips.
1009 *
1010 * XXX: need to check 5210 for this
1011 * TODO: Check out tx triger level, it's always 64 on dumps but I
1012 * guess we can tweak it and see how it goes ;-)
1013 */
1014 dma_size = (pdev->is_pcie) ? AR5K_DMASIZE_128B : AR5K_DMASIZE_512B;
1015 if (ah->ah_version != AR5K_AR5210) {
1016 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1017 AR5K_TXCFG_SDMAMR, dma_size);
1018 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
1019 AR5K_RXCFG_SDMAMW, dma_size);
1020 }
1021
1022 /*
1023 * Enable the PHY and wait until completion
1024 */
1025 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1026
1027 /*
1028 * On 5211+ read activation -> rx delay
1029 * and use it.
1030 */
1031 if (ah->ah_version != AR5K_AR5210) {
1032 data = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
1033 AR5K_PHY_RX_DELAY_M;
1034 data = (channel->hw_value & CHANNEL_CCK) ?
1035 ((data << 2) / 22) : (data / 10);
1036
1037 udelay(100 + (2 * data));
1038 data = 0;
1039 } else {
1040 mdelay(1);
1041 }
1042
1043 /*
1044 * Perform ADC test (?)
1045 */
1046 data = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
1047 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
1048 for (i = 0; i <= 20; i++) {
1049 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
1050 break;
1051 udelay(200);
1052 }
1053 ath5k_hw_reg_write(ah, data, AR5K_PHY_TST1);
1054 data = 0;
1055
1056 /*
1057 * Start automatic gain calibration
1058 *
1059 * During AGC calibration RX path is re-routed to
1060 * a signal detector so we don't receive anything.
1061 *
1062 * This method is used to calibrate some static offsets
1063 * used together with on-the fly I/Q calibration (the
1064 * one performed via ath5k_hw_phy_calibrate), that doesn't
1065 * interrupt rx path.
1066 *
1067 * If we are in a noisy environment AGC calibration may time
1068 * out.
1069 */
1070 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1071 AR5K_PHY_AGCCTL_CAL);
1072
1073 /* At the same time start I/Q calibration for QAM constellation
1074 * -no need for CCK- */
1075 ah->ah_calibration = false;
1076 if (!(mode == AR5K_MODE_11B)) {
1077 ah->ah_calibration = true;
1078 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1079 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1080 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1081 AR5K_PHY_IQ_RUN);
1082 }
1083
1084 /* Wait for gain calibration to finish (we check for I/Q calibration
1085 * during ath5k_phy_calibrate) */
1086 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1087 AR5K_PHY_AGCCTL_CAL, 0, false)) {
1088 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
1089 channel->center_freq);
1090 return -EAGAIN;
1091 }
1092
1093 /*
1094 * Start noise floor calibration
1095 *
1096 * If we run NF calibration before AGC, it always times out.
1097 * Binary HAL starts NF and AGC calibration at the same time
1098 * and only waits for AGC to finish. I believe that's wrong because
1099 * during NF calibration, rx path is also routed to a detector, so if
1100 * it doesn't finish we won't have RX.
1101 *
1102 * XXX: Find an interval that's OK for all cards...
1103 */
1104 ret = ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1105 if (ret)
1106 return ret;
1107
1108 /*
1109 * Reset queues and start beacon timers at the end of the reset routine
1110 */
1111 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
1112 /*No QCU on 5210*/
1113 if (ah->ah_version != AR5K_AR5210)
1114 AR5K_REG_WRITE_Q(ah, AR5K_QUEUE_QCUMASK(i), i);
1115
1116 ret = ath5k_hw_reset_tx_queue(ah, i);
1117 if (ret) {
1118 ATH5K_ERR(ah->ah_sc,
1119 "failed to reset TX queue #%d\n", i);
1120 return ret;
1121 }
1122 }
1123
1124 /* Pre-enable interrupts on 5211/5212*/
1125 if (ah->ah_version != AR5K_AR5210)
1126 ath5k_hw_set_intr(ah, AR5K_INT_RX | AR5K_INT_TX |
1127 AR5K_INT_FATAL);
1128
1129 /*
1130 * Set RF kill flags if supported by the device (read from the EEPROM)
1131 * Disable gpio_intr for now since it results system hang.
1132 * TODO: Handle this in ath5k_intr
1133 */
1134#if 0
1135 if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
1136 ath5k_hw_set_gpio_input(ah, 0);
1137 ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
1138 if (ah->ah_gpio[0] == 0)
1139 ath5k_hw_set_gpio_intr(ah, 0, 1);
1140 else
1141 ath5k_hw_set_gpio_intr(ah, 0, 0);
1142 }
1143#endif
1144
1145 /*
1146 * Set the 32MHz reference clock on 5212 phy clock sleep register
1147 *
1148 * TODO: Find out how to switch to external 32Khz clock to save power
1149 */
1150 if (ah->ah_version == AR5K_AR5212) {
1151 ath5k_hw_reg_write(ah, AR5K_PHY_SCR_32MHZ, AR5K_PHY_SCR);
1152 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
1153 ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ, AR5K_PHY_SCAL);
1154 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
1155 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
1156 ath5k_hw_reg_write(ah, ah->ah_phy_spending, AR5K_PHY_SPENDING);
1157
1158 data = ath5k_hw_reg_read(ah, AR5K_USEC_5211) & 0xffffc07f ;
1159 data |= (ah->ah_phy_spending == AR5K_PHY_SPENDING_18) ?
1160 0x00000f80 : 0x00001380 ;
1161 ath5k_hw_reg_write(ah, data, AR5K_USEC_5211);
1162 data = 0;
1163 }
1164
1165 if (ah->ah_version == AR5K_AR5212) {
1166 ath5k_hw_reg_write(ah, 0x000100aa, 0x8118);
1167 ath5k_hw_reg_write(ah, 0x00003210, 0x811c);
1168 ath5k_hw_reg_write(ah, 0x00000052, 0x8108);
1169 if (ah->ah_mac_srev >= AR5K_SREV_VER_AR2413)
1170 ath5k_hw_reg_write(ah, 0x00000004, 0x8120);
1171 }
1172
1173 /*
1174 * Disable beacons and reset the register
1175 */
1176 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
1177 AR5K_BEACON_RESET_TSF);
1178
1179 return 0;
1180}
1181
1182/*
1183 * Reset chipset
1184 */
1185static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
1186{
1187 int ret;
1188 u32 mask = val ? val : ~0U;
1189
1190 ATH5K_TRACE(ah->ah_sc);
1191
1192 /* Read-and-clear RX Descriptor Pointer*/
1193 ath5k_hw_reg_read(ah, AR5K_RXDP);
1194
1195 /*
1196 * Reset the device and wait until success
1197 */
1198 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
1199
1200 /* Wait at least 128 PCI clocks */
1201 udelay(15);
1202
1203 if (ah->ah_version == AR5K_AR5210) {
1204 val &= AR5K_RESET_CTL_CHIP;
1205 mask &= AR5K_RESET_CTL_CHIP;
1206 } else {
1207 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
1208 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
1209 }
1210
1211 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
1212
1213 /*
1214 * Reset configuration register (for hw byte-swap). Note that this
1215 * is only set for big endian. We do the necessary magic in
1216 * AR5K_INIT_CFG.
1217 */
1218 if ((val & AR5K_RESET_CTL_PCU) == 0)
1219 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
1220
1221 return ret;
1222}
1223
1224/*
1225 * Power management functions
1226 */
1227
1228/*
1229 * Sleep control
1230 */
1231int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
1232 bool set_chip, u16 sleep_duration)
1233{
1234 unsigned int i;
1235 u32 staid, data;
1236
1237 ATH5K_TRACE(ah->ah_sc);
1238 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
1239
1240 switch (mode) {
1241 case AR5K_PM_AUTO:
1242 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
1243 /* fallthrough */
1244 case AR5K_PM_NETWORK_SLEEP:
1245 if (set_chip)
1246 ath5k_hw_reg_write(ah,
1247 AR5K_SLEEP_CTL_SLE_ALLOW |
1248 sleep_duration,
1249 AR5K_SLEEP_CTL);
1250
1251 staid |= AR5K_STA_ID1_PWR_SV;
1252 break;
1253
1254 case AR5K_PM_FULL_SLEEP:
1255 if (set_chip)
1256 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
1257 AR5K_SLEEP_CTL);
1258
1259 staid |= AR5K_STA_ID1_PWR_SV;
1260 break;
1261
1262 case AR5K_PM_AWAKE:
1263
1264 staid &= ~AR5K_STA_ID1_PWR_SV;
1265
1266 if (!set_chip)
1267 goto commit;
1268
1269 /* Preserve sleep duration */
1270 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
1271 if( data & 0xffc00000 ){
1272 data = 0;
1273 } else {
1274 data = data & 0xfffcffff;
1275 }
1276
1277 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
1278 udelay(15);
1279
1280 for (i = 50; i > 0; i--) {
1281 /* Check if the chip did wake up */
1282 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1283 AR5K_PCICFG_SPWR_DN) == 0)
1284 break;
1285
1286 /* Wait a bit and retry */
1287 udelay(200);
1288 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
1289 }
1290
1291 /* Fail if the chip didn't wake up */
1292 if (i <= 0)
1293 return -EIO;
1294
1295 break;
1296
1297 default:
1298 return -EINVAL;
1299 }
1300
1301commit:
1302 ah->ah_power_mode = mode;
1303 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
1304
1305 return 0;
1306}
1307
1308/***********************\
1309 DMA Related Functions
1310\***********************/
1311
1312/*
1313 * Receive functions
1314 */
1315
1316/*
1317 * Start DMA receive
1318 */
1319void ath5k_hw_start_rx(struct ath5k_hw *ah)
1320{
1321 ATH5K_TRACE(ah->ah_sc);
1322 ath5k_hw_reg_write(ah, AR5K_CR_RXE, AR5K_CR);
1323 ath5k_hw_reg_read(ah, AR5K_CR);
1324}
1325
1326/*
1327 * Stop DMA receive
1328 */
1329int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah)
1330{
1331 unsigned int i;
1332
1333 ATH5K_TRACE(ah->ah_sc);
1334 ath5k_hw_reg_write(ah, AR5K_CR_RXD, AR5K_CR);
1335
1336 /*
1337 * It may take some time to disable the DMA receive unit
1338 */
1339 for (i = 2000; i > 0 &&
1340 (ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) != 0;
1341 i--)
1342 udelay(10);
1343
1344 return i ? 0 : -EBUSY;
1345}
1346
1347/*
1348 * Get the address of the RX Descriptor
1349 */
1350u32 ath5k_hw_get_rx_buf(struct ath5k_hw *ah)
1351{
1352 return ath5k_hw_reg_read(ah, AR5K_RXDP);
1353}
1354
1355/*
1356 * Set the address of the RX Descriptor
1357 */
1358void ath5k_hw_put_rx_buf(struct ath5k_hw *ah, u32 phys_addr)
1359{
1360 ATH5K_TRACE(ah->ah_sc);
1361
1362 /*TODO:Shouldn't we check if RX is enabled first ?*/
1363 ath5k_hw_reg_write(ah, phys_addr, AR5K_RXDP);
1364}
1365
1366/*
1367 * Transmit functions
1368 */
1369
1370/*
1371 * Start DMA transmit for a specific queue
1372 * (see also QCU/DCU functions)
1373 */
1374int ath5k_hw_tx_start(struct ath5k_hw *ah, unsigned int queue)
1375{
1376 u32 tx_queue;
1377
1378 ATH5K_TRACE(ah->ah_sc);
1379 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1380
1381 /* Return if queue is declared inactive */
1382 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
1383 return -EIO;
1384
1385 if (ah->ah_version == AR5K_AR5210) {
1386 tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
1387
1388 /*
1389 * Set the queue by type on 5210
1390 */
1391 switch (ah->ah_txq[queue].tqi_type) {
1392 case AR5K_TX_QUEUE_DATA:
1393 tx_queue |= AR5K_CR_TXE0 & ~AR5K_CR_TXD0;
1394 break;
1395 case AR5K_TX_QUEUE_BEACON:
1396 tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
1397 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
1398 AR5K_BSR);
1399 break;
1400 case AR5K_TX_QUEUE_CAB:
1401 tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
1402 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1FV | AR5K_BCR_TQ1V |
1403 AR5K_BCR_BDMAE, AR5K_BSR);
1404 break;
1405 default:
1406 return -EINVAL;
1407 }
1408 /* Start queue */
1409 ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
1410 ath5k_hw_reg_read(ah, AR5K_CR);
1411 } else {
1412 /* Return if queue is disabled */
1413 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXD, queue))
1414 return -EIO;
1415
1416 /* Start queue */
1417 AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXE, queue);
1418 }
1419
1420 return 0;
1421}
1422
1423/*
1424 * Stop DMA transmit for a specific queue
1425 * (see also QCU/DCU functions)
1426 */
1427int ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue)
1428{
1429 unsigned int i = 100;
1430 u32 tx_queue, pending;
1431
1432 ATH5K_TRACE(ah->ah_sc);
1433 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1434
1435 /* Return if queue is declared inactive */
1436 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
1437 return -EIO;
1438
1439 if (ah->ah_version == AR5K_AR5210) {
1440 tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
1441
1442 /*
1443 * Set by queue type
1444 */
1445 switch (ah->ah_txq[queue].tqi_type) {
1446 case AR5K_TX_QUEUE_DATA:
1447 tx_queue |= AR5K_CR_TXD0 & ~AR5K_CR_TXE0;
1448 break;
1449 case AR5K_TX_QUEUE_BEACON:
1450 case AR5K_TX_QUEUE_CAB:
1451 /* XXX Fix me... */
1452 tx_queue |= AR5K_CR_TXD1 & ~AR5K_CR_TXD1;
1453 ath5k_hw_reg_write(ah, 0, AR5K_BSR);
1454 break;
1455 default:
1456 return -EINVAL;
1457 }
1458
1459 /* Stop queue */
1460 ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
1461 ath5k_hw_reg_read(ah, AR5K_CR);
1462 } else {
1463 /*
1464 * Schedule TX disable and wait until queue is empty
1465 */
1466 AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXD, queue);
1467
1468 /*Check for pending frames*/
1469 do {
1470 pending = ath5k_hw_reg_read(ah,
1471 AR5K_QUEUE_STATUS(queue)) &
1472 AR5K_QCU_STS_FRMPENDCNT;
1473 udelay(100);
1474 } while (--i && pending);
1475
1476 /* Clear register */
1477 ath5k_hw_reg_write(ah, 0, AR5K_QCU_TXD);
1478 if (pending)
1479 return -EBUSY;
1480 }
1481
1482 /* TODO: Check for success else return error */
1483 return 0;
1484}
1485
1486/*
1487 * Get the address of the TX Descriptor for a specific queue
1488 * (see also QCU/DCU functions)
1489 */
1490u32 ath5k_hw_get_tx_buf(struct ath5k_hw *ah, unsigned int queue)
1491{
1492 u16 tx_reg;
1493
1494 ATH5K_TRACE(ah->ah_sc);
1495 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1496
1497 /*
1498 * Get the transmit queue descriptor pointer from the selected queue
1499 */
1500 /*5210 doesn't have QCU*/
1501 if (ah->ah_version == AR5K_AR5210) {
1502 switch (ah->ah_txq[queue].tqi_type) {
1503 case AR5K_TX_QUEUE_DATA:
1504 tx_reg = AR5K_NOQCU_TXDP0;
1505 break;
1506 case AR5K_TX_QUEUE_BEACON:
1507 case AR5K_TX_QUEUE_CAB:
1508 tx_reg = AR5K_NOQCU_TXDP1;
1509 break;
1510 default:
1511 return 0xffffffff;
1512 }
1513 } else {
1514 tx_reg = AR5K_QUEUE_TXDP(queue);
1515 }
1516
1517 return ath5k_hw_reg_read(ah, tx_reg);
1518}
1519
1520/*
1521 * Set the address of the TX Descriptor for a specific queue
1522 * (see also QCU/DCU functions)
1523 */
1524int ath5k_hw_put_tx_buf(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr)
1525{
1526 u16 tx_reg;
1527
1528 ATH5K_TRACE(ah->ah_sc);
1529 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1530
1531 /*
1532 * Set the transmit queue descriptor pointer register by type
1533 * on 5210
1534 */
1535 if (ah->ah_version == AR5K_AR5210) {
1536 switch (ah->ah_txq[queue].tqi_type) {
1537 case AR5K_TX_QUEUE_DATA:
1538 tx_reg = AR5K_NOQCU_TXDP0;
1539 break;
1540 case AR5K_TX_QUEUE_BEACON:
1541 case AR5K_TX_QUEUE_CAB:
1542 tx_reg = AR5K_NOQCU_TXDP1;
1543 break;
1544 default:
1545 return -EINVAL;
1546 }
1547 } else {
1548 /*
1549 * Set the transmit queue descriptor pointer for
1550 * the selected queue on QCU for 5211+
1551 * (this won't work if the queue is still active)
1552 */
1553 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
1554 return -EIO;
1555
1556 tx_reg = AR5K_QUEUE_TXDP(queue);
1557 }
1558
1559 /* Set descriptor pointer */
1560 ath5k_hw_reg_write(ah, phys_addr, tx_reg);
1561
1562 return 0;
1563}
1564
1565/*
1566 * Update tx trigger level
1567 */
1568int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase)
1569{
1570 u32 trigger_level, imr;
1571 int ret = -EIO;
1572
1573 ATH5K_TRACE(ah->ah_sc);
1574
1575 /*
1576 * Disable interrupts by setting the mask
1577 */
1578 imr = ath5k_hw_set_intr(ah, ah->ah_imr & ~AR5K_INT_GLOBAL);
1579
1580 /*TODO: Boundary check on trigger_level*/
1581 trigger_level = AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TXCFG),
1582 AR5K_TXCFG_TXFULL);
1583
1584 if (!increase) {
1585 if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
1586 goto done;
1587 } else
1588 trigger_level +=
1589 ((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
1590
1591 /*
1592 * Update trigger level on success
1593 */
1594 if (ah->ah_version == AR5K_AR5210)
1595 ath5k_hw_reg_write(ah, trigger_level, AR5K_TRIG_LVL);
1596 else
1597 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1598 AR5K_TXCFG_TXFULL, trigger_level);
1599
1600 ret = 0;
1601
1602done:
1603 /*
1604 * Restore interrupt mask
1605 */
1606 ath5k_hw_set_intr(ah, imr);
1607
1608 return ret;
1609}
1610
1611/*
1612 * Interrupt handling
1613 */
1614
1615/*
1616 * Check if we have pending interrupts
1617 */
1618bool ath5k_hw_is_intr_pending(struct ath5k_hw *ah)
1619{
1620 ATH5K_TRACE(ah->ah_sc);
1621 return ath5k_hw_reg_read(ah, AR5K_INTPEND);
1622}
1623
1624/*
1625 * Get interrupt mask (ISR)
1626 */
1627int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask)
1628{
1629 u32 data;
1630
1631 ATH5K_TRACE(ah->ah_sc);
1632
1633 /*
1634 * Read interrupt status from the Interrupt Status register
1635 * on 5210
1636 */
1637 if (ah->ah_version == AR5K_AR5210) {
1638 data = ath5k_hw_reg_read(ah, AR5K_ISR);
1639 if (unlikely(data == AR5K_INT_NOCARD)) {
1640 *interrupt_mask = data;
1641 return -ENODEV;
1642 }
1643 } else {
1644 /*
1645 * Read interrupt status from the Read-And-Clear shadow register
1646 * Note: PISR/SISR Not available on 5210
1647 */
1648 data = ath5k_hw_reg_read(ah, AR5K_RAC_PISR);
1649 }
1650
1651 /*
1652 * Get abstract interrupt mask (driver-compatible)
1653 */
1654 *interrupt_mask = (data & AR5K_INT_COMMON) & ah->ah_imr;
1655
1656 if (unlikely(data == AR5K_INT_NOCARD))
1657 return -ENODEV;
1658
1659 if (data & (AR5K_ISR_RXOK | AR5K_ISR_RXERR))
1660 *interrupt_mask |= AR5K_INT_RX;
1661
1662 if (data & (AR5K_ISR_TXOK | AR5K_ISR_TXERR
1663 | AR5K_ISR_TXDESC | AR5K_ISR_TXEOL))
1664 *interrupt_mask |= AR5K_INT_TX;
1665
1666 if (ah->ah_version != AR5K_AR5210) {
1667 /*HIU = Host Interface Unit (PCI etc)*/
1668 if (unlikely(data & (AR5K_ISR_HIUERR)))
1669 *interrupt_mask |= AR5K_INT_FATAL;
1670
1671 /*Beacon Not Ready*/
1672 if (unlikely(data & (AR5K_ISR_BNR)))
1673 *interrupt_mask |= AR5K_INT_BNR;
1674 }
1675
1676 /*
1677 * XXX: BMISS interrupts may occur after association.
1678 * I found this on 5210 code but it needs testing. If this is
1679 * true we should disable them before assoc and re-enable them
1680 * after a successfull assoc + some jiffies.
1681 */
1682#if 0
1683 interrupt_mask &= ~AR5K_INT_BMISS;
1684#endif
1685
1686 /*
1687 * In case we didn't handle anything,
1688 * print the register value.
1689 */
1690 if (unlikely(*interrupt_mask == 0 && net_ratelimit()))
1691 ATH5K_PRINTF("0x%08x\n", data);
1692
1693 return 0;
1694}
1695
1696/*
1697 * Set interrupt mask
1698 */
1699enum ath5k_int ath5k_hw_set_intr(struct ath5k_hw *ah, enum ath5k_int new_mask)
1700{
1701 enum ath5k_int old_mask, int_mask;
1702
1703 /*
1704 * Disable card interrupts to prevent any race conditions
1705 * (they will be re-enabled afterwards).
1706 */
1707 ath5k_hw_reg_write(ah, AR5K_IER_DISABLE, AR5K_IER);
1708 ath5k_hw_reg_read(ah, AR5K_IER);
1709
1710 old_mask = ah->ah_imr;
1711
1712 /*
1713 * Add additional, chipset-dependent interrupt mask flags
1714 * and write them to the IMR (interrupt mask register).
1715 */
1716 int_mask = new_mask & AR5K_INT_COMMON;
1717
1718 if (new_mask & AR5K_INT_RX)
1719 int_mask |= AR5K_IMR_RXOK | AR5K_IMR_RXERR | AR5K_IMR_RXORN |
1720 AR5K_IMR_RXDESC;
1721
1722 if (new_mask & AR5K_INT_TX)
1723 int_mask |= AR5K_IMR_TXOK | AR5K_IMR_TXERR | AR5K_IMR_TXDESC |
1724 AR5K_IMR_TXURN;
1725
1726 if (ah->ah_version != AR5K_AR5210) {
1727 if (new_mask & AR5K_INT_FATAL) {
1728 int_mask |= AR5K_IMR_HIUERR;
1729 AR5K_REG_ENABLE_BITS(ah, AR5K_SIMR2, AR5K_SIMR2_MCABT |
1730 AR5K_SIMR2_SSERR | AR5K_SIMR2_DPERR);
1731 }
1732 }
1733
1734 ath5k_hw_reg_write(ah, int_mask, AR5K_PIMR);
1735
1736 /* Store new interrupt mask */
1737 ah->ah_imr = new_mask;
1738
1739 /* ..re-enable interrupts */
1740 ath5k_hw_reg_write(ah, AR5K_IER_ENABLE, AR5K_IER);
1741 ath5k_hw_reg_read(ah, AR5K_IER);
1742
1743 return old_mask;
1744}
1745
1746
1747/*************************\
1748 EEPROM access functions
1749\*************************/
1750
1751/*
1752 * Read from eeprom
1753 */
1754static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
1755{
1756 u32 status, timeout;
1757
1758 ATH5K_TRACE(ah->ah_sc);
1759 /*
1760 * Initialize EEPROM access
1761 */
1762 if (ah->ah_version == AR5K_AR5210) {
1763 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
1764 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
1765 } else {
1766 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
1767 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1768 AR5K_EEPROM_CMD_READ);
1769 }
1770
1771 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
1772 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
1773 if (status & AR5K_EEPROM_STAT_RDDONE) {
1774 if (status & AR5K_EEPROM_STAT_RDERR)
1775 return -EIO;
1776 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
1777 0xffff);
1778 return 0;
1779 }
1780 udelay(15);
1781 }
1782
1783 return -ETIMEDOUT;
1784}
1785
1786/*
1787 * Write to eeprom - currently disabled, use at your own risk
1788 */
1789#if 0
1790static int ath5k_hw_eeprom_write(struct ath5k_hw *ah, u32 offset, u16 data)
1791{
1792
1793 u32 status, timeout;
1794
1795 ATH5K_TRACE(ah->ah_sc);
1796
1797 /*
1798 * Initialize eeprom access
1799 */
1800
1801 if (ah->ah_version == AR5K_AR5210) {
1802 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
1803 } else {
1804 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1805 AR5K_EEPROM_CMD_RESET);
1806 }
1807
1808 /*
1809 * Write data to data register
1810 */
1811
1812 if (ah->ah_version == AR5K_AR5210) {
1813 ath5k_hw_reg_write(ah, data, AR5K_EEPROM_BASE + (4 * offset));
1814 } else {
1815 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
1816 ath5k_hw_reg_write(ah, data, AR5K_EEPROM_DATA);
1817 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1818 AR5K_EEPROM_CMD_WRITE);
1819 }
1820
1821 /*
1822 * Check status
1823 */
1824
1825 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
1826 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
1827 if (status & AR5K_EEPROM_STAT_WRDONE) {
1828 if (status & AR5K_EEPROM_STAT_WRERR)
1829 return EIO;
1830 return 0;
1831 }
1832 udelay(15);
1833 }
1834
1835 ATH5K_ERR(ah->ah_sc, "EEPROM Write is disabled!");
1836 return -EIO;
1837}
1838#endif
1839
1840/*
1841 * Translate binary channel representation in EEPROM to frequency
1842 */
1843static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin, unsigned int mode)
1844{
1845 u16 val;
1846
1847 if (bin == AR5K_EEPROM_CHANNEL_DIS)
1848 return bin;
1849
1850 if (mode == AR5K_EEPROM_MODE_11A) {
1851 if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
1852 val = (5 * bin) + 4800;
1853 else
1854 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
1855 (bin * 10) + 5100;
1856 } else {
1857 if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
1858 val = bin + 2300;
1859 else
1860 val = bin + 2400;
1861 }
1862
1863 return val;
1864}
1865
1866/*
1867 * Read antenna infos from eeprom
1868 */
1869static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
1870 unsigned int mode)
1871{
1872 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1873 u32 o = *offset;
1874 u16 val;
1875 int ret, i = 0;
1876
1877 AR5K_EEPROM_READ(o++, val);
1878 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
1879 ee->ee_ant_tx_rx[mode] = (val >> 2) & 0x3f;
1880 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
1881
1882 AR5K_EEPROM_READ(o++, val);
1883 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
1884 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
1885 ee->ee_ant_control[mode][i++] = val & 0x3f;
1886
1887 AR5K_EEPROM_READ(o++, val);
1888 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
1889 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
1890 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
1891
1892 AR5K_EEPROM_READ(o++, val);
1893 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
1894 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
1895 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
1896 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
1897
1898 AR5K_EEPROM_READ(o++, val);
1899 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
1900 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
1901 ee->ee_ant_control[mode][i++] = val & 0x3f;
1902
1903 /* Get antenna modes */
1904 ah->ah_antenna[mode][0] =
1905 (ee->ee_ant_control[mode][0] << 4) | 0x1;
1906 ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
1907 ee->ee_ant_control[mode][1] |
1908 (ee->ee_ant_control[mode][2] << 6) |
1909 (ee->ee_ant_control[mode][3] << 12) |
1910 (ee->ee_ant_control[mode][4] << 18) |
1911 (ee->ee_ant_control[mode][5] << 24);
1912 ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
1913 ee->ee_ant_control[mode][6] |
1914 (ee->ee_ant_control[mode][7] << 6) |
1915 (ee->ee_ant_control[mode][8] << 12) |
1916 (ee->ee_ant_control[mode][9] << 18) |
1917 (ee->ee_ant_control[mode][10] << 24);
1918
1919 /* return new offset */
1920 *offset = o;
1921
1922 return 0;
1923}
1924
1925/*
1926 * Read supported modes from eeprom
1927 */
1928static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
1929 unsigned int mode)
1930{
1931 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1932 u32 o = *offset;
1933 u16 val;
1934 int ret;
1935
1936 AR5K_EEPROM_READ(o++, val);
1937 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
1938 ee->ee_thr_62[mode] = val & 0xff;
1939
1940 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
1941 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
1942
1943 AR5K_EEPROM_READ(o++, val);
1944 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
1945 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
1946
1947 AR5K_EEPROM_READ(o++, val);
1948 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
1949
1950 if ((val & 0xff) & 0x80)
1951 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
1952 else
1953 ee->ee_noise_floor_thr[mode] = val & 0xff;
1954
1955 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
1956 ee->ee_noise_floor_thr[mode] =
1957 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
1958
1959 AR5K_EEPROM_READ(o++, val);
1960 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
1961 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
1962 ee->ee_xpd[mode] = val & 0x1;
1963
1964 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
1965 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
1966
1967 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
1968 AR5K_EEPROM_READ(o++, val);
1969 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
1970
1971 if (mode == AR5K_EEPROM_MODE_11A)
1972 ee->ee_xr_power[mode] = val & 0x3f;
1973 else {
1974 ee->ee_ob[mode][0] = val & 0x7;
1975 ee->ee_db[mode][0] = (val >> 3) & 0x7;
1976 }
1977 }
1978
1979 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
1980 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
1981 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
1982 } else {
1983 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
1984
1985 AR5K_EEPROM_READ(o++, val);
1986 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
1987
1988 if (mode == AR5K_EEPROM_MODE_11G)
1989 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
1990 }
1991
1992 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
1993 mode == AR5K_EEPROM_MODE_11A) {
1994 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
1995 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
1996 }
1997
1998 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6 &&
1999 mode == AR5K_EEPROM_MODE_11G)
2000 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
2001
2002 /* return new offset */
2003 *offset = o;
2004
2005 return 0;
2006}
2007
2008/*
2009 * Initialize eeprom & capabilities structs
2010 */
2011static int ath5k_eeprom_init(struct ath5k_hw *ah)
2012{
2013 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2014 unsigned int mode, i;
2015 int ret;
2016 u32 offset;
2017 u16 val;
2018
2019 /* Initial TX thermal adjustment values */
2020 ee->ee_tx_clip = 4;
2021 ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
2022 ee->ee_gain_select = 1;
2023
2024 /*
2025 * Read values from EEPROM and store them in the capability structure
2026 */
2027 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
2028 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
2029 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
2030 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
2031 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
2032
2033 /* Return if we have an old EEPROM */
2034 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
2035 return 0;
2036
2037#ifdef notyet
2038 /*
2039 * Validate the checksum of the EEPROM date. There are some
2040 * devices with invalid EEPROMs.
2041 */
2042 for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
2043 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
2044 cksum ^= val;
2045 }
2046 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
2047 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
2048 return -EIO;
2049 }
2050#endif
2051
2052 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
2053 ee_ant_gain);
2054
2055 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
2056 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
2057 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
2058 }
2059
2060 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
2061 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
2062 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
2063 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
2064
2065 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
2066 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
2067 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
2068 }
2069
2070 /*
2071 * Get conformance test limit values
2072 */
2073 offset = AR5K_EEPROM_CTL(ah->ah_ee_version);
2074 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ah->ah_ee_version);
2075
2076 for (i = 0; i < ee->ee_ctls; i++) {
2077 AR5K_EEPROM_READ(offset++, val);
2078 ee->ee_ctl[i] = (val >> 8) & 0xff;
2079 ee->ee_ctl[i + 1] = val & 0xff;
2080 }
2081
2082 /*
2083 * Get values for 802.11a (5GHz)
2084 */
2085 mode = AR5K_EEPROM_MODE_11A;
2086
2087 ee->ee_turbo_max_power[mode] =
2088 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
2089
2090 offset = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
2091
2092 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
2093 if (ret)
2094 return ret;
2095
2096 AR5K_EEPROM_READ(offset++, val);
2097 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
2098 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
2099 ee->ee_db[mode][3] = (val >> 2) & 0x7;
2100 ee->ee_ob[mode][2] = (val << 1) & 0x7;
2101
2102 AR5K_EEPROM_READ(offset++, val);
2103 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
2104 ee->ee_db[mode][2] = (val >> 12) & 0x7;
2105 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
2106 ee->ee_db[mode][1] = (val >> 6) & 0x7;
2107 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
2108 ee->ee_db[mode][0] = val & 0x7;
2109
2110 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
2111 if (ret)
2112 return ret;
2113
2114 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) {
2115 AR5K_EEPROM_READ(offset++, val);
2116 ee->ee_margin_tx_rx[mode] = val & 0x3f;
2117 }
2118
2119 /*
2120 * Get values for 802.11b (2.4GHz)
2121 */
2122 mode = AR5K_EEPROM_MODE_11B;
2123 offset = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
2124
2125 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
2126 if (ret)
2127 return ret;
2128
2129 AR5K_EEPROM_READ(offset++, val);
2130 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
2131 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
2132 ee->ee_db[mode][1] = val & 0x7;
2133
2134 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
2135 if (ret)
2136 return ret;
2137
2138 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
2139 AR5K_EEPROM_READ(offset++, val);
2140 ee->ee_cal_pier[mode][0] =
2141 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
2142 ee->ee_cal_pier[mode][1] =
2143 ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
2144
2145 AR5K_EEPROM_READ(offset++, val);
2146 ee->ee_cal_pier[mode][2] =
2147 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
2148 }
2149
2150 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
2151 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
2152
2153 /*
2154 * Get values for 802.11g (2.4GHz)
2155 */
2156 mode = AR5K_EEPROM_MODE_11G;
2157 offset = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
2158
2159 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
2160 if (ret)
2161 return ret;
2162
2163 AR5K_EEPROM_READ(offset++, val);
2164 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
2165 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
2166 ee->ee_db[mode][1] = val & 0x7;
2167
2168 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
2169 if (ret)
2170 return ret;
2171
2172 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
2173 AR5K_EEPROM_READ(offset++, val);
2174 ee->ee_cal_pier[mode][0] =
2175 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
2176 ee->ee_cal_pier[mode][1] =
2177 ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
2178
2179 AR5K_EEPROM_READ(offset++, val);
2180 ee->ee_turbo_max_power[mode] = val & 0x7f;
2181 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
2182
2183 AR5K_EEPROM_READ(offset++, val);
2184 ee->ee_cal_pier[mode][2] =
2185 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
2186
2187 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
2188 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
2189
2190 AR5K_EEPROM_READ(offset++, val);
2191 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
2192 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
2193
2194 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
2195 AR5K_EEPROM_READ(offset++, val);
2196 ee->ee_cck_ofdm_gain_delta = val & 0xff;
2197 }
2198 }
2199
2200 /*
2201 * Read 5GHz EEPROM channels
2202 */
2203
2204 return 0;
2205}
2206
2207/*
2208 * Read the MAC address from eeprom
2209 */
2210static int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
2211{
2212 u8 mac_d[ETH_ALEN];
2213 u32 total, offset;
2214 u16 data;
2215 int octet, ret;
2216
2217 memset(mac, 0, ETH_ALEN);
2218 memset(mac_d, 0, ETH_ALEN);
2219
2220 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
2221 if (ret)
2222 return ret;
2223
2224 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
2225 ret = ath5k_hw_eeprom_read(ah, offset, &data);
2226 if (ret)
2227 return ret;
2228
2229 total += data;
2230 mac_d[octet + 1] = data & 0xff;
2231 mac_d[octet] = data >> 8;
2232 octet += 2;
2233 }
2234
2235 memcpy(mac, mac_d, ETH_ALEN);
2236
2237 if (!total || total == 3 * 0xffff)
2238 return -EINVAL;
2239
2240 return 0;
2241}
2242
2243/*
2244 * Fill the capabilities struct
2245 */
2246static int ath5k_hw_get_capabilities(struct ath5k_hw *ah)
2247{
2248 u16 ee_header;
2249
2250 ATH5K_TRACE(ah->ah_sc);
2251 /* Capabilities stored in the EEPROM */
2252 ee_header = ah->ah_capabilities.cap_eeprom.ee_header;
2253
2254 if (ah->ah_version == AR5K_AR5210) {
2255 /*
2256 * Set radio capabilities
2257 * (The AR5110 only supports the middle 5GHz band)
2258 */
2259 ah->ah_capabilities.cap_range.range_5ghz_min = 5120;
2260 ah->ah_capabilities.cap_range.range_5ghz_max = 5430;
2261 ah->ah_capabilities.cap_range.range_2ghz_min = 0;
2262 ah->ah_capabilities.cap_range.range_2ghz_max = 0;
2263
2264 /* Set supported modes */
2265 __set_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode);
2266 __set_bit(AR5K_MODE_11A_TURBO, ah->ah_capabilities.cap_mode);
2267 } else {
2268 /*
2269 * XXX The tranceiver supports frequencies from 4920 to 6100GHz
2270 * XXX and from 2312 to 2732GHz. There are problems with the
2271 * XXX current ieee80211 implementation because the IEEE
2272 * XXX channel mapping does not support negative channel
2273 * XXX numbers (2312MHz is channel -19). Of course, this
2274 * XXX doesn't matter because these channels are out of range
2275 * XXX but some regulation domains like MKK (Japan) will
2276 * XXX support frequencies somewhere around 4.8GHz.
2277 */
2278
2279 /*
2280 * Set radio capabilities
2281 */
2282
2283 if (AR5K_EEPROM_HDR_11A(ee_header)) {
2284 ah->ah_capabilities.cap_range.range_5ghz_min = 5005; /* 4920 */
2285 ah->ah_capabilities.cap_range.range_5ghz_max = 6100;
2286
2287 /* Set supported modes */
2288 __set_bit(AR5K_MODE_11A,
2289 ah->ah_capabilities.cap_mode);
2290 __set_bit(AR5K_MODE_11A_TURBO,
2291 ah->ah_capabilities.cap_mode);
2292 if (ah->ah_version == AR5K_AR5212)
2293 __set_bit(AR5K_MODE_11G_TURBO,
2294 ah->ah_capabilities.cap_mode);
2295 }
2296
2297 /* Enable 802.11b if a 2GHz capable radio (2111/5112) is
2298 * connected */
2299 if (AR5K_EEPROM_HDR_11B(ee_header) ||
2300 AR5K_EEPROM_HDR_11G(ee_header)) {
2301 ah->ah_capabilities.cap_range.range_2ghz_min = 2412; /* 2312 */
2302 ah->ah_capabilities.cap_range.range_2ghz_max = 2732;
2303
2304 if (AR5K_EEPROM_HDR_11B(ee_header))
2305 __set_bit(AR5K_MODE_11B,
2306 ah->ah_capabilities.cap_mode);
2307
2308 if (AR5K_EEPROM_HDR_11G(ee_header))
2309 __set_bit(AR5K_MODE_11G,
2310 ah->ah_capabilities.cap_mode);
2311 }
2312 }
2313
2314 /* GPIO */
2315 ah->ah_gpio_npins = AR5K_NUM_GPIO;
2316
2317 /* Set number of supported TX queues */
2318 if (ah->ah_version == AR5K_AR5210)
2319 ah->ah_capabilities.cap_queues.q_tx_num =
2320 AR5K_NUM_TX_QUEUES_NOQCU;
2321 else
2322 ah->ah_capabilities.cap_queues.q_tx_num = AR5K_NUM_TX_QUEUES;
2323
2324 return 0;
2325}
2326
2327/*********************************\
2328 Protocol Control Unit Functions
2329\*********************************/
2330
2331/*
2332 * Set Operation mode
2333 */
2334int ath5k_hw_set_opmode(struct ath5k_hw *ah)
2335{
2336 u32 pcu_reg, beacon_reg, low_id, high_id;
2337
2338 pcu_reg = 0;
2339 beacon_reg = 0;
2340
2341 ATH5K_TRACE(ah->ah_sc);
2342
2343 switch (ah->ah_op_mode) {
2344 case IEEE80211_IF_TYPE_IBSS:
2345 pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_DESC_ANTENNA |
2346 (ah->ah_version == AR5K_AR5210 ?
2347 AR5K_STA_ID1_NO_PSPOLL : 0);
2348 beacon_reg |= AR5K_BCR_ADHOC;
2349 break;
2350
2351 case IEEE80211_IF_TYPE_AP:
2352 case IEEE80211_IF_TYPE_MESH_POINT:
2353 pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_RTS_DEF_ANTENNA |
2354 (ah->ah_version == AR5K_AR5210 ?
2355 AR5K_STA_ID1_NO_PSPOLL : 0);
2356 beacon_reg |= AR5K_BCR_AP;
2357 break;
2358
2359 case IEEE80211_IF_TYPE_STA:
2360 pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
2361 (ah->ah_version == AR5K_AR5210 ?
2362 AR5K_STA_ID1_PWR_SV : 0);
2363 case IEEE80211_IF_TYPE_MNTR:
2364 pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
2365 (ah->ah_version == AR5K_AR5210 ?
2366 AR5K_STA_ID1_NO_PSPOLL : 0);
2367 break;
2368
2369 default:
2370 return -EINVAL;
2371 }
2372
2373 /*
2374 * Set PCU registers
2375 */
2376 low_id = AR5K_LOW_ID(ah->ah_sta_id);
2377 high_id = AR5K_HIGH_ID(ah->ah_sta_id);
2378 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
2379 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
2380
2381 /*
2382 * Set Beacon Control Register on 5210
2383 */
2384 if (ah->ah_version == AR5K_AR5210)
2385 ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
2386
2387 return 0;
2388}
2389
2390/*
2391 * BSSID Functions
2392 */
2393
2394/*
2395 * Get station id
2396 */
2397void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
2398{
2399 ATH5K_TRACE(ah->ah_sc);
2400 memcpy(mac, ah->ah_sta_id, ETH_ALEN);
2401}
2402
2403/*
2404 * Set station id
2405 */
2406int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
2407{
2408 u32 low_id, high_id;
2409
2410 ATH5K_TRACE(ah->ah_sc);
2411 /* Set new station ID */
2412 memcpy(ah->ah_sta_id, mac, ETH_ALEN);
2413
2414 low_id = AR5K_LOW_ID(mac);
2415 high_id = AR5K_HIGH_ID(mac);
2416
2417 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
2418 ath5k_hw_reg_write(ah, high_id, AR5K_STA_ID1);
2419
2420 return 0;
2421}
2422
2423/*
2424 * Set BSSID
2425 */
2426void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
2427{
2428 u32 low_id, high_id;
2429 u16 tim_offset = 0;
2430
2431 /*
2432 * Set simple BSSID mask on 5212
2433 */
2434 if (ah->ah_version == AR5K_AR5212) {
2435 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_BSS_IDM0);
2436 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_BSS_IDM1);
2437 }
2438
2439 /*
2440 * Set BSSID which triggers the "SME Join" operation
2441 */
2442 low_id = AR5K_LOW_ID(bssid);
2443 high_id = AR5K_HIGH_ID(bssid);
2444 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
2445 ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
2446 AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
2447
2448 if (assoc_id == 0) {
2449 ath5k_hw_disable_pspoll(ah);
2450 return;
2451 }
2452
2453 AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
2454 tim_offset ? tim_offset + 4 : 0);
2455
2456 ath5k_hw_enable_pspoll(ah, NULL, 0);
2457}
2458/**
2459 * ath5k_hw_set_bssid_mask - set common bits we should listen to
2460 *
2461 * The bssid_mask is a utility used by AR5212 hardware to inform the hardware
2462 * which bits of the interface's MAC address should be looked at when trying
2463 * to decide which packets to ACK. In station mode every bit matters. In AP
2464 * mode with a single BSS every bit matters as well. In AP mode with
2465 * multiple BSSes not every bit matters.
2466 *
2467 * @ah: the &struct ath5k_hw
2468 * @mask: the bssid_mask, a u8 array of size ETH_ALEN
2469 *
2470 * Note that this is a simple filter and *does* not filter out all
2471 * relevant frames. Some non-relevant frames will get through, probability
2472 * jocks are welcomed to compute.
2473 *
2474 * When handling multiple BSSes (or VAPs) you can get the BSSID mask by
2475 * computing the set of:
2476 *
2477 * ~ ( MAC XOR BSSID )
2478 *
2479 * When you do this you are essentially computing the common bits. Later it
2480 * is assumed the harware will "and" (&) the BSSID mask with the MAC address
2481 * to obtain the relevant bits which should match on the destination frame.
2482 *
2483 * Simple example: on your card you have have two BSSes you have created with
2484 * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
2485 * There is another BSSID-03 but you are not part of it. For simplicity's sake,
2486 * assuming only 4 bits for a mac address and for BSSIDs you can then have:
2487 *
2488 * \
2489 * MAC: 0001 |
2490 * BSSID-01: 0100 | --> Belongs to us
2491 * BSSID-02: 1001 |
2492 * /
2493 * -------------------
2494 * BSSID-03: 0110 | --> External
2495 * -------------------
2496 *
2497 * Our bssid_mask would then be:
2498 *
2499 * On loop iteration for BSSID-01:
2500 * ~(0001 ^ 0100) -> ~(0101)
2501 * -> 1010
2502 * bssid_mask = 1010
2503 *
2504 * On loop iteration for BSSID-02:
2505 * bssid_mask &= ~(0001 ^ 1001)
2506 * bssid_mask = (1010) & ~(0001 ^ 1001)
2507 * bssid_mask = (1010) & ~(1001)
2508 * bssid_mask = (1010) & (0110)
2509 * bssid_mask = 0010
2510 *
2511 * A bssid_mask of 0010 means "only pay attention to the second least
2512 * significant bit". This is because its the only bit common
2513 * amongst the MAC and all BSSIDs we support. To findout what the real
2514 * common bit is we can simply "&" the bssid_mask now with any BSSID we have
2515 * or our MAC address (we assume the hardware uses the MAC address).
2516 *
2517 * Now, suppose there's an incoming frame for BSSID-03:
2518 *
2519 * IFRAME-01: 0110
2520 *
2521 * An easy eye-inspeciton of this already should tell you that this frame
2522 * will not pass our check. This is beacuse the bssid_mask tells the
2523 * hardware to only look at the second least significant bit and the
2524 * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
2525 * as 1, which does not match 0.
2526 *
2527 * So with IFRAME-01 we *assume* the hardware will do:
2528 *
2529 * allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
2530 * --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
2531 * --> allow = (0010) == 0000 ? 1 : 0;
2532 * --> allow = 0
2533 *
2534 * Lets now test a frame that should work:
2535 *
2536 * IFRAME-02: 0001 (we should allow)
2537 *
2538 * allow = (0001 & 1010) == 1010
2539 *
2540 * allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
2541 * --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0;
2542 * --> allow = (0010) == (0010)
2543 * --> allow = 1
2544 *
2545 * Other examples:
2546 *
2547 * IFRAME-03: 0100 --> allowed
2548 * IFRAME-04: 1001 --> allowed
2549 * IFRAME-05: 1101 --> allowed but its not for us!!!
2550 *
2551 */
2552int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
2553{
2554 u32 low_id, high_id;
2555 ATH5K_TRACE(ah->ah_sc);
2556
2557 if (ah->ah_version == AR5K_AR5212) {
2558 low_id = AR5K_LOW_ID(mask);
2559 high_id = AR5K_HIGH_ID(mask);
2560
2561 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
2562 ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
2563
2564 return 0;
2565 }
2566
2567 return -EIO;
2568}
2569
2570/*
2571 * Receive start/stop functions
2572 */
2573
2574/*
2575 * Start receive on PCU
2576 */
2577void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
2578{
2579 ATH5K_TRACE(ah->ah_sc);
2580 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
2581
2582 /* TODO: ANI Support */
2583}
2584
2585/*
2586 * Stop receive on PCU
2587 */
2588void ath5k_hw_stop_pcu_recv(struct ath5k_hw *ah)
2589{
2590 ATH5K_TRACE(ah->ah_sc);
2591 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
2592
2593 /* TODO: ANI Support */
2594}
2595
2596/*
2597 * RX Filter functions
2598 */
2599
2600/*
2601 * Set multicast filter
2602 */
2603void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
2604{
2605 ATH5K_TRACE(ah->ah_sc);
2606 /* Set the multicat filter */
2607 ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
2608 ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
2609}
2610
2611/*
2612 * Set multicast filter by index
2613 */
2614int ath5k_hw_set_mcast_filterindex(struct ath5k_hw *ah, u32 index)
2615{
2616
2617 ATH5K_TRACE(ah->ah_sc);
2618 if (index >= 64)
2619 return -EINVAL;
2620 else if (index >= 32)
2621 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
2622 (1 << (index - 32)));
2623 else
2624 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
2625
2626 return 0;
2627}
2628
2629/*
2630 * Clear Multicast filter by index
2631 */
2632int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
2633{
2634
2635 ATH5K_TRACE(ah->ah_sc);
2636 if (index >= 64)
2637 return -EINVAL;
2638 else if (index >= 32)
2639 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
2640 (1 << (index - 32)));
2641 else
2642 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
2643
2644 return 0;
2645}
2646
2647/*
2648 * Get current rx filter
2649 */
2650u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
2651{
2652 u32 data, filter = 0;
2653
2654 ATH5K_TRACE(ah->ah_sc);
2655 filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
2656
2657 /*Radar detection for 5212*/
2658 if (ah->ah_version == AR5K_AR5212) {
2659 data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
2660
2661 if (data & AR5K_PHY_ERR_FIL_RADAR)
2662 filter |= AR5K_RX_FILTER_RADARERR;
2663 if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
2664 filter |= AR5K_RX_FILTER_PHYERR;
2665 }
2666
2667 return filter;
2668}
2669
2670/*
2671 * Set rx filter
2672 */
2673void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
2674{
2675 u32 data = 0;
2676
2677 ATH5K_TRACE(ah->ah_sc);
2678
2679 /* Set PHY error filter register on 5212*/
2680 if (ah->ah_version == AR5K_AR5212) {
2681 if (filter & AR5K_RX_FILTER_RADARERR)
2682 data |= AR5K_PHY_ERR_FIL_RADAR;
2683 if (filter & AR5K_RX_FILTER_PHYERR)
2684 data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
2685 }
2686
2687 /*
2688 * The AR5210 uses promiscous mode to detect radar activity
2689 */
2690 if (ah->ah_version == AR5K_AR5210 &&
2691 (filter & AR5K_RX_FILTER_RADARERR)) {
2692 filter &= ~AR5K_RX_FILTER_RADARERR;
2693 filter |= AR5K_RX_FILTER_PROM;
2694 }
2695
2696 /*Zero length DMA*/
2697 if (data)
2698 AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
2699 else
2700 AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
2701
2702 /*Write RX Filter register*/
2703 ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
2704
2705 /*Write PHY error filter register on 5212*/
2706 if (ah->ah_version == AR5K_AR5212)
2707 ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
2708
2709}
2710
2711/*
2712 * Beacon related functions
2713 */
2714
2715/*
2716 * Get a 32bit TSF
2717 */
2718u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
2719{
2720 ATH5K_TRACE(ah->ah_sc);
2721 return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
2722}
2723
2724/*
2725 * Get the full 64bit TSF
2726 */
2727u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
2728{
2729 u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
2730 ATH5K_TRACE(ah->ah_sc);
2731
2732 return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
2733}
2734
2735/*
2736 * Force a TSF reset
2737 */
2738void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
2739{
2740 ATH5K_TRACE(ah->ah_sc);
2741 AR5K_REG_ENABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_RESET_TSF);
2742}
2743
2744/*
2745 * Initialize beacon timers
2746 */
2747void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
2748{
2749 u32 timer1, timer2, timer3;
2750
2751 ATH5K_TRACE(ah->ah_sc);
2752 /*
2753 * Set the additional timers by mode
2754 */
2755 switch (ah->ah_op_mode) {
2756 case IEEE80211_IF_TYPE_STA:
2757 if (ah->ah_version == AR5K_AR5210) {
2758 timer1 = 0xffffffff;
2759 timer2 = 0xffffffff;
2760 } else {
2761 timer1 = 0x0000ffff;
2762 timer2 = 0x0007ffff;
2763 }
2764 break;
2765
2766 default:
2767 timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
2768 timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
2769 }
2770
2771 timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
2772
2773 /*
2774 * Set the beacon register and enable all timers.
2775 * (next beacon, DMA beacon, software beacon, ATIM window time)
2776 */
2777 ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
2778 ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
2779 ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
2780 ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
2781
2782 ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
2783 AR5K_BEACON_RESET_TSF | AR5K_BEACON_ENABLE),
2784 AR5K_BEACON);
2785}
2786
2787#if 0
2788/*
2789 * Set beacon timers
2790 */
2791int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
2792 const struct ath5k_beacon_state *state)
2793{
2794 u32 cfp_period, next_cfp, dtim, interval, next_beacon;
2795
2796 /*
2797 * TODO: should be changed through *state
2798 * review struct ath5k_beacon_state struct
2799 *
2800 * XXX: These are used for cfp period bellow, are they
2801 * ok ? Is it O.K. for tsf here to be 0 or should we use
2802 * get_tsf ?
2803 */
2804 u32 dtim_count = 0; /* XXX */
2805 u32 cfp_count = 0; /* XXX */
2806 u32 tsf = 0; /* XXX */
2807
2808 ATH5K_TRACE(ah->ah_sc);
2809 /* Return on an invalid beacon state */
2810 if (state->bs_interval < 1)
2811 return -EINVAL;
2812
2813 interval = state->bs_interval;
2814 dtim = state->bs_dtim_period;
2815
2816 /*
2817 * PCF support?
2818 */
2819 if (state->bs_cfp_period > 0) {
2820 /*
2821 * Enable PCF mode and set the CFP
2822 * (Contention Free Period) and timer registers
2823 */
2824 cfp_period = state->bs_cfp_period * state->bs_dtim_period *
2825 state->bs_interval;
2826 next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
2827 state->bs_interval;
2828
2829 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
2830 AR5K_STA_ID1_DEFAULT_ANTENNA |
2831 AR5K_STA_ID1_PCF);
2832 ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
2833 ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
2834 AR5K_CFP_DUR);
2835 ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
2836 next_cfp)) << 3, AR5K_TIMER2);
2837 } else {
2838 /* Disable PCF mode */
2839 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
2840 AR5K_STA_ID1_DEFAULT_ANTENNA |
2841 AR5K_STA_ID1_PCF);
2842 }
2843
2844 /*
2845 * Enable the beacon timer register
2846 */
2847 ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
2848
2849 /*
2850 * Start the beacon timers
2851 */
2852 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &~
2853 (AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
2854 AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
2855 AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
2856 AR5K_BEACON_PERIOD), AR5K_BEACON);
2857
2858 /*
2859 * Write new beacon miss threshold, if it appears to be valid
2860 * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
2861 * and return if its not in range. We can test this by reading value and
2862 * setting value to a largest value and seeing which values register.
2863 */
2864
2865 AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
2866 state->bs_bmiss_threshold);
2867
2868 /*
2869 * Set sleep control register
2870 * XXX: Didn't find this in 5210 code but since this register
2871 * exists also in ar5k's 5210 headers i leave it as common code.
2872 */
2873 AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
2874 (state->bs_sleep_duration - 3) << 3);
2875
2876 /*
2877 * Set enhanced sleep registers on 5212
2878 */
2879 if (ah->ah_version == AR5K_AR5212) {
2880 if (state->bs_sleep_duration > state->bs_interval &&
2881 roundup(state->bs_sleep_duration, interval) ==
2882 state->bs_sleep_duration)
2883 interval = state->bs_sleep_duration;
2884
2885 if (state->bs_sleep_duration > dtim && (dtim == 0 ||
2886 roundup(state->bs_sleep_duration, dtim) ==
2887 state->bs_sleep_duration))
2888 dtim = state->bs_sleep_duration;
2889
2890 if (interval > dtim)
2891 return -EINVAL;
2892
2893 next_beacon = interval == dtim ? state->bs_next_dtim :
2894 state->bs_next_beacon;
2895
2896 ath5k_hw_reg_write(ah,
2897 AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
2898 AR5K_SLEEP0_NEXT_DTIM) |
2899 AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
2900 AR5K_SLEEP0_ENH_SLEEP_EN |
2901 AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
2902
2903 ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
2904 AR5K_SLEEP1_NEXT_TIM) |
2905 AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
2906
2907 ath5k_hw_reg_write(ah,
2908 AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
2909 AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
2910 }
2911
2912 return 0;
2913}
2914
2915/*
2916 * Reset beacon timers
2917 */
2918void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
2919{
2920 ATH5K_TRACE(ah->ah_sc);
2921 /*
2922 * Disable beacon timer
2923 */
2924 ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
2925
2926 /*
2927 * Disable some beacon register values
2928 */
2929 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
2930 AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
2931 ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
2932}
2933
2934/*
2935 * Wait for beacon queue to finish
2936 */
2937int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
2938{
2939 unsigned int i;
2940 int ret;
2941
2942 ATH5K_TRACE(ah->ah_sc);
2943
2944 /* 5210 doesn't have QCU*/
2945 if (ah->ah_version == AR5K_AR5210) {
2946 /*
2947 * Wait for beaconn queue to finish by checking
2948 * Control Register and Beacon Status Register.
2949 */
2950 for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
2951 if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
2952 ||
2953 !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
2954 break;
2955 udelay(10);
2956 }
2957
2958 /* Timeout... */
2959 if (i <= 0) {
2960 /*
2961 * Re-schedule the beacon queue
2962 */
2963 ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
2964 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
2965 AR5K_BCR);
2966
2967 return -EIO;
2968 }
2969 ret = 0;
2970 } else {
2971 /*5211/5212*/
2972 ret = ath5k_hw_register_timeout(ah,
2973 AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
2974 AR5K_QCU_STS_FRMPENDCNT, 0, false);
2975
2976 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
2977 return -EIO;
2978 }
2979
2980 return ret;
2981}
2982#endif
2983
2984/*
2985 * Update mib counters (statistics)
2986 */
2987void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
2988 struct ieee80211_low_level_stats *stats)
2989{
2990 ATH5K_TRACE(ah->ah_sc);
2991
2992 /* Read-And-Clear */
2993 stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
2994 stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
2995 stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
2996 stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
2997
2998 /* XXX: Should we use this to track beacon count ?
2999 * -we read it anyway to clear the register */
3000 ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
3001
3002 /* Reset profile count registers on 5212*/
3003 if (ah->ah_version == AR5K_AR5212) {
3004 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
3005 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
3006 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
3007 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
3008 }
3009}
3010
3011/** ath5k_hw_set_ack_bitrate - set bitrate for ACKs
3012 *
3013 * @ah: the &struct ath5k_hw
3014 * @high: determines if to use low bit rate or now
3015 */
3016void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
3017{
3018 if (ah->ah_version != AR5K_AR5212)
3019 return;
3020 else {
3021 u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
3022 if (high)
3023 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
3024 else
3025 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
3026 }
3027}
3028
3029
3030/*
3031 * ACK/CTS Timeouts
3032 */
3033
3034/*
3035 * Set ACK timeout on PCU
3036 */
3037int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
3038{
3039 ATH5K_TRACE(ah->ah_sc);
3040 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
3041 ah->ah_turbo) <= timeout)
3042 return -EINVAL;
3043
3044 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
3045 ath5k_hw_htoclock(timeout, ah->ah_turbo));
3046
3047 return 0;
3048}
3049
3050/*
3051 * Read the ACK timeout from PCU
3052 */
3053unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
3054{
3055 ATH5K_TRACE(ah->ah_sc);
3056
3057 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
3058 AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
3059}
3060
3061/*
3062 * Set CTS timeout on PCU
3063 */
3064int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
3065{
3066 ATH5K_TRACE(ah->ah_sc);
3067 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
3068 ah->ah_turbo) <= timeout)
3069 return -EINVAL;
3070
3071 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
3072 ath5k_hw_htoclock(timeout, ah->ah_turbo));
3073
3074 return 0;
3075}
3076
3077/*
3078 * Read CTS timeout from PCU
3079 */
3080unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
3081{
3082 ATH5K_TRACE(ah->ah_sc);
3083 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
3084 AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
3085}
3086
3087/*
3088 * Key table (WEP) functions
3089 */
3090
3091int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
3092{
3093 unsigned int i;
3094
3095 ATH5K_TRACE(ah->ah_sc);
3096 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
3097
3098 for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
3099 ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
3100
3101 /*
3102 * Set NULL encryption on AR5212+
3103 *
3104 * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5)
3105 * AR5K_KEYTABLE_TYPE_NULL -> 0x00000007
3106 *
3107 * Note2: Windows driver (ndiswrapper) sets this to
3108 * 0x00000714 instead of 0x00000007
3109 */
3110 if (ah->ah_version > AR5K_AR5211)
3111 ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
3112 AR5K_KEYTABLE_TYPE(entry));
3113
3114 return 0;
3115}
3116
3117int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
3118{
3119 ATH5K_TRACE(ah->ah_sc);
3120 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
3121
3122 /* Check the validation flag at the end of the entry */
3123 return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
3124 AR5K_KEYTABLE_VALID;
3125}
3126
3127int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
3128 const struct ieee80211_key_conf *key, const u8 *mac)
3129{
3130 unsigned int i;
3131 __le32 key_v[5] = {};
3132 u32 keytype;
3133
3134 ATH5K_TRACE(ah->ah_sc);
3135
3136 /* key->keylen comes in from mac80211 in bytes */
3137
3138 if (key->keylen > AR5K_KEYTABLE_SIZE / 8)
3139 return -EOPNOTSUPP;
3140
3141 switch (key->keylen) {
3142 /* WEP 40-bit = 40-bit entered key + 24 bit IV = 64-bit */
3143 case 40 / 8:
3144 memcpy(&key_v[0], key->key, 5);
3145 keytype = AR5K_KEYTABLE_TYPE_40;
3146 break;
3147
3148 /* WEP 104-bit = 104-bit entered key + 24-bit IV = 128-bit */
3149 case 104 / 8:
3150 memcpy(&key_v[0], &key->key[0], 6);
3151 memcpy(&key_v[2], &key->key[6], 6);
3152 memcpy(&key_v[4], &key->key[12], 1);
3153 keytype = AR5K_KEYTABLE_TYPE_104;
3154 break;
3155 /* WEP 128-bit = 128-bit entered key + 24 bit IV = 152-bit */
3156 case 128 / 8:
3157 memcpy(&key_v[0], &key->key[0], 6);
3158 memcpy(&key_v[2], &key->key[6], 6);
3159 memcpy(&key_v[4], &key->key[12], 4);
3160 keytype = AR5K_KEYTABLE_TYPE_128;
3161 break;
3162
3163 default:
3164 return -EINVAL; /* shouldn't happen */
3165 }
3166
3167 for (i = 0; i < ARRAY_SIZE(key_v); i++)
3168 ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
3169 AR5K_KEYTABLE_OFF(entry, i));
3170
3171 ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
3172
3173 return ath5k_hw_set_key_lladdr(ah, entry, mac);
3174}
3175
3176int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
3177{
3178 u32 low_id, high_id;
3179
3180 ATH5K_TRACE(ah->ah_sc);
3181 /* Invalid entry (key table overflow) */
3182 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
3183
3184 /* MAC may be NULL if it's a broadcast key. In this case no need to
3185 * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
3186 if (unlikely(mac == NULL)) {
3187 low_id = 0xffffffff;
3188 high_id = 0xffff | AR5K_KEYTABLE_VALID;
3189 } else {
3190 low_id = AR5K_LOW_ID(mac);
3191 high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
3192 }
3193
3194 ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
3195 ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
3196
3197 return 0;
3198}
3199
3200
3201/********************************************\
3202Queue Control Unit, DFS Control Unit Functions
3203\********************************************/
3204
3205/*
3206 * Initialize a transmit queue
3207 */
3208int ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type,
3209 struct ath5k_txq_info *queue_info)
3210{
3211 unsigned int queue;
3212 int ret;
3213
3214 ATH5K_TRACE(ah->ah_sc);
3215
3216 /*
3217 * Get queue by type
3218 */
3219 /*5210 only has 2 queues*/
3220 if (ah->ah_version == AR5K_AR5210) {
3221 switch (queue_type) {
3222 case AR5K_TX_QUEUE_DATA:
3223 queue = AR5K_TX_QUEUE_ID_NOQCU_DATA;
3224 break;
3225 case AR5K_TX_QUEUE_BEACON:
3226 case AR5K_TX_QUEUE_CAB:
3227 queue = AR5K_TX_QUEUE_ID_NOQCU_BEACON;
3228 break;
3229 default:
3230 return -EINVAL;
3231 }
3232 } else {
3233 switch (queue_type) {
3234 case AR5K_TX_QUEUE_DATA:
3235 for (queue = AR5K_TX_QUEUE_ID_DATA_MIN;
3236 ah->ah_txq[queue].tqi_type !=
3237 AR5K_TX_QUEUE_INACTIVE; queue++) {
3238
3239 if (queue > AR5K_TX_QUEUE_ID_DATA_MAX)
3240 return -EINVAL;
3241 }
3242 break;
3243 case AR5K_TX_QUEUE_UAPSD:
3244 queue = AR5K_TX_QUEUE_ID_UAPSD;
3245 break;
3246 case AR5K_TX_QUEUE_BEACON:
3247 queue = AR5K_TX_QUEUE_ID_BEACON;
3248 break;
3249 case AR5K_TX_QUEUE_CAB:
3250 queue = AR5K_TX_QUEUE_ID_CAB;
3251 break;
3252 case AR5K_TX_QUEUE_XR_DATA:
3253 if (ah->ah_version != AR5K_AR5212)
3254 ATH5K_ERR(ah->ah_sc,
3255 "XR data queues only supported in"
3256 " 5212!\n");
3257 queue = AR5K_TX_QUEUE_ID_XR_DATA;
3258 break;
3259 default:
3260 return -EINVAL;
3261 }
3262 }
3263
3264 /*
3265 * Setup internal queue structure
3266 */
3267 memset(&ah->ah_txq[queue], 0, sizeof(struct ath5k_txq_info));
3268 ah->ah_txq[queue].tqi_type = queue_type;
3269
3270 if (queue_info != NULL) {
3271 queue_info->tqi_type = queue_type;
3272 ret = ath5k_hw_setup_tx_queueprops(ah, queue, queue_info);
3273 if (ret)
3274 return ret;
3275 }
3276 /*
3277 * We use ah_txq_status to hold a temp value for
3278 * the Secondary interrupt mask registers on 5211+
3279 * check out ath5k_hw_reset_tx_queue
3280 */
3281 AR5K_Q_ENABLE_BITS(ah->ah_txq_status, queue);
3282
3283 return queue;
3284}
3285
3286/*
3287 * Setup a transmit queue
3288 */
3289int ath5k_hw_setup_tx_queueprops(struct ath5k_hw *ah, int queue,
3290 const struct ath5k_txq_info *queue_info)
3291{
3292 ATH5K_TRACE(ah->ah_sc);
3293 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3294
3295 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
3296 return -EIO;
3297
3298 memcpy(&ah->ah_txq[queue], queue_info, sizeof(struct ath5k_txq_info));
3299
3300 /*XXX: Is this supported on 5210 ?*/
3301 if ((queue_info->tqi_type == AR5K_TX_QUEUE_DATA &&
3302 ((queue_info->tqi_subtype == AR5K_WME_AC_VI) ||
3303 (queue_info->tqi_subtype == AR5K_WME_AC_VO))) ||
3304 queue_info->tqi_type == AR5K_TX_QUEUE_UAPSD)
3305 ah->ah_txq[queue].tqi_flags |= AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS;
3306
3307 return 0;
3308}
3309
3310/*
3311 * Get properties for a specific transmit queue
3312 */
3313int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue,
3314 struct ath5k_txq_info *queue_info)
3315{
3316 ATH5K_TRACE(ah->ah_sc);
3317 memcpy(queue_info, &ah->ah_txq[queue], sizeof(struct ath5k_txq_info));
3318 return 0;
3319}
3320
3321/*
3322 * Set a transmit queue inactive
3323 */
3324void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue)
3325{
3326 ATH5K_TRACE(ah->ah_sc);
3327 if (WARN_ON(queue >= ah->ah_capabilities.cap_queues.q_tx_num))
3328 return;
3329
3330 /* This queue will be skipped in further operations */
3331 ah->ah_txq[queue].tqi_type = AR5K_TX_QUEUE_INACTIVE;
3332 /*For SIMR setup*/
3333 AR5K_Q_DISABLE_BITS(ah->ah_txq_status, queue);
3334}
3335
3336/*
3337 * Set DFS params for a transmit queue
3338 */
3339int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue)
3340{
3341 u32 cw_min, cw_max, retry_lg, retry_sh;
3342 struct ath5k_txq_info *tq = &ah->ah_txq[queue];
3343
3344 ATH5K_TRACE(ah->ah_sc);
3345 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3346
3347 tq = &ah->ah_txq[queue];
3348
3349 if (tq->tqi_type == AR5K_TX_QUEUE_INACTIVE)
3350 return 0;
3351
3352 if (ah->ah_version == AR5K_AR5210) {
3353 /* Only handle data queues, others will be ignored */
3354 if (tq->tqi_type != AR5K_TX_QUEUE_DATA)
3355 return 0;
3356
3357 /* Set Slot time */
3358 ath5k_hw_reg_write(ah, ah->ah_turbo ?
3359 AR5K_INIT_SLOT_TIME_TURBO : AR5K_INIT_SLOT_TIME,
3360 AR5K_SLOT_TIME);
3361 /* Set ACK_CTS timeout */
3362 ath5k_hw_reg_write(ah, ah->ah_turbo ?
3363 AR5K_INIT_ACK_CTS_TIMEOUT_TURBO :
3364 AR5K_INIT_ACK_CTS_TIMEOUT, AR5K_SLOT_TIME);
3365 /* Set Transmit Latency */
3366 ath5k_hw_reg_write(ah, ah->ah_turbo ?
3367 AR5K_INIT_TRANSMIT_LATENCY_TURBO :
3368 AR5K_INIT_TRANSMIT_LATENCY, AR5K_USEC_5210);
3369 /* Set IFS0 */
3370 if (ah->ah_turbo)
3371 ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS_TURBO +
3372 (ah->ah_aifs + tq->tqi_aifs) *
3373 AR5K_INIT_SLOT_TIME_TURBO) <<
3374 AR5K_IFS0_DIFS_S) | AR5K_INIT_SIFS_TURBO,
3375 AR5K_IFS0);
3376 else
3377 ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS +
3378 (ah->ah_aifs + tq->tqi_aifs) *
3379 AR5K_INIT_SLOT_TIME) << AR5K_IFS0_DIFS_S) |
3380 AR5K_INIT_SIFS, AR5K_IFS0);
3381
3382 /* Set IFS1 */
3383 ath5k_hw_reg_write(ah, ah->ah_turbo ?
3384 AR5K_INIT_PROTO_TIME_CNTRL_TURBO :
3385 AR5K_INIT_PROTO_TIME_CNTRL, AR5K_IFS1);
3386 /* Set AR5K_PHY_SETTLING */
3387 ath5k_hw_reg_write(ah, ah->ah_turbo ?
3388 (ath5k_hw_reg_read(ah, AR5K_PHY_SETTLING) & ~0x7F)
3389 | 0x38 :
3390 (ath5k_hw_reg_read(ah, AR5K_PHY_SETTLING) & ~0x7F)
3391 | 0x1C,
3392 AR5K_PHY_SETTLING);
3393 /* Set Frame Control Register */
3394 ath5k_hw_reg_write(ah, ah->ah_turbo ?
3395 (AR5K_PHY_FRAME_CTL_INI | AR5K_PHY_TURBO_MODE |
3396 AR5K_PHY_TURBO_SHORT | 0x2020) :
3397 (AR5K_PHY_FRAME_CTL_INI | 0x1020),
3398 AR5K_PHY_FRAME_CTL_5210);
3399 }
3400
3401 /*
3402 * Calculate cwmin/max by channel mode
3403 */
3404 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN;
3405 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX;
3406 ah->ah_aifs = AR5K_TUNE_AIFS;
3407 /*XR is only supported on 5212*/
3408 if (IS_CHAN_XR(ah->ah_current_channel) &&
3409 ah->ah_version == AR5K_AR5212) {
3410 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_XR;
3411 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_XR;
3412 ah->ah_aifs = AR5K_TUNE_AIFS_XR;
3413 /*B mode is not supported on 5210*/
3414 } else if (IS_CHAN_B(ah->ah_current_channel) &&
3415 ah->ah_version != AR5K_AR5210) {
3416 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_11B;
3417 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_11B;
3418 ah->ah_aifs = AR5K_TUNE_AIFS_11B;
3419 }
3420
3421 cw_min = 1;
3422 while (cw_min < ah->ah_cw_min)
3423 cw_min = (cw_min << 1) | 1;
3424
3425 cw_min = tq->tqi_cw_min < 0 ? (cw_min >> (-tq->tqi_cw_min)) :
3426 ((cw_min << tq->tqi_cw_min) + (1 << tq->tqi_cw_min) - 1);
3427 cw_max = tq->tqi_cw_max < 0 ? (cw_max >> (-tq->tqi_cw_max)) :
3428 ((cw_max << tq->tqi_cw_max) + (1 << tq->tqi_cw_max) - 1);
3429
3430 /*
3431 * Calculate and set retry limits
3432 */
3433 if (ah->ah_software_retry) {
3434 /* XXX Need to test this */
3435 retry_lg = ah->ah_limit_tx_retries;
3436 retry_sh = retry_lg = retry_lg > AR5K_DCU_RETRY_LMT_SH_RETRY ?
3437 AR5K_DCU_RETRY_LMT_SH_RETRY : retry_lg;
3438 } else {
3439 retry_lg = AR5K_INIT_LG_RETRY;
3440 retry_sh = AR5K_INIT_SH_RETRY;
3441 }
3442
3443 /*No QCU/DCU [5210]*/
3444 if (ah->ah_version == AR5K_AR5210) {
3445 ath5k_hw_reg_write(ah,
3446 (cw_min << AR5K_NODCU_RETRY_LMT_CW_MIN_S)
3447 | AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
3448 AR5K_NODCU_RETRY_LMT_SLG_RETRY)
3449 | AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
3450 AR5K_NODCU_RETRY_LMT_SSH_RETRY)
3451 | AR5K_REG_SM(retry_lg, AR5K_NODCU_RETRY_LMT_LG_RETRY)
3452 | AR5K_REG_SM(retry_sh, AR5K_NODCU_RETRY_LMT_SH_RETRY),
3453 AR5K_NODCU_RETRY_LMT);
3454 } else {
3455 /*QCU/DCU [5211+]*/
3456 ath5k_hw_reg_write(ah,
3457 AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
3458 AR5K_DCU_RETRY_LMT_SLG_RETRY) |
3459 AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
3460 AR5K_DCU_RETRY_LMT_SSH_RETRY) |
3461 AR5K_REG_SM(retry_lg, AR5K_DCU_RETRY_LMT_LG_RETRY) |
3462 AR5K_REG_SM(retry_sh, AR5K_DCU_RETRY_LMT_SH_RETRY),
3463 AR5K_QUEUE_DFS_RETRY_LIMIT(queue));
3464
3465 /*===Rest is also for QCU/DCU only [5211+]===*/
3466
3467 /*
3468 * Set initial content window (cw_min/cw_max)
3469 * and arbitrated interframe space (aifs)...
3470 */
3471 ath5k_hw_reg_write(ah,
3472 AR5K_REG_SM(cw_min, AR5K_DCU_LCL_IFS_CW_MIN) |
3473 AR5K_REG_SM(cw_max, AR5K_DCU_LCL_IFS_CW_MAX) |
3474 AR5K_REG_SM(ah->ah_aifs + tq->tqi_aifs,
3475 AR5K_DCU_LCL_IFS_AIFS),
3476 AR5K_QUEUE_DFS_LOCAL_IFS(queue));
3477
3478 /*
3479 * Set misc registers
3480 */
3481 ath5k_hw_reg_write(ah, AR5K_QCU_MISC_DCU_EARLY,
3482 AR5K_QUEUE_MISC(queue));
3483
3484 if (tq->tqi_cbr_period) {
3485 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_cbr_period,
3486 AR5K_QCU_CBRCFG_INTVAL) |
3487 AR5K_REG_SM(tq->tqi_cbr_overflow_limit,
3488 AR5K_QCU_CBRCFG_ORN_THRES),
3489 AR5K_QUEUE_CBRCFG(queue));
3490 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3491 AR5K_QCU_MISC_FRSHED_CBR);
3492 if (tq->tqi_cbr_overflow_limit)
3493 AR5K_REG_ENABLE_BITS(ah,
3494 AR5K_QUEUE_MISC(queue),
3495 AR5K_QCU_MISC_CBR_THRES_ENABLE);
3496 }
3497
3498 if (tq->tqi_ready_time)
3499 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_ready_time,
3500 AR5K_QCU_RDYTIMECFG_INTVAL) |
3501 AR5K_QCU_RDYTIMECFG_ENABLE,
3502 AR5K_QUEUE_RDYTIMECFG(queue));
3503
3504 if (tq->tqi_burst_time) {
3505 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_burst_time,
3506 AR5K_DCU_CHAN_TIME_DUR) |
3507 AR5K_DCU_CHAN_TIME_ENABLE,
3508 AR5K_QUEUE_DFS_CHANNEL_TIME(queue));
3509
3510 if (tq->tqi_flags & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)
3511 AR5K_REG_ENABLE_BITS(ah,
3512 AR5K_QUEUE_MISC(queue),
3513 AR5K_QCU_MISC_RDY_VEOL_POLICY);
3514 }
3515
3516 if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE)
3517 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_POST_FR_BKOFF_DIS,
3518 AR5K_QUEUE_DFS_MISC(queue));
3519
3520 if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
3521 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_BACKOFF_FRAG,
3522 AR5K_QUEUE_DFS_MISC(queue));
3523
3524 /*
3525 * Set registers by queue type
3526 */
3527 switch (tq->tqi_type) {
3528 case AR5K_TX_QUEUE_BEACON:
3529 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3530 AR5K_QCU_MISC_FRSHED_DBA_GT |
3531 AR5K_QCU_MISC_CBREXP_BCN |
3532 AR5K_QCU_MISC_BCN_ENABLE);
3533
3534 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
3535 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
3536 AR5K_DCU_MISC_ARBLOCK_CTL_S) |
3537 AR5K_DCU_MISC_POST_FR_BKOFF_DIS |
3538 AR5K_DCU_MISC_BCN_ENABLE);
3539
3540 ath5k_hw_reg_write(ah, ((AR5K_TUNE_BEACON_INTERVAL -
3541 (AR5K_TUNE_SW_BEACON_RESP -
3542 AR5K_TUNE_DMA_BEACON_RESP) -
3543 AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) |
3544 AR5K_QCU_RDYTIMECFG_ENABLE,
3545 AR5K_QUEUE_RDYTIMECFG(queue));
3546 break;
3547
3548 case AR5K_TX_QUEUE_CAB:
3549 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3550 AR5K_QCU_MISC_FRSHED_DBA_GT |
3551 AR5K_QCU_MISC_CBREXP |
3552 AR5K_QCU_MISC_CBREXP_BCN);
3553
3554 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
3555 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
3556 AR5K_DCU_MISC_ARBLOCK_CTL_S));
3557 break;
3558
3559 case AR5K_TX_QUEUE_UAPSD:
3560 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3561 AR5K_QCU_MISC_CBREXP);
3562 break;
3563
3564 case AR5K_TX_QUEUE_DATA:
3565 default:
3566 break;
3567 }
3568
3569 /*
3570 * Enable interrupts for this tx queue
3571 * in the secondary interrupt mask registers
3572 */
3573 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXOKINT_ENABLE)
3574 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txok, queue);
3575
3576 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXERRINT_ENABLE)
3577 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txerr, queue);
3578
3579 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXURNINT_ENABLE)
3580 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txurn, queue);
3581
3582 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXDESCINT_ENABLE)
3583 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txdesc, queue);
3584
3585 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXEOLINT_ENABLE)
3586 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txeol, queue);
3587
3588
3589 /* Update secondary interrupt mask registers */
3590 ah->ah_txq_imr_txok &= ah->ah_txq_status;
3591 ah->ah_txq_imr_txerr &= ah->ah_txq_status;
3592 ah->ah_txq_imr_txurn &= ah->ah_txq_status;
3593 ah->ah_txq_imr_txdesc &= ah->ah_txq_status;
3594 ah->ah_txq_imr_txeol &= ah->ah_txq_status;
3595
3596 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txok,
3597 AR5K_SIMR0_QCU_TXOK) |
3598 AR5K_REG_SM(ah->ah_txq_imr_txdesc,
3599 AR5K_SIMR0_QCU_TXDESC), AR5K_SIMR0);
3600 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txerr,
3601 AR5K_SIMR1_QCU_TXERR) |
3602 AR5K_REG_SM(ah->ah_txq_imr_txeol,
3603 AR5K_SIMR1_QCU_TXEOL), AR5K_SIMR1);
3604 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txurn,
3605 AR5K_SIMR2_QCU_TXURN), AR5K_SIMR2);
3606 }
3607
3608 return 0;
3609}
3610
3611/*
3612 * Get number of pending frames
3613 * for a specific queue [5211+]
3614 */
3615u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue) {
3616 ATH5K_TRACE(ah->ah_sc);
3617 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3618
3619 /* Return if queue is declared inactive */
3620 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
3621 return false;
3622
3623 /* XXX: How about AR5K_CFG_TXCNT ? */
3624 if (ah->ah_version == AR5K_AR5210)
3625 return false;
3626
3627 return AR5K_QUEUE_STATUS(queue) & AR5K_QCU_STS_FRMPENDCNT;
3628}
3629
3630/*
3631 * Set slot time
3632 */
3633int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time)
3634{
3635 ATH5K_TRACE(ah->ah_sc);
3636 if (slot_time < AR5K_SLOT_TIME_9 || slot_time > AR5K_SLOT_TIME_MAX)
3637 return -EINVAL;
3638
3639 if (ah->ah_version == AR5K_AR5210)
3640 ath5k_hw_reg_write(ah, ath5k_hw_htoclock(slot_time,
3641 ah->ah_turbo), AR5K_SLOT_TIME);
3642 else
3643 ath5k_hw_reg_write(ah, slot_time, AR5K_DCU_GBL_IFS_SLOT);
3644
3645 return 0;
3646}
3647
3648/*
3649 * Get slot time
3650 */
3651unsigned int ath5k_hw_get_slot_time(struct ath5k_hw *ah)
3652{
3653 ATH5K_TRACE(ah->ah_sc);
3654 if (ah->ah_version == AR5K_AR5210)
3655 return ath5k_hw_clocktoh(ath5k_hw_reg_read(ah,
3656 AR5K_SLOT_TIME) & 0xffff, ah->ah_turbo);
3657 else
3658 return ath5k_hw_reg_read(ah, AR5K_DCU_GBL_IFS_SLOT) & 0xffff;
3659}
3660
3661
3662/******************************\
3663 Hardware Descriptor Functions
3664\******************************/
3665
3666/*
3667 * TX Descriptor
3668 */
3669
3670/*
3671 * Initialize the 2-word tx descriptor on 5210/5211
3672 */
3673static int
3674ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3675 unsigned int pkt_len, unsigned int hdr_len, enum ath5k_pkt_type type,
3676 unsigned int tx_power, unsigned int tx_rate0, unsigned int tx_tries0,
3677 unsigned int key_index, unsigned int antenna_mode, unsigned int flags,
3678 unsigned int rtscts_rate, unsigned int rtscts_duration)
3679{
3680 u32 frame_type;
3681 struct ath5k_hw_2w_tx_ctl *tx_ctl;
3682 unsigned int frame_len;
3683
3684 tx_ctl = &desc->ud.ds_tx5210.tx_ctl;
3685
3686 /*
3687 * Validate input
3688 * - Zero retries don't make sense.
3689 * - A zero rate will put the HW into a mode where it continously sends
3690 * noise on the channel, so it is important to avoid this.
3691 */
3692 if (unlikely(tx_tries0 == 0)) {
3693 ATH5K_ERR(ah->ah_sc, "zero retries\n");
3694 WARN_ON(1);
3695 return -EINVAL;
3696 }
3697 if (unlikely(tx_rate0 == 0)) {
3698 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3699 WARN_ON(1);
3700 return -EINVAL;
3701 }
3702
3703 /* Clear descriptor */
3704 memset(&desc->ud.ds_tx5210, 0, sizeof(struct ath5k_hw_5210_tx_desc));
3705
3706 /* Setup control descriptor */
3707
3708 /* Verify and set frame length */
3709
3710 /* remove padding we might have added before */
3711 frame_len = pkt_len - (hdr_len & 3) + FCS_LEN;
3712
3713 if (frame_len & ~AR5K_2W_TX_DESC_CTL0_FRAME_LEN)
3714 return -EINVAL;
3715
3716 tx_ctl->tx_control_0 = frame_len & AR5K_2W_TX_DESC_CTL0_FRAME_LEN;
3717
3718 /* Verify and set buffer length */
3719
3720 /* NB: beacon's BufLen must be a multiple of 4 bytes */
3721 if(type == AR5K_PKT_TYPE_BEACON)
3722 pkt_len = roundup(pkt_len, 4);
3723
3724 if (pkt_len & ~AR5K_2W_TX_DESC_CTL1_BUF_LEN)
3725 return -EINVAL;
3726
3727 tx_ctl->tx_control_1 = pkt_len & AR5K_2W_TX_DESC_CTL1_BUF_LEN;
3728
3729 /*
3730 * Verify and set header length
3731 * XXX: I only found that on 5210 code, does it work on 5211 ?
3732 */
3733 if (ah->ah_version == AR5K_AR5210) {
3734 if (hdr_len & ~AR5K_2W_TX_DESC_CTL0_HEADER_LEN)
3735 return -EINVAL;
3736 tx_ctl->tx_control_0 |=
3737 AR5K_REG_SM(hdr_len, AR5K_2W_TX_DESC_CTL0_HEADER_LEN);
3738 }
3739
3740 /*Diferences between 5210-5211*/
3741 if (ah->ah_version == AR5K_AR5210) {
3742 switch (type) {
3743 case AR5K_PKT_TYPE_BEACON:
3744 case AR5K_PKT_TYPE_PROBE_RESP:
3745 frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_NO_DELAY;
3746 case AR5K_PKT_TYPE_PIFS:
3747 frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_PIFS;
3748 default:
3749 frame_type = type /*<< 2 ?*/;
3750 }
3751
3752 tx_ctl->tx_control_0 |=
3753 AR5K_REG_SM(frame_type, AR5K_2W_TX_DESC_CTL0_FRAME_TYPE) |
3754 AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
3755 } else {
3756 tx_ctl->tx_control_0 |=
3757 AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE) |
3758 AR5K_REG_SM(antenna_mode, AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT);
3759 tx_ctl->tx_control_1 |=
3760 AR5K_REG_SM(type, AR5K_2W_TX_DESC_CTL1_FRAME_TYPE);
3761 }
3762#define _TX_FLAGS(_c, _flag) \
3763 if (flags & AR5K_TXDESC_##_flag) \
3764 tx_ctl->tx_control_##_c |= \
3765 AR5K_2W_TX_DESC_CTL##_c##_##_flag
3766
3767 _TX_FLAGS(0, CLRDMASK);
3768 _TX_FLAGS(0, VEOL);
3769 _TX_FLAGS(0, INTREQ);
3770 _TX_FLAGS(0, RTSENA);
3771 _TX_FLAGS(1, NOACK);
3772
3773#undef _TX_FLAGS
3774
3775 /*
3776 * WEP crap
3777 */
3778 if (key_index != AR5K_TXKEYIX_INVALID) {
3779 tx_ctl->tx_control_0 |=
3780 AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
3781 tx_ctl->tx_control_1 |=
3782 AR5K_REG_SM(key_index,
3783 AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
3784 }
3785
3786 /*
3787 * RTS/CTS Duration [5210 ?]
3788 */
3789 if ((ah->ah_version == AR5K_AR5210) &&
3790 (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)))
3791 tx_ctl->tx_control_1 |= rtscts_duration &
3792 AR5K_2W_TX_DESC_CTL1_RTS_DURATION;
3793
3794 return 0;
3795}
3796
3797/*
3798 * Initialize the 4-word tx descriptor on 5212
3799 */
3800static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah,
3801 struct ath5k_desc *desc, unsigned int pkt_len, unsigned int hdr_len,
3802 enum ath5k_pkt_type type, unsigned int tx_power, unsigned int tx_rate0,
3803 unsigned int tx_tries0, unsigned int key_index,
3804 unsigned int antenna_mode, unsigned int flags, unsigned int rtscts_rate,
3805 unsigned int rtscts_duration)
3806{
3807 struct ath5k_hw_4w_tx_ctl *tx_ctl;
3808 unsigned int frame_len;
3809
3810 ATH5K_TRACE(ah->ah_sc);
3811 tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
3812
3813 /*
3814 * Validate input
3815 * - Zero retries don't make sense.
3816 * - A zero rate will put the HW into a mode where it continously sends
3817 * noise on the channel, so it is important to avoid this.
3818 */
3819 if (unlikely(tx_tries0 == 0)) {
3820 ATH5K_ERR(ah->ah_sc, "zero retries\n");
3821 WARN_ON(1);
3822 return -EINVAL;
3823 }
3824 if (unlikely(tx_rate0 == 0)) {
3825 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3826 WARN_ON(1);
3827 return -EINVAL;
3828 }
3829
3830 /* Clear descriptor */
3831 memset(&desc->ud.ds_tx5212, 0, sizeof(struct ath5k_hw_5212_tx_desc));
3832
3833 /* Setup control descriptor */
3834
3835 /* Verify and set frame length */
3836
3837 /* remove padding we might have added before */
3838 frame_len = pkt_len - (hdr_len & 3) + FCS_LEN;
3839
3840 if (frame_len & ~AR5K_4W_TX_DESC_CTL0_FRAME_LEN)
3841 return -EINVAL;
3842
3843 tx_ctl->tx_control_0 = frame_len & AR5K_4W_TX_DESC_CTL0_FRAME_LEN;
3844
3845 /* Verify and set buffer length */
3846
3847 /* NB: beacon's BufLen must be a multiple of 4 bytes */
3848 if(type == AR5K_PKT_TYPE_BEACON)
3849 pkt_len = roundup(pkt_len, 4);
3850
3851 if (pkt_len & ~AR5K_4W_TX_DESC_CTL1_BUF_LEN)
3852 return -EINVAL;
3853
3854 tx_ctl->tx_control_1 = pkt_len & AR5K_4W_TX_DESC_CTL1_BUF_LEN;
3855
3856 tx_ctl->tx_control_0 |=
3857 AR5K_REG_SM(tx_power, AR5K_4W_TX_DESC_CTL0_XMIT_POWER) |
3858 AR5K_REG_SM(antenna_mode, AR5K_4W_TX_DESC_CTL0_ANT_MODE_XMIT);
3859 tx_ctl->tx_control_1 |= AR5K_REG_SM(type,
3860 AR5K_4W_TX_DESC_CTL1_FRAME_TYPE);
3861 tx_ctl->tx_control_2 = AR5K_REG_SM(tx_tries0 + AR5K_TUNE_HWTXTRIES,
3862 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES0);
3863 tx_ctl->tx_control_3 = tx_rate0 & AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
3864
3865#define _TX_FLAGS(_c, _flag) \
3866 if (flags & AR5K_TXDESC_##_flag) \
3867 tx_ctl->tx_control_##_c |= \
3868 AR5K_4W_TX_DESC_CTL##_c##_##_flag
3869
3870 _TX_FLAGS(0, CLRDMASK);
3871 _TX_FLAGS(0, VEOL);
3872 _TX_FLAGS(0, INTREQ);
3873 _TX_FLAGS(0, RTSENA);
3874 _TX_FLAGS(0, CTSENA);
3875 _TX_FLAGS(1, NOACK);
3876
3877#undef _TX_FLAGS
3878
3879 /*
3880 * WEP crap
3881 */
3882 if (key_index != AR5K_TXKEYIX_INVALID) {
3883 tx_ctl->tx_control_0 |= AR5K_4W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
3884 tx_ctl->tx_control_1 |= AR5K_REG_SM(key_index,
3885 AR5K_4W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
3886 }
3887
3888 /*
3889 * RTS/CTS
3890 */
3891 if (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)) {
3892 if ((flags & AR5K_TXDESC_RTSENA) &&
3893 (flags & AR5K_TXDESC_CTSENA))
3894 return -EINVAL;
3895 tx_ctl->tx_control_2 |= rtscts_duration &
3896 AR5K_4W_TX_DESC_CTL2_RTS_DURATION;
3897 tx_ctl->tx_control_3 |= AR5K_REG_SM(rtscts_rate,
3898 AR5K_4W_TX_DESC_CTL3_RTS_CTS_RATE);
3899 }
3900
3901 return 0;
3902}
3903
3904/*
3905 * Initialize a 4-word multirate tx descriptor on 5212
3906 */
3907static int
3908ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3909 unsigned int tx_rate1, u_int tx_tries1, u_int tx_rate2, u_int tx_tries2,
3910 unsigned int tx_rate3, u_int tx_tries3)
3911{
3912 struct ath5k_hw_4w_tx_ctl *tx_ctl;
3913
3914 /*
3915 * Rates can be 0 as long as the retry count is 0 too.
3916 * A zero rate and nonzero retry count will put the HW into a mode where
3917 * it continously sends noise on the channel, so it is important to
3918 * avoid this.
3919 */
3920 if (unlikely((tx_rate1 == 0 && tx_tries1 != 0) ||
3921 (tx_rate2 == 0 && tx_tries2 != 0) ||
3922 (tx_rate3 == 0 && tx_tries3 != 0))) {
3923 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3924 WARN_ON(1);
3925 return -EINVAL;
3926 }
3927
3928 if (ah->ah_version == AR5K_AR5212) {
3929 tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
3930
3931#define _XTX_TRIES(_n) \
3932 if (tx_tries##_n) { \
3933 tx_ctl->tx_control_2 |= \
3934 AR5K_REG_SM(tx_tries##_n, \
3935 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES##_n); \
3936 tx_ctl->tx_control_3 |= \
3937 AR5K_REG_SM(tx_rate##_n, \
3938 AR5K_4W_TX_DESC_CTL3_XMIT_RATE##_n); \
3939 }
3940
3941 _XTX_TRIES(1);
3942 _XTX_TRIES(2);
3943 _XTX_TRIES(3);
3944
3945#undef _XTX_TRIES
3946
3947 return 1;
3948 }
3949
3950 return 0;
3951}
3952
3953/*
3954 * Proccess the tx status descriptor on 5210/5211
3955 */
3956static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *ah,
3957 struct ath5k_desc *desc, struct ath5k_tx_status *ts)
3958{
3959 struct ath5k_hw_2w_tx_ctl *tx_ctl;
3960 struct ath5k_hw_tx_status *tx_status;
3961
3962 ATH5K_TRACE(ah->ah_sc);
3963
3964 tx_ctl = &desc->ud.ds_tx5210.tx_ctl;
3965 tx_status = &desc->ud.ds_tx5210.tx_stat;
3966
3967 /* No frame has been send or error */
3968 if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
3969 return -EINPROGRESS;
3970
3971 /*
3972 * Get descriptor status
3973 */
3974 ts->ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
3975 AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
3976 ts->ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
3977 AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
3978 ts->ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
3979 AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
3980 /*TODO: ts->ts_virtcol + test*/
3981 ts->ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
3982 AR5K_DESC_TX_STATUS1_SEQ_NUM);
3983 ts->ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
3984 AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
3985 ts->ts_antenna = 1;
3986 ts->ts_status = 0;
3987 ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_0,
3988 AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
3989
3990 if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
3991 if (tx_status->tx_status_0 &
3992 AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
3993 ts->ts_status |= AR5K_TXERR_XRETRY;
3994
3995 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
3996 ts->ts_status |= AR5K_TXERR_FIFO;
3997
3998 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
3999 ts->ts_status |= AR5K_TXERR_FILT;
4000 }
4001
4002 return 0;
4003}
4004
4005/*
4006 * Proccess a tx descriptor on 5212
4007 */
4008static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *ah,
4009 struct ath5k_desc *desc, struct ath5k_tx_status *ts)
4010{
4011 struct ath5k_hw_4w_tx_ctl *tx_ctl;
4012 struct ath5k_hw_tx_status *tx_status;
4013
4014 ATH5K_TRACE(ah->ah_sc);
4015
4016 tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
4017 tx_status = &desc->ud.ds_tx5212.tx_stat;
4018
4019 /* No frame has been send or error */
4020 if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
4021 return -EINPROGRESS;
4022
4023 /*
4024 * Get descriptor status
4025 */
4026 ts->ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
4027 AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
4028 ts->ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
4029 AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
4030 ts->ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
4031 AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
4032 ts->ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
4033 AR5K_DESC_TX_STATUS1_SEQ_NUM);
4034 ts->ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
4035 AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
4036 ts->ts_antenna = (tx_status->tx_status_1 &
4037 AR5K_DESC_TX_STATUS1_XMIT_ANTENNA) ? 2 : 1;
4038 ts->ts_status = 0;
4039
4040 switch (AR5K_REG_MS(tx_status->tx_status_1,
4041 AR5K_DESC_TX_STATUS1_FINAL_TS_INDEX)) {
4042 case 0:
4043 ts->ts_rate = tx_ctl->tx_control_3 &
4044 AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
4045 break;
4046 case 1:
4047 ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_3,
4048 AR5K_4W_TX_DESC_CTL3_XMIT_RATE1);
4049 ts->ts_longretry += AR5K_REG_MS(tx_ctl->tx_control_2,
4050 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES1);
4051 break;
4052 case 2:
4053 ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_3,
4054 AR5K_4W_TX_DESC_CTL3_XMIT_RATE2);
4055 ts->ts_longretry += AR5K_REG_MS(tx_ctl->tx_control_2,
4056 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES2);
4057 break;
4058 case 3:
4059 ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_3,
4060 AR5K_4W_TX_DESC_CTL3_XMIT_RATE3);
4061 ts->ts_longretry += AR5K_REG_MS(tx_ctl->tx_control_2,
4062 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES3);
4063 break;
4064 }
4065
4066 if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
4067 if (tx_status->tx_status_0 &
4068 AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
4069 ts->ts_status |= AR5K_TXERR_XRETRY;
4070
4071 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
4072 ts->ts_status |= AR5K_TXERR_FIFO;
4073
4074 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
4075 ts->ts_status |= AR5K_TXERR_FILT;
4076 }
4077
4078 return 0;
4079}
4080
4081/*
4082 * RX Descriptor
4083 */
4084
4085/*
4086 * Initialize an rx descriptor
4087 */
4088int ath5k_hw_setup_rx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
4089 u32 size, unsigned int flags)
4090{
4091 struct ath5k_hw_rx_ctl *rx_ctl;
4092
4093 ATH5K_TRACE(ah->ah_sc);
4094 rx_ctl = &desc->ud.ds_rx.rx_ctl;
4095
4096 /*
4097 * Clear the descriptor
4098 * If we don't clean the status descriptor,
4099 * while scanning we get too many results,
4100 * most of them virtual, after some secs
4101 * of scanning system hangs. M.F.
4102 */
4103 memset(&desc->ud.ds_rx, 0, sizeof(struct ath5k_hw_all_rx_desc));
4104
4105 /* Setup descriptor */
4106 rx_ctl->rx_control_1 = size & AR5K_DESC_RX_CTL1_BUF_LEN;
4107 if (unlikely(rx_ctl->rx_control_1 != size))
4108 return -EINVAL;
4109
4110 if (flags & AR5K_RXDESC_INTREQ)
4111 rx_ctl->rx_control_1 |= AR5K_DESC_RX_CTL1_INTREQ;
4112
4113 return 0;
4114}
4115
4116/*
4117 * Proccess the rx status descriptor on 5210/5211
4118 */
4119static int ath5k_hw_proc_5210_rx_status(struct ath5k_hw *ah,
4120 struct ath5k_desc *desc, struct ath5k_rx_status *rs)
4121{
4122 struct ath5k_hw_rx_status *rx_status;
4123
4124 rx_status = &desc->ud.ds_rx.u.rx_stat;
4125
4126 /* No frame received / not ready */
4127 if (unlikely((rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_DONE)
4128 == 0))
4129 return -EINPROGRESS;
4130
4131 /*
4132 * Frame receive status
4133 */
4134 rs->rs_datalen = rx_status->rx_status_0 &
4135 AR5K_5210_RX_DESC_STATUS0_DATA_LEN;
4136 rs->rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
4137 AR5K_5210_RX_DESC_STATUS0_RECEIVE_SIGNAL);
4138 rs->rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
4139 AR5K_5210_RX_DESC_STATUS0_RECEIVE_RATE);
4140 rs->rs_antenna = rx_status->rx_status_0 &
4141 AR5K_5210_RX_DESC_STATUS0_RECEIVE_ANTENNA;
4142 rs->rs_more = rx_status->rx_status_0 &
4143 AR5K_5210_RX_DESC_STATUS0_MORE;
4144 /* TODO: this timestamp is 13 bit, later on we assume 15 bit */
4145 rs->rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
4146 AR5K_5210_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
4147 rs->rs_status = 0;
4148 rs->rs_phyerr = 0;
4149
4150 /*
4151 * Key table status
4152 */
4153 if (rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_KEY_INDEX_VALID)
4154 rs->rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
4155 AR5K_5210_RX_DESC_STATUS1_KEY_INDEX);
4156 else
4157 rs->rs_keyix = AR5K_RXKEYIX_INVALID;
4158
4159 /*
4160 * Receive/descriptor errors
4161 */
4162 if ((rx_status->rx_status_1 &
4163 AR5K_5210_RX_DESC_STATUS1_FRAME_RECEIVE_OK) == 0) {
4164 if (rx_status->rx_status_1 &
4165 AR5K_5210_RX_DESC_STATUS1_CRC_ERROR)
4166 rs->rs_status |= AR5K_RXERR_CRC;
4167
4168 if (rx_status->rx_status_1 &
4169 AR5K_5210_RX_DESC_STATUS1_FIFO_OVERRUN)
4170 rs->rs_status |= AR5K_RXERR_FIFO;
4171
4172 if (rx_status->rx_status_1 &
4173 AR5K_5210_RX_DESC_STATUS1_PHY_ERROR) {
4174 rs->rs_status |= AR5K_RXERR_PHY;
4175 rs->rs_phyerr |= AR5K_REG_MS(rx_status->rx_status_1,
4176 AR5K_5210_RX_DESC_STATUS1_PHY_ERROR);
4177 }
4178
4179 if (rx_status->rx_status_1 &
4180 AR5K_5210_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
4181 rs->rs_status |= AR5K_RXERR_DECRYPT;
4182 }
4183
4184 return 0;
4185}
4186
4187/*
4188 * Proccess the rx status descriptor on 5212
4189 */
4190static int ath5k_hw_proc_5212_rx_status(struct ath5k_hw *ah,
4191 struct ath5k_desc *desc, struct ath5k_rx_status *rs)
4192{
4193 struct ath5k_hw_rx_status *rx_status;
4194 struct ath5k_hw_rx_error *rx_err;
4195
4196 ATH5K_TRACE(ah->ah_sc);
4197 rx_status = &desc->ud.ds_rx.u.rx_stat;
4198
4199 /* Overlay on error */
4200 rx_err = &desc->ud.ds_rx.u.rx_err;
4201
4202 /* No frame received / not ready */
4203 if (unlikely((rx_status->rx_status_1 & AR5K_5212_RX_DESC_STATUS1_DONE)
4204 == 0))
4205 return -EINPROGRESS;
4206
4207 /*
4208 * Frame receive status
4209 */
4210 rs->rs_datalen = rx_status->rx_status_0 &
4211 AR5K_5212_RX_DESC_STATUS0_DATA_LEN;
4212 rs->rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
4213 AR5K_5212_RX_DESC_STATUS0_RECEIVE_SIGNAL);
4214 rs->rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
4215 AR5K_5212_RX_DESC_STATUS0_RECEIVE_RATE);
4216 rs->rs_antenna = rx_status->rx_status_0 &
4217 AR5K_5212_RX_DESC_STATUS0_RECEIVE_ANTENNA;
4218 rs->rs_more = rx_status->rx_status_0 &
4219 AR5K_5212_RX_DESC_STATUS0_MORE;
4220 rs->rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
4221 AR5K_5212_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
4222 rs->rs_status = 0;
4223 rs->rs_phyerr = 0;
4224
4225 /*
4226 * Key table status
4227 */
4228 if (rx_status->rx_status_1 & AR5K_5212_RX_DESC_STATUS1_KEY_INDEX_VALID)
4229 rs->rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
4230 AR5K_5212_RX_DESC_STATUS1_KEY_INDEX);
4231 else
4232 rs->rs_keyix = AR5K_RXKEYIX_INVALID;
4233
4234 /*
4235 * Receive/descriptor errors
4236 */
4237 if ((rx_status->rx_status_1 &
4238 AR5K_5212_RX_DESC_STATUS1_FRAME_RECEIVE_OK) == 0) {
4239 if (rx_status->rx_status_1 &
4240 AR5K_5212_RX_DESC_STATUS1_CRC_ERROR)
4241 rs->rs_status |= AR5K_RXERR_CRC;
4242
4243 if (rx_status->rx_status_1 &
4244 AR5K_5212_RX_DESC_STATUS1_PHY_ERROR) {
4245 rs->rs_status |= AR5K_RXERR_PHY;
4246 rs->rs_phyerr |= AR5K_REG_MS(rx_err->rx_error_1,
4247 AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE);
4248 }
4249
4250 if (rx_status->rx_status_1 &
4251 AR5K_5212_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
4252 rs->rs_status |= AR5K_RXERR_DECRYPT;
4253
4254 if (rx_status->rx_status_1 &
4255 AR5K_5212_RX_DESC_STATUS1_MIC_ERROR)
4256 rs->rs_status |= AR5K_RXERR_MIC;
4257 }
4258
4259 return 0;
4260}
4261
4262
4263/****************\
4264 GPIO Functions
4265\****************/
4266
4267/*
4268 * Set led state
4269 */
4270void ath5k_hw_set_ledstate(struct ath5k_hw *ah, unsigned int state)
4271{
4272 u32 led;
4273 /*5210 has different led mode handling*/
4274 u32 led_5210;
4275
4276 ATH5K_TRACE(ah->ah_sc);
4277
4278 /*Reset led status*/
4279 if (ah->ah_version != AR5K_AR5210)
4280 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
4281 AR5K_PCICFG_LEDMODE | AR5K_PCICFG_LED);
4282 else
4283 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_LED);
4284
4285 /*
4286 * Some blinking values, define at your wish
4287 */
4288 switch (state) {
4289 case AR5K_LED_SCAN:
4290 case AR5K_LED_AUTH:
4291 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_PEND;
4292 led_5210 = AR5K_PCICFG_LED_PEND | AR5K_PCICFG_LED_BCTL;
4293 break;
4294
4295 case AR5K_LED_INIT:
4296 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_NONE;
4297 led_5210 = AR5K_PCICFG_LED_PEND;
4298 break;
4299
4300 case AR5K_LED_ASSOC:
4301 case AR5K_LED_RUN:
4302 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_ASSOC;
4303 led_5210 = AR5K_PCICFG_LED_ASSOC;
4304 break;
4305
4306 default:
4307 led = AR5K_PCICFG_LEDMODE_PROM | AR5K_PCICFG_LED_NONE;
4308 led_5210 = AR5K_PCICFG_LED_PEND;
4309 break;
4310 }
4311
4312 /*Write new status to the register*/
4313 if (ah->ah_version != AR5K_AR5210)
4314 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led);
4315 else
4316 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led_5210);
4317}
4318
4319/*
4320 * Set GPIO outputs
4321 */
4322int ath5k_hw_set_gpio_output(struct ath5k_hw *ah, u32 gpio)
4323{
4324 ATH5K_TRACE(ah->ah_sc);
4325 if (gpio > AR5K_NUM_GPIO)
4326 return -EINVAL;
4327
4328 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
4329 AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_OUT(gpio), AR5K_GPIOCR);
4330
4331 return 0;
4332}
4333
4334/*
4335 * Set GPIO inputs
4336 */
4337int ath5k_hw_set_gpio_input(struct ath5k_hw *ah, u32 gpio)
4338{
4339 ATH5K_TRACE(ah->ah_sc);
4340 if (gpio > AR5K_NUM_GPIO)
4341 return -EINVAL;
4342
4343 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
4344 AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_IN(gpio), AR5K_GPIOCR);
4345
4346 return 0;
4347}
4348
4349/*
4350 * Get GPIO state
4351 */
4352u32 ath5k_hw_get_gpio(struct ath5k_hw *ah, u32 gpio)
4353{
4354 ATH5K_TRACE(ah->ah_sc);
4355 if (gpio > AR5K_NUM_GPIO)
4356 return 0xffffffff;
4357
4358 /* GPIO input magic */
4359 return ((ath5k_hw_reg_read(ah, AR5K_GPIODI) & AR5K_GPIODI_M) >> gpio) &
4360 0x1;
4361}
4362
4363/*
4364 * Set GPIO state
4365 */
4366int ath5k_hw_set_gpio(struct ath5k_hw *ah, u32 gpio, u32 val)
4367{
4368 u32 data;
4369 ATH5K_TRACE(ah->ah_sc);
4370
4371 if (gpio > AR5K_NUM_GPIO)
4372 return -EINVAL;
4373
4374 /* GPIO output magic */
4375 data = ath5k_hw_reg_read(ah, AR5K_GPIODO);
4376
4377 data &= ~(1 << gpio);
4378 data |= (val & 1) << gpio;
4379
4380 ath5k_hw_reg_write(ah, data, AR5K_GPIODO);
4381
4382 return 0;
4383}
4384
4385/*
4386 * Initialize the GPIO interrupt (RFKill switch)
4387 */
4388void ath5k_hw_set_gpio_intr(struct ath5k_hw *ah, unsigned int gpio,
4389 u32 interrupt_level)
4390{
4391 u32 data;
4392
4393 ATH5K_TRACE(ah->ah_sc);
4394 if (gpio > AR5K_NUM_GPIO)
4395 return;
4396
4397 /*
4398 * Set the GPIO interrupt
4399 */
4400 data = (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &
4401 ~(AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_SELH |
4402 AR5K_GPIOCR_INT_ENA | AR5K_GPIOCR_OUT(gpio))) |
4403 (AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_ENA);
4404
4405 ath5k_hw_reg_write(ah, interrupt_level ? data :
4406 (data | AR5K_GPIOCR_INT_SELH), AR5K_GPIOCR);
4407
4408 ah->ah_imr |= AR5K_IMR_GPIO;
4409
4410 /* Enable GPIO interrupts */
4411 AR5K_REG_ENABLE_BITS(ah, AR5K_PIMR, AR5K_IMR_GPIO);
4412}
4413
4414
4415
4416
4417/****************\
4418 Misc functions
4419\****************/
4420
4421int ath5k_hw_get_capability(struct ath5k_hw *ah,
4422 enum ath5k_capability_type cap_type,
4423 u32 capability, u32 *result)
4424{
4425 ATH5K_TRACE(ah->ah_sc);
4426
4427 switch (cap_type) {
4428 case AR5K_CAP_NUM_TXQUEUES:
4429 if (result) {
4430 if (ah->ah_version == AR5K_AR5210)
4431 *result = AR5K_NUM_TX_QUEUES_NOQCU;
4432 else
4433 *result = AR5K_NUM_TX_QUEUES;
4434 goto yes;
4435 }
4436 case AR5K_CAP_VEOL:
4437 goto yes;
4438 case AR5K_CAP_COMPRESSION:
4439 if (ah->ah_version == AR5K_AR5212)
4440 goto yes;
4441 else
4442 goto no;
4443 case AR5K_CAP_BURST:
4444 goto yes;
4445 case AR5K_CAP_TPC:
4446 goto yes;
4447 case AR5K_CAP_BSSIDMASK:
4448 if (ah->ah_version == AR5K_AR5212)
4449 goto yes;
4450 else
4451 goto no;
4452 case AR5K_CAP_XR:
4453 if (ah->ah_version == AR5K_AR5212)
4454 goto yes;
4455 else
4456 goto no;
4457 default:
4458 goto no;
4459 }
4460
4461no:
4462 return -EINVAL;
4463yes:
4464 return 0;
4465}
4466
4467static int ath5k_hw_enable_pspoll(struct ath5k_hw *ah, u8 *bssid,
4468 u16 assoc_id)
4469{
4470 ATH5K_TRACE(ah->ah_sc);
4471
4472 if (ah->ah_version == AR5K_AR5210) {
4473 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
4474 AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
4475 return 0;
4476 }
4477
4478 return -EIO;
4479}
4480
4481static int ath5k_hw_disable_pspoll(struct ath5k_hw *ah)
4482{
4483 ATH5K_TRACE(ah->ah_sc);
4484
4485 if (ah->ah_version == AR5K_AR5210) {
4486 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
4487 AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
4488 return 0;
4489 }
4490
4491 return -EIO;
4492}
diff --git a/drivers/net/wireless/ath5k/initvals.c b/drivers/net/wireless/ath5k/initvals.c
index 2806b21bf90..ea2e1a20b49 100644
--- a/drivers/net/wireless/ath5k/initvals.c
+++ b/drivers/net/wireless/ath5k/initvals.c
@@ -1,9 +1,9 @@
1/* 1/*
2 * Initial register settings functions 2 * Initial register settings functions
3 * 3 *
4 * Copyright (c) 2004, 2005, 2006, 2007 Reyk Floeter <reyk@openbsd.org> 4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006, 2007 Nick Kossifidis <mickflemm@gmail.com> 5 * Copyright (c) 2006-2007 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com> 6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * 7 *
8 * Permission to use, copy, modify, and distribute this software for any 8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above 9 * purpose with or without fee is hereby granted, provided that the above
@@ -20,13 +20,9 @@
20 */ 20 */
21 21
22#include "ath5k.h" 22#include "ath5k.h"
23#include "base.h"
24#include "reg.h" 23#include "reg.h"
25 24#include "debug.h"
26/* 25#include "base.h"
27 * MAC/PHY REGISTERS
28 */
29
30 26
31/* 27/*
32 * Mode-independent initial register writes 28 * Mode-independent initial register writes
@@ -65,10 +61,10 @@ static const struct ath5k_ini ar5210_ini[] = {
65 { AR5K_TXCFG, AR5K_DMASIZE_128B }, 61 { AR5K_TXCFG, AR5K_DMASIZE_128B },
66 { AR5K_RXCFG, AR5K_DMASIZE_128B }, 62 { AR5K_RXCFG, AR5K_DMASIZE_128B },
67 { AR5K_CFG, AR5K_INIT_CFG }, 63 { AR5K_CFG, AR5K_INIT_CFG },
68 { AR5K_TOPS, AR5K_INIT_TOPS }, 64 { AR5K_TOPS, 8 },
69 { AR5K_RXNOFRM, AR5K_INIT_RXNOFRM }, 65 { AR5K_RXNOFRM, 8 },
70 { AR5K_RPGTO, AR5K_INIT_RPGTO }, 66 { AR5K_RPGTO, 0 },
71 { AR5K_TXNOFRM, AR5K_INIT_TXNOFRM }, 67 { AR5K_TXNOFRM, 0 },
72 { AR5K_SFR, 0 }, 68 { AR5K_SFR, 0 },
73 { AR5K_MIBC, 0 }, 69 { AR5K_MIBC, 0 },
74 { AR5K_MISC, 0 }, 70 { AR5K_MISC, 0 },
diff --git a/drivers/net/wireless/ath5k/pcu.c b/drivers/net/wireless/ath5k/pcu.c
new file mode 100644
index 00000000000..5a896d1e2a2
--- /dev/null
+++ b/drivers/net/wireless/ath5k/pcu.c
@@ -0,0 +1,1002 @@
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23/*********************************\
24* Protocol Control Unit Functions *
25\*********************************/
26
27#include "ath5k.h"
28#include "reg.h"
29#include "debug.h"
30#include "base.h"
31
32/*******************\
33* Generic functions *
34\*******************/
35
36/**
37 * ath5k_hw_set_opmode - Set PCU operating mode
38 *
39 * @ah: The &struct ath5k_hw
40 *
41 * Initialize PCU for the various operating modes (AP/STA etc)
42 *
43 * NOTE: ah->ah_op_mode must be set before calling this.
44 */
45int ath5k_hw_set_opmode(struct ath5k_hw *ah)
46{
47 u32 pcu_reg, beacon_reg, low_id, high_id;
48
49 pcu_reg = 0;
50 beacon_reg = 0;
51
52 ATH5K_TRACE(ah->ah_sc);
53
54 switch (ah->ah_op_mode) {
55 case IEEE80211_IF_TYPE_IBSS:
56 pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_DESC_ANTENNA |
57 (ah->ah_version == AR5K_AR5210 ?
58 AR5K_STA_ID1_NO_PSPOLL : 0);
59 beacon_reg |= AR5K_BCR_ADHOC;
60 break;
61
62 case IEEE80211_IF_TYPE_AP:
63 case IEEE80211_IF_TYPE_MESH_POINT:
64 pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_RTS_DEF_ANTENNA |
65 (ah->ah_version == AR5K_AR5210 ?
66 AR5K_STA_ID1_NO_PSPOLL : 0);
67 beacon_reg |= AR5K_BCR_AP;
68 break;
69
70 case IEEE80211_IF_TYPE_STA:
71 pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
72 (ah->ah_version == AR5K_AR5210 ?
73 AR5K_STA_ID1_PWR_SV : 0);
74 case IEEE80211_IF_TYPE_MNTR:
75 pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
76 (ah->ah_version == AR5K_AR5210 ?
77 AR5K_STA_ID1_NO_PSPOLL : 0);
78 break;
79
80 default:
81 return -EINVAL;
82 }
83
84 /*
85 * Set PCU registers
86 */
87 low_id = AR5K_LOW_ID(ah->ah_sta_id);
88 high_id = AR5K_HIGH_ID(ah->ah_sta_id);
89 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
90 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
91
92 /*
93 * Set Beacon Control Register on 5210
94 */
95 if (ah->ah_version == AR5K_AR5210)
96 ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
97
98 return 0;
99}
100
101/**
102 * ath5k_hw_update - Update mib counters (mac layer statistics)
103 *
104 * @ah: The &struct ath5k_hw
105 * @stats: The &struct ieee80211_low_level_stats we use to track
106 * statistics on the driver
107 *
108 * Reads MIB counters from PCU and updates sw statistics. Must be
109 * called after a MIB interrupt.
110 */
111void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
112 struct ieee80211_low_level_stats *stats)
113{
114 ATH5K_TRACE(ah->ah_sc);
115
116 /* Read-And-Clear */
117 stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
118 stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
119 stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
120 stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
121
122 /* XXX: Should we use this to track beacon count ?
123 * -we read it anyway to clear the register */
124 ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
125
126 /* Reset profile count registers on 5212*/
127 if (ah->ah_version == AR5K_AR5212) {
128 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
129 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
130 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
131 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
132 }
133}
134
135/**
136 * ath5k_hw_set_ack_bitrate - set bitrate for ACKs
137 *
138 * @ah: The &struct ath5k_hw
139 * @high: Flag to determine if we want to use high transmition rate
140 * for ACKs or not
141 *
142 * If high flag is set, we tell hw to use a set of control rates based on
143 * the current transmition rate (check out control_rates array inside reset.c).
144 * If not hw just uses the lowest rate available for the current modulation
145 * scheme being used (1Mbit for CCK and 6Mbits for OFDM).
146 */
147void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
148{
149 if (ah->ah_version != AR5K_AR5212)
150 return;
151 else {
152 u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
153 if (high)
154 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
155 else
156 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
157 }
158}
159
160
161/******************\
162* ACK/CTS Timeouts *
163\******************/
164
165/**
166 * ath5k_hw_het_ack_timeout - Get ACK timeout from PCU in usec
167 *
168 * @ah: The &struct ath5k_hw
169 */
170unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
171{
172 ATH5K_TRACE(ah->ah_sc);
173
174 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
175 AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
176}
177
178/**
179 * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
180 *
181 * @ah: The &struct ath5k_hw
182 * @timeout: Timeout in usec
183 */
184int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
185{
186 ATH5K_TRACE(ah->ah_sc);
187 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
188 ah->ah_turbo) <= timeout)
189 return -EINVAL;
190
191 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
192 ath5k_hw_htoclock(timeout, ah->ah_turbo));
193
194 return 0;
195}
196
197/**
198 * ath5k_hw_get_cts_timeout - Get CTS timeout from PCU in usec
199 *
200 * @ah: The &struct ath5k_hw
201 */
202unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
203{
204 ATH5K_TRACE(ah->ah_sc);
205 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
206 AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
207}
208
209/**
210 * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU
211 *
212 * @ah: The &struct ath5k_hw
213 * @timeout: Timeout in usec
214 */
215int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
216{
217 ATH5K_TRACE(ah->ah_sc);
218 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
219 ah->ah_turbo) <= timeout)
220 return -EINVAL;
221
222 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
223 ath5k_hw_htoclock(timeout, ah->ah_turbo));
224
225 return 0;
226}
227
228
229/****************\
230* BSSID handling *
231\****************/
232
233/**
234 * ath5k_hw_get_lladdr - Get station id
235 *
236 * @ah: The &struct ath5k_hw
237 * @mac: The card's mac address
238 *
239 * Initialize ah->ah_sta_id using the mac address provided
240 * (just a memcpy).
241 *
242 * TODO: Remove it once we merge ath5k_softc and ath5k_hw
243 */
244void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
245{
246 ATH5K_TRACE(ah->ah_sc);
247 memcpy(mac, ah->ah_sta_id, ETH_ALEN);
248}
249
250/**
251 * ath5k_hw_set_lladdr - Set station id
252 *
253 * @ah: The &struct ath5k_hw
254 * @mac: The card's mac address
255 *
256 * Set station id on hw using the provided mac address
257 */
258int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
259{
260 u32 low_id, high_id;
261
262 ATH5K_TRACE(ah->ah_sc);
263 /* Set new station ID */
264 memcpy(ah->ah_sta_id, mac, ETH_ALEN);
265
266 low_id = AR5K_LOW_ID(mac);
267 high_id = AR5K_HIGH_ID(mac);
268
269 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
270 ath5k_hw_reg_write(ah, high_id, AR5K_STA_ID1);
271
272 return 0;
273}
274
275/**
276 * ath5k_hw_set_associd - Set BSSID for association
277 *
278 * @ah: The &struct ath5k_hw
279 * @bssid: BSSID
280 * @assoc_id: Assoc id
281 *
282 * Sets the BSSID which trigers the "SME Join" operation
283 */
284void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
285{
286 u32 low_id, high_id;
287 u16 tim_offset = 0;
288
289 /*
290 * Set simple BSSID mask on 5212
291 */
292 if (ah->ah_version == AR5K_AR5212) {
293 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_BSS_IDM0);
294 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_BSS_IDM1);
295 }
296
297 /*
298 * Set BSSID which triggers the "SME Join" operation
299 */
300 low_id = AR5K_LOW_ID(bssid);
301 high_id = AR5K_HIGH_ID(bssid);
302 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
303 ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
304 AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
305
306 if (assoc_id == 0) {
307 ath5k_hw_disable_pspoll(ah);
308 return;
309 }
310
311 AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
312 tim_offset ? tim_offset + 4 : 0);
313
314 ath5k_hw_enable_pspoll(ah, NULL, 0);
315}
316
317/**
318 * ath5k_hw_set_bssid_mask - filter out bssids we listen
319 *
320 * @ah: the &struct ath5k_hw
321 * @mask: the bssid_mask, a u8 array of size ETH_ALEN
322 *
323 * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
324 * which bits of the interface's MAC address should be looked at when trying
325 * to decide which packets to ACK. In station mode and AP mode with a single
326 * BSS every bit matters since we lock to only one BSS. In AP mode with
327 * multiple BSSes (virtual interfaces) not every bit matters because hw must
328 * accept frames for all BSSes and so we tweak some bits of our mac address
329 * in order to have multiple BSSes.
330 *
331 * NOTE: This is a simple filter and does *not* filter out all
332 * relevant frames. Some frames that are not for us might get ACKed from us
333 * by PCU because they just match the mask.
334 *
335 * When handling multiple BSSes you can get the BSSID mask by computing the
336 * set of ~ ( MAC XOR BSSID ) for all bssids we handle.
337 *
338 * When you do this you are essentially computing the common bits of all your
339 * BSSes. Later it is assumed the harware will "and" (&) the BSSID mask with
340 * the MAC address to obtain the relevant bits and compare the result with
341 * (frame's BSSID & mask) to see if they match.
342 */
343/*
344 * Simple example: on your card you have have two BSSes you have created with
345 * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
346 * There is another BSSID-03 but you are not part of it. For simplicity's sake,
347 * assuming only 4 bits for a mac address and for BSSIDs you can then have:
348 *
349 * \
350 * MAC: 0001 |
351 * BSSID-01: 0100 | --> Belongs to us
352 * BSSID-02: 1001 |
353 * /
354 * -------------------
355 * BSSID-03: 0110 | --> External
356 * -------------------
357 *
358 * Our bssid_mask would then be:
359 *
360 * On loop iteration for BSSID-01:
361 * ~(0001 ^ 0100) -> ~(0101)
362 * -> 1010
363 * bssid_mask = 1010
364 *
365 * On loop iteration for BSSID-02:
366 * bssid_mask &= ~(0001 ^ 1001)
367 * bssid_mask = (1010) & ~(0001 ^ 1001)
368 * bssid_mask = (1010) & ~(1001)
369 * bssid_mask = (1010) & (0110)
370 * bssid_mask = 0010
371 *
372 * A bssid_mask of 0010 means "only pay attention to the second least
373 * significant bit". This is because its the only bit common
374 * amongst the MAC and all BSSIDs we support. To findout what the real
375 * common bit is we can simply "&" the bssid_mask now with any BSSID we have
376 * or our MAC address (we assume the hardware uses the MAC address).
377 *
378 * Now, suppose there's an incoming frame for BSSID-03:
379 *
380 * IFRAME-01: 0110
381 *
382 * An easy eye-inspeciton of this already should tell you that this frame
383 * will not pass our check. This is beacuse the bssid_mask tells the
384 * hardware to only look at the second least significant bit and the
385 * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
386 * as 1, which does not match 0.
387 *
388 * So with IFRAME-01 we *assume* the hardware will do:
389 *
390 * allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
391 * --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
392 * --> allow = (0010) == 0000 ? 1 : 0;
393 * --> allow = 0
394 *
395 * Lets now test a frame that should work:
396 *
397 * IFRAME-02: 0001 (we should allow)
398 *
399 * allow = (0001 & 1010) == 1010
400 *
401 * allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
402 * --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0;
403 * --> allow = (0010) == (0010)
404 * --> allow = 1
405 *
406 * Other examples:
407 *
408 * IFRAME-03: 0100 --> allowed
409 * IFRAME-04: 1001 --> allowed
410 * IFRAME-05: 1101 --> allowed but its not for us!!!
411 *
412 */
413int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
414{
415 u32 low_id, high_id;
416 ATH5K_TRACE(ah->ah_sc);
417
418 if (ah->ah_version == AR5K_AR5212) {
419 low_id = AR5K_LOW_ID(mask);
420 high_id = AR5K_HIGH_ID(mask);
421
422 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
423 ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
424
425 return 0;
426 }
427
428 return -EIO;
429}
430
431
432/************\
433* RX Control *
434\************/
435
436/**
437 * ath5k_hw_start_rx_pcu - Start RX engine
438 *
439 * @ah: The &struct ath5k_hw
440 *
441 * Starts RX engine on PCU so that hw can process RXed frames
442 * (ACK etc).
443 *
444 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
445 * TODO: Init ANI here
446 */
447void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
448{
449 ATH5K_TRACE(ah->ah_sc);
450 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
451}
452
453/**
454 * at5k_hw_stop_rx_pcu - Stop RX engine
455 *
456 * @ah: The &struct ath5k_hw
457 *
458 * Stops RX engine on PCU
459 *
460 * TODO: Detach ANI here
461 */
462void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
463{
464 ATH5K_TRACE(ah->ah_sc);
465 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
466}
467
468/*
469 * Set multicast filter
470 */
471void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
472{
473 ATH5K_TRACE(ah->ah_sc);
474 /* Set the multicat filter */
475 ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
476 ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
477}
478
479/*
480 * Set multicast filter by index
481 */
482int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
483{
484
485 ATH5K_TRACE(ah->ah_sc);
486 if (index >= 64)
487 return -EINVAL;
488 else if (index >= 32)
489 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
490 (1 << (index - 32)));
491 else
492 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
493
494 return 0;
495}
496
497/*
498 * Clear Multicast filter by index
499 */
500int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
501{
502
503 ATH5K_TRACE(ah->ah_sc);
504 if (index >= 64)
505 return -EINVAL;
506 else if (index >= 32)
507 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
508 (1 << (index - 32)));
509 else
510 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
511
512 return 0;
513}
514
515/**
516 * ath5k_hw_get_rx_filter - Get current rx filter
517 *
518 * @ah: The &struct ath5k_hw
519 *
520 * Returns the RX filter by reading rx filter and
521 * phy error filter registers. RX filter is used
522 * to set the allowed frame types that PCU will accept
523 * and pass to the driver. For a list of frame types
524 * check out reg.h.
525 */
526u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
527{
528 u32 data, filter = 0;
529
530 ATH5K_TRACE(ah->ah_sc);
531 filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
532
533 /*Radar detection for 5212*/
534 if (ah->ah_version == AR5K_AR5212) {
535 data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
536
537 if (data & AR5K_PHY_ERR_FIL_RADAR)
538 filter |= AR5K_RX_FILTER_RADARERR;
539 if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
540 filter |= AR5K_RX_FILTER_PHYERR;
541 }
542
543 return filter;
544}
545
546/**
547 * ath5k_hw_set_rx_filter - Set rx filter
548 *
549 * @ah: The &struct ath5k_hw
550 * @filter: RX filter mask (see reg.h)
551 *
552 * Sets RX filter register and also handles PHY error filter
553 * register on 5212 and newer chips so that we have proper PHY
554 * error reporting.
555 */
556void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
557{
558 u32 data = 0;
559
560 ATH5K_TRACE(ah->ah_sc);
561
562 /* Set PHY error filter register on 5212*/
563 if (ah->ah_version == AR5K_AR5212) {
564 if (filter & AR5K_RX_FILTER_RADARERR)
565 data |= AR5K_PHY_ERR_FIL_RADAR;
566 if (filter & AR5K_RX_FILTER_PHYERR)
567 data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
568 }
569
570 /*
571 * The AR5210 uses promiscous mode to detect radar activity
572 */
573 if (ah->ah_version == AR5K_AR5210 &&
574 (filter & AR5K_RX_FILTER_RADARERR)) {
575 filter &= ~AR5K_RX_FILTER_RADARERR;
576 filter |= AR5K_RX_FILTER_PROM;
577 }
578
579 /*Zero length DMA*/
580 if (data)
581 AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
582 else
583 AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
584
585 /*Write RX Filter register*/
586 ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
587
588 /*Write PHY error filter register on 5212*/
589 if (ah->ah_version == AR5K_AR5212)
590 ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
591
592}
593
594
595/****************\
596* Beacon control *
597\****************/
598
599/**
600 * ath5k_hw_get_tsf32 - Get a 32bit TSF
601 *
602 * @ah: The &struct ath5k_hw
603 *
604 * Returns lower 32 bits of current TSF
605 */
606u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
607{
608 ATH5K_TRACE(ah->ah_sc);
609 return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
610}
611
612/**
613 * ath5k_hw_get_tsf64 - Get the full 64bit TSF
614 *
615 * @ah: The &struct ath5k_hw
616 *
617 * Returns the current TSF
618 */
619u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
620{
621 u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
622 ATH5K_TRACE(ah->ah_sc);
623
624 return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
625}
626
627/**
628 * ath5k_hw_reset_tsf - Force a TSF reset
629 *
630 * @ah: The &struct ath5k_hw
631 *
632 * Forces a TSF reset on PCU
633 */
634void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
635{
636 ATH5K_TRACE(ah->ah_sc);
637 AR5K_REG_ENABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_RESET_TSF);
638}
639
640/*
641 * Initialize beacon timers
642 */
643void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
644{
645 u32 timer1, timer2, timer3;
646
647 ATH5K_TRACE(ah->ah_sc);
648 /*
649 * Set the additional timers by mode
650 */
651 switch (ah->ah_op_mode) {
652 case IEEE80211_IF_TYPE_STA:
653 if (ah->ah_version == AR5K_AR5210) {
654 timer1 = 0xffffffff;
655 timer2 = 0xffffffff;
656 } else {
657 timer1 = 0x0000ffff;
658 timer2 = 0x0007ffff;
659 }
660 break;
661
662 default:
663 timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
664 timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
665 }
666
667 timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
668
669 /*
670 * Set the beacon register and enable all timers.
671 * (next beacon, DMA beacon, software beacon, ATIM window time)
672 */
673 ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
674 ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
675 ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
676 ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
677
678 ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
679 AR5K_BEACON_RESET_TSF | AR5K_BEACON_ENABLE),
680 AR5K_BEACON);
681}
682
683#if 0
684/*
685 * Set beacon timers
686 */
687int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
688 const struct ath5k_beacon_state *state)
689{
690 u32 cfp_period, next_cfp, dtim, interval, next_beacon;
691
692 /*
693 * TODO: should be changed through *state
694 * review struct ath5k_beacon_state struct
695 *
696 * XXX: These are used for cfp period bellow, are they
697 * ok ? Is it O.K. for tsf here to be 0 or should we use
698 * get_tsf ?
699 */
700 u32 dtim_count = 0; /* XXX */
701 u32 cfp_count = 0; /* XXX */
702 u32 tsf = 0; /* XXX */
703
704 ATH5K_TRACE(ah->ah_sc);
705 /* Return on an invalid beacon state */
706 if (state->bs_interval < 1)
707 return -EINVAL;
708
709 interval = state->bs_interval;
710 dtim = state->bs_dtim_period;
711
712 /*
713 * PCF support?
714 */
715 if (state->bs_cfp_period > 0) {
716 /*
717 * Enable PCF mode and set the CFP
718 * (Contention Free Period) and timer registers
719 */
720 cfp_period = state->bs_cfp_period * state->bs_dtim_period *
721 state->bs_interval;
722 next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
723 state->bs_interval;
724
725 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
726 AR5K_STA_ID1_DEFAULT_ANTENNA |
727 AR5K_STA_ID1_PCF);
728 ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
729 ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
730 AR5K_CFP_DUR);
731 ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
732 next_cfp)) << 3, AR5K_TIMER2);
733 } else {
734 /* Disable PCF mode */
735 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
736 AR5K_STA_ID1_DEFAULT_ANTENNA |
737 AR5K_STA_ID1_PCF);
738 }
739
740 /*
741 * Enable the beacon timer register
742 */
743 ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
744
745 /*
746 * Start the beacon timers
747 */
748 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &
749 ~(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
750 AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
751 AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
752 AR5K_BEACON_PERIOD), AR5K_BEACON);
753
754 /*
755 * Write new beacon miss threshold, if it appears to be valid
756 * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
757 * and return if its not in range. We can test this by reading value and
758 * setting value to a largest value and seeing which values register.
759 */
760
761 AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
762 state->bs_bmiss_threshold);
763
764 /*
765 * Set sleep control register
766 * XXX: Didn't find this in 5210 code but since this register
767 * exists also in ar5k's 5210 headers i leave it as common code.
768 */
769 AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
770 (state->bs_sleep_duration - 3) << 3);
771
772 /*
773 * Set enhanced sleep registers on 5212
774 */
775 if (ah->ah_version == AR5K_AR5212) {
776 if (state->bs_sleep_duration > state->bs_interval &&
777 roundup(state->bs_sleep_duration, interval) ==
778 state->bs_sleep_duration)
779 interval = state->bs_sleep_duration;
780
781 if (state->bs_sleep_duration > dtim && (dtim == 0 ||
782 roundup(state->bs_sleep_duration, dtim) ==
783 state->bs_sleep_duration))
784 dtim = state->bs_sleep_duration;
785
786 if (interval > dtim)
787 return -EINVAL;
788
789 next_beacon = interval == dtim ? state->bs_next_dtim :
790 state->bs_next_beacon;
791
792 ath5k_hw_reg_write(ah,
793 AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
794 AR5K_SLEEP0_NEXT_DTIM) |
795 AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
796 AR5K_SLEEP0_ENH_SLEEP_EN |
797 AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
798
799 ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
800 AR5K_SLEEP1_NEXT_TIM) |
801 AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
802
803 ath5k_hw_reg_write(ah,
804 AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
805 AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
806 }
807
808 return 0;
809}
810
811/*
812 * Reset beacon timers
813 */
814void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
815{
816 ATH5K_TRACE(ah->ah_sc);
817 /*
818 * Disable beacon timer
819 */
820 ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
821
822 /*
823 * Disable some beacon register values
824 */
825 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
826 AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
827 ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
828}
829
830/*
831 * Wait for beacon queue to finish
832 */
833int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
834{
835 unsigned int i;
836 int ret;
837
838 ATH5K_TRACE(ah->ah_sc);
839
840 /* 5210 doesn't have QCU*/
841 if (ah->ah_version == AR5K_AR5210) {
842 /*
843 * Wait for beaconn queue to finish by checking
844 * Control Register and Beacon Status Register.
845 */
846 for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
847 if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
848 ||
849 !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
850 break;
851 udelay(10);
852 }
853
854 /* Timeout... */
855 if (i <= 0) {
856 /*
857 * Re-schedule the beacon queue
858 */
859 ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
860 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
861 AR5K_BCR);
862
863 return -EIO;
864 }
865 ret = 0;
866 } else {
867 /*5211/5212*/
868 ret = ath5k_hw_register_timeout(ah,
869 AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
870 AR5K_QCU_STS_FRMPENDCNT, 0, false);
871
872 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
873 return -EIO;
874 }
875
876 return ret;
877}
878#endif
879
880
881/*********************\
882* Key table functions *
883\*********************/
884
885/*
886 * Reset a key entry on the table
887 */
888int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
889{
890 unsigned int i;
891
892 ATH5K_TRACE(ah->ah_sc);
893 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
894
895 for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
896 ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
897
898 /*
899 * Set NULL encryption on AR5212+
900 *
901 * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5)
902 * AR5K_KEYTABLE_TYPE_NULL -> 0x00000007
903 *
904 * Note2: Windows driver (ndiswrapper) sets this to
905 * 0x00000714 instead of 0x00000007
906 */
907 if (ah->ah_version > AR5K_AR5211)
908 ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
909 AR5K_KEYTABLE_TYPE(entry));
910
911 return 0;
912}
913
914/*
915 * Check if a table entry is valid
916 */
917int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
918{
919 ATH5K_TRACE(ah->ah_sc);
920 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
921
922 /* Check the validation flag at the end of the entry */
923 return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
924 AR5K_KEYTABLE_VALID;
925}
926
927/*
928 * Set a key entry on the table
929 */
930int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
931 const struct ieee80211_key_conf *key, const u8 *mac)
932{
933 unsigned int i;
934 __le32 key_v[5] = {};
935 u32 keytype;
936
937 ATH5K_TRACE(ah->ah_sc);
938
939 /* key->keylen comes in from mac80211 in bytes */
940
941 if (key->keylen > AR5K_KEYTABLE_SIZE / 8)
942 return -EOPNOTSUPP;
943
944 switch (key->keylen) {
945 /* WEP 40-bit = 40-bit entered key + 24 bit IV = 64-bit */
946 case 40 / 8:
947 memcpy(&key_v[0], key->key, 5);
948 keytype = AR5K_KEYTABLE_TYPE_40;
949 break;
950
951 /* WEP 104-bit = 104-bit entered key + 24-bit IV = 128-bit */
952 case 104 / 8:
953 memcpy(&key_v[0], &key->key[0], 6);
954 memcpy(&key_v[2], &key->key[6], 6);
955 memcpy(&key_v[4], &key->key[12], 1);
956 keytype = AR5K_KEYTABLE_TYPE_104;
957 break;
958 /* WEP 128-bit = 128-bit entered key + 24 bit IV = 152-bit */
959 case 128 / 8:
960 memcpy(&key_v[0], &key->key[0], 6);
961 memcpy(&key_v[2], &key->key[6], 6);
962 memcpy(&key_v[4], &key->key[12], 4);
963 keytype = AR5K_KEYTABLE_TYPE_128;
964 break;
965
966 default:
967 return -EINVAL; /* shouldn't happen */
968 }
969
970 for (i = 0; i < ARRAY_SIZE(key_v); i++)
971 ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
972 AR5K_KEYTABLE_OFF(entry, i));
973
974 ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
975
976 return ath5k_hw_set_key_lladdr(ah, entry, mac);
977}
978
979int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
980{
981 u32 low_id, high_id;
982
983 ATH5K_TRACE(ah->ah_sc);
984 /* Invalid entry (key table overflow) */
985 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
986
987 /* MAC may be NULL if it's a broadcast key. In this case no need to
988 * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
989 if (unlikely(mac == NULL)) {
990 low_id = 0xffffffff;
991 high_id = 0xffff | AR5K_KEYTABLE_VALID;
992 } else {
993 low_id = AR5K_LOW_ID(mac);
994 high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
995 }
996
997 ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
998 ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
999
1000 return 0;
1001}
1002
diff --git a/drivers/net/wireless/ath5k/phy.c b/drivers/net/wireless/ath5k/phy.c
index fa0d47faf57..1ea8ed962d2 100644
--- a/drivers/net/wireless/ath5k/phy.c
+++ b/drivers/net/wireless/ath5k/phy.c
@@ -1,9 +1,9 @@
1/* 1/*
2 * PHY functions 2 * PHY functions
3 * 3 *
4 * Copyright (c) 2004, 2005, 2006, 2007 Reyk Floeter <reyk@openbsd.org> 4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006, 2007 Nick Kossifidis <mickflemm@gmail.com> 5 * Copyright (c) 2006-2007 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com> 6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * 7 *
8 * Permission to use, copy, modify, and distribute this software for any 8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above 9 * purpose with or without fee is hereby granted, provided that the above
@@ -19,6 +19,8 @@
19 * 19 *
20 */ 20 */
21 21
22#define _ATH5K_PHY
23
22#include <linux/delay.h> 24#include <linux/delay.h>
23 25
24#include "ath5k.h" 26#include "ath5k.h"
@@ -2501,3 +2503,5 @@ int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, unsigned int power)
2501 2503
2502 return ath5k_hw_txpower(ah, channel, power); 2504 return ath5k_hw_txpower(ah, channel, power);
2503} 2505}
2506
2507#undef _ATH5K_PHY
diff --git a/drivers/net/wireless/ath5k/qcu.c b/drivers/net/wireless/ath5k/qcu.c
new file mode 100644
index 00000000000..2e20f7816ca
--- /dev/null
+++ b/drivers/net/wireless/ath5k/qcu.c
@@ -0,0 +1,488 @@
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 */
18
19/********************************************\
20Queue Control Unit, DFS Control Unit Functions
21\********************************************/
22
23#include "ath5k.h"
24#include "reg.h"
25#include "debug.h"
26#include "base.h"
27
28/*
29 * Get properties for a transmit queue
30 */
31int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue,
32 struct ath5k_txq_info *queue_info)
33{
34 ATH5K_TRACE(ah->ah_sc);
35 memcpy(queue_info, &ah->ah_txq[queue], sizeof(struct ath5k_txq_info));
36 return 0;
37}
38
39/*
40 * Set properties for a transmit queue
41 */
42int ath5k_hw_set_tx_queueprops(struct ath5k_hw *ah, int queue,
43 const struct ath5k_txq_info *queue_info)
44{
45 ATH5K_TRACE(ah->ah_sc);
46 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
47
48 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
49 return -EIO;
50
51 memcpy(&ah->ah_txq[queue], queue_info, sizeof(struct ath5k_txq_info));
52
53 /*XXX: Is this supported on 5210 ?*/
54 if ((queue_info->tqi_type == AR5K_TX_QUEUE_DATA &&
55 ((queue_info->tqi_subtype == AR5K_WME_AC_VI) ||
56 (queue_info->tqi_subtype == AR5K_WME_AC_VO))) ||
57 queue_info->tqi_type == AR5K_TX_QUEUE_UAPSD)
58 ah->ah_txq[queue].tqi_flags |= AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS;
59
60 return 0;
61}
62
63/*
64 * Initialize a transmit queue
65 */
66int ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type,
67 struct ath5k_txq_info *queue_info)
68{
69 unsigned int queue;
70 int ret;
71
72 ATH5K_TRACE(ah->ah_sc);
73
74 /*
75 * Get queue by type
76 */
77 /*5210 only has 2 queues*/
78 if (ah->ah_version == AR5K_AR5210) {
79 switch (queue_type) {
80 case AR5K_TX_QUEUE_DATA:
81 queue = AR5K_TX_QUEUE_ID_NOQCU_DATA;
82 break;
83 case AR5K_TX_QUEUE_BEACON:
84 case AR5K_TX_QUEUE_CAB:
85 queue = AR5K_TX_QUEUE_ID_NOQCU_BEACON;
86 break;
87 default:
88 return -EINVAL;
89 }
90 } else {
91 switch (queue_type) {
92 case AR5K_TX_QUEUE_DATA:
93 for (queue = AR5K_TX_QUEUE_ID_DATA_MIN;
94 ah->ah_txq[queue].tqi_type !=
95 AR5K_TX_QUEUE_INACTIVE; queue++) {
96
97 if (queue > AR5K_TX_QUEUE_ID_DATA_MAX)
98 return -EINVAL;
99 }
100 break;
101 case AR5K_TX_QUEUE_UAPSD:
102 queue = AR5K_TX_QUEUE_ID_UAPSD;
103 break;
104 case AR5K_TX_QUEUE_BEACON:
105 queue = AR5K_TX_QUEUE_ID_BEACON;
106 break;
107 case AR5K_TX_QUEUE_CAB:
108 queue = AR5K_TX_QUEUE_ID_CAB;
109 break;
110 case AR5K_TX_QUEUE_XR_DATA:
111 if (ah->ah_version != AR5K_AR5212)
112 ATH5K_ERR(ah->ah_sc,
113 "XR data queues only supported in"
114 " 5212!\n");
115 queue = AR5K_TX_QUEUE_ID_XR_DATA;
116 break;
117 default:
118 return -EINVAL;
119 }
120 }
121
122 /*
123 * Setup internal queue structure
124 */
125 memset(&ah->ah_txq[queue], 0, sizeof(struct ath5k_txq_info));
126 ah->ah_txq[queue].tqi_type = queue_type;
127
128 if (queue_info != NULL) {
129 queue_info->tqi_type = queue_type;
130 ret = ath5k_hw_set_tx_queueprops(ah, queue, queue_info);
131 if (ret)
132 return ret;
133 }
134
135 /*
136 * We use ah_txq_status to hold a temp value for
137 * the Secondary interrupt mask registers on 5211+
138 * check out ath5k_hw_reset_tx_queue
139 */
140 AR5K_Q_ENABLE_BITS(ah->ah_txq_status, queue);
141
142 return queue;
143}
144
145/*
146 * Get number of pending frames
147 * for a specific queue [5211+]
148 */
149u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue)
150{
151 ATH5K_TRACE(ah->ah_sc);
152 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
153
154 /* Return if queue is declared inactive */
155 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
156 return false;
157
158 /* XXX: How about AR5K_CFG_TXCNT ? */
159 if (ah->ah_version == AR5K_AR5210)
160 return false;
161
162 return AR5K_QUEUE_STATUS(queue) & AR5K_QCU_STS_FRMPENDCNT;
163}
164
165/*
166 * Set a transmit queue inactive
167 */
168void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue)
169{
170 ATH5K_TRACE(ah->ah_sc);
171 if (WARN_ON(queue >= ah->ah_capabilities.cap_queues.q_tx_num))
172 return;
173
174 /* This queue will be skipped in further operations */
175 ah->ah_txq[queue].tqi_type = AR5K_TX_QUEUE_INACTIVE;
176 /*For SIMR setup*/
177 AR5K_Q_DISABLE_BITS(ah->ah_txq_status, queue);
178}
179
180/*
181 * Set DFS properties for a transmit queue on DCU
182 */
183int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue)
184{
185 u32 cw_min, cw_max, retry_lg, retry_sh;
186 struct ath5k_txq_info *tq = &ah->ah_txq[queue];
187
188 ATH5K_TRACE(ah->ah_sc);
189 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
190
191 tq = &ah->ah_txq[queue];
192
193 if (tq->tqi_type == AR5K_TX_QUEUE_INACTIVE)
194 return 0;
195
196 if (ah->ah_version == AR5K_AR5210) {
197 /* Only handle data queues, others will be ignored */
198 if (tq->tqi_type != AR5K_TX_QUEUE_DATA)
199 return 0;
200
201 /* Set Slot time */
202 ath5k_hw_reg_write(ah, ah->ah_turbo ?
203 AR5K_INIT_SLOT_TIME_TURBO : AR5K_INIT_SLOT_TIME,
204 AR5K_SLOT_TIME);
205 /* Set ACK_CTS timeout */
206 ath5k_hw_reg_write(ah, ah->ah_turbo ?
207 AR5K_INIT_ACK_CTS_TIMEOUT_TURBO :
208 AR5K_INIT_ACK_CTS_TIMEOUT, AR5K_SLOT_TIME);
209 /* Set Transmit Latency */
210 ath5k_hw_reg_write(ah, ah->ah_turbo ?
211 AR5K_INIT_TRANSMIT_LATENCY_TURBO :
212 AR5K_INIT_TRANSMIT_LATENCY, AR5K_USEC_5210);
213
214 /* Set IFS0 */
215 if (ah->ah_turbo) {
216 ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS_TURBO +
217 (ah->ah_aifs + tq->tqi_aifs) *
218 AR5K_INIT_SLOT_TIME_TURBO) <<
219 AR5K_IFS0_DIFS_S) | AR5K_INIT_SIFS_TURBO,
220 AR5K_IFS0);
221 } else {
222 ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS +
223 (ah->ah_aifs + tq->tqi_aifs) *
224 AR5K_INIT_SLOT_TIME) << AR5K_IFS0_DIFS_S) |
225 AR5K_INIT_SIFS, AR5K_IFS0);
226 }
227
228 /* Set IFS1 */
229 ath5k_hw_reg_write(ah, ah->ah_turbo ?
230 AR5K_INIT_PROTO_TIME_CNTRL_TURBO :
231 AR5K_INIT_PROTO_TIME_CNTRL, AR5K_IFS1);
232 /* Set AR5K_PHY_SETTLING */
233 ath5k_hw_reg_write(ah, ah->ah_turbo ?
234 (ath5k_hw_reg_read(ah, AR5K_PHY_SETTLING) & ~0x7F)
235 | 0x38 :
236 (ath5k_hw_reg_read(ah, AR5K_PHY_SETTLING) & ~0x7F)
237 | 0x1C,
238 AR5K_PHY_SETTLING);
239 /* Set Frame Control Register */
240 ath5k_hw_reg_write(ah, ah->ah_turbo ?
241 (AR5K_PHY_FRAME_CTL_INI | AR5K_PHY_TURBO_MODE |
242 AR5K_PHY_TURBO_SHORT | 0x2020) :
243 (AR5K_PHY_FRAME_CTL_INI | 0x1020),
244 AR5K_PHY_FRAME_CTL_5210);
245 }
246
247 /*
248 * Calculate cwmin/max by channel mode
249 */
250 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN;
251 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX;
252 ah->ah_aifs = AR5K_TUNE_AIFS;
253 /*XR is only supported on 5212*/
254 if (IS_CHAN_XR(ah->ah_current_channel) &&
255 ah->ah_version == AR5K_AR5212) {
256 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_XR;
257 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_XR;
258 ah->ah_aifs = AR5K_TUNE_AIFS_XR;
259 /*B mode is not supported on 5210*/
260 } else if (IS_CHAN_B(ah->ah_current_channel) &&
261 ah->ah_version != AR5K_AR5210) {
262 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_11B;
263 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_11B;
264 ah->ah_aifs = AR5K_TUNE_AIFS_11B;
265 }
266
267 cw_min = 1;
268 while (cw_min < ah->ah_cw_min)
269 cw_min = (cw_min << 1) | 1;
270
271 cw_min = tq->tqi_cw_min < 0 ? (cw_min >> (-tq->tqi_cw_min)) :
272 ((cw_min << tq->tqi_cw_min) + (1 << tq->tqi_cw_min) - 1);
273 cw_max = tq->tqi_cw_max < 0 ? (cw_max >> (-tq->tqi_cw_max)) :
274 ((cw_max << tq->tqi_cw_max) + (1 << tq->tqi_cw_max) - 1);
275
276 /*
277 * Calculate and set retry limits
278 */
279 if (ah->ah_software_retry) {
280 /* XXX Need to test this */
281 retry_lg = ah->ah_limit_tx_retries;
282 retry_sh = retry_lg = retry_lg > AR5K_DCU_RETRY_LMT_SH_RETRY ?
283 AR5K_DCU_RETRY_LMT_SH_RETRY : retry_lg;
284 } else {
285 retry_lg = AR5K_INIT_LG_RETRY;
286 retry_sh = AR5K_INIT_SH_RETRY;
287 }
288
289 /*No QCU/DCU [5210]*/
290 if (ah->ah_version == AR5K_AR5210) {
291 ath5k_hw_reg_write(ah,
292 (cw_min << AR5K_NODCU_RETRY_LMT_CW_MIN_S)
293 | AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
294 AR5K_NODCU_RETRY_LMT_SLG_RETRY)
295 | AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
296 AR5K_NODCU_RETRY_LMT_SSH_RETRY)
297 | AR5K_REG_SM(retry_lg, AR5K_NODCU_RETRY_LMT_LG_RETRY)
298 | AR5K_REG_SM(retry_sh, AR5K_NODCU_RETRY_LMT_SH_RETRY),
299 AR5K_NODCU_RETRY_LMT);
300 } else {
301 /*QCU/DCU [5211+]*/
302 ath5k_hw_reg_write(ah,
303 AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
304 AR5K_DCU_RETRY_LMT_SLG_RETRY) |
305 AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
306 AR5K_DCU_RETRY_LMT_SSH_RETRY) |
307 AR5K_REG_SM(retry_lg, AR5K_DCU_RETRY_LMT_LG_RETRY) |
308 AR5K_REG_SM(retry_sh, AR5K_DCU_RETRY_LMT_SH_RETRY),
309 AR5K_QUEUE_DFS_RETRY_LIMIT(queue));
310
311 /*===Rest is also for QCU/DCU only [5211+]===*/
312
313 /*
314 * Set initial content window (cw_min/cw_max)
315 * and arbitrated interframe space (aifs)...
316 */
317 ath5k_hw_reg_write(ah,
318 AR5K_REG_SM(cw_min, AR5K_DCU_LCL_IFS_CW_MIN) |
319 AR5K_REG_SM(cw_max, AR5K_DCU_LCL_IFS_CW_MAX) |
320 AR5K_REG_SM(ah->ah_aifs + tq->tqi_aifs,
321 AR5K_DCU_LCL_IFS_AIFS),
322 AR5K_QUEUE_DFS_LOCAL_IFS(queue));
323
324 /*
325 * Set misc registers
326 */
327 ath5k_hw_reg_write(ah, AR5K_QCU_MISC_DCU_EARLY,
328 AR5K_QUEUE_MISC(queue));
329
330 if (tq->tqi_cbr_period) {
331 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_cbr_period,
332 AR5K_QCU_CBRCFG_INTVAL) |
333 AR5K_REG_SM(tq->tqi_cbr_overflow_limit,
334 AR5K_QCU_CBRCFG_ORN_THRES),
335 AR5K_QUEUE_CBRCFG(queue));
336 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
337 AR5K_QCU_MISC_FRSHED_CBR);
338 if (tq->tqi_cbr_overflow_limit)
339 AR5K_REG_ENABLE_BITS(ah,
340 AR5K_QUEUE_MISC(queue),
341 AR5K_QCU_MISC_CBR_THRES_ENABLE);
342 }
343
344 if (tq->tqi_ready_time)
345 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_ready_time,
346 AR5K_QCU_RDYTIMECFG_INTVAL) |
347 AR5K_QCU_RDYTIMECFG_ENABLE,
348 AR5K_QUEUE_RDYTIMECFG(queue));
349
350 if (tq->tqi_burst_time) {
351 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_burst_time,
352 AR5K_DCU_CHAN_TIME_DUR) |
353 AR5K_DCU_CHAN_TIME_ENABLE,
354 AR5K_QUEUE_DFS_CHANNEL_TIME(queue));
355
356 if (tq->tqi_flags
357 & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)
358 AR5K_REG_ENABLE_BITS(ah,
359 AR5K_QUEUE_MISC(queue),
360 AR5K_QCU_MISC_RDY_VEOL_POLICY);
361 }
362
363 if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE)
364 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_POST_FR_BKOFF_DIS,
365 AR5K_QUEUE_DFS_MISC(queue));
366
367 if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
368 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_BACKOFF_FRAG,
369 AR5K_QUEUE_DFS_MISC(queue));
370
371 /*
372 * Set registers by queue type
373 */
374 switch (tq->tqi_type) {
375 case AR5K_TX_QUEUE_BEACON:
376 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
377 AR5K_QCU_MISC_FRSHED_DBA_GT |
378 AR5K_QCU_MISC_CBREXP_BCN |
379 AR5K_QCU_MISC_BCN_ENABLE);
380
381 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
382 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
383 AR5K_DCU_MISC_ARBLOCK_CTL_S) |
384 AR5K_DCU_MISC_POST_FR_BKOFF_DIS |
385 AR5K_DCU_MISC_BCN_ENABLE);
386
387 ath5k_hw_reg_write(ah, ((AR5K_TUNE_BEACON_INTERVAL -
388 (AR5K_TUNE_SW_BEACON_RESP -
389 AR5K_TUNE_DMA_BEACON_RESP) -
390 AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) |
391 AR5K_QCU_RDYTIMECFG_ENABLE,
392 AR5K_QUEUE_RDYTIMECFG(queue));
393 break;
394
395 case AR5K_TX_QUEUE_CAB:
396 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
397 AR5K_QCU_MISC_FRSHED_DBA_GT |
398 AR5K_QCU_MISC_CBREXP |
399 AR5K_QCU_MISC_CBREXP_BCN);
400
401 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
402 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
403 AR5K_DCU_MISC_ARBLOCK_CTL_S));
404 break;
405
406 case AR5K_TX_QUEUE_UAPSD:
407 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
408 AR5K_QCU_MISC_CBREXP);
409 break;
410
411 case AR5K_TX_QUEUE_DATA:
412 default:
413 break;
414 }
415
416 /*
417 * Enable interrupts for this tx queue
418 * in the secondary interrupt mask registers
419 */
420 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXOKINT_ENABLE)
421 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txok, queue);
422
423 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXERRINT_ENABLE)
424 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txerr, queue);
425
426 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXURNINT_ENABLE)
427 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txurn, queue);
428
429 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXDESCINT_ENABLE)
430 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txdesc, queue);
431
432 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXEOLINT_ENABLE)
433 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txeol, queue);
434
435
436 /* Update secondary interrupt mask registers */
437 ah->ah_txq_imr_txok &= ah->ah_txq_status;
438 ah->ah_txq_imr_txerr &= ah->ah_txq_status;
439 ah->ah_txq_imr_txurn &= ah->ah_txq_status;
440 ah->ah_txq_imr_txdesc &= ah->ah_txq_status;
441 ah->ah_txq_imr_txeol &= ah->ah_txq_status;
442
443 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txok,
444 AR5K_SIMR0_QCU_TXOK) |
445 AR5K_REG_SM(ah->ah_txq_imr_txdesc,
446 AR5K_SIMR0_QCU_TXDESC), AR5K_SIMR0);
447 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txerr,
448 AR5K_SIMR1_QCU_TXERR) |
449 AR5K_REG_SM(ah->ah_txq_imr_txeol,
450 AR5K_SIMR1_QCU_TXEOL), AR5K_SIMR1);
451 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txurn,
452 AR5K_SIMR2_QCU_TXURN), AR5K_SIMR2);
453 }
454
455 return 0;
456}
457
458/*
459 * Get slot time from DCU
460 */
461unsigned int ath5k_hw_get_slot_time(struct ath5k_hw *ah)
462{
463 ATH5K_TRACE(ah->ah_sc);
464 if (ah->ah_version == AR5K_AR5210)
465 return ath5k_hw_clocktoh(ath5k_hw_reg_read(ah,
466 AR5K_SLOT_TIME) & 0xffff, ah->ah_turbo);
467 else
468 return ath5k_hw_reg_read(ah, AR5K_DCU_GBL_IFS_SLOT) & 0xffff;
469}
470
471/*
472 * Set slot time on DCU
473 */
474int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time)
475{
476 ATH5K_TRACE(ah->ah_sc);
477 if (slot_time < AR5K_SLOT_TIME_9 || slot_time > AR5K_SLOT_TIME_MAX)
478 return -EINVAL;
479
480 if (ah->ah_version == AR5K_AR5210)
481 ath5k_hw_reg_write(ah, ath5k_hw_htoclock(slot_time,
482 ah->ah_turbo), AR5K_SLOT_TIME);
483 else
484 ath5k_hw_reg_write(ah, slot_time, AR5K_DCU_GBL_IFS_SLOT);
485
486 return 0;
487}
488
diff --git a/drivers/net/wireless/ath5k/reg.h b/drivers/net/wireless/ath5k/reg.h
index 7562bf173d3..a9883236444 100644
--- a/drivers/net/wireless/ath5k/reg.h
+++ b/drivers/net/wireless/ath5k/reg.h
@@ -1,7 +1,7 @@
1/* 1/*
2 * Copyright (c) 2007 Nick Kossifidis <mickflemm@gmail.com> 2 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
3 * Copyright (c) 2004, 2005, 2006, 2007 Reyk Floeter <reyk@openbsd.org> 3 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
4 * Copyright (c) 2007 Michael Taylor <mike.taylor@apprion.com> 4 * Copyright (c) 2007-2008 Michael Taylor <mike.taylor@apprion.com>
5 * 5 *
6 * Permission to use, copy, modify, and distribute this software for any 6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above 7 * purpose with or without fee is hereby granted, provided that the above
@@ -977,98 +977,6 @@
977#define AR5K_EEPROM_BASE 0x6000 977#define AR5K_EEPROM_BASE 0x6000
978 978
979/* 979/*
980 * Common ar5xxx EEPROM data offsets (set these on AR5K_EEPROM_BASE)
981 */
982#define AR5K_EEPROM_MAGIC 0x003d /* EEPROM Magic number */
983#define AR5K_EEPROM_MAGIC_VALUE 0x5aa5 /* Default - found on EEPROM */
984#define AR5K_EEPROM_MAGIC_5212 0x0000145c /* 5212 */
985#define AR5K_EEPROM_MAGIC_5211 0x0000145b /* 5211 */
986#define AR5K_EEPROM_MAGIC_5210 0x0000145a /* 5210 */
987
988#define AR5K_EEPROM_PROTECT 0x003f /* EEPROM protect status */
989#define AR5K_EEPROM_PROTECT_RD_0_31 0x0001 /* Read protection bit for offsets 0x0 - 0x1f */
990#define AR5K_EEPROM_PROTECT_WR_0_31 0x0002 /* Write protection bit for offsets 0x0 - 0x1f */
991#define AR5K_EEPROM_PROTECT_RD_32_63 0x0004 /* 0x20 - 0x3f */
992#define AR5K_EEPROM_PROTECT_WR_32_63 0x0008
993#define AR5K_EEPROM_PROTECT_RD_64_127 0x0010 /* 0x40 - 0x7f */
994#define AR5K_EEPROM_PROTECT_WR_64_127 0x0020
995#define AR5K_EEPROM_PROTECT_RD_128_191 0x0040 /* 0x80 - 0xbf (regdom) */
996#define AR5K_EEPROM_PROTECT_WR_128_191 0x0080
997#define AR5K_EEPROM_PROTECT_RD_192_207 0x0100 /* 0xc0 - 0xcf */
998#define AR5K_EEPROM_PROTECT_WR_192_207 0x0200
999#define AR5K_EEPROM_PROTECT_RD_208_223 0x0400 /* 0xd0 - 0xdf */
1000#define AR5K_EEPROM_PROTECT_WR_208_223 0x0800
1001#define AR5K_EEPROM_PROTECT_RD_224_239 0x1000 /* 0xe0 - 0xef */
1002#define AR5K_EEPROM_PROTECT_WR_224_239 0x2000
1003#define AR5K_EEPROM_PROTECT_RD_240_255 0x4000 /* 0xf0 - 0xff */
1004#define AR5K_EEPROM_PROTECT_WR_240_255 0x8000
1005#define AR5K_EEPROM_REG_DOMAIN 0x00bf /* EEPROM regdom */
1006#define AR5K_EEPROM_INFO_BASE 0x00c0 /* EEPROM header */
1007#define AR5K_EEPROM_INFO_MAX (0x400 - AR5K_EEPROM_INFO_BASE)
1008#define AR5K_EEPROM_INFO_CKSUM 0xffff
1009#define AR5K_EEPROM_INFO(_n) (AR5K_EEPROM_INFO_BASE + (_n))
1010
1011#define AR5K_EEPROM_VERSION AR5K_EEPROM_INFO(1) /* EEPROM Version */
1012#define AR5K_EEPROM_VERSION_3_0 0x3000 /* No idea what's going on before this version */
1013#define AR5K_EEPROM_VERSION_3_1 0x3001 /* ob/db values for 2Ghz (ar5211_rfregs) */
1014#define AR5K_EEPROM_VERSION_3_2 0x3002 /* different frequency representation (eeprom_bin2freq) */
1015#define AR5K_EEPROM_VERSION_3_3 0x3003 /* offsets changed, has 32 CTLs (see below) and ee_false_detect (eeprom_read_modes) */
1016#define AR5K_EEPROM_VERSION_3_4 0x3004 /* has ee_i_gain ee_cck_ofdm_power_delta (eeprom_read_modes) */
1017#define AR5K_EEPROM_VERSION_4_0 0x4000 /* has ee_misc*, ee_cal_pier, ee_turbo_max_power and ee_xr_power (eeprom_init) */
1018#define AR5K_EEPROM_VERSION_4_1 0x4001 /* has ee_margin_tx_rx (eeprom_init) */
1019#define AR5K_EEPROM_VERSION_4_2 0x4002 /* has ee_cck_ofdm_gain_delta (eeprom_init) */
1020#define AR5K_EEPROM_VERSION_4_3 0x4003
1021#define AR5K_EEPROM_VERSION_4_4 0x4004
1022#define AR5K_EEPROM_VERSION_4_5 0x4005
1023#define AR5K_EEPROM_VERSION_4_6 0x4006 /* has ee_scaled_cck_delta */
1024#define AR5K_EEPROM_VERSION_4_7 0x4007
1025
1026#define AR5K_EEPROM_MODE_11A 0
1027#define AR5K_EEPROM_MODE_11B 1
1028#define AR5K_EEPROM_MODE_11G 2
1029
1030#define AR5K_EEPROM_HDR AR5K_EEPROM_INFO(2) /* Header that contains the device caps */
1031#define AR5K_EEPROM_HDR_11A(_v) (((_v) >> AR5K_EEPROM_MODE_11A) & 0x1)
1032#define AR5K_EEPROM_HDR_11B(_v) (((_v) >> AR5K_EEPROM_MODE_11B) & 0x1)
1033#define AR5K_EEPROM_HDR_11G(_v) (((_v) >> AR5K_EEPROM_MODE_11G) & 0x1)
1034#define AR5K_EEPROM_HDR_T_2GHZ_DIS(_v) (((_v) >> 3) & 0x1) /* Disable turbo for 2Ghz (?) */
1035#define AR5K_EEPROM_HDR_T_5GHZ_DBM(_v) (((_v) >> 4) & 0x7f) /* Max turbo power for a/XR mode (eeprom_init) */
1036#define AR5K_EEPROM_HDR_DEVICE(_v) (((_v) >> 11) & 0x7)
1037#define AR5K_EEPROM_HDR_T_5GHZ_DIS(_v) (((_v) >> 15) & 0x1) /* Disable turbo for 5Ghz (?) */
1038#define AR5K_EEPROM_HDR_RFKILL(_v) (((_v) >> 14) & 0x1) /* Device has RFKill support */
1039
1040#define AR5K_EEPROM_RFKILL_GPIO_SEL 0x0000001c
1041#define AR5K_EEPROM_RFKILL_GPIO_SEL_S 2
1042#define AR5K_EEPROM_RFKILL_POLARITY 0x00000002
1043#define AR5K_EEPROM_RFKILL_POLARITY_S 1
1044
1045/* Newer EEPROMs are using a different offset */
1046#define AR5K_EEPROM_OFF(_v, _v3_0, _v3_3) \
1047 (((_v) >= AR5K_EEPROM_VERSION_3_3) ? _v3_3 : _v3_0)
1048
1049#define AR5K_EEPROM_ANT_GAIN(_v) AR5K_EEPROM_OFF(_v, 0x00c4, 0x00c3)
1050#define AR5K_EEPROM_ANT_GAIN_5GHZ(_v) ((int8_t)(((_v) >> 8) & 0xff))
1051#define AR5K_EEPROM_ANT_GAIN_2GHZ(_v) ((int8_t)((_v) & 0xff))
1052
1053/* calibration settings */
1054#define AR5K_EEPROM_MODES_11A(_v) AR5K_EEPROM_OFF(_v, 0x00c5, 0x00d4)
1055#define AR5K_EEPROM_MODES_11B(_v) AR5K_EEPROM_OFF(_v, 0x00d0, 0x00f2)
1056#define AR5K_EEPROM_MODES_11G(_v) AR5K_EEPROM_OFF(_v, 0x00da, 0x010d)
1057#define AR5K_EEPROM_CTL(_v) AR5K_EEPROM_OFF(_v, 0x00e4, 0x0128) /* Conformance test limits */
1058
1059/* [3.1 - 3.3] */
1060#define AR5K_EEPROM_OBDB0_2GHZ 0x00ec
1061#define AR5K_EEPROM_OBDB1_2GHZ 0x00ed
1062
1063/* Misc values available since EEPROM 4.0 */
1064#define AR5K_EEPROM_MISC0 0x00c4
1065#define AR5K_EEPROM_EARSTART(_v) ((_v) & 0xfff)
1066#define AR5K_EEPROM_EEMAP(_v) (((_v) >> 14) & 0x3)
1067#define AR5K_EEPROM_MISC1 0x00c5
1068#define AR5K_EEPROM_TARGET_PWRSTART(_v) ((_v) & 0xfff)
1069#define AR5K_EEPROM_HAS32KHZCRYSTAL(_v) (((_v) >> 14) & 0x1)
1070
1071/*
1072 * EEPROM data register 980 * EEPROM data register
1073 */ 981 */
1074#define AR5K_EEPROM_DATA_5211 0x6004 982#define AR5K_EEPROM_DATA_5211 0x6004
@@ -1950,13 +1858,13 @@
1950#define AR5K_PHY_GAIN_OFFSET_RXTX_FLAG 0x00020000 /* RX-TX flag (?) */ 1858#define AR5K_PHY_GAIN_OFFSET_RXTX_FLAG 0x00020000 /* RX-TX flag (?) */
1951 1859
1952/* 1860/*
1953 * Desired size register 1861 * Desired ADC/PGA size register
1954 * (for more infos read ANI patent) 1862 * (for more infos read ANI patent)
1955 */ 1863 */
1956#define AR5K_PHY_DESIRED_SIZE 0x9850 /* Register Address */ 1864#define AR5K_PHY_DESIRED_SIZE 0x9850 /* Register Address */
1957#define AR5K_PHY_DESIRED_SIZE_ADC 0x000000ff /* Mask for ADC desired size */ 1865#define AR5K_PHY_DESIRED_SIZE_ADC 0x000000ff /* Mask for ADC desired size */
1958#define AR5K_PHY_DESIRED_SIZE_PGA 0x0000ff00 /* Mask for PGA desired size */ 1866#define AR5K_PHY_DESIRED_SIZE_PGA 0x0000ff00 /* Mask for PGA desired size */
1959#define AR5K_PHY_DESIRED_SIZE_TOT 0x0ff00000 /* Mask for Total desired size (?) */ 1867#define AR5K_PHY_DESIRED_SIZE_TOT 0x0ff00000 /* Mask for Total desired size */
1960 1868
1961/* 1869/*
1962 * PHY signal register 1870 * PHY signal register
diff --git a/drivers/net/wireless/ath5k/reset.c b/drivers/net/wireless/ath5k/reset.c
new file mode 100644
index 00000000000..d260fba0180
--- /dev/null
+++ b/drivers/net/wireless/ath5k/reset.c
@@ -0,0 +1,925 @@
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 *
20 */
21
22#define _ATH5K_RESET
23
24/*****************************\
25 Reset functions and helpers
26\*****************************/
27
28#include <linux/pci.h>
29#include "ath5k.h"
30#include "reg.h"
31#include "base.h"
32#include "debug.h"
33
34/**
35 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
36 *
37 * @ah: the &struct ath5k_hw
38 * @channel: the currently set channel upon reset
39 *
40 * Write the OFDM timings for the AR5212 upon reset. This is a helper for
41 * ath5k_hw_reset(). This seems to tune the PLL a specified frequency
42 * depending on the bandwidth of the channel.
43 *
44 */
45static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
46 struct ieee80211_channel *channel)
47{
48 /* Get exponent and mantissa and set it */
49 u32 coef_scaled, coef_exp, coef_man,
50 ds_coef_exp, ds_coef_man, clock;
51
52 if (!(ah->ah_version == AR5K_AR5212) ||
53 !(channel->hw_value & CHANNEL_OFDM))
54 BUG();
55
56 /* Seems there are two PLLs, one for baseband sampling and one
57 * for tuning. Tuning basebands are 40 MHz or 80MHz when in
58 * turbo. */
59 clock = channel->hw_value & CHANNEL_TURBO ? 80 : 40;
60 coef_scaled = ((5 * (clock << 24)) / 2) /
61 channel->center_freq;
62
63 for (coef_exp = 31; coef_exp > 0; coef_exp--)
64 if ((coef_scaled >> coef_exp) & 0x1)
65 break;
66
67 if (!coef_exp)
68 return -EINVAL;
69
70 coef_exp = 14 - (coef_exp - 24);
71 coef_man = coef_scaled +
72 (1 << (24 - coef_exp - 1));
73 ds_coef_man = coef_man >> (24 - coef_exp);
74 ds_coef_exp = coef_exp - 16;
75
76 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
77 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
78 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
79 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
80
81 return 0;
82}
83
84
85/*
86 * index into rates for control rates, we can set it up like this because
87 * this is only used for AR5212 and we know it supports G mode
88 */
89static int control_rates[] =
90 { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
91
92/**
93 * ath5k_hw_write_rate_duration - set rate duration during hw resets
94 *
95 * @ah: the &struct ath5k_hw
96 * @mode: one of enum ath5k_driver_mode
97 *
98 * Write the rate duration table upon hw reset. This is a helper for
99 * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout for
100 * the hardware for the current mode for each rate. The rates which are capable
101 * of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have another
102 * register for the short preamble ACK timeout calculation.
103 */
104static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
105 unsigned int mode)
106{
107 struct ath5k_softc *sc = ah->ah_sc;
108 struct ieee80211_rate *rate;
109 unsigned int i;
110
111 /* Write rate duration table */
112 for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
113 u32 reg;
114 u16 tx_time;
115
116 rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
117
118 /* Set ACK timeout */
119 reg = AR5K_RATE_DUR(rate->hw_value);
120
121 /* An ACK frame consists of 10 bytes. If you add the FCS,
122 * which ieee80211_generic_frame_duration() adds,
123 * its 14 bytes. Note we use the control rate and not the
124 * actual rate for this rate. See mac80211 tx.c
125 * ieee80211_duration() for a brief description of
126 * what rate we should choose to TX ACKs. */
127 tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
128 sc->vif, 10, rate));
129
130 ath5k_hw_reg_write(ah, tx_time, reg);
131
132 if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
133 continue;
134
135 /*
136 * We're not distinguishing short preamble here,
137 * This is true, all we'll get is a longer value here
138 * which is not necessarilly bad. We could use
139 * export ieee80211_frame_duration() but that needs to be
140 * fixed first to be properly used by mac802111 drivers:
141 *
142 * - remove erp stuff and let the routine figure ofdm
143 * erp rates
144 * - remove passing argument ieee80211_local as
145 * drivers don't have access to it
146 * - move drivers using ieee80211_generic_frame_duration()
147 * to this
148 */
149 ath5k_hw_reg_write(ah, tx_time,
150 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
151 }
152}
153
154/*
155 * Reset chipset
156 */
157static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
158{
159 int ret;
160 u32 mask = val ? val : ~0U;
161
162 ATH5K_TRACE(ah->ah_sc);
163
164 /* Read-and-clear RX Descriptor Pointer*/
165 ath5k_hw_reg_read(ah, AR5K_RXDP);
166
167 /*
168 * Reset the device and wait until success
169 */
170 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
171
172 /* Wait at least 128 PCI clocks */
173 udelay(15);
174
175 if (ah->ah_version == AR5K_AR5210) {
176 val &= AR5K_RESET_CTL_CHIP;
177 mask &= AR5K_RESET_CTL_CHIP;
178 } else {
179 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
180 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
181 }
182
183 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
184
185 /*
186 * Reset configuration register (for hw byte-swap). Note that this
187 * is only set for big endian. We do the necessary magic in
188 * AR5K_INIT_CFG.
189 */
190 if ((val & AR5K_RESET_CTL_PCU) == 0)
191 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
192
193 return ret;
194}
195
196/*
197 * Sleep control
198 */
199int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
200 bool set_chip, u16 sleep_duration)
201{
202 unsigned int i;
203 u32 staid, data;
204
205 ATH5K_TRACE(ah->ah_sc);
206 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
207
208 switch (mode) {
209 case AR5K_PM_AUTO:
210 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
211 /* fallthrough */
212 case AR5K_PM_NETWORK_SLEEP:
213 if (set_chip)
214 ath5k_hw_reg_write(ah,
215 AR5K_SLEEP_CTL_SLE_ALLOW |
216 sleep_duration,
217 AR5K_SLEEP_CTL);
218
219 staid |= AR5K_STA_ID1_PWR_SV;
220 break;
221
222 case AR5K_PM_FULL_SLEEP:
223 if (set_chip)
224 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
225 AR5K_SLEEP_CTL);
226
227 staid |= AR5K_STA_ID1_PWR_SV;
228 break;
229
230 case AR5K_PM_AWAKE:
231
232 staid &= ~AR5K_STA_ID1_PWR_SV;
233
234 if (!set_chip)
235 goto commit;
236
237 /* Preserve sleep duration */
238 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
239 if (data & 0xffc00000)
240 data = 0;
241 else
242 data = data & 0xfffcffff;
243
244 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
245 udelay(15);
246
247 for (i = 50; i > 0; i--) {
248 /* Check if the chip did wake up */
249 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
250 AR5K_PCICFG_SPWR_DN) == 0)
251 break;
252
253 /* Wait a bit and retry */
254 udelay(200);
255 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
256 }
257
258 /* Fail if the chip didn't wake up */
259 if (i <= 0)
260 return -EIO;
261
262 break;
263
264 default:
265 return -EINVAL;
266 }
267
268commit:
269 ah->ah_power_mode = mode;
270 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
271
272 return 0;
273}
274
275/*
276 * Bring up MAC + PHY Chips
277 */
278int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
279{
280 struct pci_dev *pdev = ah->ah_sc->pdev;
281 u32 turbo, mode, clock, bus_flags;
282 int ret;
283
284 turbo = 0;
285 mode = 0;
286 clock = 0;
287
288 ATH5K_TRACE(ah->ah_sc);
289
290 /* Wakeup the device */
291 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
292 if (ret) {
293 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
294 return ret;
295 }
296
297 if (ah->ah_version != AR5K_AR5210) {
298 /*
299 * Get channel mode flags
300 */
301
302 if (ah->ah_radio >= AR5K_RF5112) {
303 mode = AR5K_PHY_MODE_RAD_RF5112;
304 clock = AR5K_PHY_PLL_RF5112;
305 } else {
306 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
307 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
308 }
309
310 if (flags & CHANNEL_2GHZ) {
311 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
312 clock |= AR5K_PHY_PLL_44MHZ;
313
314 if (flags & CHANNEL_CCK) {
315 mode |= AR5K_PHY_MODE_MOD_CCK;
316 } else if (flags & CHANNEL_OFDM) {
317 /* XXX Dynamic OFDM/CCK is not supported by the
318 * AR5211 so we set MOD_OFDM for plain g (no
319 * CCK headers) operation. We need to test
320 * this, 5211 might support ofdm-only g after
321 * all, there are also initial register values
322 * in the code for g mode (see initvals.c). */
323 if (ah->ah_version == AR5K_AR5211)
324 mode |= AR5K_PHY_MODE_MOD_OFDM;
325 else
326 mode |= AR5K_PHY_MODE_MOD_DYN;
327 } else {
328 ATH5K_ERR(ah->ah_sc,
329 "invalid radio modulation mode\n");
330 return -EINVAL;
331 }
332 } else if (flags & CHANNEL_5GHZ) {
333 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
334 clock |= AR5K_PHY_PLL_40MHZ;
335
336 if (flags & CHANNEL_OFDM)
337 mode |= AR5K_PHY_MODE_MOD_OFDM;
338 else {
339 ATH5K_ERR(ah->ah_sc,
340 "invalid radio modulation mode\n");
341 return -EINVAL;
342 }
343 } else {
344 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
345 return -EINVAL;
346 }
347
348 if (flags & CHANNEL_TURBO)
349 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
350 } else { /* Reset the device */
351
352 /* ...enable Atheros turbo mode if requested */
353 if (flags & CHANNEL_TURBO)
354 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
355 AR5K_PHY_TURBO);
356 }
357
358 /* reseting PCI on PCI-E cards results card to hang
359 * and always return 0xffff... so we ingore that flag
360 * for PCI-E cards */
361 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
362
363 /* Reset chipset */
364 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
365 AR5K_RESET_CTL_BASEBAND | bus_flags);
366 if (ret) {
367 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
368 return -EIO;
369 }
370
371 if (ah->ah_version == AR5K_AR5210)
372 udelay(2300);
373
374 /* ...wakeup again!*/
375 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
376 if (ret) {
377 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
378 return ret;
379 }
380
381 /* ...final warm reset */
382 if (ath5k_hw_nic_reset(ah, 0)) {
383 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
384 return -EIO;
385 }
386
387 if (ah->ah_version != AR5K_AR5210) {
388 /* ...set the PHY operating mode */
389 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
390 udelay(300);
391
392 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
393 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
394 }
395
396 return 0;
397}
398
399/*
400 * Main reset function
401 */
402int ath5k_hw_reset(struct ath5k_hw *ah, enum ieee80211_if_types op_mode,
403 struct ieee80211_channel *channel, bool change_channel)
404{
405 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
406 struct pci_dev *pdev = ah->ah_sc->pdev;
407 u32 data, s_seq, s_ant, s_led[3], dma_size;
408 unsigned int i, mode, freq, ee_mode, ant[2];
409 int ret;
410
411 ATH5K_TRACE(ah->ah_sc);
412
413 s_seq = 0;
414 s_ant = 0;
415 ee_mode = 0;
416 freq = 0;
417 mode = 0;
418
419 /*
420 * Save some registers before a reset
421 */
422 /*DCU/Antenna selection not available on 5210*/
423 if (ah->ah_version != AR5K_AR5210) {
424 if (change_channel) {
425 /* Seq number for queue 0 -do this for all queues ? */
426 s_seq = ath5k_hw_reg_read(ah,
427 AR5K_QUEUE_DFS_SEQNUM(0));
428 /*Default antenna*/
429 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
430 }
431 }
432
433 /*GPIOs*/
434 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_LEDSTATE;
435 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
436 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
437
438 if (change_channel && ah->ah_rf_banks != NULL)
439 ath5k_hw_get_rf_gain(ah);
440
441
442 /*Wakeup the device*/
443 ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
444 if (ret)
445 return ret;
446
447 /*
448 * Initialize operating mode
449 */
450 ah->ah_op_mode = op_mode;
451
452 /*
453 * 5111/5112 Settings
454 * 5210 only comes with RF5110
455 */
456 if (ah->ah_version != AR5K_AR5210) {
457 if (ah->ah_radio != AR5K_RF5111 &&
458 ah->ah_radio != AR5K_RF5112 &&
459 ah->ah_radio != AR5K_RF5413 &&
460 ah->ah_radio != AR5K_RF2413 &&
461 ah->ah_radio != AR5K_RF2425) {
462 ATH5K_ERR(ah->ah_sc,
463 "invalid phy radio: %u\n", ah->ah_radio);
464 return -EINVAL;
465 }
466
467 switch (channel->hw_value & CHANNEL_MODES) {
468 case CHANNEL_A:
469 mode = AR5K_MODE_11A;
470 freq = AR5K_INI_RFGAIN_5GHZ;
471 ee_mode = AR5K_EEPROM_MODE_11A;
472 break;
473 case CHANNEL_G:
474 mode = AR5K_MODE_11G;
475 freq = AR5K_INI_RFGAIN_2GHZ;
476 ee_mode = AR5K_EEPROM_MODE_11G;
477 break;
478 case CHANNEL_B:
479 mode = AR5K_MODE_11B;
480 freq = AR5K_INI_RFGAIN_2GHZ;
481 ee_mode = AR5K_EEPROM_MODE_11B;
482 break;
483 case CHANNEL_T:
484 mode = AR5K_MODE_11A_TURBO;
485 freq = AR5K_INI_RFGAIN_5GHZ;
486 ee_mode = AR5K_EEPROM_MODE_11A;
487 break;
488 /*Is this ok on 5211 too ?*/
489 case CHANNEL_TG:
490 mode = AR5K_MODE_11G_TURBO;
491 freq = AR5K_INI_RFGAIN_2GHZ;
492 ee_mode = AR5K_EEPROM_MODE_11G;
493 break;
494 case CHANNEL_XR:
495 if (ah->ah_version == AR5K_AR5211) {
496 ATH5K_ERR(ah->ah_sc,
497 "XR mode not available on 5211");
498 return -EINVAL;
499 }
500 mode = AR5K_MODE_XR;
501 freq = AR5K_INI_RFGAIN_5GHZ;
502 ee_mode = AR5K_EEPROM_MODE_11A;
503 break;
504 default:
505 ATH5K_ERR(ah->ah_sc,
506 "invalid channel: %d\n", channel->center_freq);
507 return -EINVAL;
508 }
509
510 /* PHY access enable */
511 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
512
513 }
514
515 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
516 if (ret)
517 return ret;
518
519 /*
520 * 5211/5212 Specific
521 */
522 if (ah->ah_version != AR5K_AR5210) {
523 /*
524 * Write initial RF gain settings
525 * This should work for both 5111/5112
526 */
527 ret = ath5k_hw_rfgain(ah, freq);
528 if (ret)
529 return ret;
530
531 mdelay(1);
532
533 /*
534 * Write some more initial register settings
535 */
536 if (ah->ah_version == AR5K_AR5212) {
537 ath5k_hw_reg_write(ah, 0x0002a002, 0x982c);
538
539 if (channel->hw_value == CHANNEL_G)
540 if (ah->ah_mac_srev < AR5K_SREV_VER_AR2413)
541 ath5k_hw_reg_write(ah, 0x00f80d80,
542 0x994c);
543 else if (ah->ah_mac_srev < AR5K_SREV_VER_AR2424)
544 ath5k_hw_reg_write(ah, 0x00380140,
545 0x994c);
546 else if (ah->ah_mac_srev < AR5K_SREV_VER_AR2425)
547 ath5k_hw_reg_write(ah, 0x00fc0ec0,
548 0x994c);
549 else /* 2425 */
550 ath5k_hw_reg_write(ah, 0x00fc0fc0,
551 0x994c);
552 else
553 ath5k_hw_reg_write(ah, 0x00000000, 0x994c);
554
555 /* Some bits are disabled here, we know nothing about
556 * register 0xa228 yet, most of the times this ends up
557 * with a value 0x9b5 -haven't seen any dump with
558 * a different value- */
559 /* Got this from decompiling binary HAL */
560 data = ath5k_hw_reg_read(ah, 0xa228);
561 data &= 0xfffffdff;
562 ath5k_hw_reg_write(ah, data, 0xa228);
563
564 data = ath5k_hw_reg_read(ah, 0xa228);
565 data &= 0xfffe03ff;
566 ath5k_hw_reg_write(ah, data, 0xa228);
567 data = 0;
568
569 /* Just write 0x9b5 ? */
570 /* ath5k_hw_reg_write(ah, 0x000009b5, 0xa228); */
571 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
572 ath5k_hw_reg_write(ah, 0x00000000, 0xa254);
573 ath5k_hw_reg_write(ah, 0x0000000e, AR5K_PHY_SCAL);
574 }
575
576 /* Fix for first revision of the RF5112 RF chipset */
577 if (ah->ah_radio >= AR5K_RF5112 &&
578 ah->ah_radio_5ghz_revision <
579 AR5K_SREV_RAD_5112A) {
580 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
581 AR5K_PHY_CCKTXCTL);
582 if (channel->hw_value & CHANNEL_5GHZ)
583 data = 0xffb81020;
584 else
585 data = 0xffb80d20;
586 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
587 data = 0;
588 }
589
590 /*
591 * Set TX power (FIXME)
592 */
593 ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER);
594 if (ret)
595 return ret;
596
597 /* Write rate duration table only on AR5212 and if
598 * virtual interface has already been brought up
599 * XXX: rethink this after new mode changes to
600 * mac80211 are integrated */
601 if (ah->ah_version == AR5K_AR5212 &&
602 ah->ah_sc->vif != NULL)
603 ath5k_hw_write_rate_duration(ah, mode);
604
605 /*
606 * Write RF registers
607 */
608 ret = ath5k_hw_rfregs(ah, channel, mode);
609 if (ret)
610 return ret;
611
612 /*
613 * Configure additional registers
614 */
615
616 /* Write OFDM timings on 5212*/
617 if (ah->ah_version == AR5K_AR5212 &&
618 channel->hw_value & CHANNEL_OFDM) {
619 ret = ath5k_hw_write_ofdm_timings(ah, channel);
620 if (ret)
621 return ret;
622 }
623
624 /*Enable/disable 802.11b mode on 5111
625 (enable 2111 frequency converter + CCK)*/
626 if (ah->ah_radio == AR5K_RF5111) {
627 if (mode == AR5K_MODE_11B)
628 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
629 AR5K_TXCFG_B_MODE);
630 else
631 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
632 AR5K_TXCFG_B_MODE);
633 }
634
635 /*
636 * Set channel and calibrate the PHY
637 */
638 ret = ath5k_hw_channel(ah, channel);
639 if (ret)
640 return ret;
641
642 /* Set antenna mode */
643 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_ANT_CTL,
644 ah->ah_antenna[ee_mode][0], 0xfffffc06);
645
646 /*
647 * In case a fixed antenna was set as default
648 * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
649 * registers.
650 */
651 if (s_ant != 0) {
652 if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
653 ant[0] = ant[1] = AR5K_ANT_FIXED_A;
654 else /* 2 - Aux */
655 ant[0] = ant[1] = AR5K_ANT_FIXED_B;
656 } else {
657 ant[0] = AR5K_ANT_FIXED_A;
658 ant[1] = AR5K_ANT_FIXED_B;
659 }
660
661 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
662 AR5K_PHY_ANT_SWITCH_TABLE_0);
663 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
664 AR5K_PHY_ANT_SWITCH_TABLE_1);
665
666 /* Commit values from EEPROM */
667 if (ah->ah_radio == AR5K_RF5111)
668 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
669 AR5K_PHY_FRAME_CTL_TX_CLIP, ee->ee_tx_clip);
670
671 ath5k_hw_reg_write(ah,
672 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
673 AR5K_PHY_NFTHRES);
674
675 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_SETTLING,
676 (ee->ee_switch_settling[ee_mode] << 7) & 0x3f80,
677 0xffffc07f);
678 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_GAIN,
679 (ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000,
680 0xfffc0fff);
681 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_DESIRED_SIZE,
682 (ee->ee_adc_desired_size[ee_mode] & 0x00ff) |
683 ((ee->ee_pga_desired_size[ee_mode] << 8) & 0xff00),
684 0xffff0000);
685
686 ath5k_hw_reg_write(ah,
687 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
688 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
689 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
690 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
691
692 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_RF_CTL3,
693 ee->ee_tx_end2xlna_enable[ee_mode] << 8, 0xffff00ff);
694 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_NF,
695 (ee->ee_thr_62[ee_mode] << 12) & 0x7f000, 0xfff80fff);
696 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_OFDM_SELFCORR, 4, 0xffffff01);
697
698 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
699 AR5K_PHY_IQ_CORR_ENABLE |
700 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
701 ee->ee_q_cal[ee_mode]);
702
703 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
704 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
705 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
706 ee->ee_margin_tx_rx[ee_mode]);
707
708 } else {
709 mdelay(1);
710 /* Disable phy and wait */
711 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
712 mdelay(1);
713 }
714
715 /*
716 * Restore saved values
717 */
718 /*DCU/Antenna selection not available on 5210*/
719 if (ah->ah_version != AR5K_AR5210) {
720 ath5k_hw_reg_write(ah, s_seq, AR5K_QUEUE_DFS_SEQNUM(0));
721 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
722 }
723 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
724 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
725 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
726
727 /*
728 * Misc
729 */
730 /* XXX: add ah->aid once mac80211 gives this to us */
731 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
732
733 ath5k_hw_set_opmode(ah);
734 /*PISR/SISR Not available on 5210*/
735 if (ah->ah_version != AR5K_AR5210) {
736 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
737 /* If we later allow tuning for this, store into sc structure */
738 data = AR5K_TUNE_RSSI_THRES |
739 AR5K_TUNE_BMISS_THRES << AR5K_RSSI_THR_BMISS_S;
740 ath5k_hw_reg_write(ah, data, AR5K_RSSI_THR);
741 }
742
743 /*
744 * Set Rx/Tx DMA Configuration
745 *
746 * Set maximum DMA size (512) except for PCI-E cards since
747 * it causes rx overruns and tx errors (tested on 5424 but since
748 * rx overruns also occur on 5416/5418 with madwifi we set 128
749 * for all PCI-E cards to be safe).
750 *
751 * In dumps this is 128 for allchips.
752 *
753 * XXX: need to check 5210 for this
754 * TODO: Check out tx triger level, it's always 64 on dumps but I
755 * guess we can tweak it and see how it goes ;-)
756 */
757 dma_size = (pdev->is_pcie) ? AR5K_DMASIZE_128B : AR5K_DMASIZE_512B;
758 if (ah->ah_version != AR5K_AR5210) {
759 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
760 AR5K_TXCFG_SDMAMR, dma_size);
761 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
762 AR5K_RXCFG_SDMAMW, dma_size);
763 }
764
765 /*
766 * Enable the PHY and wait until completion
767 */
768 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
769
770 /*
771 * On 5211+ read activation -> rx delay
772 * and use it.
773 */
774 if (ah->ah_version != AR5K_AR5210) {
775 data = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
776 AR5K_PHY_RX_DELAY_M;
777 data = (channel->hw_value & CHANNEL_CCK) ?
778 ((data << 2) / 22) : (data / 10);
779
780 udelay(100 + (2 * data));
781 data = 0;
782 } else {
783 mdelay(1);
784 }
785
786 /*
787 * Perform ADC test (?)
788 */
789 data = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
790 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
791 for (i = 0; i <= 20; i++) {
792 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
793 break;
794 udelay(200);
795 }
796 ath5k_hw_reg_write(ah, data, AR5K_PHY_TST1);
797 data = 0;
798
799 /*
800 * Start automatic gain calibration
801 *
802 * During AGC calibration RX path is re-routed to
803 * a signal detector so we don't receive anything.
804 *
805 * This method is used to calibrate some static offsets
806 * used together with on-the fly I/Q calibration (the
807 * one performed via ath5k_hw_phy_calibrate), that doesn't
808 * interrupt rx path.
809 *
810 * If we are in a noisy environment AGC calibration may time
811 * out.
812 */
813 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
814 AR5K_PHY_AGCCTL_CAL);
815
816 /* At the same time start I/Q calibration for QAM constellation
817 * -no need for CCK- */
818 ah->ah_calibration = false;
819 if (!(mode == AR5K_MODE_11B)) {
820 ah->ah_calibration = true;
821 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
822 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
823 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
824 AR5K_PHY_IQ_RUN);
825 }
826
827 /* Wait for gain calibration to finish (we check for I/Q calibration
828 * during ath5k_phy_calibrate) */
829 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
830 AR5K_PHY_AGCCTL_CAL, 0, false)) {
831 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
832 channel->center_freq);
833 return -EAGAIN;
834 }
835
836 /*
837 * Start noise floor calibration
838 *
839 * If we run NF calibration before AGC, it always times out.
840 * Binary HAL starts NF and AGC calibration at the same time
841 * and only waits for AGC to finish. I believe that's wrong because
842 * during NF calibration, rx path is also routed to a detector, so if
843 * it doesn't finish we won't have RX.
844 *
845 * XXX: Find an interval that's OK for all cards...
846 */
847 ret = ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
848 if (ret)
849 return ret;
850
851 /*
852 * Reset queues and start beacon timers at the end of the reset routine
853 */
854 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
855 /*No QCU on 5210*/
856 if (ah->ah_version != AR5K_AR5210)
857 AR5K_REG_WRITE_Q(ah, AR5K_QUEUE_QCUMASK(i), i);
858
859 ret = ath5k_hw_reset_tx_queue(ah, i);
860 if (ret) {
861 ATH5K_ERR(ah->ah_sc,
862 "failed to reset TX queue #%d\n", i);
863 return ret;
864 }
865 }
866
867 /* Pre-enable interrupts on 5211/5212*/
868 if (ah->ah_version != AR5K_AR5210)
869 ath5k_hw_set_imr(ah, AR5K_INT_RX | AR5K_INT_TX |
870 AR5K_INT_FATAL);
871
872 /*
873 * Set RF kill flags if supported by the device (read from the EEPROM)
874 * Disable gpio_intr for now since it results system hang.
875 * TODO: Handle this in ath5k_intr
876 */
877#if 0
878 if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
879 ath5k_hw_set_gpio_input(ah, 0);
880 ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
881 if (ah->ah_gpio[0] == 0)
882 ath5k_hw_set_gpio_intr(ah, 0, 1);
883 else
884 ath5k_hw_set_gpio_intr(ah, 0, 0);
885 }
886#endif
887
888 /*
889 * Set the 32MHz reference clock on 5212 phy clock sleep register
890 *
891 * TODO: Find out how to switch to external 32Khz clock to save power
892 */
893 if (ah->ah_version == AR5K_AR5212) {
894 ath5k_hw_reg_write(ah, AR5K_PHY_SCR_32MHZ, AR5K_PHY_SCR);
895 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
896 ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ, AR5K_PHY_SCAL);
897 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
898 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
899 ath5k_hw_reg_write(ah, ah->ah_phy_spending, AR5K_PHY_SPENDING);
900
901 data = ath5k_hw_reg_read(ah, AR5K_USEC_5211) & 0xffffc07f ;
902 data |= (ah->ah_phy_spending == AR5K_PHY_SPENDING_18) ?
903 0x00000f80 : 0x00001380 ;
904 ath5k_hw_reg_write(ah, data, AR5K_USEC_5211);
905 data = 0;
906 }
907
908 if (ah->ah_version == AR5K_AR5212) {
909 ath5k_hw_reg_write(ah, 0x000100aa, 0x8118);
910 ath5k_hw_reg_write(ah, 0x00003210, 0x811c);
911 ath5k_hw_reg_write(ah, 0x00000052, 0x8108);
912 if (ah->ah_mac_srev >= AR5K_SREV_VER_AR2413)
913 ath5k_hw_reg_write(ah, 0x00000004, 0x8120);
914 }
915
916 /*
917 * Disable beacons and reset the register
918 */
919 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
920 AR5K_BEACON_RESET_TSF);
921
922 return 0;
923}
924
925#undef _ATH5K_RESET