diff options
author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
---|---|---|
committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/net/igbvf/netdev.c | |
parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) |
Diffstat (limited to 'drivers/net/igbvf/netdev.c')
-rw-r--r-- | drivers/net/igbvf/netdev.c | 2859 |
1 files changed, 2859 insertions, 0 deletions
diff --git a/drivers/net/igbvf/netdev.c b/drivers/net/igbvf/netdev.c new file mode 100644 index 00000000000..40ed066e3ef --- /dev/null +++ b/drivers/net/igbvf/netdev.c | |||
@@ -0,0 +1,2859 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) 82576 Virtual Function Linux driver | ||
4 | Copyright(c) 2009 - 2010 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/module.h> | ||
29 | #include <linux/types.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/pci.h> | ||
32 | #include <linux/vmalloc.h> | ||
33 | #include <linux/pagemap.h> | ||
34 | #include <linux/delay.h> | ||
35 | #include <linux/netdevice.h> | ||
36 | #include <linux/tcp.h> | ||
37 | #include <linux/ipv6.h> | ||
38 | #include <linux/slab.h> | ||
39 | #include <net/checksum.h> | ||
40 | #include <net/ip6_checksum.h> | ||
41 | #include <linux/mii.h> | ||
42 | #include <linux/ethtool.h> | ||
43 | #include <linux/if_vlan.h> | ||
44 | #include <linux/prefetch.h> | ||
45 | |||
46 | #include "igbvf.h" | ||
47 | |||
48 | #define DRV_VERSION "2.0.0-k" | ||
49 | char igbvf_driver_name[] = "igbvf"; | ||
50 | const char igbvf_driver_version[] = DRV_VERSION; | ||
51 | static const char igbvf_driver_string[] = | ||
52 | "Intel(R) Virtual Function Network Driver"; | ||
53 | static const char igbvf_copyright[] = | ||
54 | "Copyright (c) 2009 - 2010 Intel Corporation."; | ||
55 | |||
56 | static int igbvf_poll(struct napi_struct *napi, int budget); | ||
57 | static void igbvf_reset(struct igbvf_adapter *); | ||
58 | static void igbvf_set_interrupt_capability(struct igbvf_adapter *); | ||
59 | static void igbvf_reset_interrupt_capability(struct igbvf_adapter *); | ||
60 | |||
61 | static struct igbvf_info igbvf_vf_info = { | ||
62 | .mac = e1000_vfadapt, | ||
63 | .flags = 0, | ||
64 | .pba = 10, | ||
65 | .init_ops = e1000_init_function_pointers_vf, | ||
66 | }; | ||
67 | |||
68 | static struct igbvf_info igbvf_i350_vf_info = { | ||
69 | .mac = e1000_vfadapt_i350, | ||
70 | .flags = 0, | ||
71 | .pba = 10, | ||
72 | .init_ops = e1000_init_function_pointers_vf, | ||
73 | }; | ||
74 | |||
75 | static const struct igbvf_info *igbvf_info_tbl[] = { | ||
76 | [board_vf] = &igbvf_vf_info, | ||
77 | [board_i350_vf] = &igbvf_i350_vf_info, | ||
78 | }; | ||
79 | |||
80 | /** | ||
81 | * igbvf_desc_unused - calculate if we have unused descriptors | ||
82 | **/ | ||
83 | static int igbvf_desc_unused(struct igbvf_ring *ring) | ||
84 | { | ||
85 | if (ring->next_to_clean > ring->next_to_use) | ||
86 | return ring->next_to_clean - ring->next_to_use - 1; | ||
87 | |||
88 | return ring->count + ring->next_to_clean - ring->next_to_use - 1; | ||
89 | } | ||
90 | |||
91 | /** | ||
92 | * igbvf_receive_skb - helper function to handle Rx indications | ||
93 | * @adapter: board private structure | ||
94 | * @status: descriptor status field as written by hardware | ||
95 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | ||
96 | * @skb: pointer to sk_buff to be indicated to stack | ||
97 | **/ | ||
98 | static void igbvf_receive_skb(struct igbvf_adapter *adapter, | ||
99 | struct net_device *netdev, | ||
100 | struct sk_buff *skb, | ||
101 | u32 status, u16 vlan) | ||
102 | { | ||
103 | if (status & E1000_RXD_STAT_VP) { | ||
104 | u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; | ||
105 | |||
106 | __vlan_hwaccel_put_tag(skb, vid); | ||
107 | } | ||
108 | netif_receive_skb(skb); | ||
109 | } | ||
110 | |||
111 | static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter, | ||
112 | u32 status_err, struct sk_buff *skb) | ||
113 | { | ||
114 | skb_checksum_none_assert(skb); | ||
115 | |||
116 | /* Ignore Checksum bit is set or checksum is disabled through ethtool */ | ||
117 | if ((status_err & E1000_RXD_STAT_IXSM) || | ||
118 | (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED)) | ||
119 | return; | ||
120 | |||
121 | /* TCP/UDP checksum error bit is set */ | ||
122 | if (status_err & | ||
123 | (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { | ||
124 | /* let the stack verify checksum errors */ | ||
125 | adapter->hw_csum_err++; | ||
126 | return; | ||
127 | } | ||
128 | |||
129 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
130 | if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) | ||
131 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
132 | |||
133 | adapter->hw_csum_good++; | ||
134 | } | ||
135 | |||
136 | /** | ||
137 | * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split | ||
138 | * @rx_ring: address of ring structure to repopulate | ||
139 | * @cleaned_count: number of buffers to repopulate | ||
140 | **/ | ||
141 | static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring, | ||
142 | int cleaned_count) | ||
143 | { | ||
144 | struct igbvf_adapter *adapter = rx_ring->adapter; | ||
145 | struct net_device *netdev = adapter->netdev; | ||
146 | struct pci_dev *pdev = adapter->pdev; | ||
147 | union e1000_adv_rx_desc *rx_desc; | ||
148 | struct igbvf_buffer *buffer_info; | ||
149 | struct sk_buff *skb; | ||
150 | unsigned int i; | ||
151 | int bufsz; | ||
152 | |||
153 | i = rx_ring->next_to_use; | ||
154 | buffer_info = &rx_ring->buffer_info[i]; | ||
155 | |||
156 | if (adapter->rx_ps_hdr_size) | ||
157 | bufsz = adapter->rx_ps_hdr_size; | ||
158 | else | ||
159 | bufsz = adapter->rx_buffer_len; | ||
160 | |||
161 | while (cleaned_count--) { | ||
162 | rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); | ||
163 | |||
164 | if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) { | ||
165 | if (!buffer_info->page) { | ||
166 | buffer_info->page = alloc_page(GFP_ATOMIC); | ||
167 | if (!buffer_info->page) { | ||
168 | adapter->alloc_rx_buff_failed++; | ||
169 | goto no_buffers; | ||
170 | } | ||
171 | buffer_info->page_offset = 0; | ||
172 | } else { | ||
173 | buffer_info->page_offset ^= PAGE_SIZE / 2; | ||
174 | } | ||
175 | buffer_info->page_dma = | ||
176 | dma_map_page(&pdev->dev, buffer_info->page, | ||
177 | buffer_info->page_offset, | ||
178 | PAGE_SIZE / 2, | ||
179 | DMA_FROM_DEVICE); | ||
180 | } | ||
181 | |||
182 | if (!buffer_info->skb) { | ||
183 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); | ||
184 | if (!skb) { | ||
185 | adapter->alloc_rx_buff_failed++; | ||
186 | goto no_buffers; | ||
187 | } | ||
188 | |||
189 | buffer_info->skb = skb; | ||
190 | buffer_info->dma = dma_map_single(&pdev->dev, skb->data, | ||
191 | bufsz, | ||
192 | DMA_FROM_DEVICE); | ||
193 | } | ||
194 | /* Refresh the desc even if buffer_addrs didn't change because | ||
195 | * each write-back erases this info. */ | ||
196 | if (adapter->rx_ps_hdr_size) { | ||
197 | rx_desc->read.pkt_addr = | ||
198 | cpu_to_le64(buffer_info->page_dma); | ||
199 | rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); | ||
200 | } else { | ||
201 | rx_desc->read.pkt_addr = | ||
202 | cpu_to_le64(buffer_info->dma); | ||
203 | rx_desc->read.hdr_addr = 0; | ||
204 | } | ||
205 | |||
206 | i++; | ||
207 | if (i == rx_ring->count) | ||
208 | i = 0; | ||
209 | buffer_info = &rx_ring->buffer_info[i]; | ||
210 | } | ||
211 | |||
212 | no_buffers: | ||
213 | if (rx_ring->next_to_use != i) { | ||
214 | rx_ring->next_to_use = i; | ||
215 | if (i == 0) | ||
216 | i = (rx_ring->count - 1); | ||
217 | else | ||
218 | i--; | ||
219 | |||
220 | /* Force memory writes to complete before letting h/w | ||
221 | * know there are new descriptors to fetch. (Only | ||
222 | * applicable for weak-ordered memory model archs, | ||
223 | * such as IA-64). */ | ||
224 | wmb(); | ||
225 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | ||
226 | } | ||
227 | } | ||
228 | |||
229 | /** | ||
230 | * igbvf_clean_rx_irq - Send received data up the network stack; legacy | ||
231 | * @adapter: board private structure | ||
232 | * | ||
233 | * the return value indicates whether actual cleaning was done, there | ||
234 | * is no guarantee that everything was cleaned | ||
235 | **/ | ||
236 | static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter, | ||
237 | int *work_done, int work_to_do) | ||
238 | { | ||
239 | struct igbvf_ring *rx_ring = adapter->rx_ring; | ||
240 | struct net_device *netdev = adapter->netdev; | ||
241 | struct pci_dev *pdev = adapter->pdev; | ||
242 | union e1000_adv_rx_desc *rx_desc, *next_rxd; | ||
243 | struct igbvf_buffer *buffer_info, *next_buffer; | ||
244 | struct sk_buff *skb; | ||
245 | bool cleaned = false; | ||
246 | int cleaned_count = 0; | ||
247 | unsigned int total_bytes = 0, total_packets = 0; | ||
248 | unsigned int i; | ||
249 | u32 length, hlen, staterr; | ||
250 | |||
251 | i = rx_ring->next_to_clean; | ||
252 | rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); | ||
253 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
254 | |||
255 | while (staterr & E1000_RXD_STAT_DD) { | ||
256 | if (*work_done >= work_to_do) | ||
257 | break; | ||
258 | (*work_done)++; | ||
259 | rmb(); /* read descriptor and rx_buffer_info after status DD */ | ||
260 | |||
261 | buffer_info = &rx_ring->buffer_info[i]; | ||
262 | |||
263 | /* HW will not DMA in data larger than the given buffer, even | ||
264 | * if it parses the (NFS, of course) header to be larger. In | ||
265 | * that case, it fills the header buffer and spills the rest | ||
266 | * into the page. | ||
267 | */ | ||
268 | hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) & | ||
269 | E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT; | ||
270 | if (hlen > adapter->rx_ps_hdr_size) | ||
271 | hlen = adapter->rx_ps_hdr_size; | ||
272 | |||
273 | length = le16_to_cpu(rx_desc->wb.upper.length); | ||
274 | cleaned = true; | ||
275 | cleaned_count++; | ||
276 | |||
277 | skb = buffer_info->skb; | ||
278 | prefetch(skb->data - NET_IP_ALIGN); | ||
279 | buffer_info->skb = NULL; | ||
280 | if (!adapter->rx_ps_hdr_size) { | ||
281 | dma_unmap_single(&pdev->dev, buffer_info->dma, | ||
282 | adapter->rx_buffer_len, | ||
283 | DMA_FROM_DEVICE); | ||
284 | buffer_info->dma = 0; | ||
285 | skb_put(skb, length); | ||
286 | goto send_up; | ||
287 | } | ||
288 | |||
289 | if (!skb_shinfo(skb)->nr_frags) { | ||
290 | dma_unmap_single(&pdev->dev, buffer_info->dma, | ||
291 | adapter->rx_ps_hdr_size, | ||
292 | DMA_FROM_DEVICE); | ||
293 | skb_put(skb, hlen); | ||
294 | } | ||
295 | |||
296 | if (length) { | ||
297 | dma_unmap_page(&pdev->dev, buffer_info->page_dma, | ||
298 | PAGE_SIZE / 2, | ||
299 | DMA_FROM_DEVICE); | ||
300 | buffer_info->page_dma = 0; | ||
301 | |||
302 | skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, | ||
303 | buffer_info->page, | ||
304 | buffer_info->page_offset, | ||
305 | length); | ||
306 | |||
307 | if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) || | ||
308 | (page_count(buffer_info->page) != 1)) | ||
309 | buffer_info->page = NULL; | ||
310 | else | ||
311 | get_page(buffer_info->page); | ||
312 | |||
313 | skb->len += length; | ||
314 | skb->data_len += length; | ||
315 | skb->truesize += length; | ||
316 | } | ||
317 | send_up: | ||
318 | i++; | ||
319 | if (i == rx_ring->count) | ||
320 | i = 0; | ||
321 | next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i); | ||
322 | prefetch(next_rxd); | ||
323 | next_buffer = &rx_ring->buffer_info[i]; | ||
324 | |||
325 | if (!(staterr & E1000_RXD_STAT_EOP)) { | ||
326 | buffer_info->skb = next_buffer->skb; | ||
327 | buffer_info->dma = next_buffer->dma; | ||
328 | next_buffer->skb = skb; | ||
329 | next_buffer->dma = 0; | ||
330 | goto next_desc; | ||
331 | } | ||
332 | |||
333 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | ||
334 | dev_kfree_skb_irq(skb); | ||
335 | goto next_desc; | ||
336 | } | ||
337 | |||
338 | total_bytes += skb->len; | ||
339 | total_packets++; | ||
340 | |||
341 | igbvf_rx_checksum_adv(adapter, staterr, skb); | ||
342 | |||
343 | skb->protocol = eth_type_trans(skb, netdev); | ||
344 | |||
345 | igbvf_receive_skb(adapter, netdev, skb, staterr, | ||
346 | rx_desc->wb.upper.vlan); | ||
347 | |||
348 | next_desc: | ||
349 | rx_desc->wb.upper.status_error = 0; | ||
350 | |||
351 | /* return some buffers to hardware, one at a time is too slow */ | ||
352 | if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) { | ||
353 | igbvf_alloc_rx_buffers(rx_ring, cleaned_count); | ||
354 | cleaned_count = 0; | ||
355 | } | ||
356 | |||
357 | /* use prefetched values */ | ||
358 | rx_desc = next_rxd; | ||
359 | buffer_info = next_buffer; | ||
360 | |||
361 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
362 | } | ||
363 | |||
364 | rx_ring->next_to_clean = i; | ||
365 | cleaned_count = igbvf_desc_unused(rx_ring); | ||
366 | |||
367 | if (cleaned_count) | ||
368 | igbvf_alloc_rx_buffers(rx_ring, cleaned_count); | ||
369 | |||
370 | adapter->total_rx_packets += total_packets; | ||
371 | adapter->total_rx_bytes += total_bytes; | ||
372 | adapter->net_stats.rx_bytes += total_bytes; | ||
373 | adapter->net_stats.rx_packets += total_packets; | ||
374 | return cleaned; | ||
375 | } | ||
376 | |||
377 | static void igbvf_put_txbuf(struct igbvf_adapter *adapter, | ||
378 | struct igbvf_buffer *buffer_info) | ||
379 | { | ||
380 | if (buffer_info->dma) { | ||
381 | if (buffer_info->mapped_as_page) | ||
382 | dma_unmap_page(&adapter->pdev->dev, | ||
383 | buffer_info->dma, | ||
384 | buffer_info->length, | ||
385 | DMA_TO_DEVICE); | ||
386 | else | ||
387 | dma_unmap_single(&adapter->pdev->dev, | ||
388 | buffer_info->dma, | ||
389 | buffer_info->length, | ||
390 | DMA_TO_DEVICE); | ||
391 | buffer_info->dma = 0; | ||
392 | } | ||
393 | if (buffer_info->skb) { | ||
394 | dev_kfree_skb_any(buffer_info->skb); | ||
395 | buffer_info->skb = NULL; | ||
396 | } | ||
397 | buffer_info->time_stamp = 0; | ||
398 | } | ||
399 | |||
400 | /** | ||
401 | * igbvf_setup_tx_resources - allocate Tx resources (Descriptors) | ||
402 | * @adapter: board private structure | ||
403 | * | ||
404 | * Return 0 on success, negative on failure | ||
405 | **/ | ||
406 | int igbvf_setup_tx_resources(struct igbvf_adapter *adapter, | ||
407 | struct igbvf_ring *tx_ring) | ||
408 | { | ||
409 | struct pci_dev *pdev = adapter->pdev; | ||
410 | int size; | ||
411 | |||
412 | size = sizeof(struct igbvf_buffer) * tx_ring->count; | ||
413 | tx_ring->buffer_info = vzalloc(size); | ||
414 | if (!tx_ring->buffer_info) | ||
415 | goto err; | ||
416 | |||
417 | /* round up to nearest 4K */ | ||
418 | tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); | ||
419 | tx_ring->size = ALIGN(tx_ring->size, 4096); | ||
420 | |||
421 | tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, | ||
422 | &tx_ring->dma, GFP_KERNEL); | ||
423 | |||
424 | if (!tx_ring->desc) | ||
425 | goto err; | ||
426 | |||
427 | tx_ring->adapter = adapter; | ||
428 | tx_ring->next_to_use = 0; | ||
429 | tx_ring->next_to_clean = 0; | ||
430 | |||
431 | return 0; | ||
432 | err: | ||
433 | vfree(tx_ring->buffer_info); | ||
434 | dev_err(&adapter->pdev->dev, | ||
435 | "Unable to allocate memory for the transmit descriptor ring\n"); | ||
436 | return -ENOMEM; | ||
437 | } | ||
438 | |||
439 | /** | ||
440 | * igbvf_setup_rx_resources - allocate Rx resources (Descriptors) | ||
441 | * @adapter: board private structure | ||
442 | * | ||
443 | * Returns 0 on success, negative on failure | ||
444 | **/ | ||
445 | int igbvf_setup_rx_resources(struct igbvf_adapter *adapter, | ||
446 | struct igbvf_ring *rx_ring) | ||
447 | { | ||
448 | struct pci_dev *pdev = adapter->pdev; | ||
449 | int size, desc_len; | ||
450 | |||
451 | size = sizeof(struct igbvf_buffer) * rx_ring->count; | ||
452 | rx_ring->buffer_info = vzalloc(size); | ||
453 | if (!rx_ring->buffer_info) | ||
454 | goto err; | ||
455 | |||
456 | desc_len = sizeof(union e1000_adv_rx_desc); | ||
457 | |||
458 | /* Round up to nearest 4K */ | ||
459 | rx_ring->size = rx_ring->count * desc_len; | ||
460 | rx_ring->size = ALIGN(rx_ring->size, 4096); | ||
461 | |||
462 | rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, | ||
463 | &rx_ring->dma, GFP_KERNEL); | ||
464 | |||
465 | if (!rx_ring->desc) | ||
466 | goto err; | ||
467 | |||
468 | rx_ring->next_to_clean = 0; | ||
469 | rx_ring->next_to_use = 0; | ||
470 | |||
471 | rx_ring->adapter = adapter; | ||
472 | |||
473 | return 0; | ||
474 | |||
475 | err: | ||
476 | vfree(rx_ring->buffer_info); | ||
477 | rx_ring->buffer_info = NULL; | ||
478 | dev_err(&adapter->pdev->dev, | ||
479 | "Unable to allocate memory for the receive descriptor ring\n"); | ||
480 | return -ENOMEM; | ||
481 | } | ||
482 | |||
483 | /** | ||
484 | * igbvf_clean_tx_ring - Free Tx Buffers | ||
485 | * @tx_ring: ring to be cleaned | ||
486 | **/ | ||
487 | static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring) | ||
488 | { | ||
489 | struct igbvf_adapter *adapter = tx_ring->adapter; | ||
490 | struct igbvf_buffer *buffer_info; | ||
491 | unsigned long size; | ||
492 | unsigned int i; | ||
493 | |||
494 | if (!tx_ring->buffer_info) | ||
495 | return; | ||
496 | |||
497 | /* Free all the Tx ring sk_buffs */ | ||
498 | for (i = 0; i < tx_ring->count; i++) { | ||
499 | buffer_info = &tx_ring->buffer_info[i]; | ||
500 | igbvf_put_txbuf(adapter, buffer_info); | ||
501 | } | ||
502 | |||
503 | size = sizeof(struct igbvf_buffer) * tx_ring->count; | ||
504 | memset(tx_ring->buffer_info, 0, size); | ||
505 | |||
506 | /* Zero out the descriptor ring */ | ||
507 | memset(tx_ring->desc, 0, tx_ring->size); | ||
508 | |||
509 | tx_ring->next_to_use = 0; | ||
510 | tx_ring->next_to_clean = 0; | ||
511 | |||
512 | writel(0, adapter->hw.hw_addr + tx_ring->head); | ||
513 | writel(0, adapter->hw.hw_addr + tx_ring->tail); | ||
514 | } | ||
515 | |||
516 | /** | ||
517 | * igbvf_free_tx_resources - Free Tx Resources per Queue | ||
518 | * @tx_ring: ring to free resources from | ||
519 | * | ||
520 | * Free all transmit software resources | ||
521 | **/ | ||
522 | void igbvf_free_tx_resources(struct igbvf_ring *tx_ring) | ||
523 | { | ||
524 | struct pci_dev *pdev = tx_ring->adapter->pdev; | ||
525 | |||
526 | igbvf_clean_tx_ring(tx_ring); | ||
527 | |||
528 | vfree(tx_ring->buffer_info); | ||
529 | tx_ring->buffer_info = NULL; | ||
530 | |||
531 | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | ||
532 | tx_ring->dma); | ||
533 | |||
534 | tx_ring->desc = NULL; | ||
535 | } | ||
536 | |||
537 | /** | ||
538 | * igbvf_clean_rx_ring - Free Rx Buffers per Queue | ||
539 | * @adapter: board private structure | ||
540 | **/ | ||
541 | static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring) | ||
542 | { | ||
543 | struct igbvf_adapter *adapter = rx_ring->adapter; | ||
544 | struct igbvf_buffer *buffer_info; | ||
545 | struct pci_dev *pdev = adapter->pdev; | ||
546 | unsigned long size; | ||
547 | unsigned int i; | ||
548 | |||
549 | if (!rx_ring->buffer_info) | ||
550 | return; | ||
551 | |||
552 | /* Free all the Rx ring sk_buffs */ | ||
553 | for (i = 0; i < rx_ring->count; i++) { | ||
554 | buffer_info = &rx_ring->buffer_info[i]; | ||
555 | if (buffer_info->dma) { | ||
556 | if (adapter->rx_ps_hdr_size){ | ||
557 | dma_unmap_single(&pdev->dev, buffer_info->dma, | ||
558 | adapter->rx_ps_hdr_size, | ||
559 | DMA_FROM_DEVICE); | ||
560 | } else { | ||
561 | dma_unmap_single(&pdev->dev, buffer_info->dma, | ||
562 | adapter->rx_buffer_len, | ||
563 | DMA_FROM_DEVICE); | ||
564 | } | ||
565 | buffer_info->dma = 0; | ||
566 | } | ||
567 | |||
568 | if (buffer_info->skb) { | ||
569 | dev_kfree_skb(buffer_info->skb); | ||
570 | buffer_info->skb = NULL; | ||
571 | } | ||
572 | |||
573 | if (buffer_info->page) { | ||
574 | if (buffer_info->page_dma) | ||
575 | dma_unmap_page(&pdev->dev, | ||
576 | buffer_info->page_dma, | ||
577 | PAGE_SIZE / 2, | ||
578 | DMA_FROM_DEVICE); | ||
579 | put_page(buffer_info->page); | ||
580 | buffer_info->page = NULL; | ||
581 | buffer_info->page_dma = 0; | ||
582 | buffer_info->page_offset = 0; | ||
583 | } | ||
584 | } | ||
585 | |||
586 | size = sizeof(struct igbvf_buffer) * rx_ring->count; | ||
587 | memset(rx_ring->buffer_info, 0, size); | ||
588 | |||
589 | /* Zero out the descriptor ring */ | ||
590 | memset(rx_ring->desc, 0, rx_ring->size); | ||
591 | |||
592 | rx_ring->next_to_clean = 0; | ||
593 | rx_ring->next_to_use = 0; | ||
594 | |||
595 | writel(0, adapter->hw.hw_addr + rx_ring->head); | ||
596 | writel(0, adapter->hw.hw_addr + rx_ring->tail); | ||
597 | } | ||
598 | |||
599 | /** | ||
600 | * igbvf_free_rx_resources - Free Rx Resources | ||
601 | * @rx_ring: ring to clean the resources from | ||
602 | * | ||
603 | * Free all receive software resources | ||
604 | **/ | ||
605 | |||
606 | void igbvf_free_rx_resources(struct igbvf_ring *rx_ring) | ||
607 | { | ||
608 | struct pci_dev *pdev = rx_ring->adapter->pdev; | ||
609 | |||
610 | igbvf_clean_rx_ring(rx_ring); | ||
611 | |||
612 | vfree(rx_ring->buffer_info); | ||
613 | rx_ring->buffer_info = NULL; | ||
614 | |||
615 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | ||
616 | rx_ring->dma); | ||
617 | rx_ring->desc = NULL; | ||
618 | } | ||
619 | |||
620 | /** | ||
621 | * igbvf_update_itr - update the dynamic ITR value based on statistics | ||
622 | * @adapter: pointer to adapter | ||
623 | * @itr_setting: current adapter->itr | ||
624 | * @packets: the number of packets during this measurement interval | ||
625 | * @bytes: the number of bytes during this measurement interval | ||
626 | * | ||
627 | * Stores a new ITR value based on packets and byte | ||
628 | * counts during the last interrupt. The advantage of per interrupt | ||
629 | * computation is faster updates and more accurate ITR for the current | ||
630 | * traffic pattern. Constants in this function were computed | ||
631 | * based on theoretical maximum wire speed and thresholds were set based | ||
632 | * on testing data as well as attempting to minimize response time | ||
633 | * while increasing bulk throughput. This functionality is controlled | ||
634 | * by the InterruptThrottleRate module parameter. | ||
635 | **/ | ||
636 | static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter, | ||
637 | u16 itr_setting, int packets, | ||
638 | int bytes) | ||
639 | { | ||
640 | unsigned int retval = itr_setting; | ||
641 | |||
642 | if (packets == 0) | ||
643 | goto update_itr_done; | ||
644 | |||
645 | switch (itr_setting) { | ||
646 | case lowest_latency: | ||
647 | /* handle TSO and jumbo frames */ | ||
648 | if (bytes/packets > 8000) | ||
649 | retval = bulk_latency; | ||
650 | else if ((packets < 5) && (bytes > 512)) | ||
651 | retval = low_latency; | ||
652 | break; | ||
653 | case low_latency: /* 50 usec aka 20000 ints/s */ | ||
654 | if (bytes > 10000) { | ||
655 | /* this if handles the TSO accounting */ | ||
656 | if (bytes/packets > 8000) | ||
657 | retval = bulk_latency; | ||
658 | else if ((packets < 10) || ((bytes/packets) > 1200)) | ||
659 | retval = bulk_latency; | ||
660 | else if ((packets > 35)) | ||
661 | retval = lowest_latency; | ||
662 | } else if (bytes/packets > 2000) { | ||
663 | retval = bulk_latency; | ||
664 | } else if (packets <= 2 && bytes < 512) { | ||
665 | retval = lowest_latency; | ||
666 | } | ||
667 | break; | ||
668 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | ||
669 | if (bytes > 25000) { | ||
670 | if (packets > 35) | ||
671 | retval = low_latency; | ||
672 | } else if (bytes < 6000) { | ||
673 | retval = low_latency; | ||
674 | } | ||
675 | break; | ||
676 | } | ||
677 | |||
678 | update_itr_done: | ||
679 | return retval; | ||
680 | } | ||
681 | |||
682 | static void igbvf_set_itr(struct igbvf_adapter *adapter) | ||
683 | { | ||
684 | struct e1000_hw *hw = &adapter->hw; | ||
685 | u16 current_itr; | ||
686 | u32 new_itr = adapter->itr; | ||
687 | |||
688 | adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr, | ||
689 | adapter->total_tx_packets, | ||
690 | adapter->total_tx_bytes); | ||
691 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
692 | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | ||
693 | adapter->tx_itr = low_latency; | ||
694 | |||
695 | adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr, | ||
696 | adapter->total_rx_packets, | ||
697 | adapter->total_rx_bytes); | ||
698 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
699 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | ||
700 | adapter->rx_itr = low_latency; | ||
701 | |||
702 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | ||
703 | |||
704 | switch (current_itr) { | ||
705 | /* counts and packets in update_itr are dependent on these numbers */ | ||
706 | case lowest_latency: | ||
707 | new_itr = 70000; | ||
708 | break; | ||
709 | case low_latency: | ||
710 | new_itr = 20000; /* aka hwitr = ~200 */ | ||
711 | break; | ||
712 | case bulk_latency: | ||
713 | new_itr = 4000; | ||
714 | break; | ||
715 | default: | ||
716 | break; | ||
717 | } | ||
718 | |||
719 | if (new_itr != adapter->itr) { | ||
720 | /* | ||
721 | * this attempts to bias the interrupt rate towards Bulk | ||
722 | * by adding intermediate steps when interrupt rate is | ||
723 | * increasing | ||
724 | */ | ||
725 | new_itr = new_itr > adapter->itr ? | ||
726 | min(adapter->itr + (new_itr >> 2), new_itr) : | ||
727 | new_itr; | ||
728 | adapter->itr = new_itr; | ||
729 | adapter->rx_ring->itr_val = 1952; | ||
730 | |||
731 | if (adapter->msix_entries) | ||
732 | adapter->rx_ring->set_itr = 1; | ||
733 | else | ||
734 | ew32(ITR, 1952); | ||
735 | } | ||
736 | } | ||
737 | |||
738 | /** | ||
739 | * igbvf_clean_tx_irq - Reclaim resources after transmit completes | ||
740 | * @adapter: board private structure | ||
741 | * returns true if ring is completely cleaned | ||
742 | **/ | ||
743 | static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring) | ||
744 | { | ||
745 | struct igbvf_adapter *adapter = tx_ring->adapter; | ||
746 | struct net_device *netdev = adapter->netdev; | ||
747 | struct igbvf_buffer *buffer_info; | ||
748 | struct sk_buff *skb; | ||
749 | union e1000_adv_tx_desc *tx_desc, *eop_desc; | ||
750 | unsigned int total_bytes = 0, total_packets = 0; | ||
751 | unsigned int i, eop, count = 0; | ||
752 | bool cleaned = false; | ||
753 | |||
754 | i = tx_ring->next_to_clean; | ||
755 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
756 | eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); | ||
757 | |||
758 | while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) && | ||
759 | (count < tx_ring->count)) { | ||
760 | rmb(); /* read buffer_info after eop_desc status */ | ||
761 | for (cleaned = false; !cleaned; count++) { | ||
762 | tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); | ||
763 | buffer_info = &tx_ring->buffer_info[i]; | ||
764 | cleaned = (i == eop); | ||
765 | skb = buffer_info->skb; | ||
766 | |||
767 | if (skb) { | ||
768 | unsigned int segs, bytecount; | ||
769 | |||
770 | /* gso_segs is currently only valid for tcp */ | ||
771 | segs = skb_shinfo(skb)->gso_segs ?: 1; | ||
772 | /* multiply data chunks by size of headers */ | ||
773 | bytecount = ((segs - 1) * skb_headlen(skb)) + | ||
774 | skb->len; | ||
775 | total_packets += segs; | ||
776 | total_bytes += bytecount; | ||
777 | } | ||
778 | |||
779 | igbvf_put_txbuf(adapter, buffer_info); | ||
780 | tx_desc->wb.status = 0; | ||
781 | |||
782 | i++; | ||
783 | if (i == tx_ring->count) | ||
784 | i = 0; | ||
785 | } | ||
786 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
787 | eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); | ||
788 | } | ||
789 | |||
790 | tx_ring->next_to_clean = i; | ||
791 | |||
792 | if (unlikely(count && | ||
793 | netif_carrier_ok(netdev) && | ||
794 | igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) { | ||
795 | /* Make sure that anybody stopping the queue after this | ||
796 | * sees the new next_to_clean. | ||
797 | */ | ||
798 | smp_mb(); | ||
799 | if (netif_queue_stopped(netdev) && | ||
800 | !(test_bit(__IGBVF_DOWN, &adapter->state))) { | ||
801 | netif_wake_queue(netdev); | ||
802 | ++adapter->restart_queue; | ||
803 | } | ||
804 | } | ||
805 | |||
806 | adapter->net_stats.tx_bytes += total_bytes; | ||
807 | adapter->net_stats.tx_packets += total_packets; | ||
808 | return count < tx_ring->count; | ||
809 | } | ||
810 | |||
811 | static irqreturn_t igbvf_msix_other(int irq, void *data) | ||
812 | { | ||
813 | struct net_device *netdev = data; | ||
814 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
815 | struct e1000_hw *hw = &adapter->hw; | ||
816 | |||
817 | adapter->int_counter1++; | ||
818 | |||
819 | netif_carrier_off(netdev); | ||
820 | hw->mac.get_link_status = 1; | ||
821 | if (!test_bit(__IGBVF_DOWN, &adapter->state)) | ||
822 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
823 | |||
824 | ew32(EIMS, adapter->eims_other); | ||
825 | |||
826 | return IRQ_HANDLED; | ||
827 | } | ||
828 | |||
829 | static irqreturn_t igbvf_intr_msix_tx(int irq, void *data) | ||
830 | { | ||
831 | struct net_device *netdev = data; | ||
832 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
833 | struct e1000_hw *hw = &adapter->hw; | ||
834 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
835 | |||
836 | |||
837 | adapter->total_tx_bytes = 0; | ||
838 | adapter->total_tx_packets = 0; | ||
839 | |||
840 | /* auto mask will automatically reenable the interrupt when we write | ||
841 | * EICS */ | ||
842 | if (!igbvf_clean_tx_irq(tx_ring)) | ||
843 | /* Ring was not completely cleaned, so fire another interrupt */ | ||
844 | ew32(EICS, tx_ring->eims_value); | ||
845 | else | ||
846 | ew32(EIMS, tx_ring->eims_value); | ||
847 | |||
848 | return IRQ_HANDLED; | ||
849 | } | ||
850 | |||
851 | static irqreturn_t igbvf_intr_msix_rx(int irq, void *data) | ||
852 | { | ||
853 | struct net_device *netdev = data; | ||
854 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
855 | |||
856 | adapter->int_counter0++; | ||
857 | |||
858 | /* Write the ITR value calculated at the end of the | ||
859 | * previous interrupt. | ||
860 | */ | ||
861 | if (adapter->rx_ring->set_itr) { | ||
862 | writel(adapter->rx_ring->itr_val, | ||
863 | adapter->hw.hw_addr + adapter->rx_ring->itr_register); | ||
864 | adapter->rx_ring->set_itr = 0; | ||
865 | } | ||
866 | |||
867 | if (napi_schedule_prep(&adapter->rx_ring->napi)) { | ||
868 | adapter->total_rx_bytes = 0; | ||
869 | adapter->total_rx_packets = 0; | ||
870 | __napi_schedule(&adapter->rx_ring->napi); | ||
871 | } | ||
872 | |||
873 | return IRQ_HANDLED; | ||
874 | } | ||
875 | |||
876 | #define IGBVF_NO_QUEUE -1 | ||
877 | |||
878 | static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue, | ||
879 | int tx_queue, int msix_vector) | ||
880 | { | ||
881 | struct e1000_hw *hw = &adapter->hw; | ||
882 | u32 ivar, index; | ||
883 | |||
884 | /* 82576 uses a table-based method for assigning vectors. | ||
885 | Each queue has a single entry in the table to which we write | ||
886 | a vector number along with a "valid" bit. Sadly, the layout | ||
887 | of the table is somewhat counterintuitive. */ | ||
888 | if (rx_queue > IGBVF_NO_QUEUE) { | ||
889 | index = (rx_queue >> 1); | ||
890 | ivar = array_er32(IVAR0, index); | ||
891 | if (rx_queue & 0x1) { | ||
892 | /* vector goes into third byte of register */ | ||
893 | ivar = ivar & 0xFF00FFFF; | ||
894 | ivar |= (msix_vector | E1000_IVAR_VALID) << 16; | ||
895 | } else { | ||
896 | /* vector goes into low byte of register */ | ||
897 | ivar = ivar & 0xFFFFFF00; | ||
898 | ivar |= msix_vector | E1000_IVAR_VALID; | ||
899 | } | ||
900 | adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector; | ||
901 | array_ew32(IVAR0, index, ivar); | ||
902 | } | ||
903 | if (tx_queue > IGBVF_NO_QUEUE) { | ||
904 | index = (tx_queue >> 1); | ||
905 | ivar = array_er32(IVAR0, index); | ||
906 | if (tx_queue & 0x1) { | ||
907 | /* vector goes into high byte of register */ | ||
908 | ivar = ivar & 0x00FFFFFF; | ||
909 | ivar |= (msix_vector | E1000_IVAR_VALID) << 24; | ||
910 | } else { | ||
911 | /* vector goes into second byte of register */ | ||
912 | ivar = ivar & 0xFFFF00FF; | ||
913 | ivar |= (msix_vector | E1000_IVAR_VALID) << 8; | ||
914 | } | ||
915 | adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector; | ||
916 | array_ew32(IVAR0, index, ivar); | ||
917 | } | ||
918 | } | ||
919 | |||
920 | /** | ||
921 | * igbvf_configure_msix - Configure MSI-X hardware | ||
922 | * | ||
923 | * igbvf_configure_msix sets up the hardware to properly | ||
924 | * generate MSI-X interrupts. | ||
925 | **/ | ||
926 | static void igbvf_configure_msix(struct igbvf_adapter *adapter) | ||
927 | { | ||
928 | u32 tmp; | ||
929 | struct e1000_hw *hw = &adapter->hw; | ||
930 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
931 | struct igbvf_ring *rx_ring = adapter->rx_ring; | ||
932 | int vector = 0; | ||
933 | |||
934 | adapter->eims_enable_mask = 0; | ||
935 | |||
936 | igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++); | ||
937 | adapter->eims_enable_mask |= tx_ring->eims_value; | ||
938 | if (tx_ring->itr_val) | ||
939 | writel(tx_ring->itr_val, | ||
940 | hw->hw_addr + tx_ring->itr_register); | ||
941 | else | ||
942 | writel(1952, hw->hw_addr + tx_ring->itr_register); | ||
943 | |||
944 | igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++); | ||
945 | adapter->eims_enable_mask |= rx_ring->eims_value; | ||
946 | if (rx_ring->itr_val) | ||
947 | writel(rx_ring->itr_val, | ||
948 | hw->hw_addr + rx_ring->itr_register); | ||
949 | else | ||
950 | writel(1952, hw->hw_addr + rx_ring->itr_register); | ||
951 | |||
952 | /* set vector for other causes, i.e. link changes */ | ||
953 | |||
954 | tmp = (vector++ | E1000_IVAR_VALID); | ||
955 | |||
956 | ew32(IVAR_MISC, tmp); | ||
957 | |||
958 | adapter->eims_enable_mask = (1 << (vector)) - 1; | ||
959 | adapter->eims_other = 1 << (vector - 1); | ||
960 | e1e_flush(); | ||
961 | } | ||
962 | |||
963 | static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter) | ||
964 | { | ||
965 | if (adapter->msix_entries) { | ||
966 | pci_disable_msix(adapter->pdev); | ||
967 | kfree(adapter->msix_entries); | ||
968 | adapter->msix_entries = NULL; | ||
969 | } | ||
970 | } | ||
971 | |||
972 | /** | ||
973 | * igbvf_set_interrupt_capability - set MSI or MSI-X if supported | ||
974 | * | ||
975 | * Attempt to configure interrupts using the best available | ||
976 | * capabilities of the hardware and kernel. | ||
977 | **/ | ||
978 | static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter) | ||
979 | { | ||
980 | int err = -ENOMEM; | ||
981 | int i; | ||
982 | |||
983 | /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */ | ||
984 | adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry), | ||
985 | GFP_KERNEL); | ||
986 | if (adapter->msix_entries) { | ||
987 | for (i = 0; i < 3; i++) | ||
988 | adapter->msix_entries[i].entry = i; | ||
989 | |||
990 | err = pci_enable_msix(adapter->pdev, | ||
991 | adapter->msix_entries, 3); | ||
992 | } | ||
993 | |||
994 | if (err) { | ||
995 | /* MSI-X failed */ | ||
996 | dev_err(&adapter->pdev->dev, | ||
997 | "Failed to initialize MSI-X interrupts.\n"); | ||
998 | igbvf_reset_interrupt_capability(adapter); | ||
999 | } | ||
1000 | } | ||
1001 | |||
1002 | /** | ||
1003 | * igbvf_request_msix - Initialize MSI-X interrupts | ||
1004 | * | ||
1005 | * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the | ||
1006 | * kernel. | ||
1007 | **/ | ||
1008 | static int igbvf_request_msix(struct igbvf_adapter *adapter) | ||
1009 | { | ||
1010 | struct net_device *netdev = adapter->netdev; | ||
1011 | int err = 0, vector = 0; | ||
1012 | |||
1013 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) { | ||
1014 | sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); | ||
1015 | sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); | ||
1016 | } else { | ||
1017 | memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); | ||
1018 | memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); | ||
1019 | } | ||
1020 | |||
1021 | err = request_irq(adapter->msix_entries[vector].vector, | ||
1022 | igbvf_intr_msix_tx, 0, adapter->tx_ring->name, | ||
1023 | netdev); | ||
1024 | if (err) | ||
1025 | goto out; | ||
1026 | |||
1027 | adapter->tx_ring->itr_register = E1000_EITR(vector); | ||
1028 | adapter->tx_ring->itr_val = 1952; | ||
1029 | vector++; | ||
1030 | |||
1031 | err = request_irq(adapter->msix_entries[vector].vector, | ||
1032 | igbvf_intr_msix_rx, 0, adapter->rx_ring->name, | ||
1033 | netdev); | ||
1034 | if (err) | ||
1035 | goto out; | ||
1036 | |||
1037 | adapter->rx_ring->itr_register = E1000_EITR(vector); | ||
1038 | adapter->rx_ring->itr_val = 1952; | ||
1039 | vector++; | ||
1040 | |||
1041 | err = request_irq(adapter->msix_entries[vector].vector, | ||
1042 | igbvf_msix_other, 0, netdev->name, netdev); | ||
1043 | if (err) | ||
1044 | goto out; | ||
1045 | |||
1046 | igbvf_configure_msix(adapter); | ||
1047 | return 0; | ||
1048 | out: | ||
1049 | return err; | ||
1050 | } | ||
1051 | |||
1052 | /** | ||
1053 | * igbvf_alloc_queues - Allocate memory for all rings | ||
1054 | * @adapter: board private structure to initialize | ||
1055 | **/ | ||
1056 | static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter) | ||
1057 | { | ||
1058 | struct net_device *netdev = adapter->netdev; | ||
1059 | |||
1060 | adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); | ||
1061 | if (!adapter->tx_ring) | ||
1062 | return -ENOMEM; | ||
1063 | |||
1064 | adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); | ||
1065 | if (!adapter->rx_ring) { | ||
1066 | kfree(adapter->tx_ring); | ||
1067 | return -ENOMEM; | ||
1068 | } | ||
1069 | |||
1070 | netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64); | ||
1071 | |||
1072 | return 0; | ||
1073 | } | ||
1074 | |||
1075 | /** | ||
1076 | * igbvf_request_irq - initialize interrupts | ||
1077 | * | ||
1078 | * Attempts to configure interrupts using the best available | ||
1079 | * capabilities of the hardware and kernel. | ||
1080 | **/ | ||
1081 | static int igbvf_request_irq(struct igbvf_adapter *adapter) | ||
1082 | { | ||
1083 | int err = -1; | ||
1084 | |||
1085 | /* igbvf supports msi-x only */ | ||
1086 | if (adapter->msix_entries) | ||
1087 | err = igbvf_request_msix(adapter); | ||
1088 | |||
1089 | if (!err) | ||
1090 | return err; | ||
1091 | |||
1092 | dev_err(&adapter->pdev->dev, | ||
1093 | "Unable to allocate interrupt, Error: %d\n", err); | ||
1094 | |||
1095 | return err; | ||
1096 | } | ||
1097 | |||
1098 | static void igbvf_free_irq(struct igbvf_adapter *adapter) | ||
1099 | { | ||
1100 | struct net_device *netdev = adapter->netdev; | ||
1101 | int vector; | ||
1102 | |||
1103 | if (adapter->msix_entries) { | ||
1104 | for (vector = 0; vector < 3; vector++) | ||
1105 | free_irq(adapter->msix_entries[vector].vector, netdev); | ||
1106 | } | ||
1107 | } | ||
1108 | |||
1109 | /** | ||
1110 | * igbvf_irq_disable - Mask off interrupt generation on the NIC | ||
1111 | **/ | ||
1112 | static void igbvf_irq_disable(struct igbvf_adapter *adapter) | ||
1113 | { | ||
1114 | struct e1000_hw *hw = &adapter->hw; | ||
1115 | |||
1116 | ew32(EIMC, ~0); | ||
1117 | |||
1118 | if (adapter->msix_entries) | ||
1119 | ew32(EIAC, 0); | ||
1120 | } | ||
1121 | |||
1122 | /** | ||
1123 | * igbvf_irq_enable - Enable default interrupt generation settings | ||
1124 | **/ | ||
1125 | static void igbvf_irq_enable(struct igbvf_adapter *adapter) | ||
1126 | { | ||
1127 | struct e1000_hw *hw = &adapter->hw; | ||
1128 | |||
1129 | ew32(EIAC, adapter->eims_enable_mask); | ||
1130 | ew32(EIAM, adapter->eims_enable_mask); | ||
1131 | ew32(EIMS, adapter->eims_enable_mask); | ||
1132 | } | ||
1133 | |||
1134 | /** | ||
1135 | * igbvf_poll - NAPI Rx polling callback | ||
1136 | * @napi: struct associated with this polling callback | ||
1137 | * @budget: amount of packets driver is allowed to process this poll | ||
1138 | **/ | ||
1139 | static int igbvf_poll(struct napi_struct *napi, int budget) | ||
1140 | { | ||
1141 | struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi); | ||
1142 | struct igbvf_adapter *adapter = rx_ring->adapter; | ||
1143 | struct e1000_hw *hw = &adapter->hw; | ||
1144 | int work_done = 0; | ||
1145 | |||
1146 | igbvf_clean_rx_irq(adapter, &work_done, budget); | ||
1147 | |||
1148 | /* If not enough Rx work done, exit the polling mode */ | ||
1149 | if (work_done < budget) { | ||
1150 | napi_complete(napi); | ||
1151 | |||
1152 | if (adapter->itr_setting & 3) | ||
1153 | igbvf_set_itr(adapter); | ||
1154 | |||
1155 | if (!test_bit(__IGBVF_DOWN, &adapter->state)) | ||
1156 | ew32(EIMS, adapter->rx_ring->eims_value); | ||
1157 | } | ||
1158 | |||
1159 | return work_done; | ||
1160 | } | ||
1161 | |||
1162 | /** | ||
1163 | * igbvf_set_rlpml - set receive large packet maximum length | ||
1164 | * @adapter: board private structure | ||
1165 | * | ||
1166 | * Configure the maximum size of packets that will be received | ||
1167 | */ | ||
1168 | static void igbvf_set_rlpml(struct igbvf_adapter *adapter) | ||
1169 | { | ||
1170 | int max_frame_size; | ||
1171 | struct e1000_hw *hw = &adapter->hw; | ||
1172 | |||
1173 | max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE; | ||
1174 | e1000_rlpml_set_vf(hw, max_frame_size); | ||
1175 | } | ||
1176 | |||
1177 | static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | ||
1178 | { | ||
1179 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1180 | struct e1000_hw *hw = &adapter->hw; | ||
1181 | |||
1182 | if (hw->mac.ops.set_vfta(hw, vid, true)) | ||
1183 | dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid); | ||
1184 | else | ||
1185 | set_bit(vid, adapter->active_vlans); | ||
1186 | } | ||
1187 | |||
1188 | static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | ||
1189 | { | ||
1190 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1191 | struct e1000_hw *hw = &adapter->hw; | ||
1192 | |||
1193 | igbvf_irq_disable(adapter); | ||
1194 | |||
1195 | if (!test_bit(__IGBVF_DOWN, &adapter->state)) | ||
1196 | igbvf_irq_enable(adapter); | ||
1197 | |||
1198 | if (hw->mac.ops.set_vfta(hw, vid, false)) | ||
1199 | dev_err(&adapter->pdev->dev, | ||
1200 | "Failed to remove vlan id %d\n", vid); | ||
1201 | else | ||
1202 | clear_bit(vid, adapter->active_vlans); | ||
1203 | } | ||
1204 | |||
1205 | static void igbvf_restore_vlan(struct igbvf_adapter *adapter) | ||
1206 | { | ||
1207 | u16 vid; | ||
1208 | |||
1209 | for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) | ||
1210 | igbvf_vlan_rx_add_vid(adapter->netdev, vid); | ||
1211 | } | ||
1212 | |||
1213 | /** | ||
1214 | * igbvf_configure_tx - Configure Transmit Unit after Reset | ||
1215 | * @adapter: board private structure | ||
1216 | * | ||
1217 | * Configure the Tx unit of the MAC after a reset. | ||
1218 | **/ | ||
1219 | static void igbvf_configure_tx(struct igbvf_adapter *adapter) | ||
1220 | { | ||
1221 | struct e1000_hw *hw = &adapter->hw; | ||
1222 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
1223 | u64 tdba; | ||
1224 | u32 txdctl, dca_txctrl; | ||
1225 | |||
1226 | /* disable transmits */ | ||
1227 | txdctl = er32(TXDCTL(0)); | ||
1228 | ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); | ||
1229 | e1e_flush(); | ||
1230 | msleep(10); | ||
1231 | |||
1232 | /* Setup the HW Tx Head and Tail descriptor pointers */ | ||
1233 | ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc)); | ||
1234 | tdba = tx_ring->dma; | ||
1235 | ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); | ||
1236 | ew32(TDBAH(0), (tdba >> 32)); | ||
1237 | ew32(TDH(0), 0); | ||
1238 | ew32(TDT(0), 0); | ||
1239 | tx_ring->head = E1000_TDH(0); | ||
1240 | tx_ring->tail = E1000_TDT(0); | ||
1241 | |||
1242 | /* Turn off Relaxed Ordering on head write-backs. The writebacks | ||
1243 | * MUST be delivered in order or it will completely screw up | ||
1244 | * our bookeeping. | ||
1245 | */ | ||
1246 | dca_txctrl = er32(DCA_TXCTRL(0)); | ||
1247 | dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; | ||
1248 | ew32(DCA_TXCTRL(0), dca_txctrl); | ||
1249 | |||
1250 | /* enable transmits */ | ||
1251 | txdctl |= E1000_TXDCTL_QUEUE_ENABLE; | ||
1252 | ew32(TXDCTL(0), txdctl); | ||
1253 | |||
1254 | /* Setup Transmit Descriptor Settings for eop descriptor */ | ||
1255 | adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS; | ||
1256 | |||
1257 | /* enable Report Status bit */ | ||
1258 | adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS; | ||
1259 | } | ||
1260 | |||
1261 | /** | ||
1262 | * igbvf_setup_srrctl - configure the receive control registers | ||
1263 | * @adapter: Board private structure | ||
1264 | **/ | ||
1265 | static void igbvf_setup_srrctl(struct igbvf_adapter *adapter) | ||
1266 | { | ||
1267 | struct e1000_hw *hw = &adapter->hw; | ||
1268 | u32 srrctl = 0; | ||
1269 | |||
1270 | srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK | | ||
1271 | E1000_SRRCTL_BSIZEHDR_MASK | | ||
1272 | E1000_SRRCTL_BSIZEPKT_MASK); | ||
1273 | |||
1274 | /* Enable queue drop to avoid head of line blocking */ | ||
1275 | srrctl |= E1000_SRRCTL_DROP_EN; | ||
1276 | |||
1277 | /* Setup buffer sizes */ | ||
1278 | srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >> | ||
1279 | E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
1280 | |||
1281 | if (adapter->rx_buffer_len < 2048) { | ||
1282 | adapter->rx_ps_hdr_size = 0; | ||
1283 | srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; | ||
1284 | } else { | ||
1285 | adapter->rx_ps_hdr_size = 128; | ||
1286 | srrctl |= adapter->rx_ps_hdr_size << | ||
1287 | E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; | ||
1288 | srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; | ||
1289 | } | ||
1290 | |||
1291 | ew32(SRRCTL(0), srrctl); | ||
1292 | } | ||
1293 | |||
1294 | /** | ||
1295 | * igbvf_configure_rx - Configure Receive Unit after Reset | ||
1296 | * @adapter: board private structure | ||
1297 | * | ||
1298 | * Configure the Rx unit of the MAC after a reset. | ||
1299 | **/ | ||
1300 | static void igbvf_configure_rx(struct igbvf_adapter *adapter) | ||
1301 | { | ||
1302 | struct e1000_hw *hw = &adapter->hw; | ||
1303 | struct igbvf_ring *rx_ring = adapter->rx_ring; | ||
1304 | u64 rdba; | ||
1305 | u32 rdlen, rxdctl; | ||
1306 | |||
1307 | /* disable receives */ | ||
1308 | rxdctl = er32(RXDCTL(0)); | ||
1309 | ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); | ||
1310 | e1e_flush(); | ||
1311 | msleep(10); | ||
1312 | |||
1313 | rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc); | ||
1314 | |||
1315 | /* | ||
1316 | * Setup the HW Rx Head and Tail Descriptor Pointers and | ||
1317 | * the Base and Length of the Rx Descriptor Ring | ||
1318 | */ | ||
1319 | rdba = rx_ring->dma; | ||
1320 | ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); | ||
1321 | ew32(RDBAH(0), (rdba >> 32)); | ||
1322 | ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc)); | ||
1323 | rx_ring->head = E1000_RDH(0); | ||
1324 | rx_ring->tail = E1000_RDT(0); | ||
1325 | ew32(RDH(0), 0); | ||
1326 | ew32(RDT(0), 0); | ||
1327 | |||
1328 | rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; | ||
1329 | rxdctl &= 0xFFF00000; | ||
1330 | rxdctl |= IGBVF_RX_PTHRESH; | ||
1331 | rxdctl |= IGBVF_RX_HTHRESH << 8; | ||
1332 | rxdctl |= IGBVF_RX_WTHRESH << 16; | ||
1333 | |||
1334 | igbvf_set_rlpml(adapter); | ||
1335 | |||
1336 | /* enable receives */ | ||
1337 | ew32(RXDCTL(0), rxdctl); | ||
1338 | } | ||
1339 | |||
1340 | /** | ||
1341 | * igbvf_set_multi - Multicast and Promiscuous mode set | ||
1342 | * @netdev: network interface device structure | ||
1343 | * | ||
1344 | * The set_multi entry point is called whenever the multicast address | ||
1345 | * list or the network interface flags are updated. This routine is | ||
1346 | * responsible for configuring the hardware for proper multicast, | ||
1347 | * promiscuous mode, and all-multi behavior. | ||
1348 | **/ | ||
1349 | static void igbvf_set_multi(struct net_device *netdev) | ||
1350 | { | ||
1351 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1352 | struct e1000_hw *hw = &adapter->hw; | ||
1353 | struct netdev_hw_addr *ha; | ||
1354 | u8 *mta_list = NULL; | ||
1355 | int i; | ||
1356 | |||
1357 | if (!netdev_mc_empty(netdev)) { | ||
1358 | mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); | ||
1359 | if (!mta_list) { | ||
1360 | dev_err(&adapter->pdev->dev, | ||
1361 | "failed to allocate multicast filter list\n"); | ||
1362 | return; | ||
1363 | } | ||
1364 | } | ||
1365 | |||
1366 | /* prepare a packed array of only addresses. */ | ||
1367 | i = 0; | ||
1368 | netdev_for_each_mc_addr(ha, netdev) | ||
1369 | memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); | ||
1370 | |||
1371 | hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0); | ||
1372 | kfree(mta_list); | ||
1373 | } | ||
1374 | |||
1375 | /** | ||
1376 | * igbvf_configure - configure the hardware for Rx and Tx | ||
1377 | * @adapter: private board structure | ||
1378 | **/ | ||
1379 | static void igbvf_configure(struct igbvf_adapter *adapter) | ||
1380 | { | ||
1381 | igbvf_set_multi(adapter->netdev); | ||
1382 | |||
1383 | igbvf_restore_vlan(adapter); | ||
1384 | |||
1385 | igbvf_configure_tx(adapter); | ||
1386 | igbvf_setup_srrctl(adapter); | ||
1387 | igbvf_configure_rx(adapter); | ||
1388 | igbvf_alloc_rx_buffers(adapter->rx_ring, | ||
1389 | igbvf_desc_unused(adapter->rx_ring)); | ||
1390 | } | ||
1391 | |||
1392 | /* igbvf_reset - bring the hardware into a known good state | ||
1393 | * | ||
1394 | * This function boots the hardware and enables some settings that | ||
1395 | * require a configuration cycle of the hardware - those cannot be | ||
1396 | * set/changed during runtime. After reset the device needs to be | ||
1397 | * properly configured for Rx, Tx etc. | ||
1398 | */ | ||
1399 | static void igbvf_reset(struct igbvf_adapter *adapter) | ||
1400 | { | ||
1401 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
1402 | struct net_device *netdev = adapter->netdev; | ||
1403 | struct e1000_hw *hw = &adapter->hw; | ||
1404 | |||
1405 | /* Allow time for pending master requests to run */ | ||
1406 | if (mac->ops.reset_hw(hw)) | ||
1407 | dev_err(&adapter->pdev->dev, "PF still resetting\n"); | ||
1408 | |||
1409 | mac->ops.init_hw(hw); | ||
1410 | |||
1411 | if (is_valid_ether_addr(adapter->hw.mac.addr)) { | ||
1412 | memcpy(netdev->dev_addr, adapter->hw.mac.addr, | ||
1413 | netdev->addr_len); | ||
1414 | memcpy(netdev->perm_addr, adapter->hw.mac.addr, | ||
1415 | netdev->addr_len); | ||
1416 | } | ||
1417 | |||
1418 | adapter->last_reset = jiffies; | ||
1419 | } | ||
1420 | |||
1421 | int igbvf_up(struct igbvf_adapter *adapter) | ||
1422 | { | ||
1423 | struct e1000_hw *hw = &adapter->hw; | ||
1424 | |||
1425 | /* hardware has been reset, we need to reload some things */ | ||
1426 | igbvf_configure(adapter); | ||
1427 | |||
1428 | clear_bit(__IGBVF_DOWN, &adapter->state); | ||
1429 | |||
1430 | napi_enable(&adapter->rx_ring->napi); | ||
1431 | if (adapter->msix_entries) | ||
1432 | igbvf_configure_msix(adapter); | ||
1433 | |||
1434 | /* Clear any pending interrupts. */ | ||
1435 | er32(EICR); | ||
1436 | igbvf_irq_enable(adapter); | ||
1437 | |||
1438 | /* start the watchdog */ | ||
1439 | hw->mac.get_link_status = 1; | ||
1440 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
1441 | |||
1442 | |||
1443 | return 0; | ||
1444 | } | ||
1445 | |||
1446 | void igbvf_down(struct igbvf_adapter *adapter) | ||
1447 | { | ||
1448 | struct net_device *netdev = adapter->netdev; | ||
1449 | struct e1000_hw *hw = &adapter->hw; | ||
1450 | u32 rxdctl, txdctl; | ||
1451 | |||
1452 | /* | ||
1453 | * signal that we're down so the interrupt handler does not | ||
1454 | * reschedule our watchdog timer | ||
1455 | */ | ||
1456 | set_bit(__IGBVF_DOWN, &adapter->state); | ||
1457 | |||
1458 | /* disable receives in the hardware */ | ||
1459 | rxdctl = er32(RXDCTL(0)); | ||
1460 | ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); | ||
1461 | |||
1462 | netif_stop_queue(netdev); | ||
1463 | |||
1464 | /* disable transmits in the hardware */ | ||
1465 | txdctl = er32(TXDCTL(0)); | ||
1466 | ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); | ||
1467 | |||
1468 | /* flush both disables and wait for them to finish */ | ||
1469 | e1e_flush(); | ||
1470 | msleep(10); | ||
1471 | |||
1472 | napi_disable(&adapter->rx_ring->napi); | ||
1473 | |||
1474 | igbvf_irq_disable(adapter); | ||
1475 | |||
1476 | del_timer_sync(&adapter->watchdog_timer); | ||
1477 | |||
1478 | netif_carrier_off(netdev); | ||
1479 | |||
1480 | /* record the stats before reset*/ | ||
1481 | igbvf_update_stats(adapter); | ||
1482 | |||
1483 | adapter->link_speed = 0; | ||
1484 | adapter->link_duplex = 0; | ||
1485 | |||
1486 | igbvf_reset(adapter); | ||
1487 | igbvf_clean_tx_ring(adapter->tx_ring); | ||
1488 | igbvf_clean_rx_ring(adapter->rx_ring); | ||
1489 | } | ||
1490 | |||
1491 | void igbvf_reinit_locked(struct igbvf_adapter *adapter) | ||
1492 | { | ||
1493 | might_sleep(); | ||
1494 | while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) | ||
1495 | msleep(1); | ||
1496 | igbvf_down(adapter); | ||
1497 | igbvf_up(adapter); | ||
1498 | clear_bit(__IGBVF_RESETTING, &adapter->state); | ||
1499 | } | ||
1500 | |||
1501 | /** | ||
1502 | * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter) | ||
1503 | * @adapter: board private structure to initialize | ||
1504 | * | ||
1505 | * igbvf_sw_init initializes the Adapter private data structure. | ||
1506 | * Fields are initialized based on PCI device information and | ||
1507 | * OS network device settings (MTU size). | ||
1508 | **/ | ||
1509 | static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter) | ||
1510 | { | ||
1511 | struct net_device *netdev = adapter->netdev; | ||
1512 | s32 rc; | ||
1513 | |||
1514 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; | ||
1515 | adapter->rx_ps_hdr_size = 0; | ||
1516 | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | ||
1517 | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | ||
1518 | |||
1519 | adapter->tx_int_delay = 8; | ||
1520 | adapter->tx_abs_int_delay = 32; | ||
1521 | adapter->rx_int_delay = 0; | ||
1522 | adapter->rx_abs_int_delay = 8; | ||
1523 | adapter->itr_setting = 3; | ||
1524 | adapter->itr = 20000; | ||
1525 | |||
1526 | /* Set various function pointers */ | ||
1527 | adapter->ei->init_ops(&adapter->hw); | ||
1528 | |||
1529 | rc = adapter->hw.mac.ops.init_params(&adapter->hw); | ||
1530 | if (rc) | ||
1531 | return rc; | ||
1532 | |||
1533 | rc = adapter->hw.mbx.ops.init_params(&adapter->hw); | ||
1534 | if (rc) | ||
1535 | return rc; | ||
1536 | |||
1537 | igbvf_set_interrupt_capability(adapter); | ||
1538 | |||
1539 | if (igbvf_alloc_queues(adapter)) | ||
1540 | return -ENOMEM; | ||
1541 | |||
1542 | spin_lock_init(&adapter->tx_queue_lock); | ||
1543 | |||
1544 | /* Explicitly disable IRQ since the NIC can be in any state. */ | ||
1545 | igbvf_irq_disable(adapter); | ||
1546 | |||
1547 | spin_lock_init(&adapter->stats_lock); | ||
1548 | |||
1549 | set_bit(__IGBVF_DOWN, &adapter->state); | ||
1550 | return 0; | ||
1551 | } | ||
1552 | |||
1553 | static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter) | ||
1554 | { | ||
1555 | struct e1000_hw *hw = &adapter->hw; | ||
1556 | |||
1557 | adapter->stats.last_gprc = er32(VFGPRC); | ||
1558 | adapter->stats.last_gorc = er32(VFGORC); | ||
1559 | adapter->stats.last_gptc = er32(VFGPTC); | ||
1560 | adapter->stats.last_gotc = er32(VFGOTC); | ||
1561 | adapter->stats.last_mprc = er32(VFMPRC); | ||
1562 | adapter->stats.last_gotlbc = er32(VFGOTLBC); | ||
1563 | adapter->stats.last_gptlbc = er32(VFGPTLBC); | ||
1564 | adapter->stats.last_gorlbc = er32(VFGORLBC); | ||
1565 | adapter->stats.last_gprlbc = er32(VFGPRLBC); | ||
1566 | |||
1567 | adapter->stats.base_gprc = er32(VFGPRC); | ||
1568 | adapter->stats.base_gorc = er32(VFGORC); | ||
1569 | adapter->stats.base_gptc = er32(VFGPTC); | ||
1570 | adapter->stats.base_gotc = er32(VFGOTC); | ||
1571 | adapter->stats.base_mprc = er32(VFMPRC); | ||
1572 | adapter->stats.base_gotlbc = er32(VFGOTLBC); | ||
1573 | adapter->stats.base_gptlbc = er32(VFGPTLBC); | ||
1574 | adapter->stats.base_gorlbc = er32(VFGORLBC); | ||
1575 | adapter->stats.base_gprlbc = er32(VFGPRLBC); | ||
1576 | } | ||
1577 | |||
1578 | /** | ||
1579 | * igbvf_open - Called when a network interface is made active | ||
1580 | * @netdev: network interface device structure | ||
1581 | * | ||
1582 | * Returns 0 on success, negative value on failure | ||
1583 | * | ||
1584 | * The open entry point is called when a network interface is made | ||
1585 | * active by the system (IFF_UP). At this point all resources needed | ||
1586 | * for transmit and receive operations are allocated, the interrupt | ||
1587 | * handler is registered with the OS, the watchdog timer is started, | ||
1588 | * and the stack is notified that the interface is ready. | ||
1589 | **/ | ||
1590 | static int igbvf_open(struct net_device *netdev) | ||
1591 | { | ||
1592 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1593 | struct e1000_hw *hw = &adapter->hw; | ||
1594 | int err; | ||
1595 | |||
1596 | /* disallow open during test */ | ||
1597 | if (test_bit(__IGBVF_TESTING, &adapter->state)) | ||
1598 | return -EBUSY; | ||
1599 | |||
1600 | /* allocate transmit descriptors */ | ||
1601 | err = igbvf_setup_tx_resources(adapter, adapter->tx_ring); | ||
1602 | if (err) | ||
1603 | goto err_setup_tx; | ||
1604 | |||
1605 | /* allocate receive descriptors */ | ||
1606 | err = igbvf_setup_rx_resources(adapter, adapter->rx_ring); | ||
1607 | if (err) | ||
1608 | goto err_setup_rx; | ||
1609 | |||
1610 | /* | ||
1611 | * before we allocate an interrupt, we must be ready to handle it. | ||
1612 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | ||
1613 | * as soon as we call pci_request_irq, so we have to setup our | ||
1614 | * clean_rx handler before we do so. | ||
1615 | */ | ||
1616 | igbvf_configure(adapter); | ||
1617 | |||
1618 | err = igbvf_request_irq(adapter); | ||
1619 | if (err) | ||
1620 | goto err_req_irq; | ||
1621 | |||
1622 | /* From here on the code is the same as igbvf_up() */ | ||
1623 | clear_bit(__IGBVF_DOWN, &adapter->state); | ||
1624 | |||
1625 | napi_enable(&adapter->rx_ring->napi); | ||
1626 | |||
1627 | /* clear any pending interrupts */ | ||
1628 | er32(EICR); | ||
1629 | |||
1630 | igbvf_irq_enable(adapter); | ||
1631 | |||
1632 | /* start the watchdog */ | ||
1633 | hw->mac.get_link_status = 1; | ||
1634 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
1635 | |||
1636 | return 0; | ||
1637 | |||
1638 | err_req_irq: | ||
1639 | igbvf_free_rx_resources(adapter->rx_ring); | ||
1640 | err_setup_rx: | ||
1641 | igbvf_free_tx_resources(adapter->tx_ring); | ||
1642 | err_setup_tx: | ||
1643 | igbvf_reset(adapter); | ||
1644 | |||
1645 | return err; | ||
1646 | } | ||
1647 | |||
1648 | /** | ||
1649 | * igbvf_close - Disables a network interface | ||
1650 | * @netdev: network interface device structure | ||
1651 | * | ||
1652 | * Returns 0, this is not allowed to fail | ||
1653 | * | ||
1654 | * The close entry point is called when an interface is de-activated | ||
1655 | * by the OS. The hardware is still under the drivers control, but | ||
1656 | * needs to be disabled. A global MAC reset is issued to stop the | ||
1657 | * hardware, and all transmit and receive resources are freed. | ||
1658 | **/ | ||
1659 | static int igbvf_close(struct net_device *netdev) | ||
1660 | { | ||
1661 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1662 | |||
1663 | WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); | ||
1664 | igbvf_down(adapter); | ||
1665 | |||
1666 | igbvf_free_irq(adapter); | ||
1667 | |||
1668 | igbvf_free_tx_resources(adapter->tx_ring); | ||
1669 | igbvf_free_rx_resources(adapter->rx_ring); | ||
1670 | |||
1671 | return 0; | ||
1672 | } | ||
1673 | /** | ||
1674 | * igbvf_set_mac - Change the Ethernet Address of the NIC | ||
1675 | * @netdev: network interface device structure | ||
1676 | * @p: pointer to an address structure | ||
1677 | * | ||
1678 | * Returns 0 on success, negative on failure | ||
1679 | **/ | ||
1680 | static int igbvf_set_mac(struct net_device *netdev, void *p) | ||
1681 | { | ||
1682 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1683 | struct e1000_hw *hw = &adapter->hw; | ||
1684 | struct sockaddr *addr = p; | ||
1685 | |||
1686 | if (!is_valid_ether_addr(addr->sa_data)) | ||
1687 | return -EADDRNOTAVAIL; | ||
1688 | |||
1689 | memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); | ||
1690 | |||
1691 | hw->mac.ops.rar_set(hw, hw->mac.addr, 0); | ||
1692 | |||
1693 | if (memcmp(addr->sa_data, hw->mac.addr, 6)) | ||
1694 | return -EADDRNOTAVAIL; | ||
1695 | |||
1696 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
1697 | |||
1698 | return 0; | ||
1699 | } | ||
1700 | |||
1701 | #define UPDATE_VF_COUNTER(reg, name) \ | ||
1702 | { \ | ||
1703 | u32 current_counter = er32(reg); \ | ||
1704 | if (current_counter < adapter->stats.last_##name) \ | ||
1705 | adapter->stats.name += 0x100000000LL; \ | ||
1706 | adapter->stats.last_##name = current_counter; \ | ||
1707 | adapter->stats.name &= 0xFFFFFFFF00000000LL; \ | ||
1708 | adapter->stats.name |= current_counter; \ | ||
1709 | } | ||
1710 | |||
1711 | /** | ||
1712 | * igbvf_update_stats - Update the board statistics counters | ||
1713 | * @adapter: board private structure | ||
1714 | **/ | ||
1715 | void igbvf_update_stats(struct igbvf_adapter *adapter) | ||
1716 | { | ||
1717 | struct e1000_hw *hw = &adapter->hw; | ||
1718 | struct pci_dev *pdev = adapter->pdev; | ||
1719 | |||
1720 | /* | ||
1721 | * Prevent stats update while adapter is being reset, link is down | ||
1722 | * or if the pci connection is down. | ||
1723 | */ | ||
1724 | if (adapter->link_speed == 0) | ||
1725 | return; | ||
1726 | |||
1727 | if (test_bit(__IGBVF_RESETTING, &adapter->state)) | ||
1728 | return; | ||
1729 | |||
1730 | if (pci_channel_offline(pdev)) | ||
1731 | return; | ||
1732 | |||
1733 | UPDATE_VF_COUNTER(VFGPRC, gprc); | ||
1734 | UPDATE_VF_COUNTER(VFGORC, gorc); | ||
1735 | UPDATE_VF_COUNTER(VFGPTC, gptc); | ||
1736 | UPDATE_VF_COUNTER(VFGOTC, gotc); | ||
1737 | UPDATE_VF_COUNTER(VFMPRC, mprc); | ||
1738 | UPDATE_VF_COUNTER(VFGOTLBC, gotlbc); | ||
1739 | UPDATE_VF_COUNTER(VFGPTLBC, gptlbc); | ||
1740 | UPDATE_VF_COUNTER(VFGORLBC, gorlbc); | ||
1741 | UPDATE_VF_COUNTER(VFGPRLBC, gprlbc); | ||
1742 | |||
1743 | /* Fill out the OS statistics structure */ | ||
1744 | adapter->net_stats.multicast = adapter->stats.mprc; | ||
1745 | } | ||
1746 | |||
1747 | static void igbvf_print_link_info(struct igbvf_adapter *adapter) | ||
1748 | { | ||
1749 | dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n", | ||
1750 | adapter->link_speed, | ||
1751 | ((adapter->link_duplex == FULL_DUPLEX) ? | ||
1752 | "Full Duplex" : "Half Duplex")); | ||
1753 | } | ||
1754 | |||
1755 | static bool igbvf_has_link(struct igbvf_adapter *adapter) | ||
1756 | { | ||
1757 | struct e1000_hw *hw = &adapter->hw; | ||
1758 | s32 ret_val = E1000_SUCCESS; | ||
1759 | bool link_active; | ||
1760 | |||
1761 | /* If interface is down, stay link down */ | ||
1762 | if (test_bit(__IGBVF_DOWN, &adapter->state)) | ||
1763 | return false; | ||
1764 | |||
1765 | ret_val = hw->mac.ops.check_for_link(hw); | ||
1766 | link_active = !hw->mac.get_link_status; | ||
1767 | |||
1768 | /* if check for link returns error we will need to reset */ | ||
1769 | if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ))) | ||
1770 | schedule_work(&adapter->reset_task); | ||
1771 | |||
1772 | return link_active; | ||
1773 | } | ||
1774 | |||
1775 | /** | ||
1776 | * igbvf_watchdog - Timer Call-back | ||
1777 | * @data: pointer to adapter cast into an unsigned long | ||
1778 | **/ | ||
1779 | static void igbvf_watchdog(unsigned long data) | ||
1780 | { | ||
1781 | struct igbvf_adapter *adapter = (struct igbvf_adapter *) data; | ||
1782 | |||
1783 | /* Do the rest outside of interrupt context */ | ||
1784 | schedule_work(&adapter->watchdog_task); | ||
1785 | } | ||
1786 | |||
1787 | static void igbvf_watchdog_task(struct work_struct *work) | ||
1788 | { | ||
1789 | struct igbvf_adapter *adapter = container_of(work, | ||
1790 | struct igbvf_adapter, | ||
1791 | watchdog_task); | ||
1792 | struct net_device *netdev = adapter->netdev; | ||
1793 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
1794 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
1795 | struct e1000_hw *hw = &adapter->hw; | ||
1796 | u32 link; | ||
1797 | int tx_pending = 0; | ||
1798 | |||
1799 | link = igbvf_has_link(adapter); | ||
1800 | |||
1801 | if (link) { | ||
1802 | if (!netif_carrier_ok(netdev)) { | ||
1803 | mac->ops.get_link_up_info(&adapter->hw, | ||
1804 | &adapter->link_speed, | ||
1805 | &adapter->link_duplex); | ||
1806 | igbvf_print_link_info(adapter); | ||
1807 | |||
1808 | netif_carrier_on(netdev); | ||
1809 | netif_wake_queue(netdev); | ||
1810 | } | ||
1811 | } else { | ||
1812 | if (netif_carrier_ok(netdev)) { | ||
1813 | adapter->link_speed = 0; | ||
1814 | adapter->link_duplex = 0; | ||
1815 | dev_info(&adapter->pdev->dev, "Link is Down\n"); | ||
1816 | netif_carrier_off(netdev); | ||
1817 | netif_stop_queue(netdev); | ||
1818 | } | ||
1819 | } | ||
1820 | |||
1821 | if (netif_carrier_ok(netdev)) { | ||
1822 | igbvf_update_stats(adapter); | ||
1823 | } else { | ||
1824 | tx_pending = (igbvf_desc_unused(tx_ring) + 1 < | ||
1825 | tx_ring->count); | ||
1826 | if (tx_pending) { | ||
1827 | /* | ||
1828 | * We've lost link, so the controller stops DMA, | ||
1829 | * but we've got queued Tx work that's never going | ||
1830 | * to get done, so reset controller to flush Tx. | ||
1831 | * (Do the reset outside of interrupt context). | ||
1832 | */ | ||
1833 | adapter->tx_timeout_count++; | ||
1834 | schedule_work(&adapter->reset_task); | ||
1835 | } | ||
1836 | } | ||
1837 | |||
1838 | /* Cause software interrupt to ensure Rx ring is cleaned */ | ||
1839 | ew32(EICS, adapter->rx_ring->eims_value); | ||
1840 | |||
1841 | /* Reset the timer */ | ||
1842 | if (!test_bit(__IGBVF_DOWN, &adapter->state)) | ||
1843 | mod_timer(&adapter->watchdog_timer, | ||
1844 | round_jiffies(jiffies + (2 * HZ))); | ||
1845 | } | ||
1846 | |||
1847 | #define IGBVF_TX_FLAGS_CSUM 0x00000001 | ||
1848 | #define IGBVF_TX_FLAGS_VLAN 0x00000002 | ||
1849 | #define IGBVF_TX_FLAGS_TSO 0x00000004 | ||
1850 | #define IGBVF_TX_FLAGS_IPV4 0x00000008 | ||
1851 | #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
1852 | #define IGBVF_TX_FLAGS_VLAN_SHIFT 16 | ||
1853 | |||
1854 | static int igbvf_tso(struct igbvf_adapter *adapter, | ||
1855 | struct igbvf_ring *tx_ring, | ||
1856 | struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) | ||
1857 | { | ||
1858 | struct e1000_adv_tx_context_desc *context_desc; | ||
1859 | unsigned int i; | ||
1860 | int err; | ||
1861 | struct igbvf_buffer *buffer_info; | ||
1862 | u32 info = 0, tu_cmd = 0; | ||
1863 | u32 mss_l4len_idx, l4len; | ||
1864 | *hdr_len = 0; | ||
1865 | |||
1866 | if (skb_header_cloned(skb)) { | ||
1867 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
1868 | if (err) { | ||
1869 | dev_err(&adapter->pdev->dev, | ||
1870 | "igbvf_tso returning an error\n"); | ||
1871 | return err; | ||
1872 | } | ||
1873 | } | ||
1874 | |||
1875 | l4len = tcp_hdrlen(skb); | ||
1876 | *hdr_len += l4len; | ||
1877 | |||
1878 | if (skb->protocol == htons(ETH_P_IP)) { | ||
1879 | struct iphdr *iph = ip_hdr(skb); | ||
1880 | iph->tot_len = 0; | ||
1881 | iph->check = 0; | ||
1882 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | ||
1883 | iph->daddr, 0, | ||
1884 | IPPROTO_TCP, | ||
1885 | 0); | ||
1886 | } else if (skb_is_gso_v6(skb)) { | ||
1887 | ipv6_hdr(skb)->payload_len = 0; | ||
1888 | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
1889 | &ipv6_hdr(skb)->daddr, | ||
1890 | 0, IPPROTO_TCP, 0); | ||
1891 | } | ||
1892 | |||
1893 | i = tx_ring->next_to_use; | ||
1894 | |||
1895 | buffer_info = &tx_ring->buffer_info[i]; | ||
1896 | context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); | ||
1897 | /* VLAN MACLEN IPLEN */ | ||
1898 | if (tx_flags & IGBVF_TX_FLAGS_VLAN) | ||
1899 | info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); | ||
1900 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
1901 | *hdr_len += skb_network_offset(skb); | ||
1902 | info |= (skb_transport_header(skb) - skb_network_header(skb)); | ||
1903 | *hdr_len += (skb_transport_header(skb) - skb_network_header(skb)); | ||
1904 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
1905 | |||
1906 | /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ | ||
1907 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
1908 | |||
1909 | if (skb->protocol == htons(ETH_P_IP)) | ||
1910 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
1911 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
1912 | |||
1913 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
1914 | |||
1915 | /* MSS L4LEN IDX */ | ||
1916 | mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); | ||
1917 | mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); | ||
1918 | |||
1919 | context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); | ||
1920 | context_desc->seqnum_seed = 0; | ||
1921 | |||
1922 | buffer_info->time_stamp = jiffies; | ||
1923 | buffer_info->next_to_watch = i; | ||
1924 | buffer_info->dma = 0; | ||
1925 | i++; | ||
1926 | if (i == tx_ring->count) | ||
1927 | i = 0; | ||
1928 | |||
1929 | tx_ring->next_to_use = i; | ||
1930 | |||
1931 | return true; | ||
1932 | } | ||
1933 | |||
1934 | static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter, | ||
1935 | struct igbvf_ring *tx_ring, | ||
1936 | struct sk_buff *skb, u32 tx_flags) | ||
1937 | { | ||
1938 | struct e1000_adv_tx_context_desc *context_desc; | ||
1939 | unsigned int i; | ||
1940 | struct igbvf_buffer *buffer_info; | ||
1941 | u32 info = 0, tu_cmd = 0; | ||
1942 | |||
1943 | if ((skb->ip_summed == CHECKSUM_PARTIAL) || | ||
1944 | (tx_flags & IGBVF_TX_FLAGS_VLAN)) { | ||
1945 | i = tx_ring->next_to_use; | ||
1946 | buffer_info = &tx_ring->buffer_info[i]; | ||
1947 | context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); | ||
1948 | |||
1949 | if (tx_flags & IGBVF_TX_FLAGS_VLAN) | ||
1950 | info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); | ||
1951 | |||
1952 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
1953 | if (skb->ip_summed == CHECKSUM_PARTIAL) | ||
1954 | info |= (skb_transport_header(skb) - | ||
1955 | skb_network_header(skb)); | ||
1956 | |||
1957 | |||
1958 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
1959 | |||
1960 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
1961 | |||
1962 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
1963 | switch (skb->protocol) { | ||
1964 | case __constant_htons(ETH_P_IP): | ||
1965 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
1966 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | ||
1967 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
1968 | break; | ||
1969 | case __constant_htons(ETH_P_IPV6): | ||
1970 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | ||
1971 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
1972 | break; | ||
1973 | default: | ||
1974 | break; | ||
1975 | } | ||
1976 | } | ||
1977 | |||
1978 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
1979 | context_desc->seqnum_seed = 0; | ||
1980 | context_desc->mss_l4len_idx = 0; | ||
1981 | |||
1982 | buffer_info->time_stamp = jiffies; | ||
1983 | buffer_info->next_to_watch = i; | ||
1984 | buffer_info->dma = 0; | ||
1985 | i++; | ||
1986 | if (i == tx_ring->count) | ||
1987 | i = 0; | ||
1988 | tx_ring->next_to_use = i; | ||
1989 | |||
1990 | return true; | ||
1991 | } | ||
1992 | |||
1993 | return false; | ||
1994 | } | ||
1995 | |||
1996 | static int igbvf_maybe_stop_tx(struct net_device *netdev, int size) | ||
1997 | { | ||
1998 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1999 | |||
2000 | /* there is enough descriptors then we don't need to worry */ | ||
2001 | if (igbvf_desc_unused(adapter->tx_ring) >= size) | ||
2002 | return 0; | ||
2003 | |||
2004 | netif_stop_queue(netdev); | ||
2005 | |||
2006 | smp_mb(); | ||
2007 | |||
2008 | /* We need to check again just in case room has been made available */ | ||
2009 | if (igbvf_desc_unused(adapter->tx_ring) < size) | ||
2010 | return -EBUSY; | ||
2011 | |||
2012 | netif_wake_queue(netdev); | ||
2013 | |||
2014 | ++adapter->restart_queue; | ||
2015 | return 0; | ||
2016 | } | ||
2017 | |||
2018 | #define IGBVF_MAX_TXD_PWR 16 | ||
2019 | #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR) | ||
2020 | |||
2021 | static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter, | ||
2022 | struct igbvf_ring *tx_ring, | ||
2023 | struct sk_buff *skb, | ||
2024 | unsigned int first) | ||
2025 | { | ||
2026 | struct igbvf_buffer *buffer_info; | ||
2027 | struct pci_dev *pdev = adapter->pdev; | ||
2028 | unsigned int len = skb_headlen(skb); | ||
2029 | unsigned int count = 0, i; | ||
2030 | unsigned int f; | ||
2031 | |||
2032 | i = tx_ring->next_to_use; | ||
2033 | |||
2034 | buffer_info = &tx_ring->buffer_info[i]; | ||
2035 | BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); | ||
2036 | buffer_info->length = len; | ||
2037 | /* set time_stamp *before* dma to help avoid a possible race */ | ||
2038 | buffer_info->time_stamp = jiffies; | ||
2039 | buffer_info->next_to_watch = i; | ||
2040 | buffer_info->mapped_as_page = false; | ||
2041 | buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len, | ||
2042 | DMA_TO_DEVICE); | ||
2043 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) | ||
2044 | goto dma_error; | ||
2045 | |||
2046 | |||
2047 | for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { | ||
2048 | struct skb_frag_struct *frag; | ||
2049 | |||
2050 | count++; | ||
2051 | i++; | ||
2052 | if (i == tx_ring->count) | ||
2053 | i = 0; | ||
2054 | |||
2055 | frag = &skb_shinfo(skb)->frags[f]; | ||
2056 | len = frag->size; | ||
2057 | |||
2058 | buffer_info = &tx_ring->buffer_info[i]; | ||
2059 | BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); | ||
2060 | buffer_info->length = len; | ||
2061 | buffer_info->time_stamp = jiffies; | ||
2062 | buffer_info->next_to_watch = i; | ||
2063 | buffer_info->mapped_as_page = true; | ||
2064 | buffer_info->dma = dma_map_page(&pdev->dev, | ||
2065 | frag->page, | ||
2066 | frag->page_offset, | ||
2067 | len, | ||
2068 | DMA_TO_DEVICE); | ||
2069 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) | ||
2070 | goto dma_error; | ||
2071 | } | ||
2072 | |||
2073 | tx_ring->buffer_info[i].skb = skb; | ||
2074 | tx_ring->buffer_info[first].next_to_watch = i; | ||
2075 | |||
2076 | return ++count; | ||
2077 | |||
2078 | dma_error: | ||
2079 | dev_err(&pdev->dev, "TX DMA map failed\n"); | ||
2080 | |||
2081 | /* clear timestamp and dma mappings for failed buffer_info mapping */ | ||
2082 | buffer_info->dma = 0; | ||
2083 | buffer_info->time_stamp = 0; | ||
2084 | buffer_info->length = 0; | ||
2085 | buffer_info->next_to_watch = 0; | ||
2086 | buffer_info->mapped_as_page = false; | ||
2087 | if (count) | ||
2088 | count--; | ||
2089 | |||
2090 | /* clear timestamp and dma mappings for remaining portion of packet */ | ||
2091 | while (count--) { | ||
2092 | if (i==0) | ||
2093 | i += tx_ring->count; | ||
2094 | i--; | ||
2095 | buffer_info = &tx_ring->buffer_info[i]; | ||
2096 | igbvf_put_txbuf(adapter, buffer_info); | ||
2097 | } | ||
2098 | |||
2099 | return 0; | ||
2100 | } | ||
2101 | |||
2102 | static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter, | ||
2103 | struct igbvf_ring *tx_ring, | ||
2104 | int tx_flags, int count, u32 paylen, | ||
2105 | u8 hdr_len) | ||
2106 | { | ||
2107 | union e1000_adv_tx_desc *tx_desc = NULL; | ||
2108 | struct igbvf_buffer *buffer_info; | ||
2109 | u32 olinfo_status = 0, cmd_type_len; | ||
2110 | unsigned int i; | ||
2111 | |||
2112 | cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | | ||
2113 | E1000_ADVTXD_DCMD_DEXT); | ||
2114 | |||
2115 | if (tx_flags & IGBVF_TX_FLAGS_VLAN) | ||
2116 | cmd_type_len |= E1000_ADVTXD_DCMD_VLE; | ||
2117 | |||
2118 | if (tx_flags & IGBVF_TX_FLAGS_TSO) { | ||
2119 | cmd_type_len |= E1000_ADVTXD_DCMD_TSE; | ||
2120 | |||
2121 | /* insert tcp checksum */ | ||
2122 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
2123 | |||
2124 | /* insert ip checksum */ | ||
2125 | if (tx_flags & IGBVF_TX_FLAGS_IPV4) | ||
2126 | olinfo_status |= E1000_TXD_POPTS_IXSM << 8; | ||
2127 | |||
2128 | } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) { | ||
2129 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
2130 | } | ||
2131 | |||
2132 | olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); | ||
2133 | |||
2134 | i = tx_ring->next_to_use; | ||
2135 | while (count--) { | ||
2136 | buffer_info = &tx_ring->buffer_info[i]; | ||
2137 | tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); | ||
2138 | tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); | ||
2139 | tx_desc->read.cmd_type_len = | ||
2140 | cpu_to_le32(cmd_type_len | buffer_info->length); | ||
2141 | tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); | ||
2142 | i++; | ||
2143 | if (i == tx_ring->count) | ||
2144 | i = 0; | ||
2145 | } | ||
2146 | |||
2147 | tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); | ||
2148 | /* Force memory writes to complete before letting h/w | ||
2149 | * know there are new descriptors to fetch. (Only | ||
2150 | * applicable for weak-ordered memory model archs, | ||
2151 | * such as IA-64). */ | ||
2152 | wmb(); | ||
2153 | |||
2154 | tx_ring->next_to_use = i; | ||
2155 | writel(i, adapter->hw.hw_addr + tx_ring->tail); | ||
2156 | /* we need this if more than one processor can write to our tail | ||
2157 | * at a time, it syncronizes IO on IA64/Altix systems */ | ||
2158 | mmiowb(); | ||
2159 | } | ||
2160 | |||
2161 | static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb, | ||
2162 | struct net_device *netdev, | ||
2163 | struct igbvf_ring *tx_ring) | ||
2164 | { | ||
2165 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2166 | unsigned int first, tx_flags = 0; | ||
2167 | u8 hdr_len = 0; | ||
2168 | int count = 0; | ||
2169 | int tso = 0; | ||
2170 | |||
2171 | if (test_bit(__IGBVF_DOWN, &adapter->state)) { | ||
2172 | dev_kfree_skb_any(skb); | ||
2173 | return NETDEV_TX_OK; | ||
2174 | } | ||
2175 | |||
2176 | if (skb->len <= 0) { | ||
2177 | dev_kfree_skb_any(skb); | ||
2178 | return NETDEV_TX_OK; | ||
2179 | } | ||
2180 | |||
2181 | /* | ||
2182 | * need: count + 4 desc gap to keep tail from touching | ||
2183 | * + 2 desc gap to keep tail from touching head, | ||
2184 | * + 1 desc for skb->data, | ||
2185 | * + 1 desc for context descriptor, | ||
2186 | * head, otherwise try next time | ||
2187 | */ | ||
2188 | if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) { | ||
2189 | /* this is a hard error */ | ||
2190 | return NETDEV_TX_BUSY; | ||
2191 | } | ||
2192 | |||
2193 | if (vlan_tx_tag_present(skb)) { | ||
2194 | tx_flags |= IGBVF_TX_FLAGS_VLAN; | ||
2195 | tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT); | ||
2196 | } | ||
2197 | |||
2198 | if (skb->protocol == htons(ETH_P_IP)) | ||
2199 | tx_flags |= IGBVF_TX_FLAGS_IPV4; | ||
2200 | |||
2201 | first = tx_ring->next_to_use; | ||
2202 | |||
2203 | tso = skb_is_gso(skb) ? | ||
2204 | igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0; | ||
2205 | if (unlikely(tso < 0)) { | ||
2206 | dev_kfree_skb_any(skb); | ||
2207 | return NETDEV_TX_OK; | ||
2208 | } | ||
2209 | |||
2210 | if (tso) | ||
2211 | tx_flags |= IGBVF_TX_FLAGS_TSO; | ||
2212 | else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) && | ||
2213 | (skb->ip_summed == CHECKSUM_PARTIAL)) | ||
2214 | tx_flags |= IGBVF_TX_FLAGS_CSUM; | ||
2215 | |||
2216 | /* | ||
2217 | * count reflects descriptors mapped, if 0 then mapping error | ||
2218 | * has occurred and we need to rewind the descriptor queue | ||
2219 | */ | ||
2220 | count = igbvf_tx_map_adv(adapter, tx_ring, skb, first); | ||
2221 | |||
2222 | if (count) { | ||
2223 | igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count, | ||
2224 | skb->len, hdr_len); | ||
2225 | /* Make sure there is space in the ring for the next send. */ | ||
2226 | igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4); | ||
2227 | } else { | ||
2228 | dev_kfree_skb_any(skb); | ||
2229 | tx_ring->buffer_info[first].time_stamp = 0; | ||
2230 | tx_ring->next_to_use = first; | ||
2231 | } | ||
2232 | |||
2233 | return NETDEV_TX_OK; | ||
2234 | } | ||
2235 | |||
2236 | static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb, | ||
2237 | struct net_device *netdev) | ||
2238 | { | ||
2239 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2240 | struct igbvf_ring *tx_ring; | ||
2241 | |||
2242 | if (test_bit(__IGBVF_DOWN, &adapter->state)) { | ||
2243 | dev_kfree_skb_any(skb); | ||
2244 | return NETDEV_TX_OK; | ||
2245 | } | ||
2246 | |||
2247 | tx_ring = &adapter->tx_ring[0]; | ||
2248 | |||
2249 | return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring); | ||
2250 | } | ||
2251 | |||
2252 | /** | ||
2253 | * igbvf_tx_timeout - Respond to a Tx Hang | ||
2254 | * @netdev: network interface device structure | ||
2255 | **/ | ||
2256 | static void igbvf_tx_timeout(struct net_device *netdev) | ||
2257 | { | ||
2258 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2259 | |||
2260 | /* Do the reset outside of interrupt context */ | ||
2261 | adapter->tx_timeout_count++; | ||
2262 | schedule_work(&adapter->reset_task); | ||
2263 | } | ||
2264 | |||
2265 | static void igbvf_reset_task(struct work_struct *work) | ||
2266 | { | ||
2267 | struct igbvf_adapter *adapter; | ||
2268 | adapter = container_of(work, struct igbvf_adapter, reset_task); | ||
2269 | |||
2270 | igbvf_reinit_locked(adapter); | ||
2271 | } | ||
2272 | |||
2273 | /** | ||
2274 | * igbvf_get_stats - Get System Network Statistics | ||
2275 | * @netdev: network interface device structure | ||
2276 | * | ||
2277 | * Returns the address of the device statistics structure. | ||
2278 | * The statistics are actually updated from the timer callback. | ||
2279 | **/ | ||
2280 | static struct net_device_stats *igbvf_get_stats(struct net_device *netdev) | ||
2281 | { | ||
2282 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2283 | |||
2284 | /* only return the current stats */ | ||
2285 | return &adapter->net_stats; | ||
2286 | } | ||
2287 | |||
2288 | /** | ||
2289 | * igbvf_change_mtu - Change the Maximum Transfer Unit | ||
2290 | * @netdev: network interface device structure | ||
2291 | * @new_mtu: new value for maximum frame size | ||
2292 | * | ||
2293 | * Returns 0 on success, negative on failure | ||
2294 | **/ | ||
2295 | static int igbvf_change_mtu(struct net_device *netdev, int new_mtu) | ||
2296 | { | ||
2297 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2298 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | ||
2299 | |||
2300 | if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { | ||
2301 | dev_err(&adapter->pdev->dev, "Invalid MTU setting\n"); | ||
2302 | return -EINVAL; | ||
2303 | } | ||
2304 | |||
2305 | #define MAX_STD_JUMBO_FRAME_SIZE 9234 | ||
2306 | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | ||
2307 | dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n"); | ||
2308 | return -EINVAL; | ||
2309 | } | ||
2310 | |||
2311 | while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) | ||
2312 | msleep(1); | ||
2313 | /* igbvf_down has a dependency on max_frame_size */ | ||
2314 | adapter->max_frame_size = max_frame; | ||
2315 | if (netif_running(netdev)) | ||
2316 | igbvf_down(adapter); | ||
2317 | |||
2318 | /* | ||
2319 | * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | ||
2320 | * means we reserve 2 more, this pushes us to allocate from the next | ||
2321 | * larger slab size. | ||
2322 | * i.e. RXBUFFER_2048 --> size-4096 slab | ||
2323 | * However with the new *_jumbo_rx* routines, jumbo receives will use | ||
2324 | * fragmented skbs | ||
2325 | */ | ||
2326 | |||
2327 | if (max_frame <= 1024) | ||
2328 | adapter->rx_buffer_len = 1024; | ||
2329 | else if (max_frame <= 2048) | ||
2330 | adapter->rx_buffer_len = 2048; | ||
2331 | else | ||
2332 | #if (PAGE_SIZE / 2) > 16384 | ||
2333 | adapter->rx_buffer_len = 16384; | ||
2334 | #else | ||
2335 | adapter->rx_buffer_len = PAGE_SIZE / 2; | ||
2336 | #endif | ||
2337 | |||
2338 | |||
2339 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | ||
2340 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | ||
2341 | (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) | ||
2342 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + | ||
2343 | ETH_FCS_LEN; | ||
2344 | |||
2345 | dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n", | ||
2346 | netdev->mtu, new_mtu); | ||
2347 | netdev->mtu = new_mtu; | ||
2348 | |||
2349 | if (netif_running(netdev)) | ||
2350 | igbvf_up(adapter); | ||
2351 | else | ||
2352 | igbvf_reset(adapter); | ||
2353 | |||
2354 | clear_bit(__IGBVF_RESETTING, &adapter->state); | ||
2355 | |||
2356 | return 0; | ||
2357 | } | ||
2358 | |||
2359 | static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
2360 | { | ||
2361 | switch (cmd) { | ||
2362 | default: | ||
2363 | return -EOPNOTSUPP; | ||
2364 | } | ||
2365 | } | ||
2366 | |||
2367 | static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state) | ||
2368 | { | ||
2369 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2370 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2371 | #ifdef CONFIG_PM | ||
2372 | int retval = 0; | ||
2373 | #endif | ||
2374 | |||
2375 | netif_device_detach(netdev); | ||
2376 | |||
2377 | if (netif_running(netdev)) { | ||
2378 | WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); | ||
2379 | igbvf_down(adapter); | ||
2380 | igbvf_free_irq(adapter); | ||
2381 | } | ||
2382 | |||
2383 | #ifdef CONFIG_PM | ||
2384 | retval = pci_save_state(pdev); | ||
2385 | if (retval) | ||
2386 | return retval; | ||
2387 | #endif | ||
2388 | |||
2389 | pci_disable_device(pdev); | ||
2390 | |||
2391 | return 0; | ||
2392 | } | ||
2393 | |||
2394 | #ifdef CONFIG_PM | ||
2395 | static int igbvf_resume(struct pci_dev *pdev) | ||
2396 | { | ||
2397 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2398 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2399 | u32 err; | ||
2400 | |||
2401 | pci_restore_state(pdev); | ||
2402 | err = pci_enable_device_mem(pdev); | ||
2403 | if (err) { | ||
2404 | dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); | ||
2405 | return err; | ||
2406 | } | ||
2407 | |||
2408 | pci_set_master(pdev); | ||
2409 | |||
2410 | if (netif_running(netdev)) { | ||
2411 | err = igbvf_request_irq(adapter); | ||
2412 | if (err) | ||
2413 | return err; | ||
2414 | } | ||
2415 | |||
2416 | igbvf_reset(adapter); | ||
2417 | |||
2418 | if (netif_running(netdev)) | ||
2419 | igbvf_up(adapter); | ||
2420 | |||
2421 | netif_device_attach(netdev); | ||
2422 | |||
2423 | return 0; | ||
2424 | } | ||
2425 | #endif | ||
2426 | |||
2427 | static void igbvf_shutdown(struct pci_dev *pdev) | ||
2428 | { | ||
2429 | igbvf_suspend(pdev, PMSG_SUSPEND); | ||
2430 | } | ||
2431 | |||
2432 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2433 | /* | ||
2434 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
2435 | * without having to re-enable interrupts. It's not called while | ||
2436 | * the interrupt routine is executing. | ||
2437 | */ | ||
2438 | static void igbvf_netpoll(struct net_device *netdev) | ||
2439 | { | ||
2440 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2441 | |||
2442 | disable_irq(adapter->pdev->irq); | ||
2443 | |||
2444 | igbvf_clean_tx_irq(adapter->tx_ring); | ||
2445 | |||
2446 | enable_irq(adapter->pdev->irq); | ||
2447 | } | ||
2448 | #endif | ||
2449 | |||
2450 | /** | ||
2451 | * igbvf_io_error_detected - called when PCI error is detected | ||
2452 | * @pdev: Pointer to PCI device | ||
2453 | * @state: The current pci connection state | ||
2454 | * | ||
2455 | * This function is called after a PCI bus error affecting | ||
2456 | * this device has been detected. | ||
2457 | */ | ||
2458 | static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev, | ||
2459 | pci_channel_state_t state) | ||
2460 | { | ||
2461 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2462 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2463 | |||
2464 | netif_device_detach(netdev); | ||
2465 | |||
2466 | if (state == pci_channel_io_perm_failure) | ||
2467 | return PCI_ERS_RESULT_DISCONNECT; | ||
2468 | |||
2469 | if (netif_running(netdev)) | ||
2470 | igbvf_down(adapter); | ||
2471 | pci_disable_device(pdev); | ||
2472 | |||
2473 | /* Request a slot slot reset. */ | ||
2474 | return PCI_ERS_RESULT_NEED_RESET; | ||
2475 | } | ||
2476 | |||
2477 | /** | ||
2478 | * igbvf_io_slot_reset - called after the pci bus has been reset. | ||
2479 | * @pdev: Pointer to PCI device | ||
2480 | * | ||
2481 | * Restart the card from scratch, as if from a cold-boot. Implementation | ||
2482 | * resembles the first-half of the igbvf_resume routine. | ||
2483 | */ | ||
2484 | static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev) | ||
2485 | { | ||
2486 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2487 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2488 | |||
2489 | if (pci_enable_device_mem(pdev)) { | ||
2490 | dev_err(&pdev->dev, | ||
2491 | "Cannot re-enable PCI device after reset.\n"); | ||
2492 | return PCI_ERS_RESULT_DISCONNECT; | ||
2493 | } | ||
2494 | pci_set_master(pdev); | ||
2495 | |||
2496 | igbvf_reset(adapter); | ||
2497 | |||
2498 | return PCI_ERS_RESULT_RECOVERED; | ||
2499 | } | ||
2500 | |||
2501 | /** | ||
2502 | * igbvf_io_resume - called when traffic can start flowing again. | ||
2503 | * @pdev: Pointer to PCI device | ||
2504 | * | ||
2505 | * This callback is called when the error recovery driver tells us that | ||
2506 | * its OK to resume normal operation. Implementation resembles the | ||
2507 | * second-half of the igbvf_resume routine. | ||
2508 | */ | ||
2509 | static void igbvf_io_resume(struct pci_dev *pdev) | ||
2510 | { | ||
2511 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2512 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2513 | |||
2514 | if (netif_running(netdev)) { | ||
2515 | if (igbvf_up(adapter)) { | ||
2516 | dev_err(&pdev->dev, | ||
2517 | "can't bring device back up after reset\n"); | ||
2518 | return; | ||
2519 | } | ||
2520 | } | ||
2521 | |||
2522 | netif_device_attach(netdev); | ||
2523 | } | ||
2524 | |||
2525 | static void igbvf_print_device_info(struct igbvf_adapter *adapter) | ||
2526 | { | ||
2527 | struct e1000_hw *hw = &adapter->hw; | ||
2528 | struct net_device *netdev = adapter->netdev; | ||
2529 | struct pci_dev *pdev = adapter->pdev; | ||
2530 | |||
2531 | dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n"); | ||
2532 | dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr); | ||
2533 | dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); | ||
2534 | } | ||
2535 | |||
2536 | static const struct net_device_ops igbvf_netdev_ops = { | ||
2537 | .ndo_open = igbvf_open, | ||
2538 | .ndo_stop = igbvf_close, | ||
2539 | .ndo_start_xmit = igbvf_xmit_frame, | ||
2540 | .ndo_get_stats = igbvf_get_stats, | ||
2541 | .ndo_set_multicast_list = igbvf_set_multi, | ||
2542 | .ndo_set_mac_address = igbvf_set_mac, | ||
2543 | .ndo_change_mtu = igbvf_change_mtu, | ||
2544 | .ndo_do_ioctl = igbvf_ioctl, | ||
2545 | .ndo_tx_timeout = igbvf_tx_timeout, | ||
2546 | .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid, | ||
2547 | .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid, | ||
2548 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2549 | .ndo_poll_controller = igbvf_netpoll, | ||
2550 | #endif | ||
2551 | }; | ||
2552 | |||
2553 | /** | ||
2554 | * igbvf_probe - Device Initialization Routine | ||
2555 | * @pdev: PCI device information struct | ||
2556 | * @ent: entry in igbvf_pci_tbl | ||
2557 | * | ||
2558 | * Returns 0 on success, negative on failure | ||
2559 | * | ||
2560 | * igbvf_probe initializes an adapter identified by a pci_dev structure. | ||
2561 | * The OS initialization, configuring of the adapter private structure, | ||
2562 | * and a hardware reset occur. | ||
2563 | **/ | ||
2564 | static int __devinit igbvf_probe(struct pci_dev *pdev, | ||
2565 | const struct pci_device_id *ent) | ||
2566 | { | ||
2567 | struct net_device *netdev; | ||
2568 | struct igbvf_adapter *adapter; | ||
2569 | struct e1000_hw *hw; | ||
2570 | const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data]; | ||
2571 | |||
2572 | static int cards_found; | ||
2573 | int err, pci_using_dac; | ||
2574 | |||
2575 | err = pci_enable_device_mem(pdev); | ||
2576 | if (err) | ||
2577 | return err; | ||
2578 | |||
2579 | pci_using_dac = 0; | ||
2580 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
2581 | if (!err) { | ||
2582 | err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
2583 | if (!err) | ||
2584 | pci_using_dac = 1; | ||
2585 | } else { | ||
2586 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); | ||
2587 | if (err) { | ||
2588 | err = dma_set_coherent_mask(&pdev->dev, | ||
2589 | DMA_BIT_MASK(32)); | ||
2590 | if (err) { | ||
2591 | dev_err(&pdev->dev, "No usable DMA " | ||
2592 | "configuration, aborting\n"); | ||
2593 | goto err_dma; | ||
2594 | } | ||
2595 | } | ||
2596 | } | ||
2597 | |||
2598 | err = pci_request_regions(pdev, igbvf_driver_name); | ||
2599 | if (err) | ||
2600 | goto err_pci_reg; | ||
2601 | |||
2602 | pci_set_master(pdev); | ||
2603 | |||
2604 | err = -ENOMEM; | ||
2605 | netdev = alloc_etherdev(sizeof(struct igbvf_adapter)); | ||
2606 | if (!netdev) | ||
2607 | goto err_alloc_etherdev; | ||
2608 | |||
2609 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
2610 | |||
2611 | pci_set_drvdata(pdev, netdev); | ||
2612 | adapter = netdev_priv(netdev); | ||
2613 | hw = &adapter->hw; | ||
2614 | adapter->netdev = netdev; | ||
2615 | adapter->pdev = pdev; | ||
2616 | adapter->ei = ei; | ||
2617 | adapter->pba = ei->pba; | ||
2618 | adapter->flags = ei->flags; | ||
2619 | adapter->hw.back = adapter; | ||
2620 | adapter->hw.mac.type = ei->mac; | ||
2621 | adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; | ||
2622 | |||
2623 | /* PCI config space info */ | ||
2624 | |||
2625 | hw->vendor_id = pdev->vendor; | ||
2626 | hw->device_id = pdev->device; | ||
2627 | hw->subsystem_vendor_id = pdev->subsystem_vendor; | ||
2628 | hw->subsystem_device_id = pdev->subsystem_device; | ||
2629 | hw->revision_id = pdev->revision; | ||
2630 | |||
2631 | err = -EIO; | ||
2632 | adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), | ||
2633 | pci_resource_len(pdev, 0)); | ||
2634 | |||
2635 | if (!adapter->hw.hw_addr) | ||
2636 | goto err_ioremap; | ||
2637 | |||
2638 | if (ei->get_variants) { | ||
2639 | err = ei->get_variants(adapter); | ||
2640 | if (err) | ||
2641 | goto err_ioremap; | ||
2642 | } | ||
2643 | |||
2644 | /* setup adapter struct */ | ||
2645 | err = igbvf_sw_init(adapter); | ||
2646 | if (err) | ||
2647 | goto err_sw_init; | ||
2648 | |||
2649 | /* construct the net_device struct */ | ||
2650 | netdev->netdev_ops = &igbvf_netdev_ops; | ||
2651 | |||
2652 | igbvf_set_ethtool_ops(netdev); | ||
2653 | netdev->watchdog_timeo = 5 * HZ; | ||
2654 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
2655 | |||
2656 | adapter->bd_number = cards_found++; | ||
2657 | |||
2658 | netdev->features = NETIF_F_SG | | ||
2659 | NETIF_F_IP_CSUM | | ||
2660 | NETIF_F_HW_VLAN_TX | | ||
2661 | NETIF_F_HW_VLAN_RX | | ||
2662 | NETIF_F_HW_VLAN_FILTER; | ||
2663 | |||
2664 | netdev->features |= NETIF_F_IPV6_CSUM; | ||
2665 | netdev->features |= NETIF_F_TSO; | ||
2666 | netdev->features |= NETIF_F_TSO6; | ||
2667 | |||
2668 | if (pci_using_dac) | ||
2669 | netdev->features |= NETIF_F_HIGHDMA; | ||
2670 | |||
2671 | netdev->vlan_features |= NETIF_F_TSO; | ||
2672 | netdev->vlan_features |= NETIF_F_TSO6; | ||
2673 | netdev->vlan_features |= NETIF_F_IP_CSUM; | ||
2674 | netdev->vlan_features |= NETIF_F_IPV6_CSUM; | ||
2675 | netdev->vlan_features |= NETIF_F_SG; | ||
2676 | |||
2677 | /*reset the controller to put the device in a known good state */ | ||
2678 | err = hw->mac.ops.reset_hw(hw); | ||
2679 | if (err) { | ||
2680 | dev_info(&pdev->dev, | ||
2681 | "PF still in reset state, assigning new address." | ||
2682 | " Is the PF interface up?\n"); | ||
2683 | dev_hw_addr_random(adapter->netdev, hw->mac.addr); | ||
2684 | } else { | ||
2685 | err = hw->mac.ops.read_mac_addr(hw); | ||
2686 | if (err) { | ||
2687 | dev_err(&pdev->dev, "Error reading MAC address\n"); | ||
2688 | goto err_hw_init; | ||
2689 | } | ||
2690 | } | ||
2691 | |||
2692 | memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); | ||
2693 | memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); | ||
2694 | |||
2695 | if (!is_valid_ether_addr(netdev->perm_addr)) { | ||
2696 | dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", | ||
2697 | netdev->dev_addr); | ||
2698 | err = -EIO; | ||
2699 | goto err_hw_init; | ||
2700 | } | ||
2701 | |||
2702 | setup_timer(&adapter->watchdog_timer, &igbvf_watchdog, | ||
2703 | (unsigned long) adapter); | ||
2704 | |||
2705 | INIT_WORK(&adapter->reset_task, igbvf_reset_task); | ||
2706 | INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task); | ||
2707 | |||
2708 | /* ring size defaults */ | ||
2709 | adapter->rx_ring->count = 1024; | ||
2710 | adapter->tx_ring->count = 1024; | ||
2711 | |||
2712 | /* reset the hardware with the new settings */ | ||
2713 | igbvf_reset(adapter); | ||
2714 | |||
2715 | strcpy(netdev->name, "eth%d"); | ||
2716 | err = register_netdev(netdev); | ||
2717 | if (err) | ||
2718 | goto err_hw_init; | ||
2719 | |||
2720 | /* tell the stack to leave us alone until igbvf_open() is called */ | ||
2721 | netif_carrier_off(netdev); | ||
2722 | netif_stop_queue(netdev); | ||
2723 | |||
2724 | igbvf_print_device_info(adapter); | ||
2725 | |||
2726 | igbvf_initialize_last_counter_stats(adapter); | ||
2727 | |||
2728 | return 0; | ||
2729 | |||
2730 | err_hw_init: | ||
2731 | kfree(adapter->tx_ring); | ||
2732 | kfree(adapter->rx_ring); | ||
2733 | err_sw_init: | ||
2734 | igbvf_reset_interrupt_capability(adapter); | ||
2735 | iounmap(adapter->hw.hw_addr); | ||
2736 | err_ioremap: | ||
2737 | free_netdev(netdev); | ||
2738 | err_alloc_etherdev: | ||
2739 | pci_release_regions(pdev); | ||
2740 | err_pci_reg: | ||
2741 | err_dma: | ||
2742 | pci_disable_device(pdev); | ||
2743 | return err; | ||
2744 | } | ||
2745 | |||
2746 | /** | ||
2747 | * igbvf_remove - Device Removal Routine | ||
2748 | * @pdev: PCI device information struct | ||
2749 | * | ||
2750 | * igbvf_remove is called by the PCI subsystem to alert the driver | ||
2751 | * that it should release a PCI device. The could be caused by a | ||
2752 | * Hot-Plug event, or because the driver is going to be removed from | ||
2753 | * memory. | ||
2754 | **/ | ||
2755 | static void __devexit igbvf_remove(struct pci_dev *pdev) | ||
2756 | { | ||
2757 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2758 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2759 | struct e1000_hw *hw = &adapter->hw; | ||
2760 | |||
2761 | /* | ||
2762 | * The watchdog timer may be rescheduled, so explicitly | ||
2763 | * disable it from being rescheduled. | ||
2764 | */ | ||
2765 | set_bit(__IGBVF_DOWN, &adapter->state); | ||
2766 | del_timer_sync(&adapter->watchdog_timer); | ||
2767 | |||
2768 | cancel_work_sync(&adapter->reset_task); | ||
2769 | cancel_work_sync(&adapter->watchdog_task); | ||
2770 | |||
2771 | unregister_netdev(netdev); | ||
2772 | |||
2773 | igbvf_reset_interrupt_capability(adapter); | ||
2774 | |||
2775 | /* | ||
2776 | * it is important to delete the napi struct prior to freeing the | ||
2777 | * rx ring so that you do not end up with null pointer refs | ||
2778 | */ | ||
2779 | netif_napi_del(&adapter->rx_ring->napi); | ||
2780 | kfree(adapter->tx_ring); | ||
2781 | kfree(adapter->rx_ring); | ||
2782 | |||
2783 | iounmap(hw->hw_addr); | ||
2784 | if (hw->flash_address) | ||
2785 | iounmap(hw->flash_address); | ||
2786 | pci_release_regions(pdev); | ||
2787 | |||
2788 | free_netdev(netdev); | ||
2789 | |||
2790 | pci_disable_device(pdev); | ||
2791 | } | ||
2792 | |||
2793 | /* PCI Error Recovery (ERS) */ | ||
2794 | static struct pci_error_handlers igbvf_err_handler = { | ||
2795 | .error_detected = igbvf_io_error_detected, | ||
2796 | .slot_reset = igbvf_io_slot_reset, | ||
2797 | .resume = igbvf_io_resume, | ||
2798 | }; | ||
2799 | |||
2800 | static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = { | ||
2801 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf }, | ||
2802 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf }, | ||
2803 | { } /* terminate list */ | ||
2804 | }; | ||
2805 | MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl); | ||
2806 | |||
2807 | /* PCI Device API Driver */ | ||
2808 | static struct pci_driver igbvf_driver = { | ||
2809 | .name = igbvf_driver_name, | ||
2810 | .id_table = igbvf_pci_tbl, | ||
2811 | .probe = igbvf_probe, | ||
2812 | .remove = __devexit_p(igbvf_remove), | ||
2813 | #ifdef CONFIG_PM | ||
2814 | /* Power Management Hooks */ | ||
2815 | .suspend = igbvf_suspend, | ||
2816 | .resume = igbvf_resume, | ||
2817 | #endif | ||
2818 | .shutdown = igbvf_shutdown, | ||
2819 | .err_handler = &igbvf_err_handler | ||
2820 | }; | ||
2821 | |||
2822 | /** | ||
2823 | * igbvf_init_module - Driver Registration Routine | ||
2824 | * | ||
2825 | * igbvf_init_module is the first routine called when the driver is | ||
2826 | * loaded. All it does is register with the PCI subsystem. | ||
2827 | **/ | ||
2828 | static int __init igbvf_init_module(void) | ||
2829 | { | ||
2830 | int ret; | ||
2831 | printk(KERN_INFO "%s - version %s\n", | ||
2832 | igbvf_driver_string, igbvf_driver_version); | ||
2833 | printk(KERN_INFO "%s\n", igbvf_copyright); | ||
2834 | |||
2835 | ret = pci_register_driver(&igbvf_driver); | ||
2836 | |||
2837 | return ret; | ||
2838 | } | ||
2839 | module_init(igbvf_init_module); | ||
2840 | |||
2841 | /** | ||
2842 | * igbvf_exit_module - Driver Exit Cleanup Routine | ||
2843 | * | ||
2844 | * igbvf_exit_module is called just before the driver is removed | ||
2845 | * from memory. | ||
2846 | **/ | ||
2847 | static void __exit igbvf_exit_module(void) | ||
2848 | { | ||
2849 | pci_unregister_driver(&igbvf_driver); | ||
2850 | } | ||
2851 | module_exit(igbvf_exit_module); | ||
2852 | |||
2853 | |||
2854 | MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); | ||
2855 | MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver"); | ||
2856 | MODULE_LICENSE("GPL"); | ||
2857 | MODULE_VERSION(DRV_VERSION); | ||
2858 | |||
2859 | /* netdev.c */ | ||