aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/igbvf
diff options
context:
space:
mode:
authorJonathan Herman <hermanjl@cs.unc.edu>2013-01-22 10:38:37 -0500
committerJonathan Herman <hermanjl@cs.unc.edu>2013-01-22 10:38:37 -0500
commitfcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch)
treea57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/net/igbvf
parent8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff)
Added missing tegra files.HEADmaster
Diffstat (limited to 'drivers/net/igbvf')
-rw-r--r--drivers/net/igbvf/Makefile38
-rw-r--r--drivers/net/igbvf/defines.h125
-rw-r--r--drivers/net/igbvf/ethtool.c534
-rw-r--r--drivers/net/igbvf/igbvf.h326
-rw-r--r--drivers/net/igbvf/mbx.c350
-rw-r--r--drivers/net/igbvf/mbx.h75
-rw-r--r--drivers/net/igbvf/netdev.c2859
-rw-r--r--drivers/net/igbvf/regs.h108
-rw-r--r--drivers/net/igbvf/vf.c402
-rw-r--r--drivers/net/igbvf/vf.h266
10 files changed, 5083 insertions, 0 deletions
diff --git a/drivers/net/igbvf/Makefile b/drivers/net/igbvf/Makefile
new file mode 100644
index 00000000000..0fa3db3dd8b
--- /dev/null
+++ b/drivers/net/igbvf/Makefile
@@ -0,0 +1,38 @@
1################################################################################
2#
3# Intel(R) 82576 Virtual Function Linux driver
4# Copyright(c) 2009 - 2010 Intel Corporation.
5#
6# This program is free software; you can redistribute it and/or modify it
7# under the terms and conditions of the GNU General Public License,
8# version 2, as published by the Free Software Foundation.
9#
10# This program is distributed in the hope it will be useful, but WITHOUT
11# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13# more details.
14#
15# You should have received a copy of the GNU General Public License along with
16# this program; if not, write to the Free Software Foundation, Inc.,
17# 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18#
19# The full GNU General Public License is included in this distribution in
20# the file called "COPYING".
21#
22# Contact Information:
23# e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25#
26################################################################################
27
28#
29# Makefile for the Intel(R) 82576 VF ethernet driver
30#
31
32obj-$(CONFIG_IGBVF) += igbvf.o
33
34igbvf-objs := vf.o \
35 mbx.o \
36 ethtool.o \
37 netdev.o
38
diff --git a/drivers/net/igbvf/defines.h b/drivers/net/igbvf/defines.h
new file mode 100644
index 00000000000..79f2604673f
--- /dev/null
+++ b/drivers/net/igbvf/defines.h
@@ -0,0 +1,125 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_DEFINES_H_
29#define _E1000_DEFINES_H_
30
31/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
32#define REQ_TX_DESCRIPTOR_MULTIPLE 8
33#define REQ_RX_DESCRIPTOR_MULTIPLE 8
34
35/* IVAR valid bit */
36#define E1000_IVAR_VALID 0x80
37
38/* Receive Descriptor bit definitions */
39#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
40#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
41#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
42#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
43#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
44#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
45#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
46#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
47#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
48
49#define E1000_RXDEXT_STATERR_CE 0x01000000
50#define E1000_RXDEXT_STATERR_SE 0x02000000
51#define E1000_RXDEXT_STATERR_SEQ 0x04000000
52#define E1000_RXDEXT_STATERR_CXE 0x10000000
53#define E1000_RXDEXT_STATERR_TCPE 0x20000000
54#define E1000_RXDEXT_STATERR_IPE 0x40000000
55#define E1000_RXDEXT_STATERR_RXE 0x80000000
56
57
58/* Same mask, but for extended and packet split descriptors */
59#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
60 E1000_RXDEXT_STATERR_CE | \
61 E1000_RXDEXT_STATERR_SE | \
62 E1000_RXDEXT_STATERR_SEQ | \
63 E1000_RXDEXT_STATERR_CXE | \
64 E1000_RXDEXT_STATERR_RXE)
65
66/* Device Control */
67#define E1000_CTRL_RST 0x04000000 /* Global reset */
68
69/* Device Status */
70#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
71#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
72#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
73#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
74#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
75#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
76
77#define SPEED_10 10
78#define SPEED_100 100
79#define SPEED_1000 1000
80#define HALF_DUPLEX 1
81#define FULL_DUPLEX 2
82
83/* Transmit Descriptor bit definitions */
84#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
85#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
86#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
87#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
88
89#define MAX_JUMBO_FRAME_SIZE 0x3F00
90
91/* 802.1q VLAN Packet Size */
92#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */
93
94/* Error Codes */
95#define E1000_SUCCESS 0
96#define E1000_ERR_CONFIG 3
97#define E1000_ERR_MAC_INIT 5
98#define E1000_ERR_MBX 15
99
100#ifndef ETH_ADDR_LEN
101#define ETH_ADDR_LEN 6
102#endif
103
104/* SRRCTL bit definitions */
105#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
106#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
107#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
108#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
109#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
110#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
111#define E1000_SRRCTL_DROP_EN 0x80000000
112
113#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
114#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
115
116/* Additional Descriptor Control definitions */
117#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */
118#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */
119
120/* Direct Cache Access (DCA) definitions */
121#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */
122
123#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */
124
125#endif /* _E1000_DEFINES_H_ */
diff --git a/drivers/net/igbvf/ethtool.c b/drivers/net/igbvf/ethtool.c
new file mode 100644
index 00000000000..b0b14d63dfb
--- /dev/null
+++ b/drivers/net/igbvf/ethtool.c
@@ -0,0 +1,534 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igbvf */
29
30#include <linux/netdevice.h>
31#include <linux/ethtool.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/delay.h>
35
36#include "igbvf.h"
37#include <linux/if_vlan.h>
38
39
40struct igbvf_stats {
41 char stat_string[ETH_GSTRING_LEN];
42 int sizeof_stat;
43 int stat_offset;
44 int base_stat_offset;
45};
46
47#define IGBVF_STAT(current, base) \
48 sizeof(((struct igbvf_adapter *)0)->current), \
49 offsetof(struct igbvf_adapter, current), \
50 offsetof(struct igbvf_adapter, base)
51
52static const struct igbvf_stats igbvf_gstrings_stats[] = {
53 { "rx_packets", IGBVF_STAT(stats.gprc, stats.base_gprc) },
54 { "tx_packets", IGBVF_STAT(stats.gptc, stats.base_gptc) },
55 { "rx_bytes", IGBVF_STAT(stats.gorc, stats.base_gorc) },
56 { "tx_bytes", IGBVF_STAT(stats.gotc, stats.base_gotc) },
57 { "multicast", IGBVF_STAT(stats.mprc, stats.base_mprc) },
58 { "lbrx_bytes", IGBVF_STAT(stats.gorlbc, stats.base_gorlbc) },
59 { "lbrx_packets", IGBVF_STAT(stats.gprlbc, stats.base_gprlbc) },
60 { "tx_restart_queue", IGBVF_STAT(restart_queue, zero_base) },
61 { "rx_long_byte_count", IGBVF_STAT(stats.gorc, stats.base_gorc) },
62 { "rx_csum_offload_good", IGBVF_STAT(hw_csum_good, zero_base) },
63 { "rx_csum_offload_errors", IGBVF_STAT(hw_csum_err, zero_base) },
64 { "rx_header_split", IGBVF_STAT(rx_hdr_split, zero_base) },
65 { "alloc_rx_buff_failed", IGBVF_STAT(alloc_rx_buff_failed, zero_base) },
66};
67
68#define IGBVF_GLOBAL_STATS_LEN ARRAY_SIZE(igbvf_gstrings_stats)
69
70static const char igbvf_gstrings_test[][ETH_GSTRING_LEN] = {
71 "Link test (on/offline)"
72};
73
74#define IGBVF_TEST_LEN ARRAY_SIZE(igbvf_gstrings_test)
75
76static int igbvf_get_settings(struct net_device *netdev,
77 struct ethtool_cmd *ecmd)
78{
79 struct igbvf_adapter *adapter = netdev_priv(netdev);
80 struct e1000_hw *hw = &adapter->hw;
81 u32 status;
82
83 ecmd->supported = SUPPORTED_1000baseT_Full;
84
85 ecmd->advertising = ADVERTISED_1000baseT_Full;
86
87 ecmd->port = -1;
88 ecmd->transceiver = XCVR_DUMMY1;
89
90 status = er32(STATUS);
91 if (status & E1000_STATUS_LU) {
92 if (status & E1000_STATUS_SPEED_1000)
93 ethtool_cmd_speed_set(ecmd, SPEED_1000);
94 else if (status & E1000_STATUS_SPEED_100)
95 ethtool_cmd_speed_set(ecmd, SPEED_100);
96 else
97 ethtool_cmd_speed_set(ecmd, SPEED_10);
98
99 if (status & E1000_STATUS_FD)
100 ecmd->duplex = DUPLEX_FULL;
101 else
102 ecmd->duplex = DUPLEX_HALF;
103 } else {
104 ethtool_cmd_speed_set(ecmd, -1);
105 ecmd->duplex = -1;
106 }
107
108 ecmd->autoneg = AUTONEG_DISABLE;
109
110 return 0;
111}
112
113static int igbvf_set_settings(struct net_device *netdev,
114 struct ethtool_cmd *ecmd)
115{
116 return -EOPNOTSUPP;
117}
118
119static void igbvf_get_pauseparam(struct net_device *netdev,
120 struct ethtool_pauseparam *pause)
121{
122 return;
123}
124
125static int igbvf_set_pauseparam(struct net_device *netdev,
126 struct ethtool_pauseparam *pause)
127{
128 return -EOPNOTSUPP;
129}
130
131static u32 igbvf_get_rx_csum(struct net_device *netdev)
132{
133 struct igbvf_adapter *adapter = netdev_priv(netdev);
134 return !(adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED);
135}
136
137static int igbvf_set_rx_csum(struct net_device *netdev, u32 data)
138{
139 struct igbvf_adapter *adapter = netdev_priv(netdev);
140
141 if (data)
142 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
143 else
144 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
145
146 return 0;
147}
148
149static u32 igbvf_get_tx_csum(struct net_device *netdev)
150{
151 return (netdev->features & NETIF_F_IP_CSUM) != 0;
152}
153
154static int igbvf_set_tx_csum(struct net_device *netdev, u32 data)
155{
156 if (data)
157 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
158 else
159 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
160 return 0;
161}
162
163static int igbvf_set_tso(struct net_device *netdev, u32 data)
164{
165 struct igbvf_adapter *adapter = netdev_priv(netdev);
166
167 if (data) {
168 netdev->features |= NETIF_F_TSO;
169 netdev->features |= NETIF_F_TSO6;
170 } else {
171 netdev->features &= ~NETIF_F_TSO;
172 netdev->features &= ~NETIF_F_TSO6;
173 }
174
175 dev_info(&adapter->pdev->dev, "TSO is %s\n",
176 data ? "Enabled" : "Disabled");
177 return 0;
178}
179
180static u32 igbvf_get_msglevel(struct net_device *netdev)
181{
182 struct igbvf_adapter *adapter = netdev_priv(netdev);
183 return adapter->msg_enable;
184}
185
186static void igbvf_set_msglevel(struct net_device *netdev, u32 data)
187{
188 struct igbvf_adapter *adapter = netdev_priv(netdev);
189 adapter->msg_enable = data;
190}
191
192static int igbvf_get_regs_len(struct net_device *netdev)
193{
194#define IGBVF_REGS_LEN 8
195 return IGBVF_REGS_LEN * sizeof(u32);
196}
197
198static void igbvf_get_regs(struct net_device *netdev,
199 struct ethtool_regs *regs, void *p)
200{
201 struct igbvf_adapter *adapter = netdev_priv(netdev);
202 struct e1000_hw *hw = &adapter->hw;
203 u32 *regs_buff = p;
204
205 memset(p, 0, IGBVF_REGS_LEN * sizeof(u32));
206
207 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
208 adapter->pdev->device;
209
210 regs_buff[0] = er32(CTRL);
211 regs_buff[1] = er32(STATUS);
212
213 regs_buff[2] = er32(RDLEN(0));
214 regs_buff[3] = er32(RDH(0));
215 regs_buff[4] = er32(RDT(0));
216
217 regs_buff[5] = er32(TDLEN(0));
218 regs_buff[6] = er32(TDH(0));
219 regs_buff[7] = er32(TDT(0));
220}
221
222static int igbvf_get_eeprom_len(struct net_device *netdev)
223{
224 return 0;
225}
226
227static int igbvf_get_eeprom(struct net_device *netdev,
228 struct ethtool_eeprom *eeprom, u8 *bytes)
229{
230 return -EOPNOTSUPP;
231}
232
233static int igbvf_set_eeprom(struct net_device *netdev,
234 struct ethtool_eeprom *eeprom, u8 *bytes)
235{
236 return -EOPNOTSUPP;
237}
238
239static void igbvf_get_drvinfo(struct net_device *netdev,
240 struct ethtool_drvinfo *drvinfo)
241{
242 struct igbvf_adapter *adapter = netdev_priv(netdev);
243 char firmware_version[32] = "N/A";
244
245 strncpy(drvinfo->driver, igbvf_driver_name, 32);
246 strncpy(drvinfo->version, igbvf_driver_version, 32);
247 strncpy(drvinfo->fw_version, firmware_version, 32);
248 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
249 drvinfo->regdump_len = igbvf_get_regs_len(netdev);
250 drvinfo->eedump_len = igbvf_get_eeprom_len(netdev);
251}
252
253static void igbvf_get_ringparam(struct net_device *netdev,
254 struct ethtool_ringparam *ring)
255{
256 struct igbvf_adapter *adapter = netdev_priv(netdev);
257 struct igbvf_ring *tx_ring = adapter->tx_ring;
258 struct igbvf_ring *rx_ring = adapter->rx_ring;
259
260 ring->rx_max_pending = IGBVF_MAX_RXD;
261 ring->tx_max_pending = IGBVF_MAX_TXD;
262 ring->rx_mini_max_pending = 0;
263 ring->rx_jumbo_max_pending = 0;
264 ring->rx_pending = rx_ring->count;
265 ring->tx_pending = tx_ring->count;
266 ring->rx_mini_pending = 0;
267 ring->rx_jumbo_pending = 0;
268}
269
270static int igbvf_set_ringparam(struct net_device *netdev,
271 struct ethtool_ringparam *ring)
272{
273 struct igbvf_adapter *adapter = netdev_priv(netdev);
274 struct igbvf_ring *temp_ring;
275 int err = 0;
276 u32 new_rx_count, new_tx_count;
277
278 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
279 return -EINVAL;
280
281 new_rx_count = max(ring->rx_pending, (u32)IGBVF_MIN_RXD);
282 new_rx_count = min(new_rx_count, (u32)IGBVF_MAX_RXD);
283 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
284
285 new_tx_count = max(ring->tx_pending, (u32)IGBVF_MIN_TXD);
286 new_tx_count = min(new_tx_count, (u32)IGBVF_MAX_TXD);
287 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
288
289 if ((new_tx_count == adapter->tx_ring->count) &&
290 (new_rx_count == adapter->rx_ring->count)) {
291 /* nothing to do */
292 return 0;
293 }
294
295 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
296 msleep(1);
297
298 if (!netif_running(adapter->netdev)) {
299 adapter->tx_ring->count = new_tx_count;
300 adapter->rx_ring->count = new_rx_count;
301 goto clear_reset;
302 }
303
304 temp_ring = vmalloc(sizeof(struct igbvf_ring));
305 if (!temp_ring) {
306 err = -ENOMEM;
307 goto clear_reset;
308 }
309
310 igbvf_down(adapter);
311
312 /*
313 * We can't just free everything and then setup again,
314 * because the ISRs in MSI-X mode get passed pointers
315 * to the tx and rx ring structs.
316 */
317 if (new_tx_count != adapter->tx_ring->count) {
318 memcpy(temp_ring, adapter->tx_ring, sizeof(struct igbvf_ring));
319
320 temp_ring->count = new_tx_count;
321 err = igbvf_setup_tx_resources(adapter, temp_ring);
322 if (err)
323 goto err_setup;
324
325 igbvf_free_tx_resources(adapter->tx_ring);
326
327 memcpy(adapter->tx_ring, temp_ring, sizeof(struct igbvf_ring));
328 }
329
330 if (new_rx_count != adapter->rx_ring->count) {
331 memcpy(temp_ring, adapter->rx_ring, sizeof(struct igbvf_ring));
332
333 temp_ring->count = new_rx_count;
334 err = igbvf_setup_rx_resources(adapter, temp_ring);
335 if (err)
336 goto err_setup;
337
338 igbvf_free_rx_resources(adapter->rx_ring);
339
340 memcpy(adapter->rx_ring, temp_ring,sizeof(struct igbvf_ring));
341 }
342err_setup:
343 igbvf_up(adapter);
344 vfree(temp_ring);
345clear_reset:
346 clear_bit(__IGBVF_RESETTING, &adapter->state);
347 return err;
348}
349
350static int igbvf_link_test(struct igbvf_adapter *adapter, u64 *data)
351{
352 struct e1000_hw *hw = &adapter->hw;
353 *data = 0;
354
355 hw->mac.ops.check_for_link(hw);
356
357 if (!(er32(STATUS) & E1000_STATUS_LU))
358 *data = 1;
359
360 return *data;
361}
362
363static void igbvf_diag_test(struct net_device *netdev,
364 struct ethtool_test *eth_test, u64 *data)
365{
366 struct igbvf_adapter *adapter = netdev_priv(netdev);
367
368 set_bit(__IGBVF_TESTING, &adapter->state);
369
370 /*
371 * Link test performed before hardware reset so autoneg doesn't
372 * interfere with test result
373 */
374 if (igbvf_link_test(adapter, &data[0]))
375 eth_test->flags |= ETH_TEST_FL_FAILED;
376
377 clear_bit(__IGBVF_TESTING, &adapter->state);
378 msleep_interruptible(4 * 1000);
379}
380
381static void igbvf_get_wol(struct net_device *netdev,
382 struct ethtool_wolinfo *wol)
383{
384 wol->supported = 0;
385 wol->wolopts = 0;
386}
387
388static int igbvf_set_wol(struct net_device *netdev,
389 struct ethtool_wolinfo *wol)
390{
391 return -EOPNOTSUPP;
392}
393
394static int igbvf_get_coalesce(struct net_device *netdev,
395 struct ethtool_coalesce *ec)
396{
397 struct igbvf_adapter *adapter = netdev_priv(netdev);
398
399 if (adapter->itr_setting <= 3)
400 ec->rx_coalesce_usecs = adapter->itr_setting;
401 else
402 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
403
404 return 0;
405}
406
407static int igbvf_set_coalesce(struct net_device *netdev,
408 struct ethtool_coalesce *ec)
409{
410 struct igbvf_adapter *adapter = netdev_priv(netdev);
411 struct e1000_hw *hw = &adapter->hw;
412
413 if ((ec->rx_coalesce_usecs > IGBVF_MAX_ITR_USECS) ||
414 ((ec->rx_coalesce_usecs > 3) &&
415 (ec->rx_coalesce_usecs < IGBVF_MIN_ITR_USECS)) ||
416 (ec->rx_coalesce_usecs == 2))
417 return -EINVAL;
418
419 /* convert to rate of irq's per second */
420 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
421 adapter->itr = IGBVF_START_ITR;
422 adapter->itr_setting = ec->rx_coalesce_usecs;
423 } else {
424 adapter->itr = ec->rx_coalesce_usecs << 2;
425 adapter->itr_setting = adapter->itr;
426 }
427
428 writel(adapter->itr,
429 hw->hw_addr + adapter->rx_ring[0].itr_register);
430
431 return 0;
432}
433
434static int igbvf_nway_reset(struct net_device *netdev)
435{
436 struct igbvf_adapter *adapter = netdev_priv(netdev);
437 if (netif_running(netdev))
438 igbvf_reinit_locked(adapter);
439 return 0;
440}
441
442
443static void igbvf_get_ethtool_stats(struct net_device *netdev,
444 struct ethtool_stats *stats,
445 u64 *data)
446{
447 struct igbvf_adapter *adapter = netdev_priv(netdev);
448 int i;
449
450 igbvf_update_stats(adapter);
451 for (i = 0; i < IGBVF_GLOBAL_STATS_LEN; i++) {
452 char *p = (char *)adapter +
453 igbvf_gstrings_stats[i].stat_offset;
454 char *b = (char *)adapter +
455 igbvf_gstrings_stats[i].base_stat_offset;
456 data[i] = ((igbvf_gstrings_stats[i].sizeof_stat ==
457 sizeof(u64)) ? (*(u64 *)p - *(u64 *)b) :
458 (*(u32 *)p - *(u32 *)b));
459 }
460
461}
462
463static int igbvf_get_sset_count(struct net_device *dev, int stringset)
464{
465 switch(stringset) {
466 case ETH_SS_TEST:
467 return IGBVF_TEST_LEN;
468 case ETH_SS_STATS:
469 return IGBVF_GLOBAL_STATS_LEN;
470 default:
471 return -EINVAL;
472 }
473}
474
475static void igbvf_get_strings(struct net_device *netdev, u32 stringset,
476 u8 *data)
477{
478 u8 *p = data;
479 int i;
480
481 switch (stringset) {
482 case ETH_SS_TEST:
483 memcpy(data, *igbvf_gstrings_test, sizeof(igbvf_gstrings_test));
484 break;
485 case ETH_SS_STATS:
486 for (i = 0; i < IGBVF_GLOBAL_STATS_LEN; i++) {
487 memcpy(p, igbvf_gstrings_stats[i].stat_string,
488 ETH_GSTRING_LEN);
489 p += ETH_GSTRING_LEN;
490 }
491 break;
492 }
493}
494
495static const struct ethtool_ops igbvf_ethtool_ops = {
496 .get_settings = igbvf_get_settings,
497 .set_settings = igbvf_set_settings,
498 .get_drvinfo = igbvf_get_drvinfo,
499 .get_regs_len = igbvf_get_regs_len,
500 .get_regs = igbvf_get_regs,
501 .get_wol = igbvf_get_wol,
502 .set_wol = igbvf_set_wol,
503 .get_msglevel = igbvf_get_msglevel,
504 .set_msglevel = igbvf_set_msglevel,
505 .nway_reset = igbvf_nway_reset,
506 .get_link = ethtool_op_get_link,
507 .get_eeprom_len = igbvf_get_eeprom_len,
508 .get_eeprom = igbvf_get_eeprom,
509 .set_eeprom = igbvf_set_eeprom,
510 .get_ringparam = igbvf_get_ringparam,
511 .set_ringparam = igbvf_set_ringparam,
512 .get_pauseparam = igbvf_get_pauseparam,
513 .set_pauseparam = igbvf_set_pauseparam,
514 .get_rx_csum = igbvf_get_rx_csum,
515 .set_rx_csum = igbvf_set_rx_csum,
516 .get_tx_csum = igbvf_get_tx_csum,
517 .set_tx_csum = igbvf_set_tx_csum,
518 .get_sg = ethtool_op_get_sg,
519 .set_sg = ethtool_op_set_sg,
520 .get_tso = ethtool_op_get_tso,
521 .set_tso = igbvf_set_tso,
522 .self_test = igbvf_diag_test,
523 .get_sset_count = igbvf_get_sset_count,
524 .get_strings = igbvf_get_strings,
525 .get_ethtool_stats = igbvf_get_ethtool_stats,
526 .get_coalesce = igbvf_get_coalesce,
527 .set_coalesce = igbvf_set_coalesce,
528};
529
530void igbvf_set_ethtool_ops(struct net_device *netdev)
531{
532 /* have to "undeclare" const on this struct to remove warnings */
533 SET_ETHTOOL_OPS(netdev, (struct ethtool_ops *)&igbvf_ethtool_ops);
534}
diff --git a/drivers/net/igbvf/igbvf.h b/drivers/net/igbvf/igbvf.h
new file mode 100644
index 00000000000..fd4a7b780fd
--- /dev/null
+++ b/drivers/net/igbvf/igbvf.h
@@ -0,0 +1,326 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* Linux PRO/1000 Ethernet Driver main header file */
29
30#ifndef _IGBVF_H_
31#define _IGBVF_H_
32
33#include <linux/types.h>
34#include <linux/timer.h>
35#include <linux/io.h>
36#include <linux/netdevice.h>
37#include <linux/if_vlan.h>
38
39#include "vf.h"
40
41/* Forward declarations */
42struct igbvf_info;
43struct igbvf_adapter;
44
45/* Interrupt defines */
46#define IGBVF_START_ITR 648 /* ~6000 ints/sec */
47
48/* Interrupt modes, as used by the IntMode parameter */
49#define IGBVF_INT_MODE_LEGACY 0
50#define IGBVF_INT_MODE_MSI 1
51#define IGBVF_INT_MODE_MSIX 2
52
53/* Tx/Rx descriptor defines */
54#define IGBVF_DEFAULT_TXD 256
55#define IGBVF_MAX_TXD 4096
56#define IGBVF_MIN_TXD 80
57
58#define IGBVF_DEFAULT_RXD 256
59#define IGBVF_MAX_RXD 4096
60#define IGBVF_MIN_RXD 80
61
62#define IGBVF_MIN_ITR_USECS 10 /* 100000 irq/sec */
63#define IGBVF_MAX_ITR_USECS 10000 /* 100 irq/sec */
64
65/* RX descriptor control thresholds.
66 * PTHRESH - MAC will consider prefetch if it has fewer than this number of
67 * descriptors available in its onboard memory.
68 * Setting this to 0 disables RX descriptor prefetch.
69 * HTHRESH - MAC will only prefetch if there are at least this many descriptors
70 * available in host memory.
71 * If PTHRESH is 0, this should also be 0.
72 * WTHRESH - RX descriptor writeback threshold - MAC will delay writing back
73 * descriptors until either it has this many to write back, or the
74 * ITR timer expires.
75 */
76#define IGBVF_RX_PTHRESH 16
77#define IGBVF_RX_HTHRESH 8
78#define IGBVF_RX_WTHRESH 1
79
80/* this is the size past which hardware will drop packets when setting LPE=0 */
81#define MAXIMUM_ETHERNET_VLAN_SIZE 1522
82
83#define IGBVF_FC_PAUSE_TIME 0x0680 /* 858 usec */
84
85/* How many Tx Descriptors do we need to call netif_wake_queue ? */
86#define IGBVF_TX_QUEUE_WAKE 32
87/* How many Rx Buffers do we bundle into one write to the hardware ? */
88#define IGBVF_RX_BUFFER_WRITE 16 /* Must be power of 2 */
89
90#define AUTO_ALL_MODES 0
91#define IGBVF_EEPROM_APME 0x0400
92
93#define IGBVF_MNG_VLAN_NONE (-1)
94
95/* Number of packet split data buffers (not including the header buffer) */
96#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1)
97
98enum igbvf_boards {
99 board_vf,
100 board_i350_vf,
101};
102
103struct igbvf_queue_stats {
104 u64 packets;
105 u64 bytes;
106};
107
108/*
109 * wrappers around a pointer to a socket buffer,
110 * so a DMA handle can be stored along with the buffer
111 */
112struct igbvf_buffer {
113 dma_addr_t dma;
114 struct sk_buff *skb;
115 union {
116 /* Tx */
117 struct {
118 unsigned long time_stamp;
119 u16 length;
120 u16 next_to_watch;
121 u16 mapped_as_page;
122 };
123 /* Rx */
124 struct {
125 struct page *page;
126 u64 page_dma;
127 unsigned int page_offset;
128 };
129 };
130};
131
132union igbvf_desc {
133 union e1000_adv_rx_desc rx_desc;
134 union e1000_adv_tx_desc tx_desc;
135 struct e1000_adv_tx_context_desc tx_context_desc;
136};
137
138struct igbvf_ring {
139 struct igbvf_adapter *adapter; /* backlink */
140 union igbvf_desc *desc; /* pointer to ring memory */
141 dma_addr_t dma; /* phys address of ring */
142 unsigned int size; /* length of ring in bytes */
143 unsigned int count; /* number of desc. in ring */
144
145 u16 next_to_use;
146 u16 next_to_clean;
147
148 u16 head;
149 u16 tail;
150
151 /* array of buffer information structs */
152 struct igbvf_buffer *buffer_info;
153 struct napi_struct napi;
154
155 char name[IFNAMSIZ + 5];
156 u32 eims_value;
157 u32 itr_val;
158 u16 itr_register;
159 int set_itr;
160
161 struct sk_buff *rx_skb_top;
162
163 struct igbvf_queue_stats stats;
164};
165
166/* board specific private data structure */
167struct igbvf_adapter {
168 struct timer_list watchdog_timer;
169 struct timer_list blink_timer;
170
171 struct work_struct reset_task;
172 struct work_struct watchdog_task;
173
174 const struct igbvf_info *ei;
175
176 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
177 u32 bd_number;
178 u32 rx_buffer_len;
179 u32 polling_interval;
180 u16 mng_vlan_id;
181 u16 link_speed;
182 u16 link_duplex;
183
184 spinlock_t tx_queue_lock; /* prevent concurrent tail updates */
185
186 /* track device up/down/testing state */
187 unsigned long state;
188
189 /* Interrupt Throttle Rate */
190 u32 itr;
191 u32 itr_setting;
192 u16 tx_itr;
193 u16 rx_itr;
194
195 /*
196 * Tx
197 */
198 struct igbvf_ring *tx_ring /* One per active queue */
199 ____cacheline_aligned_in_smp;
200
201 unsigned int restart_queue;
202 u32 txd_cmd;
203
204 u32 tx_int_delay;
205 u32 tx_abs_int_delay;
206
207 unsigned int total_tx_bytes;
208 unsigned int total_tx_packets;
209 unsigned int total_rx_bytes;
210 unsigned int total_rx_packets;
211
212 /* Tx stats */
213 u32 tx_timeout_count;
214 u32 tx_fifo_head;
215 u32 tx_head_addr;
216 u32 tx_fifo_size;
217 u32 tx_dma_failed;
218
219 /*
220 * Rx
221 */
222 struct igbvf_ring *rx_ring;
223
224 u32 rx_int_delay;
225 u32 rx_abs_int_delay;
226
227 /* Rx stats */
228 u64 hw_csum_err;
229 u64 hw_csum_good;
230 u64 rx_hdr_split;
231 u32 alloc_rx_buff_failed;
232 u32 rx_dma_failed;
233
234 unsigned int rx_ps_hdr_size;
235 u32 max_frame_size;
236 u32 min_frame_size;
237
238 /* OS defined structs */
239 struct net_device *netdev;
240 struct pci_dev *pdev;
241 struct net_device_stats net_stats;
242 spinlock_t stats_lock; /* prevent concurrent stats updates */
243
244 /* structs defined in e1000_hw.h */
245 struct e1000_hw hw;
246
247 /* The VF counters don't clear on read so we have to get a base
248 * count on driver start up and always subtract that base on
249 * on the first update, thus the flag..
250 */
251 struct e1000_vf_stats stats;
252 u64 zero_base;
253
254 struct igbvf_ring test_tx_ring;
255 struct igbvf_ring test_rx_ring;
256 u32 test_icr;
257
258 u32 msg_enable;
259 struct msix_entry *msix_entries;
260 int int_mode;
261 u32 eims_enable_mask;
262 u32 eims_other;
263 u32 int_counter0;
264 u32 int_counter1;
265
266 u32 eeprom_wol;
267 u32 wol;
268 u32 pba;
269
270 bool fc_autoneg;
271
272 unsigned long led_status;
273
274 unsigned int flags;
275 unsigned long last_reset;
276};
277
278struct igbvf_info {
279 enum e1000_mac_type mac;
280 unsigned int flags;
281 u32 pba;
282 void (*init_ops)(struct e1000_hw *);
283 s32 (*get_variants)(struct igbvf_adapter *);
284};
285
286/* hardware capability, feature, and workaround flags */
287#define IGBVF_FLAG_RX_CSUM_DISABLED (1 << 0)
288
289#define IGBVF_RX_DESC_ADV(R, i) \
290 (&((((R).desc))[i].rx_desc))
291#define IGBVF_TX_DESC_ADV(R, i) \
292 (&((((R).desc))[i].tx_desc))
293#define IGBVF_TX_CTXTDESC_ADV(R, i) \
294 (&((((R).desc))[i].tx_context_desc))
295
296enum igbvf_state_t {
297 __IGBVF_TESTING,
298 __IGBVF_RESETTING,
299 __IGBVF_DOWN
300};
301
302enum latency_range {
303 lowest_latency = 0,
304 low_latency = 1,
305 bulk_latency = 2,
306 latency_invalid = 255
307};
308
309extern char igbvf_driver_name[];
310extern const char igbvf_driver_version[];
311
312extern void igbvf_check_options(struct igbvf_adapter *);
313extern void igbvf_set_ethtool_ops(struct net_device *);
314
315extern int igbvf_up(struct igbvf_adapter *);
316extern void igbvf_down(struct igbvf_adapter *);
317extern void igbvf_reinit_locked(struct igbvf_adapter *);
318extern int igbvf_setup_rx_resources(struct igbvf_adapter *, struct igbvf_ring *);
319extern int igbvf_setup_tx_resources(struct igbvf_adapter *, struct igbvf_ring *);
320extern void igbvf_free_rx_resources(struct igbvf_ring *);
321extern void igbvf_free_tx_resources(struct igbvf_ring *);
322extern void igbvf_update_stats(struct igbvf_adapter *);
323
324extern unsigned int copybreak;
325
326#endif /* _IGBVF_H_ */
diff --git a/drivers/net/igbvf/mbx.c b/drivers/net/igbvf/mbx.c
new file mode 100644
index 00000000000..3d6f4cc3998
--- /dev/null
+++ b/drivers/net/igbvf/mbx.c
@@ -0,0 +1,350 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include "mbx.h"
29
30/**
31 * e1000_poll_for_msg - Wait for message notification
32 * @hw: pointer to the HW structure
33 *
34 * returns SUCCESS if it successfully received a message notification
35 **/
36static s32 e1000_poll_for_msg(struct e1000_hw *hw)
37{
38 struct e1000_mbx_info *mbx = &hw->mbx;
39 int countdown = mbx->timeout;
40
41 if (!mbx->ops.check_for_msg)
42 goto out;
43
44 while (countdown && mbx->ops.check_for_msg(hw)) {
45 countdown--;
46 udelay(mbx->usec_delay);
47 }
48
49 /* if we failed, all future posted messages fail until reset */
50 if (!countdown)
51 mbx->timeout = 0;
52out:
53 return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
54}
55
56/**
57 * e1000_poll_for_ack - Wait for message acknowledgement
58 * @hw: pointer to the HW structure
59 *
60 * returns SUCCESS if it successfully received a message acknowledgement
61 **/
62static s32 e1000_poll_for_ack(struct e1000_hw *hw)
63{
64 struct e1000_mbx_info *mbx = &hw->mbx;
65 int countdown = mbx->timeout;
66
67 if (!mbx->ops.check_for_ack)
68 goto out;
69
70 while (countdown && mbx->ops.check_for_ack(hw)) {
71 countdown--;
72 udelay(mbx->usec_delay);
73 }
74
75 /* if we failed, all future posted messages fail until reset */
76 if (!countdown)
77 mbx->timeout = 0;
78out:
79 return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
80}
81
82/**
83 * e1000_read_posted_mbx - Wait for message notification and receive message
84 * @hw: pointer to the HW structure
85 * @msg: The message buffer
86 * @size: Length of buffer
87 *
88 * returns SUCCESS if it successfully received a message notification and
89 * copied it into the receive buffer.
90 **/
91static s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size)
92{
93 struct e1000_mbx_info *mbx = &hw->mbx;
94 s32 ret_val = -E1000_ERR_MBX;
95
96 if (!mbx->ops.read)
97 goto out;
98
99 ret_val = e1000_poll_for_msg(hw);
100
101 /* if ack received read message, otherwise we timed out */
102 if (!ret_val)
103 ret_val = mbx->ops.read(hw, msg, size);
104out:
105 return ret_val;
106}
107
108/**
109 * e1000_write_posted_mbx - Write a message to the mailbox, wait for ack
110 * @hw: pointer to the HW structure
111 * @msg: The message buffer
112 * @size: Length of buffer
113 *
114 * returns SUCCESS if it successfully copied message into the buffer and
115 * received an ack to that message within delay * timeout period
116 **/
117static s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size)
118{
119 struct e1000_mbx_info *mbx = &hw->mbx;
120 s32 ret_val = -E1000_ERR_MBX;
121
122 /* exit if we either can't write or there isn't a defined timeout */
123 if (!mbx->ops.write || !mbx->timeout)
124 goto out;
125
126 /* send msg*/
127 ret_val = mbx->ops.write(hw, msg, size);
128
129 /* if msg sent wait until we receive an ack */
130 if (!ret_val)
131 ret_val = e1000_poll_for_ack(hw);
132out:
133 return ret_val;
134}
135
136/**
137 * e1000_read_v2p_mailbox - read v2p mailbox
138 * @hw: pointer to the HW structure
139 *
140 * This function is used to read the v2p mailbox without losing the read to
141 * clear status bits.
142 **/
143static u32 e1000_read_v2p_mailbox(struct e1000_hw *hw)
144{
145 u32 v2p_mailbox = er32(V2PMAILBOX(0));
146
147 v2p_mailbox |= hw->dev_spec.vf.v2p_mailbox;
148 hw->dev_spec.vf.v2p_mailbox |= v2p_mailbox & E1000_V2PMAILBOX_R2C_BITS;
149
150 return v2p_mailbox;
151}
152
153/**
154 * e1000_check_for_bit_vf - Determine if a status bit was set
155 * @hw: pointer to the HW structure
156 * @mask: bitmask for bits to be tested and cleared
157 *
158 * This function is used to check for the read to clear bits within
159 * the V2P mailbox.
160 **/
161static s32 e1000_check_for_bit_vf(struct e1000_hw *hw, u32 mask)
162{
163 u32 v2p_mailbox = e1000_read_v2p_mailbox(hw);
164 s32 ret_val = -E1000_ERR_MBX;
165
166 if (v2p_mailbox & mask)
167 ret_val = E1000_SUCCESS;
168
169 hw->dev_spec.vf.v2p_mailbox &= ~mask;
170
171 return ret_val;
172}
173
174/**
175 * e1000_check_for_msg_vf - checks to see if the PF has sent mail
176 * @hw: pointer to the HW structure
177 *
178 * returns SUCCESS if the PF has set the Status bit or else ERR_MBX
179 **/
180static s32 e1000_check_for_msg_vf(struct e1000_hw *hw)
181{
182 s32 ret_val = -E1000_ERR_MBX;
183
184 if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFSTS)) {
185 ret_val = E1000_SUCCESS;
186 hw->mbx.stats.reqs++;
187 }
188
189 return ret_val;
190}
191
192/**
193 * e1000_check_for_ack_vf - checks to see if the PF has ACK'd
194 * @hw: pointer to the HW structure
195 *
196 * returns SUCCESS if the PF has set the ACK bit or else ERR_MBX
197 **/
198static s32 e1000_check_for_ack_vf(struct e1000_hw *hw)
199{
200 s32 ret_val = -E1000_ERR_MBX;
201
202 if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFACK)) {
203 ret_val = E1000_SUCCESS;
204 hw->mbx.stats.acks++;
205 }
206
207 return ret_val;
208}
209
210/**
211 * e1000_check_for_rst_vf - checks to see if the PF has reset
212 * @hw: pointer to the HW structure
213 *
214 * returns true if the PF has set the reset done bit or else false
215 **/
216static s32 e1000_check_for_rst_vf(struct e1000_hw *hw)
217{
218 s32 ret_val = -E1000_ERR_MBX;
219
220 if (!e1000_check_for_bit_vf(hw, (E1000_V2PMAILBOX_RSTD |
221 E1000_V2PMAILBOX_RSTI))) {
222 ret_val = E1000_SUCCESS;
223 hw->mbx.stats.rsts++;
224 }
225
226 return ret_val;
227}
228
229/**
230 * e1000_obtain_mbx_lock_vf - obtain mailbox lock
231 * @hw: pointer to the HW structure
232 *
233 * return SUCCESS if we obtained the mailbox lock
234 **/
235static s32 e1000_obtain_mbx_lock_vf(struct e1000_hw *hw)
236{
237 s32 ret_val = -E1000_ERR_MBX;
238
239 /* Take ownership of the buffer */
240 ew32(V2PMAILBOX(0), E1000_V2PMAILBOX_VFU);
241
242 /* reserve mailbox for vf use */
243 if (e1000_read_v2p_mailbox(hw) & E1000_V2PMAILBOX_VFU)
244 ret_val = E1000_SUCCESS;
245
246 return ret_val;
247}
248
249/**
250 * e1000_write_mbx_vf - Write a message to the mailbox
251 * @hw: pointer to the HW structure
252 * @msg: The message buffer
253 * @size: Length of buffer
254 *
255 * returns SUCCESS if it successfully copied message into the buffer
256 **/
257static s32 e1000_write_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size)
258{
259 s32 err;
260 u16 i;
261
262 /* lock the mailbox to prevent pf/vf race condition */
263 err = e1000_obtain_mbx_lock_vf(hw);
264 if (err)
265 goto out_no_write;
266
267 /* flush any ack or msg as we are going to overwrite mailbox */
268 e1000_check_for_ack_vf(hw);
269 e1000_check_for_msg_vf(hw);
270
271 /* copy the caller specified message to the mailbox memory buffer */
272 for (i = 0; i < size; i++)
273 array_ew32(VMBMEM(0), i, msg[i]);
274
275 /* update stats */
276 hw->mbx.stats.msgs_tx++;
277
278 /* Drop VFU and interrupt the PF to tell it a message has been sent */
279 ew32(V2PMAILBOX(0), E1000_V2PMAILBOX_REQ);
280
281out_no_write:
282 return err;
283}
284
285/**
286 * e1000_read_mbx_vf - Reads a message from the inbox intended for vf
287 * @hw: pointer to the HW structure
288 * @msg: The message buffer
289 * @size: Length of buffer
290 *
291 * returns SUCCESS if it successfuly read message from buffer
292 **/
293static s32 e1000_read_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size)
294{
295 s32 err;
296 u16 i;
297
298 /* lock the mailbox to prevent pf/vf race condition */
299 err = e1000_obtain_mbx_lock_vf(hw);
300 if (err)
301 goto out_no_read;
302
303 /* copy the message from the mailbox memory buffer */
304 for (i = 0; i < size; i++)
305 msg[i] = array_er32(VMBMEM(0), i);
306
307 /* Acknowledge receipt and release mailbox, then we're done */
308 ew32(V2PMAILBOX(0), E1000_V2PMAILBOX_ACK);
309
310 /* update stats */
311 hw->mbx.stats.msgs_rx++;
312
313out_no_read:
314 return err;
315}
316
317/**
318 * e1000_init_mbx_params_vf - set initial values for vf mailbox
319 * @hw: pointer to the HW structure
320 *
321 * Initializes the hw->mbx struct to correct values for vf mailbox
322 */
323s32 e1000_init_mbx_params_vf(struct e1000_hw *hw)
324{
325 struct e1000_mbx_info *mbx = &hw->mbx;
326
327 /* start mailbox as timed out and let the reset_hw call set the timeout
328 * value to being communications */
329 mbx->timeout = 0;
330 mbx->usec_delay = E1000_VF_MBX_INIT_DELAY;
331
332 mbx->size = E1000_VFMAILBOX_SIZE;
333
334 mbx->ops.read = e1000_read_mbx_vf;
335 mbx->ops.write = e1000_write_mbx_vf;
336 mbx->ops.read_posted = e1000_read_posted_mbx;
337 mbx->ops.write_posted = e1000_write_posted_mbx;
338 mbx->ops.check_for_msg = e1000_check_for_msg_vf;
339 mbx->ops.check_for_ack = e1000_check_for_ack_vf;
340 mbx->ops.check_for_rst = e1000_check_for_rst_vf;
341
342 mbx->stats.msgs_tx = 0;
343 mbx->stats.msgs_rx = 0;
344 mbx->stats.reqs = 0;
345 mbx->stats.acks = 0;
346 mbx->stats.rsts = 0;
347
348 return E1000_SUCCESS;
349}
350
diff --git a/drivers/net/igbvf/mbx.h b/drivers/net/igbvf/mbx.h
new file mode 100644
index 00000000000..c2883c45d47
--- /dev/null
+++ b/drivers/net/igbvf/mbx.h
@@ -0,0 +1,75 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_MBX_H_
29#define _E1000_MBX_H_
30
31#include "vf.h"
32
33#define E1000_V2PMAILBOX_REQ 0x00000001 /* Request for PF Ready bit */
34#define E1000_V2PMAILBOX_ACK 0x00000002 /* Ack PF message received */
35#define E1000_V2PMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */
36#define E1000_V2PMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */
37#define E1000_V2PMAILBOX_PFSTS 0x00000010 /* PF wrote a message in the MB */
38#define E1000_V2PMAILBOX_PFACK 0x00000020 /* PF ack the previous VF msg */
39#define E1000_V2PMAILBOX_RSTI 0x00000040 /* PF has reset indication */
40#define E1000_V2PMAILBOX_RSTD 0x00000080 /* PF has indicated reset done */
41#define E1000_V2PMAILBOX_R2C_BITS 0x000000B0 /* All read to clear bits */
42
43#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */
44
45/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the
46 * PF. The reverse is true if it is E1000_PF_*.
47 * Message ACK's are the value or'd with 0xF0000000
48 */
49#define E1000_VT_MSGTYPE_ACK 0x80000000 /* Messages below or'd with
50 * this are the ACK */
51#define E1000_VT_MSGTYPE_NACK 0x40000000 /* Messages below or'd with
52 * this are the NACK */
53#define E1000_VT_MSGTYPE_CTS 0x20000000 /* Indicates that VF is still
54 clear to send requests */
55
56/* We have a total wait time of 1s for vf mailbox posted messages */
57#define E1000_VF_MBX_INIT_TIMEOUT 2000 /* retry count for mailbox timeout */
58#define E1000_VF_MBX_INIT_DELAY 500 /* usec delay between retries */
59
60#define E1000_VT_MSGINFO_SHIFT 16
61/* bits 23:16 are used for exra info for certain messages */
62#define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT)
63
64#define E1000_VF_RESET 0x01 /* VF requests reset */
65#define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests PF to set MAC addr */
66#define E1000_VF_SET_MULTICAST 0x03 /* VF requests PF to set MC addr */
67#define E1000_VF_SET_VLAN 0x04 /* VF requests PF to set VLAN */
68#define E1000_VF_SET_LPE 0x05 /* VF requests PF to set VMOLR.LPE */
69
70#define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */
71
72void e1000_init_mbx_ops_generic(struct e1000_hw *hw);
73s32 e1000_init_mbx_params_vf(struct e1000_hw *);
74
75#endif /* _E1000_MBX_H_ */
diff --git a/drivers/net/igbvf/netdev.c b/drivers/net/igbvf/netdev.c
new file mode 100644
index 00000000000..40ed066e3ef
--- /dev/null
+++ b/drivers/net/igbvf/netdev.c
@@ -0,0 +1,2859 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/pci.h>
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/tcp.h>
37#include <linux/ipv6.h>
38#include <linux/slab.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/prefetch.h>
45
46#include "igbvf.h"
47
48#define DRV_VERSION "2.0.0-k"
49char igbvf_driver_name[] = "igbvf";
50const char igbvf_driver_version[] = DRV_VERSION;
51static const char igbvf_driver_string[] =
52 "Intel(R) Virtual Function Network Driver";
53static const char igbvf_copyright[] =
54 "Copyright (c) 2009 - 2010 Intel Corporation.";
55
56static int igbvf_poll(struct napi_struct *napi, int budget);
57static void igbvf_reset(struct igbvf_adapter *);
58static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
59static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
60
61static struct igbvf_info igbvf_vf_info = {
62 .mac = e1000_vfadapt,
63 .flags = 0,
64 .pba = 10,
65 .init_ops = e1000_init_function_pointers_vf,
66};
67
68static struct igbvf_info igbvf_i350_vf_info = {
69 .mac = e1000_vfadapt_i350,
70 .flags = 0,
71 .pba = 10,
72 .init_ops = e1000_init_function_pointers_vf,
73};
74
75static const struct igbvf_info *igbvf_info_tbl[] = {
76 [board_vf] = &igbvf_vf_info,
77 [board_i350_vf] = &igbvf_i350_vf_info,
78};
79
80/**
81 * igbvf_desc_unused - calculate if we have unused descriptors
82 **/
83static int igbvf_desc_unused(struct igbvf_ring *ring)
84{
85 if (ring->next_to_clean > ring->next_to_use)
86 return ring->next_to_clean - ring->next_to_use - 1;
87
88 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
89}
90
91/**
92 * igbvf_receive_skb - helper function to handle Rx indications
93 * @adapter: board private structure
94 * @status: descriptor status field as written by hardware
95 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
96 * @skb: pointer to sk_buff to be indicated to stack
97 **/
98static void igbvf_receive_skb(struct igbvf_adapter *adapter,
99 struct net_device *netdev,
100 struct sk_buff *skb,
101 u32 status, u16 vlan)
102{
103 if (status & E1000_RXD_STAT_VP) {
104 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
105
106 __vlan_hwaccel_put_tag(skb, vid);
107 }
108 netif_receive_skb(skb);
109}
110
111static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
112 u32 status_err, struct sk_buff *skb)
113{
114 skb_checksum_none_assert(skb);
115
116 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
117 if ((status_err & E1000_RXD_STAT_IXSM) ||
118 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
119 return;
120
121 /* TCP/UDP checksum error bit is set */
122 if (status_err &
123 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
124 /* let the stack verify checksum errors */
125 adapter->hw_csum_err++;
126 return;
127 }
128
129 /* It must be a TCP or UDP packet with a valid checksum */
130 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
131 skb->ip_summed = CHECKSUM_UNNECESSARY;
132
133 adapter->hw_csum_good++;
134}
135
136/**
137 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
138 * @rx_ring: address of ring structure to repopulate
139 * @cleaned_count: number of buffers to repopulate
140 **/
141static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
142 int cleaned_count)
143{
144 struct igbvf_adapter *adapter = rx_ring->adapter;
145 struct net_device *netdev = adapter->netdev;
146 struct pci_dev *pdev = adapter->pdev;
147 union e1000_adv_rx_desc *rx_desc;
148 struct igbvf_buffer *buffer_info;
149 struct sk_buff *skb;
150 unsigned int i;
151 int bufsz;
152
153 i = rx_ring->next_to_use;
154 buffer_info = &rx_ring->buffer_info[i];
155
156 if (adapter->rx_ps_hdr_size)
157 bufsz = adapter->rx_ps_hdr_size;
158 else
159 bufsz = adapter->rx_buffer_len;
160
161 while (cleaned_count--) {
162 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
163
164 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
165 if (!buffer_info->page) {
166 buffer_info->page = alloc_page(GFP_ATOMIC);
167 if (!buffer_info->page) {
168 adapter->alloc_rx_buff_failed++;
169 goto no_buffers;
170 }
171 buffer_info->page_offset = 0;
172 } else {
173 buffer_info->page_offset ^= PAGE_SIZE / 2;
174 }
175 buffer_info->page_dma =
176 dma_map_page(&pdev->dev, buffer_info->page,
177 buffer_info->page_offset,
178 PAGE_SIZE / 2,
179 DMA_FROM_DEVICE);
180 }
181
182 if (!buffer_info->skb) {
183 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
184 if (!skb) {
185 adapter->alloc_rx_buff_failed++;
186 goto no_buffers;
187 }
188
189 buffer_info->skb = skb;
190 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
191 bufsz,
192 DMA_FROM_DEVICE);
193 }
194 /* Refresh the desc even if buffer_addrs didn't change because
195 * each write-back erases this info. */
196 if (adapter->rx_ps_hdr_size) {
197 rx_desc->read.pkt_addr =
198 cpu_to_le64(buffer_info->page_dma);
199 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
200 } else {
201 rx_desc->read.pkt_addr =
202 cpu_to_le64(buffer_info->dma);
203 rx_desc->read.hdr_addr = 0;
204 }
205
206 i++;
207 if (i == rx_ring->count)
208 i = 0;
209 buffer_info = &rx_ring->buffer_info[i];
210 }
211
212no_buffers:
213 if (rx_ring->next_to_use != i) {
214 rx_ring->next_to_use = i;
215 if (i == 0)
216 i = (rx_ring->count - 1);
217 else
218 i--;
219
220 /* Force memory writes to complete before letting h/w
221 * know there are new descriptors to fetch. (Only
222 * applicable for weak-ordered memory model archs,
223 * such as IA-64). */
224 wmb();
225 writel(i, adapter->hw.hw_addr + rx_ring->tail);
226 }
227}
228
229/**
230 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
231 * @adapter: board private structure
232 *
233 * the return value indicates whether actual cleaning was done, there
234 * is no guarantee that everything was cleaned
235 **/
236static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
237 int *work_done, int work_to_do)
238{
239 struct igbvf_ring *rx_ring = adapter->rx_ring;
240 struct net_device *netdev = adapter->netdev;
241 struct pci_dev *pdev = adapter->pdev;
242 union e1000_adv_rx_desc *rx_desc, *next_rxd;
243 struct igbvf_buffer *buffer_info, *next_buffer;
244 struct sk_buff *skb;
245 bool cleaned = false;
246 int cleaned_count = 0;
247 unsigned int total_bytes = 0, total_packets = 0;
248 unsigned int i;
249 u32 length, hlen, staterr;
250
251 i = rx_ring->next_to_clean;
252 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
253 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
254
255 while (staterr & E1000_RXD_STAT_DD) {
256 if (*work_done >= work_to_do)
257 break;
258 (*work_done)++;
259 rmb(); /* read descriptor and rx_buffer_info after status DD */
260
261 buffer_info = &rx_ring->buffer_info[i];
262
263 /* HW will not DMA in data larger than the given buffer, even
264 * if it parses the (NFS, of course) header to be larger. In
265 * that case, it fills the header buffer and spills the rest
266 * into the page.
267 */
268 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
269 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
270 if (hlen > adapter->rx_ps_hdr_size)
271 hlen = adapter->rx_ps_hdr_size;
272
273 length = le16_to_cpu(rx_desc->wb.upper.length);
274 cleaned = true;
275 cleaned_count++;
276
277 skb = buffer_info->skb;
278 prefetch(skb->data - NET_IP_ALIGN);
279 buffer_info->skb = NULL;
280 if (!adapter->rx_ps_hdr_size) {
281 dma_unmap_single(&pdev->dev, buffer_info->dma,
282 adapter->rx_buffer_len,
283 DMA_FROM_DEVICE);
284 buffer_info->dma = 0;
285 skb_put(skb, length);
286 goto send_up;
287 }
288
289 if (!skb_shinfo(skb)->nr_frags) {
290 dma_unmap_single(&pdev->dev, buffer_info->dma,
291 adapter->rx_ps_hdr_size,
292 DMA_FROM_DEVICE);
293 skb_put(skb, hlen);
294 }
295
296 if (length) {
297 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
298 PAGE_SIZE / 2,
299 DMA_FROM_DEVICE);
300 buffer_info->page_dma = 0;
301
302 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
303 buffer_info->page,
304 buffer_info->page_offset,
305 length);
306
307 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
308 (page_count(buffer_info->page) != 1))
309 buffer_info->page = NULL;
310 else
311 get_page(buffer_info->page);
312
313 skb->len += length;
314 skb->data_len += length;
315 skb->truesize += length;
316 }
317send_up:
318 i++;
319 if (i == rx_ring->count)
320 i = 0;
321 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
322 prefetch(next_rxd);
323 next_buffer = &rx_ring->buffer_info[i];
324
325 if (!(staterr & E1000_RXD_STAT_EOP)) {
326 buffer_info->skb = next_buffer->skb;
327 buffer_info->dma = next_buffer->dma;
328 next_buffer->skb = skb;
329 next_buffer->dma = 0;
330 goto next_desc;
331 }
332
333 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
334 dev_kfree_skb_irq(skb);
335 goto next_desc;
336 }
337
338 total_bytes += skb->len;
339 total_packets++;
340
341 igbvf_rx_checksum_adv(adapter, staterr, skb);
342
343 skb->protocol = eth_type_trans(skb, netdev);
344
345 igbvf_receive_skb(adapter, netdev, skb, staterr,
346 rx_desc->wb.upper.vlan);
347
348next_desc:
349 rx_desc->wb.upper.status_error = 0;
350
351 /* return some buffers to hardware, one at a time is too slow */
352 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
353 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
354 cleaned_count = 0;
355 }
356
357 /* use prefetched values */
358 rx_desc = next_rxd;
359 buffer_info = next_buffer;
360
361 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
362 }
363
364 rx_ring->next_to_clean = i;
365 cleaned_count = igbvf_desc_unused(rx_ring);
366
367 if (cleaned_count)
368 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
369
370 adapter->total_rx_packets += total_packets;
371 adapter->total_rx_bytes += total_bytes;
372 adapter->net_stats.rx_bytes += total_bytes;
373 adapter->net_stats.rx_packets += total_packets;
374 return cleaned;
375}
376
377static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
378 struct igbvf_buffer *buffer_info)
379{
380 if (buffer_info->dma) {
381 if (buffer_info->mapped_as_page)
382 dma_unmap_page(&adapter->pdev->dev,
383 buffer_info->dma,
384 buffer_info->length,
385 DMA_TO_DEVICE);
386 else
387 dma_unmap_single(&adapter->pdev->dev,
388 buffer_info->dma,
389 buffer_info->length,
390 DMA_TO_DEVICE);
391 buffer_info->dma = 0;
392 }
393 if (buffer_info->skb) {
394 dev_kfree_skb_any(buffer_info->skb);
395 buffer_info->skb = NULL;
396 }
397 buffer_info->time_stamp = 0;
398}
399
400/**
401 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
402 * @adapter: board private structure
403 *
404 * Return 0 on success, negative on failure
405 **/
406int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
407 struct igbvf_ring *tx_ring)
408{
409 struct pci_dev *pdev = adapter->pdev;
410 int size;
411
412 size = sizeof(struct igbvf_buffer) * tx_ring->count;
413 tx_ring->buffer_info = vzalloc(size);
414 if (!tx_ring->buffer_info)
415 goto err;
416
417 /* round up to nearest 4K */
418 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
419 tx_ring->size = ALIGN(tx_ring->size, 4096);
420
421 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
422 &tx_ring->dma, GFP_KERNEL);
423
424 if (!tx_ring->desc)
425 goto err;
426
427 tx_ring->adapter = adapter;
428 tx_ring->next_to_use = 0;
429 tx_ring->next_to_clean = 0;
430
431 return 0;
432err:
433 vfree(tx_ring->buffer_info);
434 dev_err(&adapter->pdev->dev,
435 "Unable to allocate memory for the transmit descriptor ring\n");
436 return -ENOMEM;
437}
438
439/**
440 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
441 * @adapter: board private structure
442 *
443 * Returns 0 on success, negative on failure
444 **/
445int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
446 struct igbvf_ring *rx_ring)
447{
448 struct pci_dev *pdev = adapter->pdev;
449 int size, desc_len;
450
451 size = sizeof(struct igbvf_buffer) * rx_ring->count;
452 rx_ring->buffer_info = vzalloc(size);
453 if (!rx_ring->buffer_info)
454 goto err;
455
456 desc_len = sizeof(union e1000_adv_rx_desc);
457
458 /* Round up to nearest 4K */
459 rx_ring->size = rx_ring->count * desc_len;
460 rx_ring->size = ALIGN(rx_ring->size, 4096);
461
462 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
463 &rx_ring->dma, GFP_KERNEL);
464
465 if (!rx_ring->desc)
466 goto err;
467
468 rx_ring->next_to_clean = 0;
469 rx_ring->next_to_use = 0;
470
471 rx_ring->adapter = adapter;
472
473 return 0;
474
475err:
476 vfree(rx_ring->buffer_info);
477 rx_ring->buffer_info = NULL;
478 dev_err(&adapter->pdev->dev,
479 "Unable to allocate memory for the receive descriptor ring\n");
480 return -ENOMEM;
481}
482
483/**
484 * igbvf_clean_tx_ring - Free Tx Buffers
485 * @tx_ring: ring to be cleaned
486 **/
487static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
488{
489 struct igbvf_adapter *adapter = tx_ring->adapter;
490 struct igbvf_buffer *buffer_info;
491 unsigned long size;
492 unsigned int i;
493
494 if (!tx_ring->buffer_info)
495 return;
496
497 /* Free all the Tx ring sk_buffs */
498 for (i = 0; i < tx_ring->count; i++) {
499 buffer_info = &tx_ring->buffer_info[i];
500 igbvf_put_txbuf(adapter, buffer_info);
501 }
502
503 size = sizeof(struct igbvf_buffer) * tx_ring->count;
504 memset(tx_ring->buffer_info, 0, size);
505
506 /* Zero out the descriptor ring */
507 memset(tx_ring->desc, 0, tx_ring->size);
508
509 tx_ring->next_to_use = 0;
510 tx_ring->next_to_clean = 0;
511
512 writel(0, adapter->hw.hw_addr + tx_ring->head);
513 writel(0, adapter->hw.hw_addr + tx_ring->tail);
514}
515
516/**
517 * igbvf_free_tx_resources - Free Tx Resources per Queue
518 * @tx_ring: ring to free resources from
519 *
520 * Free all transmit software resources
521 **/
522void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
523{
524 struct pci_dev *pdev = tx_ring->adapter->pdev;
525
526 igbvf_clean_tx_ring(tx_ring);
527
528 vfree(tx_ring->buffer_info);
529 tx_ring->buffer_info = NULL;
530
531 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
532 tx_ring->dma);
533
534 tx_ring->desc = NULL;
535}
536
537/**
538 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
539 * @adapter: board private structure
540 **/
541static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
542{
543 struct igbvf_adapter *adapter = rx_ring->adapter;
544 struct igbvf_buffer *buffer_info;
545 struct pci_dev *pdev = adapter->pdev;
546 unsigned long size;
547 unsigned int i;
548
549 if (!rx_ring->buffer_info)
550 return;
551
552 /* Free all the Rx ring sk_buffs */
553 for (i = 0; i < rx_ring->count; i++) {
554 buffer_info = &rx_ring->buffer_info[i];
555 if (buffer_info->dma) {
556 if (adapter->rx_ps_hdr_size){
557 dma_unmap_single(&pdev->dev, buffer_info->dma,
558 adapter->rx_ps_hdr_size,
559 DMA_FROM_DEVICE);
560 } else {
561 dma_unmap_single(&pdev->dev, buffer_info->dma,
562 adapter->rx_buffer_len,
563 DMA_FROM_DEVICE);
564 }
565 buffer_info->dma = 0;
566 }
567
568 if (buffer_info->skb) {
569 dev_kfree_skb(buffer_info->skb);
570 buffer_info->skb = NULL;
571 }
572
573 if (buffer_info->page) {
574 if (buffer_info->page_dma)
575 dma_unmap_page(&pdev->dev,
576 buffer_info->page_dma,
577 PAGE_SIZE / 2,
578 DMA_FROM_DEVICE);
579 put_page(buffer_info->page);
580 buffer_info->page = NULL;
581 buffer_info->page_dma = 0;
582 buffer_info->page_offset = 0;
583 }
584 }
585
586 size = sizeof(struct igbvf_buffer) * rx_ring->count;
587 memset(rx_ring->buffer_info, 0, size);
588
589 /* Zero out the descriptor ring */
590 memset(rx_ring->desc, 0, rx_ring->size);
591
592 rx_ring->next_to_clean = 0;
593 rx_ring->next_to_use = 0;
594
595 writel(0, adapter->hw.hw_addr + rx_ring->head);
596 writel(0, adapter->hw.hw_addr + rx_ring->tail);
597}
598
599/**
600 * igbvf_free_rx_resources - Free Rx Resources
601 * @rx_ring: ring to clean the resources from
602 *
603 * Free all receive software resources
604 **/
605
606void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
607{
608 struct pci_dev *pdev = rx_ring->adapter->pdev;
609
610 igbvf_clean_rx_ring(rx_ring);
611
612 vfree(rx_ring->buffer_info);
613 rx_ring->buffer_info = NULL;
614
615 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
616 rx_ring->dma);
617 rx_ring->desc = NULL;
618}
619
620/**
621 * igbvf_update_itr - update the dynamic ITR value based on statistics
622 * @adapter: pointer to adapter
623 * @itr_setting: current adapter->itr
624 * @packets: the number of packets during this measurement interval
625 * @bytes: the number of bytes during this measurement interval
626 *
627 * Stores a new ITR value based on packets and byte
628 * counts during the last interrupt. The advantage of per interrupt
629 * computation is faster updates and more accurate ITR for the current
630 * traffic pattern. Constants in this function were computed
631 * based on theoretical maximum wire speed and thresholds were set based
632 * on testing data as well as attempting to minimize response time
633 * while increasing bulk throughput. This functionality is controlled
634 * by the InterruptThrottleRate module parameter.
635 **/
636static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
637 u16 itr_setting, int packets,
638 int bytes)
639{
640 unsigned int retval = itr_setting;
641
642 if (packets == 0)
643 goto update_itr_done;
644
645 switch (itr_setting) {
646 case lowest_latency:
647 /* handle TSO and jumbo frames */
648 if (bytes/packets > 8000)
649 retval = bulk_latency;
650 else if ((packets < 5) && (bytes > 512))
651 retval = low_latency;
652 break;
653 case low_latency: /* 50 usec aka 20000 ints/s */
654 if (bytes > 10000) {
655 /* this if handles the TSO accounting */
656 if (bytes/packets > 8000)
657 retval = bulk_latency;
658 else if ((packets < 10) || ((bytes/packets) > 1200))
659 retval = bulk_latency;
660 else if ((packets > 35))
661 retval = lowest_latency;
662 } else if (bytes/packets > 2000) {
663 retval = bulk_latency;
664 } else if (packets <= 2 && bytes < 512) {
665 retval = lowest_latency;
666 }
667 break;
668 case bulk_latency: /* 250 usec aka 4000 ints/s */
669 if (bytes > 25000) {
670 if (packets > 35)
671 retval = low_latency;
672 } else if (bytes < 6000) {
673 retval = low_latency;
674 }
675 break;
676 }
677
678update_itr_done:
679 return retval;
680}
681
682static void igbvf_set_itr(struct igbvf_adapter *adapter)
683{
684 struct e1000_hw *hw = &adapter->hw;
685 u16 current_itr;
686 u32 new_itr = adapter->itr;
687
688 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
689 adapter->total_tx_packets,
690 adapter->total_tx_bytes);
691 /* conservative mode (itr 3) eliminates the lowest_latency setting */
692 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
693 adapter->tx_itr = low_latency;
694
695 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
696 adapter->total_rx_packets,
697 adapter->total_rx_bytes);
698 /* conservative mode (itr 3) eliminates the lowest_latency setting */
699 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
700 adapter->rx_itr = low_latency;
701
702 current_itr = max(adapter->rx_itr, adapter->tx_itr);
703
704 switch (current_itr) {
705 /* counts and packets in update_itr are dependent on these numbers */
706 case lowest_latency:
707 new_itr = 70000;
708 break;
709 case low_latency:
710 new_itr = 20000; /* aka hwitr = ~200 */
711 break;
712 case bulk_latency:
713 new_itr = 4000;
714 break;
715 default:
716 break;
717 }
718
719 if (new_itr != adapter->itr) {
720 /*
721 * this attempts to bias the interrupt rate towards Bulk
722 * by adding intermediate steps when interrupt rate is
723 * increasing
724 */
725 new_itr = new_itr > adapter->itr ?
726 min(adapter->itr + (new_itr >> 2), new_itr) :
727 new_itr;
728 adapter->itr = new_itr;
729 adapter->rx_ring->itr_val = 1952;
730
731 if (adapter->msix_entries)
732 adapter->rx_ring->set_itr = 1;
733 else
734 ew32(ITR, 1952);
735 }
736}
737
738/**
739 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
740 * @adapter: board private structure
741 * returns true if ring is completely cleaned
742 **/
743static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
744{
745 struct igbvf_adapter *adapter = tx_ring->adapter;
746 struct net_device *netdev = adapter->netdev;
747 struct igbvf_buffer *buffer_info;
748 struct sk_buff *skb;
749 union e1000_adv_tx_desc *tx_desc, *eop_desc;
750 unsigned int total_bytes = 0, total_packets = 0;
751 unsigned int i, eop, count = 0;
752 bool cleaned = false;
753
754 i = tx_ring->next_to_clean;
755 eop = tx_ring->buffer_info[i].next_to_watch;
756 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
757
758 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
759 (count < tx_ring->count)) {
760 rmb(); /* read buffer_info after eop_desc status */
761 for (cleaned = false; !cleaned; count++) {
762 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
763 buffer_info = &tx_ring->buffer_info[i];
764 cleaned = (i == eop);
765 skb = buffer_info->skb;
766
767 if (skb) {
768 unsigned int segs, bytecount;
769
770 /* gso_segs is currently only valid for tcp */
771 segs = skb_shinfo(skb)->gso_segs ?: 1;
772 /* multiply data chunks by size of headers */
773 bytecount = ((segs - 1) * skb_headlen(skb)) +
774 skb->len;
775 total_packets += segs;
776 total_bytes += bytecount;
777 }
778
779 igbvf_put_txbuf(adapter, buffer_info);
780 tx_desc->wb.status = 0;
781
782 i++;
783 if (i == tx_ring->count)
784 i = 0;
785 }
786 eop = tx_ring->buffer_info[i].next_to_watch;
787 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
788 }
789
790 tx_ring->next_to_clean = i;
791
792 if (unlikely(count &&
793 netif_carrier_ok(netdev) &&
794 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
795 /* Make sure that anybody stopping the queue after this
796 * sees the new next_to_clean.
797 */
798 smp_mb();
799 if (netif_queue_stopped(netdev) &&
800 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
801 netif_wake_queue(netdev);
802 ++adapter->restart_queue;
803 }
804 }
805
806 adapter->net_stats.tx_bytes += total_bytes;
807 adapter->net_stats.tx_packets += total_packets;
808 return count < tx_ring->count;
809}
810
811static irqreturn_t igbvf_msix_other(int irq, void *data)
812{
813 struct net_device *netdev = data;
814 struct igbvf_adapter *adapter = netdev_priv(netdev);
815 struct e1000_hw *hw = &adapter->hw;
816
817 adapter->int_counter1++;
818
819 netif_carrier_off(netdev);
820 hw->mac.get_link_status = 1;
821 if (!test_bit(__IGBVF_DOWN, &adapter->state))
822 mod_timer(&adapter->watchdog_timer, jiffies + 1);
823
824 ew32(EIMS, adapter->eims_other);
825
826 return IRQ_HANDLED;
827}
828
829static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
830{
831 struct net_device *netdev = data;
832 struct igbvf_adapter *adapter = netdev_priv(netdev);
833 struct e1000_hw *hw = &adapter->hw;
834 struct igbvf_ring *tx_ring = adapter->tx_ring;
835
836
837 adapter->total_tx_bytes = 0;
838 adapter->total_tx_packets = 0;
839
840 /* auto mask will automatically reenable the interrupt when we write
841 * EICS */
842 if (!igbvf_clean_tx_irq(tx_ring))
843 /* Ring was not completely cleaned, so fire another interrupt */
844 ew32(EICS, tx_ring->eims_value);
845 else
846 ew32(EIMS, tx_ring->eims_value);
847
848 return IRQ_HANDLED;
849}
850
851static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
852{
853 struct net_device *netdev = data;
854 struct igbvf_adapter *adapter = netdev_priv(netdev);
855
856 adapter->int_counter0++;
857
858 /* Write the ITR value calculated at the end of the
859 * previous interrupt.
860 */
861 if (adapter->rx_ring->set_itr) {
862 writel(adapter->rx_ring->itr_val,
863 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
864 adapter->rx_ring->set_itr = 0;
865 }
866
867 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
868 adapter->total_rx_bytes = 0;
869 adapter->total_rx_packets = 0;
870 __napi_schedule(&adapter->rx_ring->napi);
871 }
872
873 return IRQ_HANDLED;
874}
875
876#define IGBVF_NO_QUEUE -1
877
878static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
879 int tx_queue, int msix_vector)
880{
881 struct e1000_hw *hw = &adapter->hw;
882 u32 ivar, index;
883
884 /* 82576 uses a table-based method for assigning vectors.
885 Each queue has a single entry in the table to which we write
886 a vector number along with a "valid" bit. Sadly, the layout
887 of the table is somewhat counterintuitive. */
888 if (rx_queue > IGBVF_NO_QUEUE) {
889 index = (rx_queue >> 1);
890 ivar = array_er32(IVAR0, index);
891 if (rx_queue & 0x1) {
892 /* vector goes into third byte of register */
893 ivar = ivar & 0xFF00FFFF;
894 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
895 } else {
896 /* vector goes into low byte of register */
897 ivar = ivar & 0xFFFFFF00;
898 ivar |= msix_vector | E1000_IVAR_VALID;
899 }
900 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
901 array_ew32(IVAR0, index, ivar);
902 }
903 if (tx_queue > IGBVF_NO_QUEUE) {
904 index = (tx_queue >> 1);
905 ivar = array_er32(IVAR0, index);
906 if (tx_queue & 0x1) {
907 /* vector goes into high byte of register */
908 ivar = ivar & 0x00FFFFFF;
909 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
910 } else {
911 /* vector goes into second byte of register */
912 ivar = ivar & 0xFFFF00FF;
913 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
914 }
915 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
916 array_ew32(IVAR0, index, ivar);
917 }
918}
919
920/**
921 * igbvf_configure_msix - Configure MSI-X hardware
922 *
923 * igbvf_configure_msix sets up the hardware to properly
924 * generate MSI-X interrupts.
925 **/
926static void igbvf_configure_msix(struct igbvf_adapter *adapter)
927{
928 u32 tmp;
929 struct e1000_hw *hw = &adapter->hw;
930 struct igbvf_ring *tx_ring = adapter->tx_ring;
931 struct igbvf_ring *rx_ring = adapter->rx_ring;
932 int vector = 0;
933
934 adapter->eims_enable_mask = 0;
935
936 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
937 adapter->eims_enable_mask |= tx_ring->eims_value;
938 if (tx_ring->itr_val)
939 writel(tx_ring->itr_val,
940 hw->hw_addr + tx_ring->itr_register);
941 else
942 writel(1952, hw->hw_addr + tx_ring->itr_register);
943
944 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
945 adapter->eims_enable_mask |= rx_ring->eims_value;
946 if (rx_ring->itr_val)
947 writel(rx_ring->itr_val,
948 hw->hw_addr + rx_ring->itr_register);
949 else
950 writel(1952, hw->hw_addr + rx_ring->itr_register);
951
952 /* set vector for other causes, i.e. link changes */
953
954 tmp = (vector++ | E1000_IVAR_VALID);
955
956 ew32(IVAR_MISC, tmp);
957
958 adapter->eims_enable_mask = (1 << (vector)) - 1;
959 adapter->eims_other = 1 << (vector - 1);
960 e1e_flush();
961}
962
963static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
964{
965 if (adapter->msix_entries) {
966 pci_disable_msix(adapter->pdev);
967 kfree(adapter->msix_entries);
968 adapter->msix_entries = NULL;
969 }
970}
971
972/**
973 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
974 *
975 * Attempt to configure interrupts using the best available
976 * capabilities of the hardware and kernel.
977 **/
978static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
979{
980 int err = -ENOMEM;
981 int i;
982
983 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
984 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
985 GFP_KERNEL);
986 if (adapter->msix_entries) {
987 for (i = 0; i < 3; i++)
988 adapter->msix_entries[i].entry = i;
989
990 err = pci_enable_msix(adapter->pdev,
991 adapter->msix_entries, 3);
992 }
993
994 if (err) {
995 /* MSI-X failed */
996 dev_err(&adapter->pdev->dev,
997 "Failed to initialize MSI-X interrupts.\n");
998 igbvf_reset_interrupt_capability(adapter);
999 }
1000}
1001
1002/**
1003 * igbvf_request_msix - Initialize MSI-X interrupts
1004 *
1005 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1006 * kernel.
1007 **/
1008static int igbvf_request_msix(struct igbvf_adapter *adapter)
1009{
1010 struct net_device *netdev = adapter->netdev;
1011 int err = 0, vector = 0;
1012
1013 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1014 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1015 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1016 } else {
1017 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1018 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1019 }
1020
1021 err = request_irq(adapter->msix_entries[vector].vector,
1022 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1023 netdev);
1024 if (err)
1025 goto out;
1026
1027 adapter->tx_ring->itr_register = E1000_EITR(vector);
1028 adapter->tx_ring->itr_val = 1952;
1029 vector++;
1030
1031 err = request_irq(adapter->msix_entries[vector].vector,
1032 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1033 netdev);
1034 if (err)
1035 goto out;
1036
1037 adapter->rx_ring->itr_register = E1000_EITR(vector);
1038 adapter->rx_ring->itr_val = 1952;
1039 vector++;
1040
1041 err = request_irq(adapter->msix_entries[vector].vector,
1042 igbvf_msix_other, 0, netdev->name, netdev);
1043 if (err)
1044 goto out;
1045
1046 igbvf_configure_msix(adapter);
1047 return 0;
1048out:
1049 return err;
1050}
1051
1052/**
1053 * igbvf_alloc_queues - Allocate memory for all rings
1054 * @adapter: board private structure to initialize
1055 **/
1056static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1057{
1058 struct net_device *netdev = adapter->netdev;
1059
1060 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1061 if (!adapter->tx_ring)
1062 return -ENOMEM;
1063
1064 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1065 if (!adapter->rx_ring) {
1066 kfree(adapter->tx_ring);
1067 return -ENOMEM;
1068 }
1069
1070 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1071
1072 return 0;
1073}
1074
1075/**
1076 * igbvf_request_irq - initialize interrupts
1077 *
1078 * Attempts to configure interrupts using the best available
1079 * capabilities of the hardware and kernel.
1080 **/
1081static int igbvf_request_irq(struct igbvf_adapter *adapter)
1082{
1083 int err = -1;
1084
1085 /* igbvf supports msi-x only */
1086 if (adapter->msix_entries)
1087 err = igbvf_request_msix(adapter);
1088
1089 if (!err)
1090 return err;
1091
1092 dev_err(&adapter->pdev->dev,
1093 "Unable to allocate interrupt, Error: %d\n", err);
1094
1095 return err;
1096}
1097
1098static void igbvf_free_irq(struct igbvf_adapter *adapter)
1099{
1100 struct net_device *netdev = adapter->netdev;
1101 int vector;
1102
1103 if (adapter->msix_entries) {
1104 for (vector = 0; vector < 3; vector++)
1105 free_irq(adapter->msix_entries[vector].vector, netdev);
1106 }
1107}
1108
1109/**
1110 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1111 **/
1112static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1113{
1114 struct e1000_hw *hw = &adapter->hw;
1115
1116 ew32(EIMC, ~0);
1117
1118 if (adapter->msix_entries)
1119 ew32(EIAC, 0);
1120}
1121
1122/**
1123 * igbvf_irq_enable - Enable default interrupt generation settings
1124 **/
1125static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1126{
1127 struct e1000_hw *hw = &adapter->hw;
1128
1129 ew32(EIAC, adapter->eims_enable_mask);
1130 ew32(EIAM, adapter->eims_enable_mask);
1131 ew32(EIMS, adapter->eims_enable_mask);
1132}
1133
1134/**
1135 * igbvf_poll - NAPI Rx polling callback
1136 * @napi: struct associated with this polling callback
1137 * @budget: amount of packets driver is allowed to process this poll
1138 **/
1139static int igbvf_poll(struct napi_struct *napi, int budget)
1140{
1141 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1142 struct igbvf_adapter *adapter = rx_ring->adapter;
1143 struct e1000_hw *hw = &adapter->hw;
1144 int work_done = 0;
1145
1146 igbvf_clean_rx_irq(adapter, &work_done, budget);
1147
1148 /* If not enough Rx work done, exit the polling mode */
1149 if (work_done < budget) {
1150 napi_complete(napi);
1151
1152 if (adapter->itr_setting & 3)
1153 igbvf_set_itr(adapter);
1154
1155 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1156 ew32(EIMS, adapter->rx_ring->eims_value);
1157 }
1158
1159 return work_done;
1160}
1161
1162/**
1163 * igbvf_set_rlpml - set receive large packet maximum length
1164 * @adapter: board private structure
1165 *
1166 * Configure the maximum size of packets that will be received
1167 */
1168static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1169{
1170 int max_frame_size;
1171 struct e1000_hw *hw = &adapter->hw;
1172
1173 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1174 e1000_rlpml_set_vf(hw, max_frame_size);
1175}
1176
1177static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1178{
1179 struct igbvf_adapter *adapter = netdev_priv(netdev);
1180 struct e1000_hw *hw = &adapter->hw;
1181
1182 if (hw->mac.ops.set_vfta(hw, vid, true))
1183 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1184 else
1185 set_bit(vid, adapter->active_vlans);
1186}
1187
1188static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1189{
1190 struct igbvf_adapter *adapter = netdev_priv(netdev);
1191 struct e1000_hw *hw = &adapter->hw;
1192
1193 igbvf_irq_disable(adapter);
1194
1195 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1196 igbvf_irq_enable(adapter);
1197
1198 if (hw->mac.ops.set_vfta(hw, vid, false))
1199 dev_err(&adapter->pdev->dev,
1200 "Failed to remove vlan id %d\n", vid);
1201 else
1202 clear_bit(vid, adapter->active_vlans);
1203}
1204
1205static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1206{
1207 u16 vid;
1208
1209 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1210 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1211}
1212
1213/**
1214 * igbvf_configure_tx - Configure Transmit Unit after Reset
1215 * @adapter: board private structure
1216 *
1217 * Configure the Tx unit of the MAC after a reset.
1218 **/
1219static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1220{
1221 struct e1000_hw *hw = &adapter->hw;
1222 struct igbvf_ring *tx_ring = adapter->tx_ring;
1223 u64 tdba;
1224 u32 txdctl, dca_txctrl;
1225
1226 /* disable transmits */
1227 txdctl = er32(TXDCTL(0));
1228 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1229 e1e_flush();
1230 msleep(10);
1231
1232 /* Setup the HW Tx Head and Tail descriptor pointers */
1233 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1234 tdba = tx_ring->dma;
1235 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1236 ew32(TDBAH(0), (tdba >> 32));
1237 ew32(TDH(0), 0);
1238 ew32(TDT(0), 0);
1239 tx_ring->head = E1000_TDH(0);
1240 tx_ring->tail = E1000_TDT(0);
1241
1242 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1243 * MUST be delivered in order or it will completely screw up
1244 * our bookeeping.
1245 */
1246 dca_txctrl = er32(DCA_TXCTRL(0));
1247 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1248 ew32(DCA_TXCTRL(0), dca_txctrl);
1249
1250 /* enable transmits */
1251 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1252 ew32(TXDCTL(0), txdctl);
1253
1254 /* Setup Transmit Descriptor Settings for eop descriptor */
1255 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1256
1257 /* enable Report Status bit */
1258 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1259}
1260
1261/**
1262 * igbvf_setup_srrctl - configure the receive control registers
1263 * @adapter: Board private structure
1264 **/
1265static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1266{
1267 struct e1000_hw *hw = &adapter->hw;
1268 u32 srrctl = 0;
1269
1270 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1271 E1000_SRRCTL_BSIZEHDR_MASK |
1272 E1000_SRRCTL_BSIZEPKT_MASK);
1273
1274 /* Enable queue drop to avoid head of line blocking */
1275 srrctl |= E1000_SRRCTL_DROP_EN;
1276
1277 /* Setup buffer sizes */
1278 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1279 E1000_SRRCTL_BSIZEPKT_SHIFT;
1280
1281 if (adapter->rx_buffer_len < 2048) {
1282 adapter->rx_ps_hdr_size = 0;
1283 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1284 } else {
1285 adapter->rx_ps_hdr_size = 128;
1286 srrctl |= adapter->rx_ps_hdr_size <<
1287 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1288 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1289 }
1290
1291 ew32(SRRCTL(0), srrctl);
1292}
1293
1294/**
1295 * igbvf_configure_rx - Configure Receive Unit after Reset
1296 * @adapter: board private structure
1297 *
1298 * Configure the Rx unit of the MAC after a reset.
1299 **/
1300static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1301{
1302 struct e1000_hw *hw = &adapter->hw;
1303 struct igbvf_ring *rx_ring = adapter->rx_ring;
1304 u64 rdba;
1305 u32 rdlen, rxdctl;
1306
1307 /* disable receives */
1308 rxdctl = er32(RXDCTL(0));
1309 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1310 e1e_flush();
1311 msleep(10);
1312
1313 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1314
1315 /*
1316 * Setup the HW Rx Head and Tail Descriptor Pointers and
1317 * the Base and Length of the Rx Descriptor Ring
1318 */
1319 rdba = rx_ring->dma;
1320 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1321 ew32(RDBAH(0), (rdba >> 32));
1322 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1323 rx_ring->head = E1000_RDH(0);
1324 rx_ring->tail = E1000_RDT(0);
1325 ew32(RDH(0), 0);
1326 ew32(RDT(0), 0);
1327
1328 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1329 rxdctl &= 0xFFF00000;
1330 rxdctl |= IGBVF_RX_PTHRESH;
1331 rxdctl |= IGBVF_RX_HTHRESH << 8;
1332 rxdctl |= IGBVF_RX_WTHRESH << 16;
1333
1334 igbvf_set_rlpml(adapter);
1335
1336 /* enable receives */
1337 ew32(RXDCTL(0), rxdctl);
1338}
1339
1340/**
1341 * igbvf_set_multi - Multicast and Promiscuous mode set
1342 * @netdev: network interface device structure
1343 *
1344 * The set_multi entry point is called whenever the multicast address
1345 * list or the network interface flags are updated. This routine is
1346 * responsible for configuring the hardware for proper multicast,
1347 * promiscuous mode, and all-multi behavior.
1348 **/
1349static void igbvf_set_multi(struct net_device *netdev)
1350{
1351 struct igbvf_adapter *adapter = netdev_priv(netdev);
1352 struct e1000_hw *hw = &adapter->hw;
1353 struct netdev_hw_addr *ha;
1354 u8 *mta_list = NULL;
1355 int i;
1356
1357 if (!netdev_mc_empty(netdev)) {
1358 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1359 if (!mta_list) {
1360 dev_err(&adapter->pdev->dev,
1361 "failed to allocate multicast filter list\n");
1362 return;
1363 }
1364 }
1365
1366 /* prepare a packed array of only addresses. */
1367 i = 0;
1368 netdev_for_each_mc_addr(ha, netdev)
1369 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1370
1371 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1372 kfree(mta_list);
1373}
1374
1375/**
1376 * igbvf_configure - configure the hardware for Rx and Tx
1377 * @adapter: private board structure
1378 **/
1379static void igbvf_configure(struct igbvf_adapter *adapter)
1380{
1381 igbvf_set_multi(adapter->netdev);
1382
1383 igbvf_restore_vlan(adapter);
1384
1385 igbvf_configure_tx(adapter);
1386 igbvf_setup_srrctl(adapter);
1387 igbvf_configure_rx(adapter);
1388 igbvf_alloc_rx_buffers(adapter->rx_ring,
1389 igbvf_desc_unused(adapter->rx_ring));
1390}
1391
1392/* igbvf_reset - bring the hardware into a known good state
1393 *
1394 * This function boots the hardware and enables some settings that
1395 * require a configuration cycle of the hardware - those cannot be
1396 * set/changed during runtime. After reset the device needs to be
1397 * properly configured for Rx, Tx etc.
1398 */
1399static void igbvf_reset(struct igbvf_adapter *adapter)
1400{
1401 struct e1000_mac_info *mac = &adapter->hw.mac;
1402 struct net_device *netdev = adapter->netdev;
1403 struct e1000_hw *hw = &adapter->hw;
1404
1405 /* Allow time for pending master requests to run */
1406 if (mac->ops.reset_hw(hw))
1407 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1408
1409 mac->ops.init_hw(hw);
1410
1411 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1412 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1413 netdev->addr_len);
1414 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1415 netdev->addr_len);
1416 }
1417
1418 adapter->last_reset = jiffies;
1419}
1420
1421int igbvf_up(struct igbvf_adapter *adapter)
1422{
1423 struct e1000_hw *hw = &adapter->hw;
1424
1425 /* hardware has been reset, we need to reload some things */
1426 igbvf_configure(adapter);
1427
1428 clear_bit(__IGBVF_DOWN, &adapter->state);
1429
1430 napi_enable(&adapter->rx_ring->napi);
1431 if (adapter->msix_entries)
1432 igbvf_configure_msix(adapter);
1433
1434 /* Clear any pending interrupts. */
1435 er32(EICR);
1436 igbvf_irq_enable(adapter);
1437
1438 /* start the watchdog */
1439 hw->mac.get_link_status = 1;
1440 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1441
1442
1443 return 0;
1444}
1445
1446void igbvf_down(struct igbvf_adapter *adapter)
1447{
1448 struct net_device *netdev = adapter->netdev;
1449 struct e1000_hw *hw = &adapter->hw;
1450 u32 rxdctl, txdctl;
1451
1452 /*
1453 * signal that we're down so the interrupt handler does not
1454 * reschedule our watchdog timer
1455 */
1456 set_bit(__IGBVF_DOWN, &adapter->state);
1457
1458 /* disable receives in the hardware */
1459 rxdctl = er32(RXDCTL(0));
1460 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1461
1462 netif_stop_queue(netdev);
1463
1464 /* disable transmits in the hardware */
1465 txdctl = er32(TXDCTL(0));
1466 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1467
1468 /* flush both disables and wait for them to finish */
1469 e1e_flush();
1470 msleep(10);
1471
1472 napi_disable(&adapter->rx_ring->napi);
1473
1474 igbvf_irq_disable(adapter);
1475
1476 del_timer_sync(&adapter->watchdog_timer);
1477
1478 netif_carrier_off(netdev);
1479
1480 /* record the stats before reset*/
1481 igbvf_update_stats(adapter);
1482
1483 adapter->link_speed = 0;
1484 adapter->link_duplex = 0;
1485
1486 igbvf_reset(adapter);
1487 igbvf_clean_tx_ring(adapter->tx_ring);
1488 igbvf_clean_rx_ring(adapter->rx_ring);
1489}
1490
1491void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1492{
1493 might_sleep();
1494 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1495 msleep(1);
1496 igbvf_down(adapter);
1497 igbvf_up(adapter);
1498 clear_bit(__IGBVF_RESETTING, &adapter->state);
1499}
1500
1501/**
1502 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1503 * @adapter: board private structure to initialize
1504 *
1505 * igbvf_sw_init initializes the Adapter private data structure.
1506 * Fields are initialized based on PCI device information and
1507 * OS network device settings (MTU size).
1508 **/
1509static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1510{
1511 struct net_device *netdev = adapter->netdev;
1512 s32 rc;
1513
1514 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1515 adapter->rx_ps_hdr_size = 0;
1516 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1517 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1518
1519 adapter->tx_int_delay = 8;
1520 adapter->tx_abs_int_delay = 32;
1521 adapter->rx_int_delay = 0;
1522 adapter->rx_abs_int_delay = 8;
1523 adapter->itr_setting = 3;
1524 adapter->itr = 20000;
1525
1526 /* Set various function pointers */
1527 adapter->ei->init_ops(&adapter->hw);
1528
1529 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1530 if (rc)
1531 return rc;
1532
1533 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1534 if (rc)
1535 return rc;
1536
1537 igbvf_set_interrupt_capability(adapter);
1538
1539 if (igbvf_alloc_queues(adapter))
1540 return -ENOMEM;
1541
1542 spin_lock_init(&adapter->tx_queue_lock);
1543
1544 /* Explicitly disable IRQ since the NIC can be in any state. */
1545 igbvf_irq_disable(adapter);
1546
1547 spin_lock_init(&adapter->stats_lock);
1548
1549 set_bit(__IGBVF_DOWN, &adapter->state);
1550 return 0;
1551}
1552
1553static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1554{
1555 struct e1000_hw *hw = &adapter->hw;
1556
1557 adapter->stats.last_gprc = er32(VFGPRC);
1558 adapter->stats.last_gorc = er32(VFGORC);
1559 adapter->stats.last_gptc = er32(VFGPTC);
1560 adapter->stats.last_gotc = er32(VFGOTC);
1561 adapter->stats.last_mprc = er32(VFMPRC);
1562 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1563 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1564 adapter->stats.last_gorlbc = er32(VFGORLBC);
1565 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1566
1567 adapter->stats.base_gprc = er32(VFGPRC);
1568 adapter->stats.base_gorc = er32(VFGORC);
1569 adapter->stats.base_gptc = er32(VFGPTC);
1570 adapter->stats.base_gotc = er32(VFGOTC);
1571 adapter->stats.base_mprc = er32(VFMPRC);
1572 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1573 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1574 adapter->stats.base_gorlbc = er32(VFGORLBC);
1575 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1576}
1577
1578/**
1579 * igbvf_open - Called when a network interface is made active
1580 * @netdev: network interface device structure
1581 *
1582 * Returns 0 on success, negative value on failure
1583 *
1584 * The open entry point is called when a network interface is made
1585 * active by the system (IFF_UP). At this point all resources needed
1586 * for transmit and receive operations are allocated, the interrupt
1587 * handler is registered with the OS, the watchdog timer is started,
1588 * and the stack is notified that the interface is ready.
1589 **/
1590static int igbvf_open(struct net_device *netdev)
1591{
1592 struct igbvf_adapter *adapter = netdev_priv(netdev);
1593 struct e1000_hw *hw = &adapter->hw;
1594 int err;
1595
1596 /* disallow open during test */
1597 if (test_bit(__IGBVF_TESTING, &adapter->state))
1598 return -EBUSY;
1599
1600 /* allocate transmit descriptors */
1601 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1602 if (err)
1603 goto err_setup_tx;
1604
1605 /* allocate receive descriptors */
1606 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1607 if (err)
1608 goto err_setup_rx;
1609
1610 /*
1611 * before we allocate an interrupt, we must be ready to handle it.
1612 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1613 * as soon as we call pci_request_irq, so we have to setup our
1614 * clean_rx handler before we do so.
1615 */
1616 igbvf_configure(adapter);
1617
1618 err = igbvf_request_irq(adapter);
1619 if (err)
1620 goto err_req_irq;
1621
1622 /* From here on the code is the same as igbvf_up() */
1623 clear_bit(__IGBVF_DOWN, &adapter->state);
1624
1625 napi_enable(&adapter->rx_ring->napi);
1626
1627 /* clear any pending interrupts */
1628 er32(EICR);
1629
1630 igbvf_irq_enable(adapter);
1631
1632 /* start the watchdog */
1633 hw->mac.get_link_status = 1;
1634 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1635
1636 return 0;
1637
1638err_req_irq:
1639 igbvf_free_rx_resources(adapter->rx_ring);
1640err_setup_rx:
1641 igbvf_free_tx_resources(adapter->tx_ring);
1642err_setup_tx:
1643 igbvf_reset(adapter);
1644
1645 return err;
1646}
1647
1648/**
1649 * igbvf_close - Disables a network interface
1650 * @netdev: network interface device structure
1651 *
1652 * Returns 0, this is not allowed to fail
1653 *
1654 * The close entry point is called when an interface is de-activated
1655 * by the OS. The hardware is still under the drivers control, but
1656 * needs to be disabled. A global MAC reset is issued to stop the
1657 * hardware, and all transmit and receive resources are freed.
1658 **/
1659static int igbvf_close(struct net_device *netdev)
1660{
1661 struct igbvf_adapter *adapter = netdev_priv(netdev);
1662
1663 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1664 igbvf_down(adapter);
1665
1666 igbvf_free_irq(adapter);
1667
1668 igbvf_free_tx_resources(adapter->tx_ring);
1669 igbvf_free_rx_resources(adapter->rx_ring);
1670
1671 return 0;
1672}
1673/**
1674 * igbvf_set_mac - Change the Ethernet Address of the NIC
1675 * @netdev: network interface device structure
1676 * @p: pointer to an address structure
1677 *
1678 * Returns 0 on success, negative on failure
1679 **/
1680static int igbvf_set_mac(struct net_device *netdev, void *p)
1681{
1682 struct igbvf_adapter *adapter = netdev_priv(netdev);
1683 struct e1000_hw *hw = &adapter->hw;
1684 struct sockaddr *addr = p;
1685
1686 if (!is_valid_ether_addr(addr->sa_data))
1687 return -EADDRNOTAVAIL;
1688
1689 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1690
1691 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1692
1693 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1694 return -EADDRNOTAVAIL;
1695
1696 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1697
1698 return 0;
1699}
1700
1701#define UPDATE_VF_COUNTER(reg, name) \
1702 { \
1703 u32 current_counter = er32(reg); \
1704 if (current_counter < adapter->stats.last_##name) \
1705 adapter->stats.name += 0x100000000LL; \
1706 adapter->stats.last_##name = current_counter; \
1707 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1708 adapter->stats.name |= current_counter; \
1709 }
1710
1711/**
1712 * igbvf_update_stats - Update the board statistics counters
1713 * @adapter: board private structure
1714**/
1715void igbvf_update_stats(struct igbvf_adapter *adapter)
1716{
1717 struct e1000_hw *hw = &adapter->hw;
1718 struct pci_dev *pdev = adapter->pdev;
1719
1720 /*
1721 * Prevent stats update while adapter is being reset, link is down
1722 * or if the pci connection is down.
1723 */
1724 if (adapter->link_speed == 0)
1725 return;
1726
1727 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1728 return;
1729
1730 if (pci_channel_offline(pdev))
1731 return;
1732
1733 UPDATE_VF_COUNTER(VFGPRC, gprc);
1734 UPDATE_VF_COUNTER(VFGORC, gorc);
1735 UPDATE_VF_COUNTER(VFGPTC, gptc);
1736 UPDATE_VF_COUNTER(VFGOTC, gotc);
1737 UPDATE_VF_COUNTER(VFMPRC, mprc);
1738 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1739 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1740 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1741 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1742
1743 /* Fill out the OS statistics structure */
1744 adapter->net_stats.multicast = adapter->stats.mprc;
1745}
1746
1747static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1748{
1749 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1750 adapter->link_speed,
1751 ((adapter->link_duplex == FULL_DUPLEX) ?
1752 "Full Duplex" : "Half Duplex"));
1753}
1754
1755static bool igbvf_has_link(struct igbvf_adapter *adapter)
1756{
1757 struct e1000_hw *hw = &adapter->hw;
1758 s32 ret_val = E1000_SUCCESS;
1759 bool link_active;
1760
1761 /* If interface is down, stay link down */
1762 if (test_bit(__IGBVF_DOWN, &adapter->state))
1763 return false;
1764
1765 ret_val = hw->mac.ops.check_for_link(hw);
1766 link_active = !hw->mac.get_link_status;
1767
1768 /* if check for link returns error we will need to reset */
1769 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1770 schedule_work(&adapter->reset_task);
1771
1772 return link_active;
1773}
1774
1775/**
1776 * igbvf_watchdog - Timer Call-back
1777 * @data: pointer to adapter cast into an unsigned long
1778 **/
1779static void igbvf_watchdog(unsigned long data)
1780{
1781 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1782
1783 /* Do the rest outside of interrupt context */
1784 schedule_work(&adapter->watchdog_task);
1785}
1786
1787static void igbvf_watchdog_task(struct work_struct *work)
1788{
1789 struct igbvf_adapter *adapter = container_of(work,
1790 struct igbvf_adapter,
1791 watchdog_task);
1792 struct net_device *netdev = adapter->netdev;
1793 struct e1000_mac_info *mac = &adapter->hw.mac;
1794 struct igbvf_ring *tx_ring = adapter->tx_ring;
1795 struct e1000_hw *hw = &adapter->hw;
1796 u32 link;
1797 int tx_pending = 0;
1798
1799 link = igbvf_has_link(adapter);
1800
1801 if (link) {
1802 if (!netif_carrier_ok(netdev)) {
1803 mac->ops.get_link_up_info(&adapter->hw,
1804 &adapter->link_speed,
1805 &adapter->link_duplex);
1806 igbvf_print_link_info(adapter);
1807
1808 netif_carrier_on(netdev);
1809 netif_wake_queue(netdev);
1810 }
1811 } else {
1812 if (netif_carrier_ok(netdev)) {
1813 adapter->link_speed = 0;
1814 adapter->link_duplex = 0;
1815 dev_info(&adapter->pdev->dev, "Link is Down\n");
1816 netif_carrier_off(netdev);
1817 netif_stop_queue(netdev);
1818 }
1819 }
1820
1821 if (netif_carrier_ok(netdev)) {
1822 igbvf_update_stats(adapter);
1823 } else {
1824 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1825 tx_ring->count);
1826 if (tx_pending) {
1827 /*
1828 * We've lost link, so the controller stops DMA,
1829 * but we've got queued Tx work that's never going
1830 * to get done, so reset controller to flush Tx.
1831 * (Do the reset outside of interrupt context).
1832 */
1833 adapter->tx_timeout_count++;
1834 schedule_work(&adapter->reset_task);
1835 }
1836 }
1837
1838 /* Cause software interrupt to ensure Rx ring is cleaned */
1839 ew32(EICS, adapter->rx_ring->eims_value);
1840
1841 /* Reset the timer */
1842 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1843 mod_timer(&adapter->watchdog_timer,
1844 round_jiffies(jiffies + (2 * HZ)));
1845}
1846
1847#define IGBVF_TX_FLAGS_CSUM 0x00000001
1848#define IGBVF_TX_FLAGS_VLAN 0x00000002
1849#define IGBVF_TX_FLAGS_TSO 0x00000004
1850#define IGBVF_TX_FLAGS_IPV4 0x00000008
1851#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1852#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1853
1854static int igbvf_tso(struct igbvf_adapter *adapter,
1855 struct igbvf_ring *tx_ring,
1856 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1857{
1858 struct e1000_adv_tx_context_desc *context_desc;
1859 unsigned int i;
1860 int err;
1861 struct igbvf_buffer *buffer_info;
1862 u32 info = 0, tu_cmd = 0;
1863 u32 mss_l4len_idx, l4len;
1864 *hdr_len = 0;
1865
1866 if (skb_header_cloned(skb)) {
1867 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1868 if (err) {
1869 dev_err(&adapter->pdev->dev,
1870 "igbvf_tso returning an error\n");
1871 return err;
1872 }
1873 }
1874
1875 l4len = tcp_hdrlen(skb);
1876 *hdr_len += l4len;
1877
1878 if (skb->protocol == htons(ETH_P_IP)) {
1879 struct iphdr *iph = ip_hdr(skb);
1880 iph->tot_len = 0;
1881 iph->check = 0;
1882 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1883 iph->daddr, 0,
1884 IPPROTO_TCP,
1885 0);
1886 } else if (skb_is_gso_v6(skb)) {
1887 ipv6_hdr(skb)->payload_len = 0;
1888 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1889 &ipv6_hdr(skb)->daddr,
1890 0, IPPROTO_TCP, 0);
1891 }
1892
1893 i = tx_ring->next_to_use;
1894
1895 buffer_info = &tx_ring->buffer_info[i];
1896 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1897 /* VLAN MACLEN IPLEN */
1898 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1899 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1900 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1901 *hdr_len += skb_network_offset(skb);
1902 info |= (skb_transport_header(skb) - skb_network_header(skb));
1903 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1904 context_desc->vlan_macip_lens = cpu_to_le32(info);
1905
1906 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1907 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1908
1909 if (skb->protocol == htons(ETH_P_IP))
1910 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1911 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1912
1913 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1914
1915 /* MSS L4LEN IDX */
1916 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1917 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1918
1919 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1920 context_desc->seqnum_seed = 0;
1921
1922 buffer_info->time_stamp = jiffies;
1923 buffer_info->next_to_watch = i;
1924 buffer_info->dma = 0;
1925 i++;
1926 if (i == tx_ring->count)
1927 i = 0;
1928
1929 tx_ring->next_to_use = i;
1930
1931 return true;
1932}
1933
1934static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1935 struct igbvf_ring *tx_ring,
1936 struct sk_buff *skb, u32 tx_flags)
1937{
1938 struct e1000_adv_tx_context_desc *context_desc;
1939 unsigned int i;
1940 struct igbvf_buffer *buffer_info;
1941 u32 info = 0, tu_cmd = 0;
1942
1943 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1944 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1945 i = tx_ring->next_to_use;
1946 buffer_info = &tx_ring->buffer_info[i];
1947 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1948
1949 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1950 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1951
1952 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1953 if (skb->ip_summed == CHECKSUM_PARTIAL)
1954 info |= (skb_transport_header(skb) -
1955 skb_network_header(skb));
1956
1957
1958 context_desc->vlan_macip_lens = cpu_to_le32(info);
1959
1960 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1961
1962 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1963 switch (skb->protocol) {
1964 case __constant_htons(ETH_P_IP):
1965 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1966 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1967 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1968 break;
1969 case __constant_htons(ETH_P_IPV6):
1970 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1971 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1972 break;
1973 default:
1974 break;
1975 }
1976 }
1977
1978 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1979 context_desc->seqnum_seed = 0;
1980 context_desc->mss_l4len_idx = 0;
1981
1982 buffer_info->time_stamp = jiffies;
1983 buffer_info->next_to_watch = i;
1984 buffer_info->dma = 0;
1985 i++;
1986 if (i == tx_ring->count)
1987 i = 0;
1988 tx_ring->next_to_use = i;
1989
1990 return true;
1991 }
1992
1993 return false;
1994}
1995
1996static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
1997{
1998 struct igbvf_adapter *adapter = netdev_priv(netdev);
1999
2000 /* there is enough descriptors then we don't need to worry */
2001 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2002 return 0;
2003
2004 netif_stop_queue(netdev);
2005
2006 smp_mb();
2007
2008 /* We need to check again just in case room has been made available */
2009 if (igbvf_desc_unused(adapter->tx_ring) < size)
2010 return -EBUSY;
2011
2012 netif_wake_queue(netdev);
2013
2014 ++adapter->restart_queue;
2015 return 0;
2016}
2017
2018#define IGBVF_MAX_TXD_PWR 16
2019#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2020
2021static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2022 struct igbvf_ring *tx_ring,
2023 struct sk_buff *skb,
2024 unsigned int first)
2025{
2026 struct igbvf_buffer *buffer_info;
2027 struct pci_dev *pdev = adapter->pdev;
2028 unsigned int len = skb_headlen(skb);
2029 unsigned int count = 0, i;
2030 unsigned int f;
2031
2032 i = tx_ring->next_to_use;
2033
2034 buffer_info = &tx_ring->buffer_info[i];
2035 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2036 buffer_info->length = len;
2037 /* set time_stamp *before* dma to help avoid a possible race */
2038 buffer_info->time_stamp = jiffies;
2039 buffer_info->next_to_watch = i;
2040 buffer_info->mapped_as_page = false;
2041 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2042 DMA_TO_DEVICE);
2043 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2044 goto dma_error;
2045
2046
2047 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2048 struct skb_frag_struct *frag;
2049
2050 count++;
2051 i++;
2052 if (i == tx_ring->count)
2053 i = 0;
2054
2055 frag = &skb_shinfo(skb)->frags[f];
2056 len = frag->size;
2057
2058 buffer_info = &tx_ring->buffer_info[i];
2059 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2060 buffer_info->length = len;
2061 buffer_info->time_stamp = jiffies;
2062 buffer_info->next_to_watch = i;
2063 buffer_info->mapped_as_page = true;
2064 buffer_info->dma = dma_map_page(&pdev->dev,
2065 frag->page,
2066 frag->page_offset,
2067 len,
2068 DMA_TO_DEVICE);
2069 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2070 goto dma_error;
2071 }
2072
2073 tx_ring->buffer_info[i].skb = skb;
2074 tx_ring->buffer_info[first].next_to_watch = i;
2075
2076 return ++count;
2077
2078dma_error:
2079 dev_err(&pdev->dev, "TX DMA map failed\n");
2080
2081 /* clear timestamp and dma mappings for failed buffer_info mapping */
2082 buffer_info->dma = 0;
2083 buffer_info->time_stamp = 0;
2084 buffer_info->length = 0;
2085 buffer_info->next_to_watch = 0;
2086 buffer_info->mapped_as_page = false;
2087 if (count)
2088 count--;
2089
2090 /* clear timestamp and dma mappings for remaining portion of packet */
2091 while (count--) {
2092 if (i==0)
2093 i += tx_ring->count;
2094 i--;
2095 buffer_info = &tx_ring->buffer_info[i];
2096 igbvf_put_txbuf(adapter, buffer_info);
2097 }
2098
2099 return 0;
2100}
2101
2102static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2103 struct igbvf_ring *tx_ring,
2104 int tx_flags, int count, u32 paylen,
2105 u8 hdr_len)
2106{
2107 union e1000_adv_tx_desc *tx_desc = NULL;
2108 struct igbvf_buffer *buffer_info;
2109 u32 olinfo_status = 0, cmd_type_len;
2110 unsigned int i;
2111
2112 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2113 E1000_ADVTXD_DCMD_DEXT);
2114
2115 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2116 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2117
2118 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2119 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2120
2121 /* insert tcp checksum */
2122 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2123
2124 /* insert ip checksum */
2125 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2126 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2127
2128 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2129 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2130 }
2131
2132 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2133
2134 i = tx_ring->next_to_use;
2135 while (count--) {
2136 buffer_info = &tx_ring->buffer_info[i];
2137 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2138 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2139 tx_desc->read.cmd_type_len =
2140 cpu_to_le32(cmd_type_len | buffer_info->length);
2141 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2142 i++;
2143 if (i == tx_ring->count)
2144 i = 0;
2145 }
2146
2147 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2148 /* Force memory writes to complete before letting h/w
2149 * know there are new descriptors to fetch. (Only
2150 * applicable for weak-ordered memory model archs,
2151 * such as IA-64). */
2152 wmb();
2153
2154 tx_ring->next_to_use = i;
2155 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2156 /* we need this if more than one processor can write to our tail
2157 * at a time, it syncronizes IO on IA64/Altix systems */
2158 mmiowb();
2159}
2160
2161static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2162 struct net_device *netdev,
2163 struct igbvf_ring *tx_ring)
2164{
2165 struct igbvf_adapter *adapter = netdev_priv(netdev);
2166 unsigned int first, tx_flags = 0;
2167 u8 hdr_len = 0;
2168 int count = 0;
2169 int tso = 0;
2170
2171 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2172 dev_kfree_skb_any(skb);
2173 return NETDEV_TX_OK;
2174 }
2175
2176 if (skb->len <= 0) {
2177 dev_kfree_skb_any(skb);
2178 return NETDEV_TX_OK;
2179 }
2180
2181 /*
2182 * need: count + 4 desc gap to keep tail from touching
2183 * + 2 desc gap to keep tail from touching head,
2184 * + 1 desc for skb->data,
2185 * + 1 desc for context descriptor,
2186 * head, otherwise try next time
2187 */
2188 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2189 /* this is a hard error */
2190 return NETDEV_TX_BUSY;
2191 }
2192
2193 if (vlan_tx_tag_present(skb)) {
2194 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2195 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2196 }
2197
2198 if (skb->protocol == htons(ETH_P_IP))
2199 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2200
2201 first = tx_ring->next_to_use;
2202
2203 tso = skb_is_gso(skb) ?
2204 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2205 if (unlikely(tso < 0)) {
2206 dev_kfree_skb_any(skb);
2207 return NETDEV_TX_OK;
2208 }
2209
2210 if (tso)
2211 tx_flags |= IGBVF_TX_FLAGS_TSO;
2212 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2213 (skb->ip_summed == CHECKSUM_PARTIAL))
2214 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2215
2216 /*
2217 * count reflects descriptors mapped, if 0 then mapping error
2218 * has occurred and we need to rewind the descriptor queue
2219 */
2220 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2221
2222 if (count) {
2223 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2224 skb->len, hdr_len);
2225 /* Make sure there is space in the ring for the next send. */
2226 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2227 } else {
2228 dev_kfree_skb_any(skb);
2229 tx_ring->buffer_info[first].time_stamp = 0;
2230 tx_ring->next_to_use = first;
2231 }
2232
2233 return NETDEV_TX_OK;
2234}
2235
2236static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2237 struct net_device *netdev)
2238{
2239 struct igbvf_adapter *adapter = netdev_priv(netdev);
2240 struct igbvf_ring *tx_ring;
2241
2242 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2243 dev_kfree_skb_any(skb);
2244 return NETDEV_TX_OK;
2245 }
2246
2247 tx_ring = &adapter->tx_ring[0];
2248
2249 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2250}
2251
2252/**
2253 * igbvf_tx_timeout - Respond to a Tx Hang
2254 * @netdev: network interface device structure
2255 **/
2256static void igbvf_tx_timeout(struct net_device *netdev)
2257{
2258 struct igbvf_adapter *adapter = netdev_priv(netdev);
2259
2260 /* Do the reset outside of interrupt context */
2261 adapter->tx_timeout_count++;
2262 schedule_work(&adapter->reset_task);
2263}
2264
2265static void igbvf_reset_task(struct work_struct *work)
2266{
2267 struct igbvf_adapter *adapter;
2268 adapter = container_of(work, struct igbvf_adapter, reset_task);
2269
2270 igbvf_reinit_locked(adapter);
2271}
2272
2273/**
2274 * igbvf_get_stats - Get System Network Statistics
2275 * @netdev: network interface device structure
2276 *
2277 * Returns the address of the device statistics structure.
2278 * The statistics are actually updated from the timer callback.
2279 **/
2280static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2281{
2282 struct igbvf_adapter *adapter = netdev_priv(netdev);
2283
2284 /* only return the current stats */
2285 return &adapter->net_stats;
2286}
2287
2288/**
2289 * igbvf_change_mtu - Change the Maximum Transfer Unit
2290 * @netdev: network interface device structure
2291 * @new_mtu: new value for maximum frame size
2292 *
2293 * Returns 0 on success, negative on failure
2294 **/
2295static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2296{
2297 struct igbvf_adapter *adapter = netdev_priv(netdev);
2298 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2299
2300 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2301 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2302 return -EINVAL;
2303 }
2304
2305#define MAX_STD_JUMBO_FRAME_SIZE 9234
2306 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2307 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2308 return -EINVAL;
2309 }
2310
2311 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2312 msleep(1);
2313 /* igbvf_down has a dependency on max_frame_size */
2314 adapter->max_frame_size = max_frame;
2315 if (netif_running(netdev))
2316 igbvf_down(adapter);
2317
2318 /*
2319 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2320 * means we reserve 2 more, this pushes us to allocate from the next
2321 * larger slab size.
2322 * i.e. RXBUFFER_2048 --> size-4096 slab
2323 * However with the new *_jumbo_rx* routines, jumbo receives will use
2324 * fragmented skbs
2325 */
2326
2327 if (max_frame <= 1024)
2328 adapter->rx_buffer_len = 1024;
2329 else if (max_frame <= 2048)
2330 adapter->rx_buffer_len = 2048;
2331 else
2332#if (PAGE_SIZE / 2) > 16384
2333 adapter->rx_buffer_len = 16384;
2334#else
2335 adapter->rx_buffer_len = PAGE_SIZE / 2;
2336#endif
2337
2338
2339 /* adjust allocation if LPE protects us, and we aren't using SBP */
2340 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2341 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2342 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2343 ETH_FCS_LEN;
2344
2345 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2346 netdev->mtu, new_mtu);
2347 netdev->mtu = new_mtu;
2348
2349 if (netif_running(netdev))
2350 igbvf_up(adapter);
2351 else
2352 igbvf_reset(adapter);
2353
2354 clear_bit(__IGBVF_RESETTING, &adapter->state);
2355
2356 return 0;
2357}
2358
2359static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2360{
2361 switch (cmd) {
2362 default:
2363 return -EOPNOTSUPP;
2364 }
2365}
2366
2367static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2368{
2369 struct net_device *netdev = pci_get_drvdata(pdev);
2370 struct igbvf_adapter *adapter = netdev_priv(netdev);
2371#ifdef CONFIG_PM
2372 int retval = 0;
2373#endif
2374
2375 netif_device_detach(netdev);
2376
2377 if (netif_running(netdev)) {
2378 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2379 igbvf_down(adapter);
2380 igbvf_free_irq(adapter);
2381 }
2382
2383#ifdef CONFIG_PM
2384 retval = pci_save_state(pdev);
2385 if (retval)
2386 return retval;
2387#endif
2388
2389 pci_disable_device(pdev);
2390
2391 return 0;
2392}
2393
2394#ifdef CONFIG_PM
2395static int igbvf_resume(struct pci_dev *pdev)
2396{
2397 struct net_device *netdev = pci_get_drvdata(pdev);
2398 struct igbvf_adapter *adapter = netdev_priv(netdev);
2399 u32 err;
2400
2401 pci_restore_state(pdev);
2402 err = pci_enable_device_mem(pdev);
2403 if (err) {
2404 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2405 return err;
2406 }
2407
2408 pci_set_master(pdev);
2409
2410 if (netif_running(netdev)) {
2411 err = igbvf_request_irq(adapter);
2412 if (err)
2413 return err;
2414 }
2415
2416 igbvf_reset(adapter);
2417
2418 if (netif_running(netdev))
2419 igbvf_up(adapter);
2420
2421 netif_device_attach(netdev);
2422
2423 return 0;
2424}
2425#endif
2426
2427static void igbvf_shutdown(struct pci_dev *pdev)
2428{
2429 igbvf_suspend(pdev, PMSG_SUSPEND);
2430}
2431
2432#ifdef CONFIG_NET_POLL_CONTROLLER
2433/*
2434 * Polling 'interrupt' - used by things like netconsole to send skbs
2435 * without having to re-enable interrupts. It's not called while
2436 * the interrupt routine is executing.
2437 */
2438static void igbvf_netpoll(struct net_device *netdev)
2439{
2440 struct igbvf_adapter *adapter = netdev_priv(netdev);
2441
2442 disable_irq(adapter->pdev->irq);
2443
2444 igbvf_clean_tx_irq(adapter->tx_ring);
2445
2446 enable_irq(adapter->pdev->irq);
2447}
2448#endif
2449
2450/**
2451 * igbvf_io_error_detected - called when PCI error is detected
2452 * @pdev: Pointer to PCI device
2453 * @state: The current pci connection state
2454 *
2455 * This function is called after a PCI bus error affecting
2456 * this device has been detected.
2457 */
2458static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2459 pci_channel_state_t state)
2460{
2461 struct net_device *netdev = pci_get_drvdata(pdev);
2462 struct igbvf_adapter *adapter = netdev_priv(netdev);
2463
2464 netif_device_detach(netdev);
2465
2466 if (state == pci_channel_io_perm_failure)
2467 return PCI_ERS_RESULT_DISCONNECT;
2468
2469 if (netif_running(netdev))
2470 igbvf_down(adapter);
2471 pci_disable_device(pdev);
2472
2473 /* Request a slot slot reset. */
2474 return PCI_ERS_RESULT_NEED_RESET;
2475}
2476
2477/**
2478 * igbvf_io_slot_reset - called after the pci bus has been reset.
2479 * @pdev: Pointer to PCI device
2480 *
2481 * Restart the card from scratch, as if from a cold-boot. Implementation
2482 * resembles the first-half of the igbvf_resume routine.
2483 */
2484static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2485{
2486 struct net_device *netdev = pci_get_drvdata(pdev);
2487 struct igbvf_adapter *adapter = netdev_priv(netdev);
2488
2489 if (pci_enable_device_mem(pdev)) {
2490 dev_err(&pdev->dev,
2491 "Cannot re-enable PCI device after reset.\n");
2492 return PCI_ERS_RESULT_DISCONNECT;
2493 }
2494 pci_set_master(pdev);
2495
2496 igbvf_reset(adapter);
2497
2498 return PCI_ERS_RESULT_RECOVERED;
2499}
2500
2501/**
2502 * igbvf_io_resume - called when traffic can start flowing again.
2503 * @pdev: Pointer to PCI device
2504 *
2505 * This callback is called when the error recovery driver tells us that
2506 * its OK to resume normal operation. Implementation resembles the
2507 * second-half of the igbvf_resume routine.
2508 */
2509static void igbvf_io_resume(struct pci_dev *pdev)
2510{
2511 struct net_device *netdev = pci_get_drvdata(pdev);
2512 struct igbvf_adapter *adapter = netdev_priv(netdev);
2513
2514 if (netif_running(netdev)) {
2515 if (igbvf_up(adapter)) {
2516 dev_err(&pdev->dev,
2517 "can't bring device back up after reset\n");
2518 return;
2519 }
2520 }
2521
2522 netif_device_attach(netdev);
2523}
2524
2525static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2526{
2527 struct e1000_hw *hw = &adapter->hw;
2528 struct net_device *netdev = adapter->netdev;
2529 struct pci_dev *pdev = adapter->pdev;
2530
2531 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2532 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2533 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2534}
2535
2536static const struct net_device_ops igbvf_netdev_ops = {
2537 .ndo_open = igbvf_open,
2538 .ndo_stop = igbvf_close,
2539 .ndo_start_xmit = igbvf_xmit_frame,
2540 .ndo_get_stats = igbvf_get_stats,
2541 .ndo_set_multicast_list = igbvf_set_multi,
2542 .ndo_set_mac_address = igbvf_set_mac,
2543 .ndo_change_mtu = igbvf_change_mtu,
2544 .ndo_do_ioctl = igbvf_ioctl,
2545 .ndo_tx_timeout = igbvf_tx_timeout,
2546 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2547 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2548#ifdef CONFIG_NET_POLL_CONTROLLER
2549 .ndo_poll_controller = igbvf_netpoll,
2550#endif
2551};
2552
2553/**
2554 * igbvf_probe - Device Initialization Routine
2555 * @pdev: PCI device information struct
2556 * @ent: entry in igbvf_pci_tbl
2557 *
2558 * Returns 0 on success, negative on failure
2559 *
2560 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2561 * The OS initialization, configuring of the adapter private structure,
2562 * and a hardware reset occur.
2563 **/
2564static int __devinit igbvf_probe(struct pci_dev *pdev,
2565 const struct pci_device_id *ent)
2566{
2567 struct net_device *netdev;
2568 struct igbvf_adapter *adapter;
2569 struct e1000_hw *hw;
2570 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2571
2572 static int cards_found;
2573 int err, pci_using_dac;
2574
2575 err = pci_enable_device_mem(pdev);
2576 if (err)
2577 return err;
2578
2579 pci_using_dac = 0;
2580 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2581 if (!err) {
2582 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2583 if (!err)
2584 pci_using_dac = 1;
2585 } else {
2586 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2587 if (err) {
2588 err = dma_set_coherent_mask(&pdev->dev,
2589 DMA_BIT_MASK(32));
2590 if (err) {
2591 dev_err(&pdev->dev, "No usable DMA "
2592 "configuration, aborting\n");
2593 goto err_dma;
2594 }
2595 }
2596 }
2597
2598 err = pci_request_regions(pdev, igbvf_driver_name);
2599 if (err)
2600 goto err_pci_reg;
2601
2602 pci_set_master(pdev);
2603
2604 err = -ENOMEM;
2605 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2606 if (!netdev)
2607 goto err_alloc_etherdev;
2608
2609 SET_NETDEV_DEV(netdev, &pdev->dev);
2610
2611 pci_set_drvdata(pdev, netdev);
2612 adapter = netdev_priv(netdev);
2613 hw = &adapter->hw;
2614 adapter->netdev = netdev;
2615 adapter->pdev = pdev;
2616 adapter->ei = ei;
2617 adapter->pba = ei->pba;
2618 adapter->flags = ei->flags;
2619 adapter->hw.back = adapter;
2620 adapter->hw.mac.type = ei->mac;
2621 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2622
2623 /* PCI config space info */
2624
2625 hw->vendor_id = pdev->vendor;
2626 hw->device_id = pdev->device;
2627 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2628 hw->subsystem_device_id = pdev->subsystem_device;
2629 hw->revision_id = pdev->revision;
2630
2631 err = -EIO;
2632 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2633 pci_resource_len(pdev, 0));
2634
2635 if (!adapter->hw.hw_addr)
2636 goto err_ioremap;
2637
2638 if (ei->get_variants) {
2639 err = ei->get_variants(adapter);
2640 if (err)
2641 goto err_ioremap;
2642 }
2643
2644 /* setup adapter struct */
2645 err = igbvf_sw_init(adapter);
2646 if (err)
2647 goto err_sw_init;
2648
2649 /* construct the net_device struct */
2650 netdev->netdev_ops = &igbvf_netdev_ops;
2651
2652 igbvf_set_ethtool_ops(netdev);
2653 netdev->watchdog_timeo = 5 * HZ;
2654 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2655
2656 adapter->bd_number = cards_found++;
2657
2658 netdev->features = NETIF_F_SG |
2659 NETIF_F_IP_CSUM |
2660 NETIF_F_HW_VLAN_TX |
2661 NETIF_F_HW_VLAN_RX |
2662 NETIF_F_HW_VLAN_FILTER;
2663
2664 netdev->features |= NETIF_F_IPV6_CSUM;
2665 netdev->features |= NETIF_F_TSO;
2666 netdev->features |= NETIF_F_TSO6;
2667
2668 if (pci_using_dac)
2669 netdev->features |= NETIF_F_HIGHDMA;
2670
2671 netdev->vlan_features |= NETIF_F_TSO;
2672 netdev->vlan_features |= NETIF_F_TSO6;
2673 netdev->vlan_features |= NETIF_F_IP_CSUM;
2674 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2675 netdev->vlan_features |= NETIF_F_SG;
2676
2677 /*reset the controller to put the device in a known good state */
2678 err = hw->mac.ops.reset_hw(hw);
2679 if (err) {
2680 dev_info(&pdev->dev,
2681 "PF still in reset state, assigning new address."
2682 " Is the PF interface up?\n");
2683 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2684 } else {
2685 err = hw->mac.ops.read_mac_addr(hw);
2686 if (err) {
2687 dev_err(&pdev->dev, "Error reading MAC address\n");
2688 goto err_hw_init;
2689 }
2690 }
2691
2692 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2693 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2694
2695 if (!is_valid_ether_addr(netdev->perm_addr)) {
2696 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2697 netdev->dev_addr);
2698 err = -EIO;
2699 goto err_hw_init;
2700 }
2701
2702 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2703 (unsigned long) adapter);
2704
2705 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2706 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2707
2708 /* ring size defaults */
2709 adapter->rx_ring->count = 1024;
2710 adapter->tx_ring->count = 1024;
2711
2712 /* reset the hardware with the new settings */
2713 igbvf_reset(adapter);
2714
2715 strcpy(netdev->name, "eth%d");
2716 err = register_netdev(netdev);
2717 if (err)
2718 goto err_hw_init;
2719
2720 /* tell the stack to leave us alone until igbvf_open() is called */
2721 netif_carrier_off(netdev);
2722 netif_stop_queue(netdev);
2723
2724 igbvf_print_device_info(adapter);
2725
2726 igbvf_initialize_last_counter_stats(adapter);
2727
2728 return 0;
2729
2730err_hw_init:
2731 kfree(adapter->tx_ring);
2732 kfree(adapter->rx_ring);
2733err_sw_init:
2734 igbvf_reset_interrupt_capability(adapter);
2735 iounmap(adapter->hw.hw_addr);
2736err_ioremap:
2737 free_netdev(netdev);
2738err_alloc_etherdev:
2739 pci_release_regions(pdev);
2740err_pci_reg:
2741err_dma:
2742 pci_disable_device(pdev);
2743 return err;
2744}
2745
2746/**
2747 * igbvf_remove - Device Removal Routine
2748 * @pdev: PCI device information struct
2749 *
2750 * igbvf_remove is called by the PCI subsystem to alert the driver
2751 * that it should release a PCI device. The could be caused by a
2752 * Hot-Plug event, or because the driver is going to be removed from
2753 * memory.
2754 **/
2755static void __devexit igbvf_remove(struct pci_dev *pdev)
2756{
2757 struct net_device *netdev = pci_get_drvdata(pdev);
2758 struct igbvf_adapter *adapter = netdev_priv(netdev);
2759 struct e1000_hw *hw = &adapter->hw;
2760
2761 /*
2762 * The watchdog timer may be rescheduled, so explicitly
2763 * disable it from being rescheduled.
2764 */
2765 set_bit(__IGBVF_DOWN, &adapter->state);
2766 del_timer_sync(&adapter->watchdog_timer);
2767
2768 cancel_work_sync(&adapter->reset_task);
2769 cancel_work_sync(&adapter->watchdog_task);
2770
2771 unregister_netdev(netdev);
2772
2773 igbvf_reset_interrupt_capability(adapter);
2774
2775 /*
2776 * it is important to delete the napi struct prior to freeing the
2777 * rx ring so that you do not end up with null pointer refs
2778 */
2779 netif_napi_del(&adapter->rx_ring->napi);
2780 kfree(adapter->tx_ring);
2781 kfree(adapter->rx_ring);
2782
2783 iounmap(hw->hw_addr);
2784 if (hw->flash_address)
2785 iounmap(hw->flash_address);
2786 pci_release_regions(pdev);
2787
2788 free_netdev(netdev);
2789
2790 pci_disable_device(pdev);
2791}
2792
2793/* PCI Error Recovery (ERS) */
2794static struct pci_error_handlers igbvf_err_handler = {
2795 .error_detected = igbvf_io_error_detected,
2796 .slot_reset = igbvf_io_slot_reset,
2797 .resume = igbvf_io_resume,
2798};
2799
2800static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2801 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2802 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2803 { } /* terminate list */
2804};
2805MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2806
2807/* PCI Device API Driver */
2808static struct pci_driver igbvf_driver = {
2809 .name = igbvf_driver_name,
2810 .id_table = igbvf_pci_tbl,
2811 .probe = igbvf_probe,
2812 .remove = __devexit_p(igbvf_remove),
2813#ifdef CONFIG_PM
2814 /* Power Management Hooks */
2815 .suspend = igbvf_suspend,
2816 .resume = igbvf_resume,
2817#endif
2818 .shutdown = igbvf_shutdown,
2819 .err_handler = &igbvf_err_handler
2820};
2821
2822/**
2823 * igbvf_init_module - Driver Registration Routine
2824 *
2825 * igbvf_init_module is the first routine called when the driver is
2826 * loaded. All it does is register with the PCI subsystem.
2827 **/
2828static int __init igbvf_init_module(void)
2829{
2830 int ret;
2831 printk(KERN_INFO "%s - version %s\n",
2832 igbvf_driver_string, igbvf_driver_version);
2833 printk(KERN_INFO "%s\n", igbvf_copyright);
2834
2835 ret = pci_register_driver(&igbvf_driver);
2836
2837 return ret;
2838}
2839module_init(igbvf_init_module);
2840
2841/**
2842 * igbvf_exit_module - Driver Exit Cleanup Routine
2843 *
2844 * igbvf_exit_module is called just before the driver is removed
2845 * from memory.
2846 **/
2847static void __exit igbvf_exit_module(void)
2848{
2849 pci_unregister_driver(&igbvf_driver);
2850}
2851module_exit(igbvf_exit_module);
2852
2853
2854MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2855MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2856MODULE_LICENSE("GPL");
2857MODULE_VERSION(DRV_VERSION);
2858
2859/* netdev.c */
diff --git a/drivers/net/igbvf/regs.h b/drivers/net/igbvf/regs.h
new file mode 100644
index 00000000000..77e18d3d6b1
--- /dev/null
+++ b/drivers/net/igbvf/regs.h
@@ -0,0 +1,108 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_REGS_H_
29#define _E1000_REGS_H_
30
31#define E1000_CTRL 0x00000 /* Device Control - RW */
32#define E1000_STATUS 0x00008 /* Device Status - RO */
33#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
34#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
35#define E1000_EITR(_n) (0x01680 + (0x4 * (_n)))
36#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
37#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
38#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
39#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
40#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
41#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */
42#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */
43/*
44 * Convenience macros
45 *
46 * Note: "_n" is the queue number of the register to be written to.
47 *
48 * Example usage:
49 * E1000_RDBAL_REG(current_rx_queue)
50 */
51#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \
52 (0x0C000 + ((_n) * 0x40)))
53#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \
54 (0x0C004 + ((_n) * 0x40)))
55#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \
56 (0x0C008 + ((_n) * 0x40)))
57#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
58 (0x0C00C + ((_n) * 0x40)))
59#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \
60 (0x0C010 + ((_n) * 0x40)))
61#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \
62 (0x0C018 + ((_n) * 0x40)))
63#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \
64 (0x0C028 + ((_n) * 0x40)))
65#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \
66 (0x0E000 + ((_n) * 0x40)))
67#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \
68 (0x0E004 + ((_n) * 0x40)))
69#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \
70 (0x0E008 + ((_n) * 0x40)))
71#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \
72 (0x0E010 + ((_n) * 0x40)))
73#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \
74 (0x0E018 + ((_n) * 0x40)))
75#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \
76 (0x0E028 + ((_n) * 0x40)))
77#define E1000_DCA_TXCTRL(_n) (0x03814 + (_n << 8))
78#define E1000_DCA_RXCTRL(_n) (0x02814 + (_n << 8))
79#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \
80 (0x054E0 + ((_i - 16) * 8)))
81#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \
82 (0x054E4 + ((_i - 16) * 8)))
83
84/* Statistics registers */
85#define E1000_VFGPRC 0x00F10
86#define E1000_VFGORC 0x00F18
87#define E1000_VFMPRC 0x00F3C
88#define E1000_VFGPTC 0x00F14
89#define E1000_VFGOTC 0x00F34
90#define E1000_VFGOTLBC 0x00F50
91#define E1000_VFGPTLBC 0x00F44
92#define E1000_VFGORLBC 0x00F48
93#define E1000_VFGPRLBC 0x00F40
94
95/* These act per VF so an array friendly macro is used */
96#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n)))
97#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n)))
98
99/* Define macros for handling registers */
100#define er32(reg) readl(hw->hw_addr + E1000_##reg)
101#define ew32(reg, val) writel((val), hw->hw_addr + E1000_##reg)
102#define array_er32(reg, offset) \
103 readl(hw->hw_addr + E1000_##reg + (offset << 2))
104#define array_ew32(reg, offset, val) \
105 writel((val), hw->hw_addr + E1000_##reg + (offset << 2))
106#define e1e_flush() er32(STATUS)
107
108#endif
diff --git a/drivers/net/igbvf/vf.c b/drivers/net/igbvf/vf.c
new file mode 100644
index 00000000000..af3822f9ea9
--- /dev/null
+++ b/drivers/net/igbvf/vf.c
@@ -0,0 +1,402 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28
29#include "vf.h"
30
31static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
32static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
33 u16 *duplex);
34static s32 e1000_init_hw_vf(struct e1000_hw *hw);
35static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
36
37static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
38 u32, u32, u32);
39static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
40static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
41static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
42
43/**
44 * e1000_init_mac_params_vf - Inits MAC params
45 * @hw: pointer to the HW structure
46 **/
47static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
48{
49 struct e1000_mac_info *mac = &hw->mac;
50
51 /* VF's have no MTA Registers - PF feature only */
52 mac->mta_reg_count = 128;
53 /* VF's have no access to RAR entries */
54 mac->rar_entry_count = 1;
55
56 /* Function pointers */
57 /* reset */
58 mac->ops.reset_hw = e1000_reset_hw_vf;
59 /* hw initialization */
60 mac->ops.init_hw = e1000_init_hw_vf;
61 /* check for link */
62 mac->ops.check_for_link = e1000_check_for_link_vf;
63 /* link info */
64 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
65 /* multicast address update */
66 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
67 /* set mac address */
68 mac->ops.rar_set = e1000_rar_set_vf;
69 /* read mac address */
70 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
71 /* set vlan filter table array */
72 mac->ops.set_vfta = e1000_set_vfta_vf;
73
74 return E1000_SUCCESS;
75}
76
77/**
78 * e1000_init_function_pointers_vf - Inits function pointers
79 * @hw: pointer to the HW structure
80 **/
81void e1000_init_function_pointers_vf(struct e1000_hw *hw)
82{
83 hw->mac.ops.init_params = e1000_init_mac_params_vf;
84 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
85}
86
87/**
88 * e1000_get_link_up_info_vf - Gets link info.
89 * @hw: pointer to the HW structure
90 * @speed: pointer to 16 bit value to store link speed.
91 * @duplex: pointer to 16 bit value to store duplex.
92 *
93 * Since we cannot read the PHY and get accurate link info, we must rely upon
94 * the status register's data which is often stale and inaccurate.
95 **/
96static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
97 u16 *duplex)
98{
99 s32 status;
100
101 status = er32(STATUS);
102 if (status & E1000_STATUS_SPEED_1000)
103 *speed = SPEED_1000;
104 else if (status & E1000_STATUS_SPEED_100)
105 *speed = SPEED_100;
106 else
107 *speed = SPEED_10;
108
109 if (status & E1000_STATUS_FD)
110 *duplex = FULL_DUPLEX;
111 else
112 *duplex = HALF_DUPLEX;
113
114 return E1000_SUCCESS;
115}
116
117/**
118 * e1000_reset_hw_vf - Resets the HW
119 * @hw: pointer to the HW structure
120 *
121 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
122 * This is all the reset we can perform on a VF.
123 **/
124static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
125{
126 struct e1000_mbx_info *mbx = &hw->mbx;
127 u32 timeout = E1000_VF_INIT_TIMEOUT;
128 u32 ret_val = -E1000_ERR_MAC_INIT;
129 u32 msgbuf[3];
130 u8 *addr = (u8 *)(&msgbuf[1]);
131 u32 ctrl;
132
133 /* assert vf queue/interrupt reset */
134 ctrl = er32(CTRL);
135 ew32(CTRL, ctrl | E1000_CTRL_RST);
136
137 /* we cannot initialize while the RSTI / RSTD bits are asserted */
138 while (!mbx->ops.check_for_rst(hw) && timeout) {
139 timeout--;
140 udelay(5);
141 }
142
143 if (timeout) {
144 /* mailbox timeout can now become active */
145 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
146
147 /* notify pf of vf reset completion */
148 msgbuf[0] = E1000_VF_RESET;
149 mbx->ops.write_posted(hw, msgbuf, 1);
150
151 msleep(10);
152
153 /* set our "perm_addr" based on info provided by PF */
154 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
155 if (!ret_val) {
156 if (msgbuf[0] == (E1000_VF_RESET | E1000_VT_MSGTYPE_ACK))
157 memcpy(hw->mac.perm_addr, addr, 6);
158 else
159 ret_val = -E1000_ERR_MAC_INIT;
160 }
161 }
162
163 return ret_val;
164}
165
166/**
167 * e1000_init_hw_vf - Inits the HW
168 * @hw: pointer to the HW structure
169 *
170 * Not much to do here except clear the PF Reset indication if there is one.
171 **/
172static s32 e1000_init_hw_vf(struct e1000_hw *hw)
173{
174 /* attempt to set and restore our mac address */
175 e1000_rar_set_vf(hw, hw->mac.addr, 0);
176
177 return E1000_SUCCESS;
178}
179
180/**
181 * e1000_hash_mc_addr_vf - Generate a multicast hash value
182 * @hw: pointer to the HW structure
183 * @mc_addr: pointer to a multicast address
184 *
185 * Generates a multicast address hash value which is used to determine
186 * the multicast filter table array address and new table value. See
187 * e1000_mta_set_generic()
188 **/
189static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
190{
191 u32 hash_value, hash_mask;
192 u8 bit_shift = 0;
193
194 /* Register count multiplied by bits per register */
195 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
196
197 /*
198 * The bit_shift is the number of left-shifts
199 * where 0xFF would still fall within the hash mask.
200 */
201 while (hash_mask >> bit_shift != 0xFF)
202 bit_shift++;
203
204 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
205 (((u16) mc_addr[5]) << bit_shift)));
206
207 return hash_value;
208}
209
210/**
211 * e1000_update_mc_addr_list_vf - Update Multicast addresses
212 * @hw: pointer to the HW structure
213 * @mc_addr_list: array of multicast addresses to program
214 * @mc_addr_count: number of multicast addresses to program
215 * @rar_used_count: the first RAR register free to program
216 * @rar_count: total number of supported Receive Address Registers
217 *
218 * Updates the Receive Address Registers and Multicast Table Array.
219 * The caller must have a packed mc_addr_list of multicast addresses.
220 * The parameter rar_count will usually be hw->mac.rar_entry_count
221 * unless there are workarounds that change this.
222 **/
223static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
224 u8 *mc_addr_list, u32 mc_addr_count,
225 u32 rar_used_count, u32 rar_count)
226{
227 struct e1000_mbx_info *mbx = &hw->mbx;
228 u32 msgbuf[E1000_VFMAILBOX_SIZE];
229 u16 *hash_list = (u16 *)&msgbuf[1];
230 u32 hash_value;
231 u32 cnt, i;
232
233 /* Each entry in the list uses 1 16 bit word. We have 30
234 * 16 bit words available in our HW msg buffer (minus 1 for the
235 * msg type). That's 30 hash values if we pack 'em right. If
236 * there are more than 30 MC addresses to add then punt the
237 * extras for now and then add code to handle more than 30 later.
238 * It would be unusual for a server to request that many multi-cast
239 * addresses except for in large enterprise network environments.
240 */
241
242 cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
243 msgbuf[0] = E1000_VF_SET_MULTICAST;
244 msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
245
246 for (i = 0; i < cnt; i++) {
247 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
248 hash_list[i] = hash_value & 0x0FFFF;
249 mc_addr_list += ETH_ADDR_LEN;
250 }
251
252 mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
253}
254
255/**
256 * e1000_set_vfta_vf - Set/Unset vlan filter table address
257 * @hw: pointer to the HW structure
258 * @vid: determines the vfta register and bit to set/unset
259 * @set: if true then set bit, else clear bit
260 **/
261static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
262{
263 struct e1000_mbx_info *mbx = &hw->mbx;
264 u32 msgbuf[2];
265 s32 err;
266
267 msgbuf[0] = E1000_VF_SET_VLAN;
268 msgbuf[1] = vid;
269 /* Setting the 8 bit field MSG INFO to true indicates "add" */
270 if (set)
271 msgbuf[0] |= 1 << E1000_VT_MSGINFO_SHIFT;
272
273 mbx->ops.write_posted(hw, msgbuf, 2);
274
275 err = mbx->ops.read_posted(hw, msgbuf, 2);
276
277 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
278
279 /* if nacked the vlan was rejected */
280 if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
281 err = -E1000_ERR_MAC_INIT;
282
283 return err;
284}
285
286/** e1000_rlpml_set_vf - Set the maximum receive packet length
287 * @hw: pointer to the HW structure
288 * @max_size: value to assign to max frame size
289 **/
290void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
291{
292 struct e1000_mbx_info *mbx = &hw->mbx;
293 u32 msgbuf[2];
294
295 msgbuf[0] = E1000_VF_SET_LPE;
296 msgbuf[1] = max_size;
297
298 mbx->ops.write_posted(hw, msgbuf, 2);
299}
300
301/**
302 * e1000_rar_set_vf - set device MAC address
303 * @hw: pointer to the HW structure
304 * @addr: pointer to the receive address
305 * @index receive address array register
306 **/
307static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index)
308{
309 struct e1000_mbx_info *mbx = &hw->mbx;
310 u32 msgbuf[3];
311 u8 *msg_addr = (u8 *)(&msgbuf[1]);
312 s32 ret_val;
313
314 memset(msgbuf, 0, 12);
315 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
316 memcpy(msg_addr, addr, 6);
317 ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
318
319 if (!ret_val)
320 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
321
322 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
323
324 /* if nacked the address was rejected, use "perm_addr" */
325 if (!ret_val &&
326 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
327 e1000_read_mac_addr_vf(hw);
328}
329
330/**
331 * e1000_read_mac_addr_vf - Read device MAC address
332 * @hw: pointer to the HW structure
333 **/
334static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
335{
336 int i;
337
338 for (i = 0; i < ETH_ADDR_LEN; i++)
339 hw->mac.addr[i] = hw->mac.perm_addr[i];
340
341 return E1000_SUCCESS;
342}
343
344/**
345 * e1000_check_for_link_vf - Check for link for a virtual interface
346 * @hw: pointer to the HW structure
347 *
348 * Checks to see if the underlying PF is still talking to the VF and
349 * if it is then it reports the link state to the hardware, otherwise
350 * it reports link down and returns an error.
351 **/
352static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
353{
354 struct e1000_mbx_info *mbx = &hw->mbx;
355 struct e1000_mac_info *mac = &hw->mac;
356 s32 ret_val = E1000_SUCCESS;
357 u32 in_msg = 0;
358
359 /*
360 * We only want to run this if there has been a rst asserted.
361 * in this case that could mean a link change, device reset,
362 * or a virtual function reset
363 */
364
365 /* If we were hit with a reset or timeout drop the link */
366 if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
367 mac->get_link_status = true;
368
369 if (!mac->get_link_status)
370 goto out;
371
372 /* if link status is down no point in checking to see if pf is up */
373 if (!(er32(STATUS) & E1000_STATUS_LU))
374 goto out;
375
376 /* if the read failed it could just be a mailbox collision, best wait
377 * until we are called again and don't report an error */
378 if (mbx->ops.read(hw, &in_msg, 1))
379 goto out;
380
381 /* if incoming message isn't clear to send we are waiting on response */
382 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
383 /* message is not CTS and is NACK we must have lost CTS status */
384 if (in_msg & E1000_VT_MSGTYPE_NACK)
385 ret_val = -E1000_ERR_MAC_INIT;
386 goto out;
387 }
388
389 /* the pf is talking, if we timed out in the past we reinit */
390 if (!mbx->timeout) {
391 ret_val = -E1000_ERR_MAC_INIT;
392 goto out;
393 }
394
395 /* if we passed all the tests above then the link is up and we no
396 * longer need to check for link */
397 mac->get_link_status = false;
398
399out:
400 return ret_val;
401}
402
diff --git a/drivers/net/igbvf/vf.h b/drivers/net/igbvf/vf.h
new file mode 100644
index 00000000000..d7ed58fcd9b
--- /dev/null
+++ b/drivers/net/igbvf/vf.h
@@ -0,0 +1,266 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_VF_H_
29#define _E1000_VF_H_
30
31#include <linux/pci.h>
32#include <linux/delay.h>
33#include <linux/interrupt.h>
34#include <linux/if_ether.h>
35
36#include "regs.h"
37#include "defines.h"
38
39struct e1000_hw;
40
41#define E1000_DEV_ID_82576_VF 0x10CA
42#define E1000_DEV_ID_I350_VF 0x1520
43#define E1000_REVISION_0 0
44#define E1000_REVISION_1 1
45#define E1000_REVISION_2 2
46#define E1000_REVISION_3 3
47#define E1000_REVISION_4 4
48
49#define E1000_FUNC_0 0
50#define E1000_FUNC_1 1
51
52/*
53 * Receive Address Register Count
54 * Number of high/low register pairs in the RAR. The RAR (Receive Address
55 * Registers) holds the directed and multicast addresses that we monitor.
56 * These entries are also used for MAC-based filtering.
57 */
58#define E1000_RAR_ENTRIES_VF 1
59
60/* Receive Descriptor - Advanced */
61union e1000_adv_rx_desc {
62 struct {
63 u64 pkt_addr; /* Packet buffer address */
64 u64 hdr_addr; /* Header buffer address */
65 } read;
66 struct {
67 struct {
68 union {
69 u32 data;
70 struct {
71 u16 pkt_info; /* RSS/Packet type */
72 u16 hdr_info; /* Split Header,
73 * hdr buffer length */
74 } hs_rss;
75 } lo_dword;
76 union {
77 u32 rss; /* RSS Hash */
78 struct {
79 u16 ip_id; /* IP id */
80 u16 csum; /* Packet Checksum */
81 } csum_ip;
82 } hi_dword;
83 } lower;
84 struct {
85 u32 status_error; /* ext status/error */
86 u16 length; /* Packet length */
87 u16 vlan; /* VLAN tag */
88 } upper;
89 } wb; /* writeback */
90};
91
92#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
93#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
94
95/* Transmit Descriptor - Advanced */
96union e1000_adv_tx_desc {
97 struct {
98 u64 buffer_addr; /* Address of descriptor's data buf */
99 u32 cmd_type_len;
100 u32 olinfo_status;
101 } read;
102 struct {
103 u64 rsvd; /* Reserved */
104 u32 nxtseq_seed;
105 u32 status;
106 } wb;
107};
108
109/* Adv Transmit Descriptor Config Masks */
110#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
111#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
112#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
113#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
114#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
115#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
116#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
117#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
118#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
119
120/* Context descriptors */
121struct e1000_adv_tx_context_desc {
122 u32 vlan_macip_lens;
123 u32 seqnum_seed;
124 u32 type_tucmd_mlhl;
125 u32 mss_l4len_idx;
126};
127
128#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
129#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
130#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
131#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
132#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
133
134enum e1000_mac_type {
135 e1000_undefined = 0,
136 e1000_vfadapt,
137 e1000_vfadapt_i350,
138 e1000_num_macs /* List is 1-based, so subtract 1 for true count. */
139};
140
141struct e1000_vf_stats {
142 u64 base_gprc;
143 u64 base_gptc;
144 u64 base_gorc;
145 u64 base_gotc;
146 u64 base_mprc;
147 u64 base_gotlbc;
148 u64 base_gptlbc;
149 u64 base_gorlbc;
150 u64 base_gprlbc;
151
152 u32 last_gprc;
153 u32 last_gptc;
154 u32 last_gorc;
155 u32 last_gotc;
156 u32 last_mprc;
157 u32 last_gotlbc;
158 u32 last_gptlbc;
159 u32 last_gorlbc;
160 u32 last_gprlbc;
161
162 u64 gprc;
163 u64 gptc;
164 u64 gorc;
165 u64 gotc;
166 u64 mprc;
167 u64 gotlbc;
168 u64 gptlbc;
169 u64 gorlbc;
170 u64 gprlbc;
171};
172
173#include "mbx.h"
174
175struct e1000_mac_operations {
176 /* Function pointers for the MAC. */
177 s32 (*init_params)(struct e1000_hw *);
178 s32 (*check_for_link)(struct e1000_hw *);
179 void (*clear_vfta)(struct e1000_hw *);
180 s32 (*get_bus_info)(struct e1000_hw *);
181 s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
182 void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32, u32, u32);
183 s32 (*reset_hw)(struct e1000_hw *);
184 s32 (*init_hw)(struct e1000_hw *);
185 s32 (*setup_link)(struct e1000_hw *);
186 void (*write_vfta)(struct e1000_hw *, u32, u32);
187 void (*mta_set)(struct e1000_hw *, u32);
188 void (*rar_set)(struct e1000_hw *, u8*, u32);
189 s32 (*read_mac_addr)(struct e1000_hw *);
190 s32 (*set_vfta)(struct e1000_hw *, u16, bool);
191};
192
193struct e1000_mac_info {
194 struct e1000_mac_operations ops;
195 u8 addr[6];
196 u8 perm_addr[6];
197
198 enum e1000_mac_type type;
199
200 u16 mta_reg_count;
201 u16 rar_entry_count;
202
203 bool get_link_status;
204};
205
206struct e1000_mbx_operations {
207 s32 (*init_params)(struct e1000_hw *hw);
208 s32 (*read)(struct e1000_hw *, u32 *, u16);
209 s32 (*write)(struct e1000_hw *, u32 *, u16);
210 s32 (*read_posted)(struct e1000_hw *, u32 *, u16);
211 s32 (*write_posted)(struct e1000_hw *, u32 *, u16);
212 s32 (*check_for_msg)(struct e1000_hw *);
213 s32 (*check_for_ack)(struct e1000_hw *);
214 s32 (*check_for_rst)(struct e1000_hw *);
215};
216
217struct e1000_mbx_stats {
218 u32 msgs_tx;
219 u32 msgs_rx;
220
221 u32 acks;
222 u32 reqs;
223 u32 rsts;
224};
225
226struct e1000_mbx_info {
227 struct e1000_mbx_operations ops;
228 struct e1000_mbx_stats stats;
229 u32 timeout;
230 u32 usec_delay;
231 u16 size;
232};
233
234struct e1000_dev_spec_vf {
235 u32 vf_number;
236 u32 v2p_mailbox;
237};
238
239struct e1000_hw {
240 void *back;
241
242 u8 __iomem *hw_addr;
243 u8 __iomem *flash_address;
244 unsigned long io_base;
245
246 struct e1000_mac_info mac;
247 struct e1000_mbx_info mbx;
248
249 union {
250 struct e1000_dev_spec_vf vf;
251 } dev_spec;
252
253 u16 device_id;
254 u16 subsystem_vendor_id;
255 u16 subsystem_device_id;
256 u16 vendor_id;
257
258 u8 revision_id;
259};
260
261/* These functions must be implemented by drivers */
262void e1000_rlpml_set_vf(struct e1000_hw *, u16);
263void e1000_init_function_pointers_vf(struct e1000_hw *hw);
264
265
266#endif /* _E1000_VF_H_ */