diff options
author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
---|---|---|
committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/mtd/ubi | |
parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) |
Diffstat (limited to 'drivers/mtd/ubi')
-rw-r--r-- | drivers/mtd/ubi/scan.c | 1605 | ||||
-rw-r--r-- | drivers/mtd/ubi/scan.h | 174 |
2 files changed, 1779 insertions, 0 deletions
diff --git a/drivers/mtd/ubi/scan.c b/drivers/mtd/ubi/scan.c new file mode 100644 index 00000000000..a3a198f9b98 --- /dev/null +++ b/drivers/mtd/ubi/scan.c | |||
@@ -0,0 +1,1605 @@ | |||
1 | /* | ||
2 | * Copyright (c) International Business Machines Corp., 2006 | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | ||
12 | * the GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
17 | * | ||
18 | * Author: Artem Bityutskiy (Битюцкий Артём) | ||
19 | */ | ||
20 | |||
21 | /* | ||
22 | * UBI scanning sub-system. | ||
23 | * | ||
24 | * This sub-system is responsible for scanning the flash media, checking UBI | ||
25 | * headers and providing complete information about the UBI flash image. | ||
26 | * | ||
27 | * The scanning information is represented by a &struct ubi_scan_info' object. | ||
28 | * Information about found volumes is represented by &struct ubi_scan_volume | ||
29 | * objects which are kept in volume RB-tree with root at the @volumes field. | ||
30 | * The RB-tree is indexed by the volume ID. | ||
31 | * | ||
32 | * Scanned logical eraseblocks are represented by &struct ubi_scan_leb objects. | ||
33 | * These objects are kept in per-volume RB-trees with the root at the | ||
34 | * corresponding &struct ubi_scan_volume object. To put it differently, we keep | ||
35 | * an RB-tree of per-volume objects and each of these objects is the root of | ||
36 | * RB-tree of per-eraseblock objects. | ||
37 | * | ||
38 | * Corrupted physical eraseblocks are put to the @corr list, free physical | ||
39 | * eraseblocks are put to the @free list and the physical eraseblock to be | ||
40 | * erased are put to the @erase list. | ||
41 | * | ||
42 | * About corruptions | ||
43 | * ~~~~~~~~~~~~~~~~~ | ||
44 | * | ||
45 | * UBI protects EC and VID headers with CRC-32 checksums, so it can detect | ||
46 | * whether the headers are corrupted or not. Sometimes UBI also protects the | ||
47 | * data with CRC-32, e.g., when it executes the atomic LEB change operation, or | ||
48 | * when it moves the contents of a PEB for wear-leveling purposes. | ||
49 | * | ||
50 | * UBI tries to distinguish between 2 types of corruptions. | ||
51 | * | ||
52 | * 1. Corruptions caused by power cuts. These are expected corruptions and UBI | ||
53 | * tries to handle them gracefully, without printing too many warnings and | ||
54 | * error messages. The idea is that we do not lose important data in these case | ||
55 | * - we may lose only the data which was being written to the media just before | ||
56 | * the power cut happened, and the upper layers (e.g., UBIFS) are supposed to | ||
57 | * handle such data losses (e.g., by using the FS journal). | ||
58 | * | ||
59 | * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like | ||
60 | * the reason is a power cut, UBI puts this PEB to the @erase list, and all | ||
61 | * PEBs in the @erase list are scheduled for erasure later. | ||
62 | * | ||
63 | * 2. Unexpected corruptions which are not caused by power cuts. During | ||
64 | * scanning, such PEBs are put to the @corr list and UBI preserves them. | ||
65 | * Obviously, this lessens the amount of available PEBs, and if at some point | ||
66 | * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs | ||
67 | * about such PEBs every time the MTD device is attached. | ||
68 | * | ||
69 | * However, it is difficult to reliably distinguish between these types of | ||
70 | * corruptions and UBI's strategy is as follows. UBI assumes corruption type 2 | ||
71 | * if the VID header is corrupted and the data area does not contain all 0xFFs, | ||
72 | * and there were no bit-flips or integrity errors while reading the data area. | ||
73 | * Otherwise UBI assumes corruption type 1. So the decision criteria are as | ||
74 | * follows. | ||
75 | * o If the data area contains only 0xFFs, there is no data, and it is safe | ||
76 | * to just erase this PEB - this is corruption type 1. | ||
77 | * o If the data area has bit-flips or data integrity errors (ECC errors on | ||
78 | * NAND), it is probably a PEB which was being erased when power cut | ||
79 | * happened, so this is corruption type 1. However, this is just a guess, | ||
80 | * which might be wrong. | ||
81 | * o Otherwise this it corruption type 2. | ||
82 | */ | ||
83 | |||
84 | #include <linux/err.h> | ||
85 | #include <linux/slab.h> | ||
86 | #include <linux/crc32.h> | ||
87 | #include <linux/math64.h> | ||
88 | #include <linux/random.h> | ||
89 | #include "ubi.h" | ||
90 | |||
91 | #ifdef CONFIG_MTD_UBI_DEBUG | ||
92 | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); | ||
93 | #else | ||
94 | #define paranoid_check_si(ubi, si) 0 | ||
95 | #endif | ||
96 | |||
97 | /* Temporary variables used during scanning */ | ||
98 | static struct ubi_ec_hdr *ech; | ||
99 | static struct ubi_vid_hdr *vidh; | ||
100 | |||
101 | /** | ||
102 | * add_to_list - add physical eraseblock to a list. | ||
103 | * @si: scanning information | ||
104 | * @pnum: physical eraseblock number to add | ||
105 | * @ec: erase counter of the physical eraseblock | ||
106 | * @to_head: if not zero, add to the head of the list | ||
107 | * @list: the list to add to | ||
108 | * | ||
109 | * This function adds physical eraseblock @pnum to free, erase, or alien lists. | ||
110 | * If @to_head is not zero, PEB will be added to the head of the list, which | ||
111 | * basically means it will be processed first later. E.g., we add corrupted | ||
112 | * PEBs (corrupted due to power cuts) to the head of the erase list to make | ||
113 | * sure we erase them first and get rid of corruptions ASAP. This function | ||
114 | * returns zero in case of success and a negative error code in case of | ||
115 | * failure. | ||
116 | */ | ||
117 | static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, int to_head, | ||
118 | struct list_head *list) | ||
119 | { | ||
120 | struct ubi_scan_leb *seb; | ||
121 | |||
122 | if (list == &si->free) { | ||
123 | dbg_bld("add to free: PEB %d, EC %d", pnum, ec); | ||
124 | } else if (list == &si->erase) { | ||
125 | dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); | ||
126 | } else if (list == &si->alien) { | ||
127 | dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); | ||
128 | si->alien_peb_count += 1; | ||
129 | } else | ||
130 | BUG(); | ||
131 | |||
132 | seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL); | ||
133 | if (!seb) | ||
134 | return -ENOMEM; | ||
135 | |||
136 | seb->pnum = pnum; | ||
137 | seb->ec = ec; | ||
138 | if (to_head) | ||
139 | list_add(&seb->u.list, list); | ||
140 | else | ||
141 | list_add_tail(&seb->u.list, list); | ||
142 | return 0; | ||
143 | } | ||
144 | |||
145 | /** | ||
146 | * add_corrupted - add a corrupted physical eraseblock. | ||
147 | * @si: scanning information | ||
148 | * @pnum: physical eraseblock number to add | ||
149 | * @ec: erase counter of the physical eraseblock | ||
150 | * | ||
151 | * This function adds corrupted physical eraseblock @pnum to the 'corr' list. | ||
152 | * The corruption was presumably not caused by a power cut. Returns zero in | ||
153 | * case of success and a negative error code in case of failure. | ||
154 | */ | ||
155 | static int add_corrupted(struct ubi_scan_info *si, int pnum, int ec) | ||
156 | { | ||
157 | struct ubi_scan_leb *seb; | ||
158 | |||
159 | dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); | ||
160 | |||
161 | seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL); | ||
162 | if (!seb) | ||
163 | return -ENOMEM; | ||
164 | |||
165 | si->corr_peb_count += 1; | ||
166 | seb->pnum = pnum; | ||
167 | seb->ec = ec; | ||
168 | list_add(&seb->u.list, &si->corr); | ||
169 | return 0; | ||
170 | } | ||
171 | |||
172 | /** | ||
173 | * validate_vid_hdr - check volume identifier header. | ||
174 | * @vid_hdr: the volume identifier header to check | ||
175 | * @sv: information about the volume this logical eraseblock belongs to | ||
176 | * @pnum: physical eraseblock number the VID header came from | ||
177 | * | ||
178 | * This function checks that data stored in @vid_hdr is consistent. Returns | ||
179 | * non-zero if an inconsistency was found and zero if not. | ||
180 | * | ||
181 | * Note, UBI does sanity check of everything it reads from the flash media. | ||
182 | * Most of the checks are done in the I/O sub-system. Here we check that the | ||
183 | * information in the VID header is consistent to the information in other VID | ||
184 | * headers of the same volume. | ||
185 | */ | ||
186 | static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, | ||
187 | const struct ubi_scan_volume *sv, int pnum) | ||
188 | { | ||
189 | int vol_type = vid_hdr->vol_type; | ||
190 | int vol_id = be32_to_cpu(vid_hdr->vol_id); | ||
191 | int used_ebs = be32_to_cpu(vid_hdr->used_ebs); | ||
192 | int data_pad = be32_to_cpu(vid_hdr->data_pad); | ||
193 | |||
194 | if (sv->leb_count != 0) { | ||
195 | int sv_vol_type; | ||
196 | |||
197 | /* | ||
198 | * This is not the first logical eraseblock belonging to this | ||
199 | * volume. Ensure that the data in its VID header is consistent | ||
200 | * to the data in previous logical eraseblock headers. | ||
201 | */ | ||
202 | |||
203 | if (vol_id != sv->vol_id) { | ||
204 | dbg_err("inconsistent vol_id"); | ||
205 | goto bad; | ||
206 | } | ||
207 | |||
208 | if (sv->vol_type == UBI_STATIC_VOLUME) | ||
209 | sv_vol_type = UBI_VID_STATIC; | ||
210 | else | ||
211 | sv_vol_type = UBI_VID_DYNAMIC; | ||
212 | |||
213 | if (vol_type != sv_vol_type) { | ||
214 | dbg_err("inconsistent vol_type"); | ||
215 | goto bad; | ||
216 | } | ||
217 | |||
218 | if (used_ebs != sv->used_ebs) { | ||
219 | dbg_err("inconsistent used_ebs"); | ||
220 | goto bad; | ||
221 | } | ||
222 | |||
223 | if (data_pad != sv->data_pad) { | ||
224 | dbg_err("inconsistent data_pad"); | ||
225 | goto bad; | ||
226 | } | ||
227 | } | ||
228 | |||
229 | return 0; | ||
230 | |||
231 | bad: | ||
232 | ubi_err("inconsistent VID header at PEB %d", pnum); | ||
233 | ubi_dbg_dump_vid_hdr(vid_hdr); | ||
234 | ubi_dbg_dump_sv(sv); | ||
235 | return -EINVAL; | ||
236 | } | ||
237 | |||
238 | /** | ||
239 | * add_volume - add volume to the scanning information. | ||
240 | * @si: scanning information | ||
241 | * @vol_id: ID of the volume to add | ||
242 | * @pnum: physical eraseblock number | ||
243 | * @vid_hdr: volume identifier header | ||
244 | * | ||
245 | * If the volume corresponding to the @vid_hdr logical eraseblock is already | ||
246 | * present in the scanning information, this function does nothing. Otherwise | ||
247 | * it adds corresponding volume to the scanning information. Returns a pointer | ||
248 | * to the scanning volume object in case of success and a negative error code | ||
249 | * in case of failure. | ||
250 | */ | ||
251 | static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, | ||
252 | int pnum, | ||
253 | const struct ubi_vid_hdr *vid_hdr) | ||
254 | { | ||
255 | struct ubi_scan_volume *sv; | ||
256 | struct rb_node **p = &si->volumes.rb_node, *parent = NULL; | ||
257 | |||
258 | ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); | ||
259 | |||
260 | /* Walk the volume RB-tree to look if this volume is already present */ | ||
261 | while (*p) { | ||
262 | parent = *p; | ||
263 | sv = rb_entry(parent, struct ubi_scan_volume, rb); | ||
264 | |||
265 | if (vol_id == sv->vol_id) | ||
266 | return sv; | ||
267 | |||
268 | if (vol_id > sv->vol_id) | ||
269 | p = &(*p)->rb_left; | ||
270 | else | ||
271 | p = &(*p)->rb_right; | ||
272 | } | ||
273 | |||
274 | /* The volume is absent - add it */ | ||
275 | sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); | ||
276 | if (!sv) | ||
277 | return ERR_PTR(-ENOMEM); | ||
278 | |||
279 | sv->highest_lnum = sv->leb_count = 0; | ||
280 | sv->vol_id = vol_id; | ||
281 | sv->root = RB_ROOT; | ||
282 | sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); | ||
283 | sv->data_pad = be32_to_cpu(vid_hdr->data_pad); | ||
284 | sv->compat = vid_hdr->compat; | ||
285 | sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME | ||
286 | : UBI_STATIC_VOLUME; | ||
287 | if (vol_id > si->highest_vol_id) | ||
288 | si->highest_vol_id = vol_id; | ||
289 | |||
290 | rb_link_node(&sv->rb, parent, p); | ||
291 | rb_insert_color(&sv->rb, &si->volumes); | ||
292 | si->vols_found += 1; | ||
293 | dbg_bld("added volume %d", vol_id); | ||
294 | return sv; | ||
295 | } | ||
296 | |||
297 | /** | ||
298 | * compare_lebs - find out which logical eraseblock is newer. | ||
299 | * @ubi: UBI device description object | ||
300 | * @seb: first logical eraseblock to compare | ||
301 | * @pnum: physical eraseblock number of the second logical eraseblock to | ||
302 | * compare | ||
303 | * @vid_hdr: volume identifier header of the second logical eraseblock | ||
304 | * | ||
305 | * This function compares 2 copies of a LEB and informs which one is newer. In | ||
306 | * case of success this function returns a positive value, in case of failure, a | ||
307 | * negative error code is returned. The success return codes use the following | ||
308 | * bits: | ||
309 | * o bit 0 is cleared: the first PEB (described by @seb) is newer than the | ||
310 | * second PEB (described by @pnum and @vid_hdr); | ||
311 | * o bit 0 is set: the second PEB is newer; | ||
312 | * o bit 1 is cleared: no bit-flips were detected in the newer LEB; | ||
313 | * o bit 1 is set: bit-flips were detected in the newer LEB; | ||
314 | * o bit 2 is cleared: the older LEB is not corrupted; | ||
315 | * o bit 2 is set: the older LEB is corrupted. | ||
316 | */ | ||
317 | static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, | ||
318 | int pnum, const struct ubi_vid_hdr *vid_hdr) | ||
319 | { | ||
320 | void *buf; | ||
321 | int len, err, second_is_newer, bitflips = 0, corrupted = 0; | ||
322 | uint32_t data_crc, crc; | ||
323 | struct ubi_vid_hdr *vh = NULL; | ||
324 | unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); | ||
325 | |||
326 | if (sqnum2 == seb->sqnum) { | ||
327 | /* | ||
328 | * This must be a really ancient UBI image which has been | ||
329 | * created before sequence numbers support has been added. At | ||
330 | * that times we used 32-bit LEB versions stored in logical | ||
331 | * eraseblocks. That was before UBI got into mainline. We do not | ||
332 | * support these images anymore. Well, those images still work, | ||
333 | * but only if no unclean reboots happened. | ||
334 | */ | ||
335 | ubi_err("unsupported on-flash UBI format\n"); | ||
336 | return -EINVAL; | ||
337 | } | ||
338 | |||
339 | /* Obviously the LEB with lower sequence counter is older */ | ||
340 | second_is_newer = !!(sqnum2 > seb->sqnum); | ||
341 | |||
342 | /* | ||
343 | * Now we know which copy is newer. If the copy flag of the PEB with | ||
344 | * newer version is not set, then we just return, otherwise we have to | ||
345 | * check data CRC. For the second PEB we already have the VID header, | ||
346 | * for the first one - we'll need to re-read it from flash. | ||
347 | * | ||
348 | * Note: this may be optimized so that we wouldn't read twice. | ||
349 | */ | ||
350 | |||
351 | if (second_is_newer) { | ||
352 | if (!vid_hdr->copy_flag) { | ||
353 | /* It is not a copy, so it is newer */ | ||
354 | dbg_bld("second PEB %d is newer, copy_flag is unset", | ||
355 | pnum); | ||
356 | return 1; | ||
357 | } | ||
358 | } else { | ||
359 | if (!seb->copy_flag) { | ||
360 | /* It is not a copy, so it is newer */ | ||
361 | dbg_bld("first PEB %d is newer, copy_flag is unset", | ||
362 | pnum); | ||
363 | return bitflips << 1; | ||
364 | } | ||
365 | |||
366 | vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); | ||
367 | if (!vh) | ||
368 | return -ENOMEM; | ||
369 | |||
370 | pnum = seb->pnum; | ||
371 | err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); | ||
372 | if (err) { | ||
373 | if (err == UBI_IO_BITFLIPS) | ||
374 | bitflips = 1; | ||
375 | else { | ||
376 | dbg_err("VID of PEB %d header is bad, but it " | ||
377 | "was OK earlier, err %d", pnum, err); | ||
378 | if (err > 0) | ||
379 | err = -EIO; | ||
380 | |||
381 | goto out_free_vidh; | ||
382 | } | ||
383 | } | ||
384 | |||
385 | vid_hdr = vh; | ||
386 | } | ||
387 | |||
388 | /* Read the data of the copy and check the CRC */ | ||
389 | |||
390 | len = be32_to_cpu(vid_hdr->data_size); | ||
391 | buf = vmalloc(len); | ||
392 | if (!buf) { | ||
393 | err = -ENOMEM; | ||
394 | goto out_free_vidh; | ||
395 | } | ||
396 | |||
397 | err = ubi_io_read_data(ubi, buf, pnum, 0, len); | ||
398 | if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) | ||
399 | goto out_free_buf; | ||
400 | |||
401 | data_crc = be32_to_cpu(vid_hdr->data_crc); | ||
402 | crc = crc32(UBI_CRC32_INIT, buf, len); | ||
403 | if (crc != data_crc) { | ||
404 | dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", | ||
405 | pnum, crc, data_crc); | ||
406 | corrupted = 1; | ||
407 | bitflips = 0; | ||
408 | second_is_newer = !second_is_newer; | ||
409 | } else { | ||
410 | dbg_bld("PEB %d CRC is OK", pnum); | ||
411 | bitflips = !!err; | ||
412 | } | ||
413 | |||
414 | vfree(buf); | ||
415 | ubi_free_vid_hdr(ubi, vh); | ||
416 | |||
417 | if (second_is_newer) | ||
418 | dbg_bld("second PEB %d is newer, copy_flag is set", pnum); | ||
419 | else | ||
420 | dbg_bld("first PEB %d is newer, copy_flag is set", pnum); | ||
421 | |||
422 | return second_is_newer | (bitflips << 1) | (corrupted << 2); | ||
423 | |||
424 | out_free_buf: | ||
425 | vfree(buf); | ||
426 | out_free_vidh: | ||
427 | ubi_free_vid_hdr(ubi, vh); | ||
428 | return err; | ||
429 | } | ||
430 | |||
431 | /** | ||
432 | * ubi_scan_add_used - add physical eraseblock to the scanning information. | ||
433 | * @ubi: UBI device description object | ||
434 | * @si: scanning information | ||
435 | * @pnum: the physical eraseblock number | ||
436 | * @ec: erase counter | ||
437 | * @vid_hdr: the volume identifier header | ||
438 | * @bitflips: if bit-flips were detected when this physical eraseblock was read | ||
439 | * | ||
440 | * This function adds information about a used physical eraseblock to the | ||
441 | * 'used' tree of the corresponding volume. The function is rather complex | ||
442 | * because it has to handle cases when this is not the first physical | ||
443 | * eraseblock belonging to the same logical eraseblock, and the newer one has | ||
444 | * to be picked, while the older one has to be dropped. This function returns | ||
445 | * zero in case of success and a negative error code in case of failure. | ||
446 | */ | ||
447 | int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, | ||
448 | int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, | ||
449 | int bitflips) | ||
450 | { | ||
451 | int err, vol_id, lnum; | ||
452 | unsigned long long sqnum; | ||
453 | struct ubi_scan_volume *sv; | ||
454 | struct ubi_scan_leb *seb; | ||
455 | struct rb_node **p, *parent = NULL; | ||
456 | |||
457 | vol_id = be32_to_cpu(vid_hdr->vol_id); | ||
458 | lnum = be32_to_cpu(vid_hdr->lnum); | ||
459 | sqnum = be64_to_cpu(vid_hdr->sqnum); | ||
460 | |||
461 | dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", | ||
462 | pnum, vol_id, lnum, ec, sqnum, bitflips); | ||
463 | |||
464 | sv = add_volume(si, vol_id, pnum, vid_hdr); | ||
465 | if (IS_ERR(sv)) | ||
466 | return PTR_ERR(sv); | ||
467 | |||
468 | if (si->max_sqnum < sqnum) | ||
469 | si->max_sqnum = sqnum; | ||
470 | |||
471 | /* | ||
472 | * Walk the RB-tree of logical eraseblocks of volume @vol_id to look | ||
473 | * if this is the first instance of this logical eraseblock or not. | ||
474 | */ | ||
475 | p = &sv->root.rb_node; | ||
476 | while (*p) { | ||
477 | int cmp_res; | ||
478 | |||
479 | parent = *p; | ||
480 | seb = rb_entry(parent, struct ubi_scan_leb, u.rb); | ||
481 | if (lnum != seb->lnum) { | ||
482 | if (lnum < seb->lnum) | ||
483 | p = &(*p)->rb_left; | ||
484 | else | ||
485 | p = &(*p)->rb_right; | ||
486 | continue; | ||
487 | } | ||
488 | |||
489 | /* | ||
490 | * There is already a physical eraseblock describing the same | ||
491 | * logical eraseblock present. | ||
492 | */ | ||
493 | |||
494 | dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " | ||
495 | "EC %d", seb->pnum, seb->sqnum, seb->ec); | ||
496 | |||
497 | /* | ||
498 | * Make sure that the logical eraseblocks have different | ||
499 | * sequence numbers. Otherwise the image is bad. | ||
500 | * | ||
501 | * However, if the sequence number is zero, we assume it must | ||
502 | * be an ancient UBI image from the era when UBI did not have | ||
503 | * sequence numbers. We still can attach these images, unless | ||
504 | * there is a need to distinguish between old and new | ||
505 | * eraseblocks, in which case we'll refuse the image in | ||
506 | * 'compare_lebs()'. In other words, we attach old clean | ||
507 | * images, but refuse attaching old images with duplicated | ||
508 | * logical eraseblocks because there was an unclean reboot. | ||
509 | */ | ||
510 | if (seb->sqnum == sqnum && sqnum != 0) { | ||
511 | ubi_err("two LEBs with same sequence number %llu", | ||
512 | sqnum); | ||
513 | ubi_dbg_dump_seb(seb, 0); | ||
514 | ubi_dbg_dump_vid_hdr(vid_hdr); | ||
515 | return -EINVAL; | ||
516 | } | ||
517 | |||
518 | /* | ||
519 | * Now we have to drop the older one and preserve the newer | ||
520 | * one. | ||
521 | */ | ||
522 | cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); | ||
523 | if (cmp_res < 0) | ||
524 | return cmp_res; | ||
525 | |||
526 | if (cmp_res & 1) { | ||
527 | /* | ||
528 | * This logical eraseblock is newer than the one | ||
529 | * found earlier. | ||
530 | */ | ||
531 | err = validate_vid_hdr(vid_hdr, sv, pnum); | ||
532 | if (err) | ||
533 | return err; | ||
534 | |||
535 | err = add_to_list(si, seb->pnum, seb->ec, cmp_res & 4, | ||
536 | &si->erase); | ||
537 | if (err) | ||
538 | return err; | ||
539 | |||
540 | seb->ec = ec; | ||
541 | seb->pnum = pnum; | ||
542 | seb->scrub = ((cmp_res & 2) || bitflips); | ||
543 | seb->copy_flag = vid_hdr->copy_flag; | ||
544 | seb->sqnum = sqnum; | ||
545 | |||
546 | if (sv->highest_lnum == lnum) | ||
547 | sv->last_data_size = | ||
548 | be32_to_cpu(vid_hdr->data_size); | ||
549 | |||
550 | return 0; | ||
551 | } else { | ||
552 | /* | ||
553 | * This logical eraseblock is older than the one found | ||
554 | * previously. | ||
555 | */ | ||
556 | return add_to_list(si, pnum, ec, cmp_res & 4, | ||
557 | &si->erase); | ||
558 | } | ||
559 | } | ||
560 | |||
561 | /* | ||
562 | * We've met this logical eraseblock for the first time, add it to the | ||
563 | * scanning information. | ||
564 | */ | ||
565 | |||
566 | err = validate_vid_hdr(vid_hdr, sv, pnum); | ||
567 | if (err) | ||
568 | return err; | ||
569 | |||
570 | seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL); | ||
571 | if (!seb) | ||
572 | return -ENOMEM; | ||
573 | |||
574 | seb->ec = ec; | ||
575 | seb->pnum = pnum; | ||
576 | seb->lnum = lnum; | ||
577 | seb->scrub = bitflips; | ||
578 | seb->copy_flag = vid_hdr->copy_flag; | ||
579 | seb->sqnum = sqnum; | ||
580 | |||
581 | if (sv->highest_lnum <= lnum) { | ||
582 | sv->highest_lnum = lnum; | ||
583 | sv->last_data_size = be32_to_cpu(vid_hdr->data_size); | ||
584 | } | ||
585 | |||
586 | sv->leb_count += 1; | ||
587 | rb_link_node(&seb->u.rb, parent, p); | ||
588 | rb_insert_color(&seb->u.rb, &sv->root); | ||
589 | return 0; | ||
590 | } | ||
591 | |||
592 | /** | ||
593 | * ubi_scan_find_sv - find volume in the scanning information. | ||
594 | * @si: scanning information | ||
595 | * @vol_id: the requested volume ID | ||
596 | * | ||
597 | * This function returns a pointer to the volume description or %NULL if there | ||
598 | * are no data about this volume in the scanning information. | ||
599 | */ | ||
600 | struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, | ||
601 | int vol_id) | ||
602 | { | ||
603 | struct ubi_scan_volume *sv; | ||
604 | struct rb_node *p = si->volumes.rb_node; | ||
605 | |||
606 | while (p) { | ||
607 | sv = rb_entry(p, struct ubi_scan_volume, rb); | ||
608 | |||
609 | if (vol_id == sv->vol_id) | ||
610 | return sv; | ||
611 | |||
612 | if (vol_id > sv->vol_id) | ||
613 | p = p->rb_left; | ||
614 | else | ||
615 | p = p->rb_right; | ||
616 | } | ||
617 | |||
618 | return NULL; | ||
619 | } | ||
620 | |||
621 | /** | ||
622 | * ubi_scan_find_seb - find LEB in the volume scanning information. | ||
623 | * @sv: a pointer to the volume scanning information | ||
624 | * @lnum: the requested logical eraseblock | ||
625 | * | ||
626 | * This function returns a pointer to the scanning logical eraseblock or %NULL | ||
627 | * if there are no data about it in the scanning volume information. | ||
628 | */ | ||
629 | struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, | ||
630 | int lnum) | ||
631 | { | ||
632 | struct ubi_scan_leb *seb; | ||
633 | struct rb_node *p = sv->root.rb_node; | ||
634 | |||
635 | while (p) { | ||
636 | seb = rb_entry(p, struct ubi_scan_leb, u.rb); | ||
637 | |||
638 | if (lnum == seb->lnum) | ||
639 | return seb; | ||
640 | |||
641 | if (lnum > seb->lnum) | ||
642 | p = p->rb_left; | ||
643 | else | ||
644 | p = p->rb_right; | ||
645 | } | ||
646 | |||
647 | return NULL; | ||
648 | } | ||
649 | |||
650 | /** | ||
651 | * ubi_scan_rm_volume - delete scanning information about a volume. | ||
652 | * @si: scanning information | ||
653 | * @sv: the volume scanning information to delete | ||
654 | */ | ||
655 | void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) | ||
656 | { | ||
657 | struct rb_node *rb; | ||
658 | struct ubi_scan_leb *seb; | ||
659 | |||
660 | dbg_bld("remove scanning information about volume %d", sv->vol_id); | ||
661 | |||
662 | while ((rb = rb_first(&sv->root))) { | ||
663 | seb = rb_entry(rb, struct ubi_scan_leb, u.rb); | ||
664 | rb_erase(&seb->u.rb, &sv->root); | ||
665 | list_add_tail(&seb->u.list, &si->erase); | ||
666 | } | ||
667 | |||
668 | rb_erase(&sv->rb, &si->volumes); | ||
669 | kfree(sv); | ||
670 | si->vols_found -= 1; | ||
671 | } | ||
672 | |||
673 | /** | ||
674 | * ubi_scan_erase_peb - erase a physical eraseblock. | ||
675 | * @ubi: UBI device description object | ||
676 | * @si: scanning information | ||
677 | * @pnum: physical eraseblock number to erase; | ||
678 | * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) | ||
679 | * | ||
680 | * This function erases physical eraseblock 'pnum', and writes the erase | ||
681 | * counter header to it. This function should only be used on UBI device | ||
682 | * initialization stages, when the EBA sub-system had not been yet initialized. | ||
683 | * This function returns zero in case of success and a negative error code in | ||
684 | * case of failure. | ||
685 | */ | ||
686 | int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, | ||
687 | int pnum, int ec) | ||
688 | { | ||
689 | int err; | ||
690 | struct ubi_ec_hdr *ec_hdr; | ||
691 | |||
692 | if ((long long)ec >= UBI_MAX_ERASECOUNTER) { | ||
693 | /* | ||
694 | * Erase counter overflow. Upgrade UBI and use 64-bit | ||
695 | * erase counters internally. | ||
696 | */ | ||
697 | ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); | ||
698 | return -EINVAL; | ||
699 | } | ||
700 | |||
701 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | ||
702 | if (!ec_hdr) | ||
703 | return -ENOMEM; | ||
704 | |||
705 | ec_hdr->ec = cpu_to_be64(ec); | ||
706 | |||
707 | err = ubi_io_sync_erase(ubi, pnum, 0); | ||
708 | if (err < 0) | ||
709 | goto out_free; | ||
710 | |||
711 | err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); | ||
712 | |||
713 | out_free: | ||
714 | kfree(ec_hdr); | ||
715 | return err; | ||
716 | } | ||
717 | |||
718 | /** | ||
719 | * ubi_scan_get_free_peb - get a free physical eraseblock. | ||
720 | * @ubi: UBI device description object | ||
721 | * @si: scanning information | ||
722 | * | ||
723 | * This function returns a free physical eraseblock. It is supposed to be | ||
724 | * called on the UBI initialization stages when the wear-leveling sub-system is | ||
725 | * not initialized yet. This function picks a physical eraseblocks from one of | ||
726 | * the lists, writes the EC header if it is needed, and removes it from the | ||
727 | * list. | ||
728 | * | ||
729 | * This function returns scanning physical eraseblock information in case of | ||
730 | * success and an error code in case of failure. | ||
731 | */ | ||
732 | struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, | ||
733 | struct ubi_scan_info *si) | ||
734 | { | ||
735 | int err = 0; | ||
736 | struct ubi_scan_leb *seb, *tmp_seb; | ||
737 | |||
738 | if (!list_empty(&si->free)) { | ||
739 | seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); | ||
740 | list_del(&seb->u.list); | ||
741 | dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); | ||
742 | return seb; | ||
743 | } | ||
744 | |||
745 | /* | ||
746 | * We try to erase the first physical eraseblock from the erase list | ||
747 | * and pick it if we succeed, or try to erase the next one if not. And | ||
748 | * so forth. We don't want to take care about bad eraseblocks here - | ||
749 | * they'll be handled later. | ||
750 | */ | ||
751 | list_for_each_entry_safe(seb, tmp_seb, &si->erase, u.list) { | ||
752 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
753 | seb->ec = si->mean_ec; | ||
754 | |||
755 | err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); | ||
756 | if (err) | ||
757 | continue; | ||
758 | |||
759 | seb->ec += 1; | ||
760 | list_del(&seb->u.list); | ||
761 | dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); | ||
762 | return seb; | ||
763 | } | ||
764 | |||
765 | ubi_err("no free eraseblocks"); | ||
766 | return ERR_PTR(-ENOSPC); | ||
767 | } | ||
768 | |||
769 | /** | ||
770 | * check_corruption - check the data area of PEB. | ||
771 | * @ubi: UBI device description object | ||
772 | * @vid_hrd: the (corrupted) VID header of this PEB | ||
773 | * @pnum: the physical eraseblock number to check | ||
774 | * | ||
775 | * This is a helper function which is used to distinguish between VID header | ||
776 | * corruptions caused by power cuts and other reasons. If the PEB contains only | ||
777 | * 0xFF bytes in the data area, the VID header is most probably corrupted | ||
778 | * because of a power cut (%0 is returned in this case). Otherwise, it was | ||
779 | * probably corrupted for some other reasons (%1 is returned in this case). A | ||
780 | * negative error code is returned if a read error occurred. | ||
781 | * | ||
782 | * If the corruption reason was a power cut, UBI can safely erase this PEB. | ||
783 | * Otherwise, it should preserve it to avoid possibly destroying important | ||
784 | * information. | ||
785 | */ | ||
786 | static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, | ||
787 | int pnum) | ||
788 | { | ||
789 | int err; | ||
790 | |||
791 | mutex_lock(&ubi->buf_mutex); | ||
792 | memset(ubi->peb_buf1, 0x00, ubi->leb_size); | ||
793 | |||
794 | err = ubi_io_read(ubi, ubi->peb_buf1, pnum, ubi->leb_start, | ||
795 | ubi->leb_size); | ||
796 | if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { | ||
797 | /* | ||
798 | * Bit-flips or integrity errors while reading the data area. | ||
799 | * It is difficult to say for sure what type of corruption is | ||
800 | * this, but presumably a power cut happened while this PEB was | ||
801 | * erased, so it became unstable and corrupted, and should be | ||
802 | * erased. | ||
803 | */ | ||
804 | err = 0; | ||
805 | goto out_unlock; | ||
806 | } | ||
807 | |||
808 | if (err) | ||
809 | goto out_unlock; | ||
810 | |||
811 | if (ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->leb_size)) | ||
812 | goto out_unlock; | ||
813 | |||
814 | ubi_err("PEB %d contains corrupted VID header, and the data does not " | ||
815 | "contain all 0xFF, this may be a non-UBI PEB or a severe VID " | ||
816 | "header corruption which requires manual inspection", pnum); | ||
817 | ubi_dbg_dump_vid_hdr(vid_hdr); | ||
818 | dbg_msg("hexdump of PEB %d offset %d, length %d", | ||
819 | pnum, ubi->leb_start, ubi->leb_size); | ||
820 | ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, | ||
821 | ubi->peb_buf1, ubi->leb_size, 1); | ||
822 | err = 1; | ||
823 | |||
824 | out_unlock: | ||
825 | mutex_unlock(&ubi->buf_mutex); | ||
826 | return err; | ||
827 | } | ||
828 | |||
829 | /** | ||
830 | * process_eb - read, check UBI headers, and add them to scanning information. | ||
831 | * @ubi: UBI device description object | ||
832 | * @si: scanning information | ||
833 | * @pnum: the physical eraseblock number | ||
834 | * | ||
835 | * This function returns a zero if the physical eraseblock was successfully | ||
836 | * handled and a negative error code in case of failure. | ||
837 | */ | ||
838 | static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, | ||
839 | int pnum) | ||
840 | { | ||
841 | long long uninitialized_var(ec); | ||
842 | int err, bitflips = 0, vol_id, ec_err = 0; | ||
843 | |||
844 | dbg_bld("scan PEB %d", pnum); | ||
845 | |||
846 | /* Skip bad physical eraseblocks */ | ||
847 | err = ubi_io_is_bad(ubi, pnum); | ||
848 | if (err < 0) | ||
849 | return err; | ||
850 | else if (err) { | ||
851 | /* | ||
852 | * FIXME: this is actually duty of the I/O sub-system to | ||
853 | * initialize this, but MTD does not provide enough | ||
854 | * information. | ||
855 | */ | ||
856 | si->bad_peb_count += 1; | ||
857 | return 0; | ||
858 | } | ||
859 | |||
860 | err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); | ||
861 | if (err < 0) | ||
862 | return err; | ||
863 | switch (err) { | ||
864 | case 0: | ||
865 | break; | ||
866 | case UBI_IO_BITFLIPS: | ||
867 | bitflips = 1; | ||
868 | break; | ||
869 | case UBI_IO_FF: | ||
870 | si->empty_peb_count += 1; | ||
871 | return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 0, | ||
872 | &si->erase); | ||
873 | case UBI_IO_FF_BITFLIPS: | ||
874 | si->empty_peb_count += 1; | ||
875 | return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 1, | ||
876 | &si->erase); | ||
877 | case UBI_IO_BAD_HDR_EBADMSG: | ||
878 | case UBI_IO_BAD_HDR: | ||
879 | /* | ||
880 | * We have to also look at the VID header, possibly it is not | ||
881 | * corrupted. Set %bitflips flag in order to make this PEB be | ||
882 | * moved and EC be re-created. | ||
883 | */ | ||
884 | ec_err = err; | ||
885 | ec = UBI_SCAN_UNKNOWN_EC; | ||
886 | bitflips = 1; | ||
887 | break; | ||
888 | default: | ||
889 | ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err); | ||
890 | return -EINVAL; | ||
891 | } | ||
892 | |||
893 | if (!ec_err) { | ||
894 | int image_seq; | ||
895 | |||
896 | /* Make sure UBI version is OK */ | ||
897 | if (ech->version != UBI_VERSION) { | ||
898 | ubi_err("this UBI version is %d, image version is %d", | ||
899 | UBI_VERSION, (int)ech->version); | ||
900 | return -EINVAL; | ||
901 | } | ||
902 | |||
903 | ec = be64_to_cpu(ech->ec); | ||
904 | if (ec > UBI_MAX_ERASECOUNTER) { | ||
905 | /* | ||
906 | * Erase counter overflow. The EC headers have 64 bits | ||
907 | * reserved, but we anyway make use of only 31 bit | ||
908 | * values, as this seems to be enough for any existing | ||
909 | * flash. Upgrade UBI and use 64-bit erase counters | ||
910 | * internally. | ||
911 | */ | ||
912 | ubi_err("erase counter overflow, max is %d", | ||
913 | UBI_MAX_ERASECOUNTER); | ||
914 | ubi_dbg_dump_ec_hdr(ech); | ||
915 | return -EINVAL; | ||
916 | } | ||
917 | |||
918 | /* | ||
919 | * Make sure that all PEBs have the same image sequence number. | ||
920 | * This allows us to detect situations when users flash UBI | ||
921 | * images incorrectly, so that the flash has the new UBI image | ||
922 | * and leftovers from the old one. This feature was added | ||
923 | * relatively recently, and the sequence number was always | ||
924 | * zero, because old UBI implementations always set it to zero. | ||
925 | * For this reasons, we do not panic if some PEBs have zero | ||
926 | * sequence number, while other PEBs have non-zero sequence | ||
927 | * number. | ||
928 | */ | ||
929 | image_seq = be32_to_cpu(ech->image_seq); | ||
930 | if (!ubi->image_seq && image_seq) | ||
931 | ubi->image_seq = image_seq; | ||
932 | if (ubi->image_seq && image_seq && | ||
933 | ubi->image_seq != image_seq) { | ||
934 | ubi_err("bad image sequence number %d in PEB %d, " | ||
935 | "expected %d", image_seq, pnum, ubi->image_seq); | ||
936 | ubi_dbg_dump_ec_hdr(ech); | ||
937 | return -EINVAL; | ||
938 | } | ||
939 | } | ||
940 | |||
941 | /* OK, we've done with the EC header, let's look at the VID header */ | ||
942 | |||
943 | err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); | ||
944 | if (err < 0) | ||
945 | return err; | ||
946 | switch (err) { | ||
947 | case 0: | ||
948 | break; | ||
949 | case UBI_IO_BITFLIPS: | ||
950 | bitflips = 1; | ||
951 | break; | ||
952 | case UBI_IO_BAD_HDR_EBADMSG: | ||
953 | if (ec_err == UBI_IO_BAD_HDR_EBADMSG) | ||
954 | /* | ||
955 | * Both EC and VID headers are corrupted and were read | ||
956 | * with data integrity error, probably this is a bad | ||
957 | * PEB, bit it is not marked as bad yet. This may also | ||
958 | * be a result of power cut during erasure. | ||
959 | */ | ||
960 | si->maybe_bad_peb_count += 1; | ||
961 | case UBI_IO_BAD_HDR: | ||
962 | if (ec_err) | ||
963 | /* | ||
964 | * Both headers are corrupted. There is a possibility | ||
965 | * that this a valid UBI PEB which has corresponding | ||
966 | * LEB, but the headers are corrupted. However, it is | ||
967 | * impossible to distinguish it from a PEB which just | ||
968 | * contains garbage because of a power cut during erase | ||
969 | * operation. So we just schedule this PEB for erasure. | ||
970 | * | ||
971 | * Besides, in case of NOR flash, we deliberately | ||
972 | * corrupt both headers because NOR flash erasure is | ||
973 | * slow and can start from the end. | ||
974 | */ | ||
975 | err = 0; | ||
976 | else | ||
977 | /* | ||
978 | * The EC was OK, but the VID header is corrupted. We | ||
979 | * have to check what is in the data area. | ||
980 | */ | ||
981 | err = check_corruption(ubi, vidh, pnum); | ||
982 | |||
983 | if (err < 0) | ||
984 | return err; | ||
985 | else if (!err) | ||
986 | /* This corruption is caused by a power cut */ | ||
987 | err = add_to_list(si, pnum, ec, 1, &si->erase); | ||
988 | else | ||
989 | /* This is an unexpected corruption */ | ||
990 | err = add_corrupted(si, pnum, ec); | ||
991 | if (err) | ||
992 | return err; | ||
993 | goto adjust_mean_ec; | ||
994 | case UBI_IO_FF_BITFLIPS: | ||
995 | err = add_to_list(si, pnum, ec, 1, &si->erase); | ||
996 | if (err) | ||
997 | return err; | ||
998 | goto adjust_mean_ec; | ||
999 | case UBI_IO_FF: | ||
1000 | if (ec_err) | ||
1001 | err = add_to_list(si, pnum, ec, 1, &si->erase); | ||
1002 | else | ||
1003 | err = add_to_list(si, pnum, ec, 0, &si->free); | ||
1004 | if (err) | ||
1005 | return err; | ||
1006 | goto adjust_mean_ec; | ||
1007 | default: | ||
1008 | ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d", | ||
1009 | err); | ||
1010 | return -EINVAL; | ||
1011 | } | ||
1012 | |||
1013 | vol_id = be32_to_cpu(vidh->vol_id); | ||
1014 | if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { | ||
1015 | int lnum = be32_to_cpu(vidh->lnum); | ||
1016 | |||
1017 | /* Unsupported internal volume */ | ||
1018 | switch (vidh->compat) { | ||
1019 | case UBI_COMPAT_DELETE: | ||
1020 | ubi_msg("\"delete\" compatible internal volume %d:%d" | ||
1021 | " found, will remove it", vol_id, lnum); | ||
1022 | err = add_to_list(si, pnum, ec, 1, &si->erase); | ||
1023 | if (err) | ||
1024 | return err; | ||
1025 | return 0; | ||
1026 | |||
1027 | case UBI_COMPAT_RO: | ||
1028 | ubi_msg("read-only compatible internal volume %d:%d" | ||
1029 | " found, switch to read-only mode", | ||
1030 | vol_id, lnum); | ||
1031 | ubi->ro_mode = 1; | ||
1032 | break; | ||
1033 | |||
1034 | case UBI_COMPAT_PRESERVE: | ||
1035 | ubi_msg("\"preserve\" compatible internal volume %d:%d" | ||
1036 | " found", vol_id, lnum); | ||
1037 | err = add_to_list(si, pnum, ec, 0, &si->alien); | ||
1038 | if (err) | ||
1039 | return err; | ||
1040 | return 0; | ||
1041 | |||
1042 | case UBI_COMPAT_REJECT: | ||
1043 | ubi_err("incompatible internal volume %d:%d found", | ||
1044 | vol_id, lnum); | ||
1045 | return -EINVAL; | ||
1046 | } | ||
1047 | } | ||
1048 | |||
1049 | if (ec_err) | ||
1050 | ubi_warn("valid VID header but corrupted EC header at PEB %d", | ||
1051 | pnum); | ||
1052 | err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); | ||
1053 | if (err) | ||
1054 | return err; | ||
1055 | |||
1056 | adjust_mean_ec: | ||
1057 | if (!ec_err) { | ||
1058 | si->ec_sum += ec; | ||
1059 | si->ec_count += 1; | ||
1060 | if (ec > si->max_ec) | ||
1061 | si->max_ec = ec; | ||
1062 | if (ec < si->min_ec) | ||
1063 | si->min_ec = ec; | ||
1064 | } | ||
1065 | |||
1066 | return 0; | ||
1067 | } | ||
1068 | |||
1069 | /** | ||
1070 | * check_what_we_have - check what PEB were found by scanning. | ||
1071 | * @ubi: UBI device description object | ||
1072 | * @si: scanning information | ||
1073 | * | ||
1074 | * This is a helper function which takes a look what PEBs were found by | ||
1075 | * scanning, and decides whether the flash is empty and should be formatted and | ||
1076 | * whether there are too many corrupted PEBs and we should not attach this | ||
1077 | * MTD device. Returns zero if we should proceed with attaching the MTD device, | ||
1078 | * and %-EINVAL if we should not. | ||
1079 | */ | ||
1080 | static int check_what_we_have(struct ubi_device *ubi, struct ubi_scan_info *si) | ||
1081 | { | ||
1082 | struct ubi_scan_leb *seb; | ||
1083 | int max_corr, peb_count; | ||
1084 | |||
1085 | peb_count = ubi->peb_count - si->bad_peb_count - si->alien_peb_count; | ||
1086 | max_corr = peb_count / 20 ?: 8; | ||
1087 | |||
1088 | /* | ||
1089 | * Few corrupted PEBs is not a problem and may be just a result of | ||
1090 | * unclean reboots. However, many of them may indicate some problems | ||
1091 | * with the flash HW or driver. | ||
1092 | */ | ||
1093 | if (si->corr_peb_count) { | ||
1094 | ubi_err("%d PEBs are corrupted and preserved", | ||
1095 | si->corr_peb_count); | ||
1096 | printk(KERN_ERR "Corrupted PEBs are:"); | ||
1097 | list_for_each_entry(seb, &si->corr, u.list) | ||
1098 | printk(KERN_CONT " %d", seb->pnum); | ||
1099 | printk(KERN_CONT "\n"); | ||
1100 | |||
1101 | /* | ||
1102 | * If too many PEBs are corrupted, we refuse attaching, | ||
1103 | * otherwise, only print a warning. | ||
1104 | */ | ||
1105 | if (si->corr_peb_count >= max_corr) { | ||
1106 | ubi_err("too many corrupted PEBs, refusing"); | ||
1107 | return -EINVAL; | ||
1108 | } | ||
1109 | } | ||
1110 | |||
1111 | if (si->empty_peb_count + si->maybe_bad_peb_count == peb_count) { | ||
1112 | /* | ||
1113 | * All PEBs are empty, or almost all - a couple PEBs look like | ||
1114 | * they may be bad PEBs which were not marked as bad yet. | ||
1115 | * | ||
1116 | * This piece of code basically tries to distinguish between | ||
1117 | * the following situations: | ||
1118 | * | ||
1119 | * 1. Flash is empty, but there are few bad PEBs, which are not | ||
1120 | * marked as bad so far, and which were read with error. We | ||
1121 | * want to go ahead and format this flash. While formatting, | ||
1122 | * the faulty PEBs will probably be marked as bad. | ||
1123 | * | ||
1124 | * 2. Flash contains non-UBI data and we do not want to format | ||
1125 | * it and destroy possibly important information. | ||
1126 | */ | ||
1127 | if (si->maybe_bad_peb_count <= 2) { | ||
1128 | si->is_empty = 1; | ||
1129 | ubi_msg("empty MTD device detected"); | ||
1130 | get_random_bytes(&ubi->image_seq, | ||
1131 | sizeof(ubi->image_seq)); | ||
1132 | } else { | ||
1133 | ubi_err("MTD device is not UBI-formatted and possibly " | ||
1134 | "contains non-UBI data - refusing it"); | ||
1135 | return -EINVAL; | ||
1136 | } | ||
1137 | |||
1138 | } | ||
1139 | |||
1140 | return 0; | ||
1141 | } | ||
1142 | |||
1143 | /** | ||
1144 | * ubi_scan - scan an MTD device. | ||
1145 | * @ubi: UBI device description object | ||
1146 | * | ||
1147 | * This function does full scanning of an MTD device and returns complete | ||
1148 | * information about it. In case of failure, an error code is returned. | ||
1149 | */ | ||
1150 | struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) | ||
1151 | { | ||
1152 | int err, pnum; | ||
1153 | struct rb_node *rb1, *rb2; | ||
1154 | struct ubi_scan_volume *sv; | ||
1155 | struct ubi_scan_leb *seb; | ||
1156 | struct ubi_scan_info *si; | ||
1157 | |||
1158 | si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); | ||
1159 | if (!si) | ||
1160 | return ERR_PTR(-ENOMEM); | ||
1161 | |||
1162 | INIT_LIST_HEAD(&si->corr); | ||
1163 | INIT_LIST_HEAD(&si->free); | ||
1164 | INIT_LIST_HEAD(&si->erase); | ||
1165 | INIT_LIST_HEAD(&si->alien); | ||
1166 | si->volumes = RB_ROOT; | ||
1167 | |||
1168 | err = -ENOMEM; | ||
1169 | si->scan_leb_slab = kmem_cache_create("ubi_scan_leb_slab", | ||
1170 | sizeof(struct ubi_scan_leb), | ||
1171 | 0, 0, NULL); | ||
1172 | if (!si->scan_leb_slab) | ||
1173 | goto out_si; | ||
1174 | |||
1175 | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | ||
1176 | if (!ech) | ||
1177 | goto out_slab; | ||
1178 | |||
1179 | vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); | ||
1180 | if (!vidh) | ||
1181 | goto out_ech; | ||
1182 | |||
1183 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { | ||
1184 | cond_resched(); | ||
1185 | |||
1186 | dbg_gen("process PEB %d", pnum); | ||
1187 | err = process_eb(ubi, si, pnum); | ||
1188 | if (err < 0) | ||
1189 | goto out_vidh; | ||
1190 | } | ||
1191 | |||
1192 | dbg_msg("scanning is finished"); | ||
1193 | |||
1194 | /* Calculate mean erase counter */ | ||
1195 | if (si->ec_count) | ||
1196 | si->mean_ec = div_u64(si->ec_sum, si->ec_count); | ||
1197 | |||
1198 | err = check_what_we_have(ubi, si); | ||
1199 | if (err) | ||
1200 | goto out_vidh; | ||
1201 | |||
1202 | /* | ||
1203 | * In case of unknown erase counter we use the mean erase counter | ||
1204 | * value. | ||
1205 | */ | ||
1206 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | ||
1207 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) | ||
1208 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
1209 | seb->ec = si->mean_ec; | ||
1210 | } | ||
1211 | |||
1212 | list_for_each_entry(seb, &si->free, u.list) { | ||
1213 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
1214 | seb->ec = si->mean_ec; | ||
1215 | } | ||
1216 | |||
1217 | list_for_each_entry(seb, &si->corr, u.list) | ||
1218 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
1219 | seb->ec = si->mean_ec; | ||
1220 | |||
1221 | list_for_each_entry(seb, &si->erase, u.list) | ||
1222 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
1223 | seb->ec = si->mean_ec; | ||
1224 | |||
1225 | err = paranoid_check_si(ubi, si); | ||
1226 | if (err) | ||
1227 | goto out_vidh; | ||
1228 | |||
1229 | ubi_free_vid_hdr(ubi, vidh); | ||
1230 | kfree(ech); | ||
1231 | |||
1232 | return si; | ||
1233 | |||
1234 | out_vidh: | ||
1235 | ubi_free_vid_hdr(ubi, vidh); | ||
1236 | out_ech: | ||
1237 | kfree(ech); | ||
1238 | out_slab: | ||
1239 | kmem_cache_destroy(si->scan_leb_slab); | ||
1240 | out_si: | ||
1241 | ubi_scan_destroy_si(si); | ||
1242 | return ERR_PTR(err); | ||
1243 | } | ||
1244 | |||
1245 | /** | ||
1246 | * destroy_sv - free the scanning volume information | ||
1247 | * @sv: scanning volume information | ||
1248 | * @si: scanning information | ||
1249 | * | ||
1250 | * This function destroys the volume RB-tree (@sv->root) and the scanning | ||
1251 | * volume information. | ||
1252 | */ | ||
1253 | static void destroy_sv(struct ubi_scan_info *si, struct ubi_scan_volume *sv) | ||
1254 | { | ||
1255 | struct ubi_scan_leb *seb; | ||
1256 | struct rb_node *this = sv->root.rb_node; | ||
1257 | |||
1258 | while (this) { | ||
1259 | if (this->rb_left) | ||
1260 | this = this->rb_left; | ||
1261 | else if (this->rb_right) | ||
1262 | this = this->rb_right; | ||
1263 | else { | ||
1264 | seb = rb_entry(this, struct ubi_scan_leb, u.rb); | ||
1265 | this = rb_parent(this); | ||
1266 | if (this) { | ||
1267 | if (this->rb_left == &seb->u.rb) | ||
1268 | this->rb_left = NULL; | ||
1269 | else | ||
1270 | this->rb_right = NULL; | ||
1271 | } | ||
1272 | |||
1273 | kmem_cache_free(si->scan_leb_slab, seb); | ||
1274 | } | ||
1275 | } | ||
1276 | kfree(sv); | ||
1277 | } | ||
1278 | |||
1279 | /** | ||
1280 | * ubi_scan_destroy_si - destroy scanning information. | ||
1281 | * @si: scanning information | ||
1282 | */ | ||
1283 | void ubi_scan_destroy_si(struct ubi_scan_info *si) | ||
1284 | { | ||
1285 | struct ubi_scan_leb *seb, *seb_tmp; | ||
1286 | struct ubi_scan_volume *sv; | ||
1287 | struct rb_node *rb; | ||
1288 | |||
1289 | list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { | ||
1290 | list_del(&seb->u.list); | ||
1291 | kmem_cache_free(si->scan_leb_slab, seb); | ||
1292 | } | ||
1293 | list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { | ||
1294 | list_del(&seb->u.list); | ||
1295 | kmem_cache_free(si->scan_leb_slab, seb); | ||
1296 | } | ||
1297 | list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { | ||
1298 | list_del(&seb->u.list); | ||
1299 | kmem_cache_free(si->scan_leb_slab, seb); | ||
1300 | } | ||
1301 | list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { | ||
1302 | list_del(&seb->u.list); | ||
1303 | kmem_cache_free(si->scan_leb_slab, seb); | ||
1304 | } | ||
1305 | |||
1306 | /* Destroy the volume RB-tree */ | ||
1307 | rb = si->volumes.rb_node; | ||
1308 | while (rb) { | ||
1309 | if (rb->rb_left) | ||
1310 | rb = rb->rb_left; | ||
1311 | else if (rb->rb_right) | ||
1312 | rb = rb->rb_right; | ||
1313 | else { | ||
1314 | sv = rb_entry(rb, struct ubi_scan_volume, rb); | ||
1315 | |||
1316 | rb = rb_parent(rb); | ||
1317 | if (rb) { | ||
1318 | if (rb->rb_left == &sv->rb) | ||
1319 | rb->rb_left = NULL; | ||
1320 | else | ||
1321 | rb->rb_right = NULL; | ||
1322 | } | ||
1323 | |||
1324 | destroy_sv(si, sv); | ||
1325 | } | ||
1326 | } | ||
1327 | |||
1328 | kmem_cache_destroy(si->scan_leb_slab); | ||
1329 | kfree(si); | ||
1330 | } | ||
1331 | |||
1332 | #ifdef CONFIG_MTD_UBI_DEBUG | ||
1333 | |||
1334 | /** | ||
1335 | * paranoid_check_si - check the scanning information. | ||
1336 | * @ubi: UBI device description object | ||
1337 | * @si: scanning information | ||
1338 | * | ||
1339 | * This function returns zero if the scanning information is all right, and a | ||
1340 | * negative error code if not or if an error occurred. | ||
1341 | */ | ||
1342 | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) | ||
1343 | { | ||
1344 | int pnum, err, vols_found = 0; | ||
1345 | struct rb_node *rb1, *rb2; | ||
1346 | struct ubi_scan_volume *sv; | ||
1347 | struct ubi_scan_leb *seb, *last_seb; | ||
1348 | uint8_t *buf; | ||
1349 | |||
1350 | if (!ubi->dbg->chk_gen) | ||
1351 | return 0; | ||
1352 | |||
1353 | /* | ||
1354 | * At first, check that scanning information is OK. | ||
1355 | */ | ||
1356 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | ||
1357 | int leb_count = 0; | ||
1358 | |||
1359 | cond_resched(); | ||
1360 | |||
1361 | vols_found += 1; | ||
1362 | |||
1363 | if (si->is_empty) { | ||
1364 | ubi_err("bad is_empty flag"); | ||
1365 | goto bad_sv; | ||
1366 | } | ||
1367 | |||
1368 | if (sv->vol_id < 0 || sv->highest_lnum < 0 || | ||
1369 | sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || | ||
1370 | sv->data_pad < 0 || sv->last_data_size < 0) { | ||
1371 | ubi_err("negative values"); | ||
1372 | goto bad_sv; | ||
1373 | } | ||
1374 | |||
1375 | if (sv->vol_id >= UBI_MAX_VOLUMES && | ||
1376 | sv->vol_id < UBI_INTERNAL_VOL_START) { | ||
1377 | ubi_err("bad vol_id"); | ||
1378 | goto bad_sv; | ||
1379 | } | ||
1380 | |||
1381 | if (sv->vol_id > si->highest_vol_id) { | ||
1382 | ubi_err("highest_vol_id is %d, but vol_id %d is there", | ||
1383 | si->highest_vol_id, sv->vol_id); | ||
1384 | goto out; | ||
1385 | } | ||
1386 | |||
1387 | if (sv->vol_type != UBI_DYNAMIC_VOLUME && | ||
1388 | sv->vol_type != UBI_STATIC_VOLUME) { | ||
1389 | ubi_err("bad vol_type"); | ||
1390 | goto bad_sv; | ||
1391 | } | ||
1392 | |||
1393 | if (sv->data_pad > ubi->leb_size / 2) { | ||
1394 | ubi_err("bad data_pad"); | ||
1395 | goto bad_sv; | ||
1396 | } | ||
1397 | |||
1398 | last_seb = NULL; | ||
1399 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | ||
1400 | cond_resched(); | ||
1401 | |||
1402 | last_seb = seb; | ||
1403 | leb_count += 1; | ||
1404 | |||
1405 | if (seb->pnum < 0 || seb->ec < 0) { | ||
1406 | ubi_err("negative values"); | ||
1407 | goto bad_seb; | ||
1408 | } | ||
1409 | |||
1410 | if (seb->ec < si->min_ec) { | ||
1411 | ubi_err("bad si->min_ec (%d), %d found", | ||
1412 | si->min_ec, seb->ec); | ||
1413 | goto bad_seb; | ||
1414 | } | ||
1415 | |||
1416 | if (seb->ec > si->max_ec) { | ||
1417 | ubi_err("bad si->max_ec (%d), %d found", | ||
1418 | si->max_ec, seb->ec); | ||
1419 | goto bad_seb; | ||
1420 | } | ||
1421 | |||
1422 | if (seb->pnum >= ubi->peb_count) { | ||
1423 | ubi_err("too high PEB number %d, total PEBs %d", | ||
1424 | seb->pnum, ubi->peb_count); | ||
1425 | goto bad_seb; | ||
1426 | } | ||
1427 | |||
1428 | if (sv->vol_type == UBI_STATIC_VOLUME) { | ||
1429 | if (seb->lnum >= sv->used_ebs) { | ||
1430 | ubi_err("bad lnum or used_ebs"); | ||
1431 | goto bad_seb; | ||
1432 | } | ||
1433 | } else { | ||
1434 | if (sv->used_ebs != 0) { | ||
1435 | ubi_err("non-zero used_ebs"); | ||
1436 | goto bad_seb; | ||
1437 | } | ||
1438 | } | ||
1439 | |||
1440 | if (seb->lnum > sv->highest_lnum) { | ||
1441 | ubi_err("incorrect highest_lnum or lnum"); | ||
1442 | goto bad_seb; | ||
1443 | } | ||
1444 | } | ||
1445 | |||
1446 | if (sv->leb_count != leb_count) { | ||
1447 | ubi_err("bad leb_count, %d objects in the tree", | ||
1448 | leb_count); | ||
1449 | goto bad_sv; | ||
1450 | } | ||
1451 | |||
1452 | if (!last_seb) | ||
1453 | continue; | ||
1454 | |||
1455 | seb = last_seb; | ||
1456 | |||
1457 | if (seb->lnum != sv->highest_lnum) { | ||
1458 | ubi_err("bad highest_lnum"); | ||
1459 | goto bad_seb; | ||
1460 | } | ||
1461 | } | ||
1462 | |||
1463 | if (vols_found != si->vols_found) { | ||
1464 | ubi_err("bad si->vols_found %d, should be %d", | ||
1465 | si->vols_found, vols_found); | ||
1466 | goto out; | ||
1467 | } | ||
1468 | |||
1469 | /* Check that scanning information is correct */ | ||
1470 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | ||
1471 | last_seb = NULL; | ||
1472 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | ||
1473 | int vol_type; | ||
1474 | |||
1475 | cond_resched(); | ||
1476 | |||
1477 | last_seb = seb; | ||
1478 | |||
1479 | err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); | ||
1480 | if (err && err != UBI_IO_BITFLIPS) { | ||
1481 | ubi_err("VID header is not OK (%d)", err); | ||
1482 | if (err > 0) | ||
1483 | err = -EIO; | ||
1484 | return err; | ||
1485 | } | ||
1486 | |||
1487 | vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? | ||
1488 | UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; | ||
1489 | if (sv->vol_type != vol_type) { | ||
1490 | ubi_err("bad vol_type"); | ||
1491 | goto bad_vid_hdr; | ||
1492 | } | ||
1493 | |||
1494 | if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { | ||
1495 | ubi_err("bad sqnum %llu", seb->sqnum); | ||
1496 | goto bad_vid_hdr; | ||
1497 | } | ||
1498 | |||
1499 | if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { | ||
1500 | ubi_err("bad vol_id %d", sv->vol_id); | ||
1501 | goto bad_vid_hdr; | ||
1502 | } | ||
1503 | |||
1504 | if (sv->compat != vidh->compat) { | ||
1505 | ubi_err("bad compat %d", vidh->compat); | ||
1506 | goto bad_vid_hdr; | ||
1507 | } | ||
1508 | |||
1509 | if (seb->lnum != be32_to_cpu(vidh->lnum)) { | ||
1510 | ubi_err("bad lnum %d", seb->lnum); | ||
1511 | goto bad_vid_hdr; | ||
1512 | } | ||
1513 | |||
1514 | if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { | ||
1515 | ubi_err("bad used_ebs %d", sv->used_ebs); | ||
1516 | goto bad_vid_hdr; | ||
1517 | } | ||
1518 | |||
1519 | if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { | ||
1520 | ubi_err("bad data_pad %d", sv->data_pad); | ||
1521 | goto bad_vid_hdr; | ||
1522 | } | ||
1523 | } | ||
1524 | |||
1525 | if (!last_seb) | ||
1526 | continue; | ||
1527 | |||
1528 | if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { | ||
1529 | ubi_err("bad highest_lnum %d", sv->highest_lnum); | ||
1530 | goto bad_vid_hdr; | ||
1531 | } | ||
1532 | |||
1533 | if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { | ||
1534 | ubi_err("bad last_data_size %d", sv->last_data_size); | ||
1535 | goto bad_vid_hdr; | ||
1536 | } | ||
1537 | } | ||
1538 | |||
1539 | /* | ||
1540 | * Make sure that all the physical eraseblocks are in one of the lists | ||
1541 | * or trees. | ||
1542 | */ | ||
1543 | buf = kzalloc(ubi->peb_count, GFP_KERNEL); | ||
1544 | if (!buf) | ||
1545 | return -ENOMEM; | ||
1546 | |||
1547 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { | ||
1548 | err = ubi_io_is_bad(ubi, pnum); | ||
1549 | if (err < 0) { | ||
1550 | kfree(buf); | ||
1551 | return err; | ||
1552 | } else if (err) | ||
1553 | buf[pnum] = 1; | ||
1554 | } | ||
1555 | |||
1556 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) | ||
1557 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) | ||
1558 | buf[seb->pnum] = 1; | ||
1559 | |||
1560 | list_for_each_entry(seb, &si->free, u.list) | ||
1561 | buf[seb->pnum] = 1; | ||
1562 | |||
1563 | list_for_each_entry(seb, &si->corr, u.list) | ||
1564 | buf[seb->pnum] = 1; | ||
1565 | |||
1566 | list_for_each_entry(seb, &si->erase, u.list) | ||
1567 | buf[seb->pnum] = 1; | ||
1568 | |||
1569 | list_for_each_entry(seb, &si->alien, u.list) | ||
1570 | buf[seb->pnum] = 1; | ||
1571 | |||
1572 | err = 0; | ||
1573 | for (pnum = 0; pnum < ubi->peb_count; pnum++) | ||
1574 | if (!buf[pnum]) { | ||
1575 | ubi_err("PEB %d is not referred", pnum); | ||
1576 | err = 1; | ||
1577 | } | ||
1578 | |||
1579 | kfree(buf); | ||
1580 | if (err) | ||
1581 | goto out; | ||
1582 | return 0; | ||
1583 | |||
1584 | bad_seb: | ||
1585 | ubi_err("bad scanning information about LEB %d", seb->lnum); | ||
1586 | ubi_dbg_dump_seb(seb, 0); | ||
1587 | ubi_dbg_dump_sv(sv); | ||
1588 | goto out; | ||
1589 | |||
1590 | bad_sv: | ||
1591 | ubi_err("bad scanning information about volume %d", sv->vol_id); | ||
1592 | ubi_dbg_dump_sv(sv); | ||
1593 | goto out; | ||
1594 | |||
1595 | bad_vid_hdr: | ||
1596 | ubi_err("bad scanning information about volume %d", sv->vol_id); | ||
1597 | ubi_dbg_dump_sv(sv); | ||
1598 | ubi_dbg_dump_vid_hdr(vidh); | ||
1599 | |||
1600 | out: | ||
1601 | ubi_dbg_dump_stack(); | ||
1602 | return -EINVAL; | ||
1603 | } | ||
1604 | |||
1605 | #endif /* CONFIG_MTD_UBI_DEBUG */ | ||
diff --git a/drivers/mtd/ubi/scan.h b/drivers/mtd/ubi/scan.h new file mode 100644 index 00000000000..d48aef15ab5 --- /dev/null +++ b/drivers/mtd/ubi/scan.h | |||
@@ -0,0 +1,174 @@ | |||
1 | /* | ||
2 | * Copyright (c) International Business Machines Corp., 2006 | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | ||
12 | * the GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
17 | * | ||
18 | * Author: Artem Bityutskiy (Битюцкий Артём) | ||
19 | */ | ||
20 | |||
21 | #ifndef __UBI_SCAN_H__ | ||
22 | #define __UBI_SCAN_H__ | ||
23 | |||
24 | /* The erase counter value for this physical eraseblock is unknown */ | ||
25 | #define UBI_SCAN_UNKNOWN_EC (-1) | ||
26 | |||
27 | /** | ||
28 | * struct ubi_scan_leb - scanning information about a physical eraseblock. | ||
29 | * @ec: erase counter (%UBI_SCAN_UNKNOWN_EC if it is unknown) | ||
30 | * @pnum: physical eraseblock number | ||
31 | * @lnum: logical eraseblock number | ||
32 | * @scrub: if this physical eraseblock needs scrubbing | ||
33 | * @copy_flag: this LEB is a copy (@copy_flag is set in VID header of this LEB) | ||
34 | * @sqnum: sequence number | ||
35 | * @u: unions RB-tree or @list links | ||
36 | * @u.rb: link in the per-volume RB-tree of &struct ubi_scan_leb objects | ||
37 | * @u.list: link in one of the eraseblock lists | ||
38 | * | ||
39 | * One object of this type is allocated for each physical eraseblock during | ||
40 | * scanning. | ||
41 | */ | ||
42 | struct ubi_scan_leb { | ||
43 | int ec; | ||
44 | int pnum; | ||
45 | int lnum; | ||
46 | unsigned int scrub:1; | ||
47 | unsigned int copy_flag:1; | ||
48 | unsigned long long sqnum; | ||
49 | union { | ||
50 | struct rb_node rb; | ||
51 | struct list_head list; | ||
52 | } u; | ||
53 | }; | ||
54 | |||
55 | /** | ||
56 | * struct ubi_scan_volume - scanning information about a volume. | ||
57 | * @vol_id: volume ID | ||
58 | * @highest_lnum: highest logical eraseblock number in this volume | ||
59 | * @leb_count: number of logical eraseblocks in this volume | ||
60 | * @vol_type: volume type | ||
61 | * @used_ebs: number of used logical eraseblocks in this volume (only for | ||
62 | * static volumes) | ||
63 | * @last_data_size: amount of data in the last logical eraseblock of this | ||
64 | * volume (always equivalent to the usable logical eraseblock | ||
65 | * size in case of dynamic volumes) | ||
66 | * @data_pad: how many bytes at the end of logical eraseblocks of this volume | ||
67 | * are not used (due to volume alignment) | ||
68 | * @compat: compatibility flags of this volume | ||
69 | * @rb: link in the volume RB-tree | ||
70 | * @root: root of the RB-tree containing all the eraseblock belonging to this | ||
71 | * volume (&struct ubi_scan_leb objects) | ||
72 | * | ||
73 | * One object of this type is allocated for each volume during scanning. | ||
74 | */ | ||
75 | struct ubi_scan_volume { | ||
76 | int vol_id; | ||
77 | int highest_lnum; | ||
78 | int leb_count; | ||
79 | int vol_type; | ||
80 | int used_ebs; | ||
81 | int last_data_size; | ||
82 | int data_pad; | ||
83 | int compat; | ||
84 | struct rb_node rb; | ||
85 | struct rb_root root; | ||
86 | }; | ||
87 | |||
88 | /** | ||
89 | * struct ubi_scan_info - UBI scanning information. | ||
90 | * @volumes: root of the volume RB-tree | ||
91 | * @corr: list of corrupted physical eraseblocks | ||
92 | * @free: list of free physical eraseblocks | ||
93 | * @erase: list of physical eraseblocks which have to be erased | ||
94 | * @alien: list of physical eraseblocks which should not be used by UBI (e.g., | ||
95 | * those belonging to "preserve"-compatible internal volumes) | ||
96 | * @corr_peb_count: count of PEBs in the @corr list | ||
97 | * @empty_peb_count: count of PEBs which are presumably empty (contain only | ||
98 | * 0xFF bytes) | ||
99 | * @alien_peb_count: count of PEBs in the @alien list | ||
100 | * @bad_peb_count: count of bad physical eraseblocks | ||
101 | * @maybe_bad_peb_count: count of bad physical eraseblocks which are not marked | ||
102 | * as bad yet, but which look like bad | ||
103 | * @vols_found: number of volumes found during scanning | ||
104 | * @highest_vol_id: highest volume ID | ||
105 | * @is_empty: flag indicating whether the MTD device is empty or not | ||
106 | * @min_ec: lowest erase counter value | ||
107 | * @max_ec: highest erase counter value | ||
108 | * @max_sqnum: highest sequence number value | ||
109 | * @mean_ec: mean erase counter value | ||
110 | * @ec_sum: a temporary variable used when calculating @mean_ec | ||
111 | * @ec_count: a temporary variable used when calculating @mean_ec | ||
112 | * @scan_leb_slab: slab cache for &struct ubi_scan_leb objects | ||
113 | * | ||
114 | * This data structure contains the result of scanning and may be used by other | ||
115 | * UBI sub-systems to build final UBI data structures, further error-recovery | ||
116 | * and so on. | ||
117 | */ | ||
118 | struct ubi_scan_info { | ||
119 | struct rb_root volumes; | ||
120 | struct list_head corr; | ||
121 | struct list_head free; | ||
122 | struct list_head erase; | ||
123 | struct list_head alien; | ||
124 | int corr_peb_count; | ||
125 | int empty_peb_count; | ||
126 | int alien_peb_count; | ||
127 | int bad_peb_count; | ||
128 | int maybe_bad_peb_count; | ||
129 | int vols_found; | ||
130 | int highest_vol_id; | ||
131 | int is_empty; | ||
132 | int min_ec; | ||
133 | int max_ec; | ||
134 | unsigned long long max_sqnum; | ||
135 | int mean_ec; | ||
136 | uint64_t ec_sum; | ||
137 | int ec_count; | ||
138 | struct kmem_cache *scan_leb_slab; | ||
139 | }; | ||
140 | |||
141 | struct ubi_device; | ||
142 | struct ubi_vid_hdr; | ||
143 | |||
144 | /* | ||
145 | * ubi_scan_move_to_list - move a PEB from the volume tree to a list. | ||
146 | * | ||
147 | * @sv: volume scanning information | ||
148 | * @seb: scanning eraseblock information | ||
149 | * @list: the list to move to | ||
150 | */ | ||
151 | static inline void ubi_scan_move_to_list(struct ubi_scan_volume *sv, | ||
152 | struct ubi_scan_leb *seb, | ||
153 | struct list_head *list) | ||
154 | { | ||
155 | rb_erase(&seb->u.rb, &sv->root); | ||
156 | list_add_tail(&seb->u.list, list); | ||
157 | } | ||
158 | |||
159 | int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, | ||
160 | int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, | ||
161 | int bitflips); | ||
162 | struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, | ||
163 | int vol_id); | ||
164 | struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, | ||
165 | int lnum); | ||
166 | void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv); | ||
167 | struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, | ||
168 | struct ubi_scan_info *si); | ||
169 | int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, | ||
170 | int pnum, int ec); | ||
171 | struct ubi_scan_info *ubi_scan(struct ubi_device *ubi); | ||
172 | void ubi_scan_destroy_si(struct ubi_scan_info *si); | ||
173 | |||
174 | #endif /* !__UBI_SCAN_H__ */ | ||