diff options
| author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
|---|---|---|
| committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
| commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
| tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/mtd/ubi | |
| parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) | |
Diffstat (limited to 'drivers/mtd/ubi')
| -rw-r--r-- | drivers/mtd/ubi/scan.c | 1605 | ||||
| -rw-r--r-- | drivers/mtd/ubi/scan.h | 174 |
2 files changed, 1779 insertions, 0 deletions
diff --git a/drivers/mtd/ubi/scan.c b/drivers/mtd/ubi/scan.c new file mode 100644 index 00000000000..a3a198f9b98 --- /dev/null +++ b/drivers/mtd/ubi/scan.c | |||
| @@ -0,0 +1,1605 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (c) International Business Machines Corp., 2006 | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation; either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | ||
| 12 | * the GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program; if not, write to the Free Software | ||
| 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
| 17 | * | ||
| 18 | * Author: Artem Bityutskiy (Битюцкий Артём) | ||
| 19 | */ | ||
| 20 | |||
| 21 | /* | ||
| 22 | * UBI scanning sub-system. | ||
| 23 | * | ||
| 24 | * This sub-system is responsible for scanning the flash media, checking UBI | ||
| 25 | * headers and providing complete information about the UBI flash image. | ||
| 26 | * | ||
| 27 | * The scanning information is represented by a &struct ubi_scan_info' object. | ||
| 28 | * Information about found volumes is represented by &struct ubi_scan_volume | ||
| 29 | * objects which are kept in volume RB-tree with root at the @volumes field. | ||
| 30 | * The RB-tree is indexed by the volume ID. | ||
| 31 | * | ||
| 32 | * Scanned logical eraseblocks are represented by &struct ubi_scan_leb objects. | ||
| 33 | * These objects are kept in per-volume RB-trees with the root at the | ||
| 34 | * corresponding &struct ubi_scan_volume object. To put it differently, we keep | ||
| 35 | * an RB-tree of per-volume objects and each of these objects is the root of | ||
| 36 | * RB-tree of per-eraseblock objects. | ||
| 37 | * | ||
| 38 | * Corrupted physical eraseblocks are put to the @corr list, free physical | ||
| 39 | * eraseblocks are put to the @free list and the physical eraseblock to be | ||
| 40 | * erased are put to the @erase list. | ||
| 41 | * | ||
| 42 | * About corruptions | ||
| 43 | * ~~~~~~~~~~~~~~~~~ | ||
| 44 | * | ||
| 45 | * UBI protects EC and VID headers with CRC-32 checksums, so it can detect | ||
| 46 | * whether the headers are corrupted or not. Sometimes UBI also protects the | ||
| 47 | * data with CRC-32, e.g., when it executes the atomic LEB change operation, or | ||
| 48 | * when it moves the contents of a PEB for wear-leveling purposes. | ||
| 49 | * | ||
| 50 | * UBI tries to distinguish between 2 types of corruptions. | ||
| 51 | * | ||
| 52 | * 1. Corruptions caused by power cuts. These are expected corruptions and UBI | ||
| 53 | * tries to handle them gracefully, without printing too many warnings and | ||
| 54 | * error messages. The idea is that we do not lose important data in these case | ||
| 55 | * - we may lose only the data which was being written to the media just before | ||
| 56 | * the power cut happened, and the upper layers (e.g., UBIFS) are supposed to | ||
| 57 | * handle such data losses (e.g., by using the FS journal). | ||
| 58 | * | ||
| 59 | * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like | ||
| 60 | * the reason is a power cut, UBI puts this PEB to the @erase list, and all | ||
| 61 | * PEBs in the @erase list are scheduled for erasure later. | ||
| 62 | * | ||
| 63 | * 2. Unexpected corruptions which are not caused by power cuts. During | ||
| 64 | * scanning, such PEBs are put to the @corr list and UBI preserves them. | ||
| 65 | * Obviously, this lessens the amount of available PEBs, and if at some point | ||
| 66 | * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs | ||
| 67 | * about such PEBs every time the MTD device is attached. | ||
| 68 | * | ||
| 69 | * However, it is difficult to reliably distinguish between these types of | ||
| 70 | * corruptions and UBI's strategy is as follows. UBI assumes corruption type 2 | ||
| 71 | * if the VID header is corrupted and the data area does not contain all 0xFFs, | ||
| 72 | * and there were no bit-flips or integrity errors while reading the data area. | ||
| 73 | * Otherwise UBI assumes corruption type 1. So the decision criteria are as | ||
| 74 | * follows. | ||
| 75 | * o If the data area contains only 0xFFs, there is no data, and it is safe | ||
| 76 | * to just erase this PEB - this is corruption type 1. | ||
| 77 | * o If the data area has bit-flips or data integrity errors (ECC errors on | ||
| 78 | * NAND), it is probably a PEB which was being erased when power cut | ||
| 79 | * happened, so this is corruption type 1. However, this is just a guess, | ||
| 80 | * which might be wrong. | ||
| 81 | * o Otherwise this it corruption type 2. | ||
| 82 | */ | ||
| 83 | |||
| 84 | #include <linux/err.h> | ||
| 85 | #include <linux/slab.h> | ||
| 86 | #include <linux/crc32.h> | ||
| 87 | #include <linux/math64.h> | ||
| 88 | #include <linux/random.h> | ||
| 89 | #include "ubi.h" | ||
| 90 | |||
| 91 | #ifdef CONFIG_MTD_UBI_DEBUG | ||
| 92 | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); | ||
| 93 | #else | ||
| 94 | #define paranoid_check_si(ubi, si) 0 | ||
| 95 | #endif | ||
| 96 | |||
| 97 | /* Temporary variables used during scanning */ | ||
| 98 | static struct ubi_ec_hdr *ech; | ||
| 99 | static struct ubi_vid_hdr *vidh; | ||
| 100 | |||
| 101 | /** | ||
| 102 | * add_to_list - add physical eraseblock to a list. | ||
| 103 | * @si: scanning information | ||
| 104 | * @pnum: physical eraseblock number to add | ||
| 105 | * @ec: erase counter of the physical eraseblock | ||
| 106 | * @to_head: if not zero, add to the head of the list | ||
| 107 | * @list: the list to add to | ||
| 108 | * | ||
| 109 | * This function adds physical eraseblock @pnum to free, erase, or alien lists. | ||
| 110 | * If @to_head is not zero, PEB will be added to the head of the list, which | ||
| 111 | * basically means it will be processed first later. E.g., we add corrupted | ||
| 112 | * PEBs (corrupted due to power cuts) to the head of the erase list to make | ||
| 113 | * sure we erase them first and get rid of corruptions ASAP. This function | ||
| 114 | * returns zero in case of success and a negative error code in case of | ||
| 115 | * failure. | ||
| 116 | */ | ||
| 117 | static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, int to_head, | ||
| 118 | struct list_head *list) | ||
| 119 | { | ||
| 120 | struct ubi_scan_leb *seb; | ||
| 121 | |||
| 122 | if (list == &si->free) { | ||
| 123 | dbg_bld("add to free: PEB %d, EC %d", pnum, ec); | ||
| 124 | } else if (list == &si->erase) { | ||
| 125 | dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); | ||
| 126 | } else if (list == &si->alien) { | ||
| 127 | dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); | ||
| 128 | si->alien_peb_count += 1; | ||
| 129 | } else | ||
| 130 | BUG(); | ||
| 131 | |||
| 132 | seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL); | ||
| 133 | if (!seb) | ||
| 134 | return -ENOMEM; | ||
| 135 | |||
| 136 | seb->pnum = pnum; | ||
| 137 | seb->ec = ec; | ||
| 138 | if (to_head) | ||
| 139 | list_add(&seb->u.list, list); | ||
| 140 | else | ||
| 141 | list_add_tail(&seb->u.list, list); | ||
| 142 | return 0; | ||
| 143 | } | ||
| 144 | |||
| 145 | /** | ||
| 146 | * add_corrupted - add a corrupted physical eraseblock. | ||
| 147 | * @si: scanning information | ||
| 148 | * @pnum: physical eraseblock number to add | ||
| 149 | * @ec: erase counter of the physical eraseblock | ||
| 150 | * | ||
| 151 | * This function adds corrupted physical eraseblock @pnum to the 'corr' list. | ||
| 152 | * The corruption was presumably not caused by a power cut. Returns zero in | ||
| 153 | * case of success and a negative error code in case of failure. | ||
| 154 | */ | ||
| 155 | static int add_corrupted(struct ubi_scan_info *si, int pnum, int ec) | ||
| 156 | { | ||
| 157 | struct ubi_scan_leb *seb; | ||
| 158 | |||
| 159 | dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); | ||
| 160 | |||
| 161 | seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL); | ||
| 162 | if (!seb) | ||
| 163 | return -ENOMEM; | ||
| 164 | |||
| 165 | si->corr_peb_count += 1; | ||
| 166 | seb->pnum = pnum; | ||
| 167 | seb->ec = ec; | ||
| 168 | list_add(&seb->u.list, &si->corr); | ||
| 169 | return 0; | ||
| 170 | } | ||
| 171 | |||
| 172 | /** | ||
| 173 | * validate_vid_hdr - check volume identifier header. | ||
| 174 | * @vid_hdr: the volume identifier header to check | ||
| 175 | * @sv: information about the volume this logical eraseblock belongs to | ||
| 176 | * @pnum: physical eraseblock number the VID header came from | ||
| 177 | * | ||
| 178 | * This function checks that data stored in @vid_hdr is consistent. Returns | ||
| 179 | * non-zero if an inconsistency was found and zero if not. | ||
| 180 | * | ||
| 181 | * Note, UBI does sanity check of everything it reads from the flash media. | ||
| 182 | * Most of the checks are done in the I/O sub-system. Here we check that the | ||
| 183 | * information in the VID header is consistent to the information in other VID | ||
| 184 | * headers of the same volume. | ||
| 185 | */ | ||
| 186 | static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, | ||
| 187 | const struct ubi_scan_volume *sv, int pnum) | ||
| 188 | { | ||
| 189 | int vol_type = vid_hdr->vol_type; | ||
| 190 | int vol_id = be32_to_cpu(vid_hdr->vol_id); | ||
| 191 | int used_ebs = be32_to_cpu(vid_hdr->used_ebs); | ||
| 192 | int data_pad = be32_to_cpu(vid_hdr->data_pad); | ||
| 193 | |||
| 194 | if (sv->leb_count != 0) { | ||
| 195 | int sv_vol_type; | ||
| 196 | |||
| 197 | /* | ||
| 198 | * This is not the first logical eraseblock belonging to this | ||
| 199 | * volume. Ensure that the data in its VID header is consistent | ||
| 200 | * to the data in previous logical eraseblock headers. | ||
| 201 | */ | ||
| 202 | |||
| 203 | if (vol_id != sv->vol_id) { | ||
| 204 | dbg_err("inconsistent vol_id"); | ||
| 205 | goto bad; | ||
| 206 | } | ||
| 207 | |||
| 208 | if (sv->vol_type == UBI_STATIC_VOLUME) | ||
| 209 | sv_vol_type = UBI_VID_STATIC; | ||
| 210 | else | ||
| 211 | sv_vol_type = UBI_VID_DYNAMIC; | ||
| 212 | |||
| 213 | if (vol_type != sv_vol_type) { | ||
| 214 | dbg_err("inconsistent vol_type"); | ||
| 215 | goto bad; | ||
| 216 | } | ||
| 217 | |||
| 218 | if (used_ebs != sv->used_ebs) { | ||
| 219 | dbg_err("inconsistent used_ebs"); | ||
| 220 | goto bad; | ||
| 221 | } | ||
| 222 | |||
| 223 | if (data_pad != sv->data_pad) { | ||
| 224 | dbg_err("inconsistent data_pad"); | ||
| 225 | goto bad; | ||
| 226 | } | ||
| 227 | } | ||
| 228 | |||
| 229 | return 0; | ||
| 230 | |||
| 231 | bad: | ||
| 232 | ubi_err("inconsistent VID header at PEB %d", pnum); | ||
| 233 | ubi_dbg_dump_vid_hdr(vid_hdr); | ||
| 234 | ubi_dbg_dump_sv(sv); | ||
| 235 | return -EINVAL; | ||
| 236 | } | ||
| 237 | |||
| 238 | /** | ||
| 239 | * add_volume - add volume to the scanning information. | ||
| 240 | * @si: scanning information | ||
| 241 | * @vol_id: ID of the volume to add | ||
| 242 | * @pnum: physical eraseblock number | ||
| 243 | * @vid_hdr: volume identifier header | ||
| 244 | * | ||
| 245 | * If the volume corresponding to the @vid_hdr logical eraseblock is already | ||
| 246 | * present in the scanning information, this function does nothing. Otherwise | ||
| 247 | * it adds corresponding volume to the scanning information. Returns a pointer | ||
| 248 | * to the scanning volume object in case of success and a negative error code | ||
| 249 | * in case of failure. | ||
| 250 | */ | ||
| 251 | static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, | ||
| 252 | int pnum, | ||
| 253 | const struct ubi_vid_hdr *vid_hdr) | ||
| 254 | { | ||
| 255 | struct ubi_scan_volume *sv; | ||
| 256 | struct rb_node **p = &si->volumes.rb_node, *parent = NULL; | ||
| 257 | |||
| 258 | ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); | ||
| 259 | |||
| 260 | /* Walk the volume RB-tree to look if this volume is already present */ | ||
| 261 | while (*p) { | ||
| 262 | parent = *p; | ||
| 263 | sv = rb_entry(parent, struct ubi_scan_volume, rb); | ||
| 264 | |||
| 265 | if (vol_id == sv->vol_id) | ||
| 266 | return sv; | ||
| 267 | |||
| 268 | if (vol_id > sv->vol_id) | ||
| 269 | p = &(*p)->rb_left; | ||
| 270 | else | ||
| 271 | p = &(*p)->rb_right; | ||
| 272 | } | ||
| 273 | |||
| 274 | /* The volume is absent - add it */ | ||
| 275 | sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); | ||
| 276 | if (!sv) | ||
| 277 | return ERR_PTR(-ENOMEM); | ||
| 278 | |||
| 279 | sv->highest_lnum = sv->leb_count = 0; | ||
| 280 | sv->vol_id = vol_id; | ||
| 281 | sv->root = RB_ROOT; | ||
| 282 | sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); | ||
| 283 | sv->data_pad = be32_to_cpu(vid_hdr->data_pad); | ||
| 284 | sv->compat = vid_hdr->compat; | ||
| 285 | sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME | ||
| 286 | : UBI_STATIC_VOLUME; | ||
| 287 | if (vol_id > si->highest_vol_id) | ||
| 288 | si->highest_vol_id = vol_id; | ||
| 289 | |||
| 290 | rb_link_node(&sv->rb, parent, p); | ||
| 291 | rb_insert_color(&sv->rb, &si->volumes); | ||
| 292 | si->vols_found += 1; | ||
| 293 | dbg_bld("added volume %d", vol_id); | ||
| 294 | return sv; | ||
| 295 | } | ||
| 296 | |||
| 297 | /** | ||
| 298 | * compare_lebs - find out which logical eraseblock is newer. | ||
| 299 | * @ubi: UBI device description object | ||
| 300 | * @seb: first logical eraseblock to compare | ||
| 301 | * @pnum: physical eraseblock number of the second logical eraseblock to | ||
| 302 | * compare | ||
| 303 | * @vid_hdr: volume identifier header of the second logical eraseblock | ||
| 304 | * | ||
| 305 | * This function compares 2 copies of a LEB and informs which one is newer. In | ||
| 306 | * case of success this function returns a positive value, in case of failure, a | ||
| 307 | * negative error code is returned. The success return codes use the following | ||
| 308 | * bits: | ||
| 309 | * o bit 0 is cleared: the first PEB (described by @seb) is newer than the | ||
| 310 | * second PEB (described by @pnum and @vid_hdr); | ||
| 311 | * o bit 0 is set: the second PEB is newer; | ||
| 312 | * o bit 1 is cleared: no bit-flips were detected in the newer LEB; | ||
| 313 | * o bit 1 is set: bit-flips were detected in the newer LEB; | ||
| 314 | * o bit 2 is cleared: the older LEB is not corrupted; | ||
| 315 | * o bit 2 is set: the older LEB is corrupted. | ||
| 316 | */ | ||
| 317 | static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, | ||
| 318 | int pnum, const struct ubi_vid_hdr *vid_hdr) | ||
| 319 | { | ||
| 320 | void *buf; | ||
| 321 | int len, err, second_is_newer, bitflips = 0, corrupted = 0; | ||
| 322 | uint32_t data_crc, crc; | ||
| 323 | struct ubi_vid_hdr *vh = NULL; | ||
| 324 | unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); | ||
| 325 | |||
| 326 | if (sqnum2 == seb->sqnum) { | ||
| 327 | /* | ||
| 328 | * This must be a really ancient UBI image which has been | ||
| 329 | * created before sequence numbers support has been added. At | ||
| 330 | * that times we used 32-bit LEB versions stored in logical | ||
| 331 | * eraseblocks. That was before UBI got into mainline. We do not | ||
| 332 | * support these images anymore. Well, those images still work, | ||
| 333 | * but only if no unclean reboots happened. | ||
| 334 | */ | ||
| 335 | ubi_err("unsupported on-flash UBI format\n"); | ||
| 336 | return -EINVAL; | ||
| 337 | } | ||
| 338 | |||
| 339 | /* Obviously the LEB with lower sequence counter is older */ | ||
| 340 | second_is_newer = !!(sqnum2 > seb->sqnum); | ||
| 341 | |||
| 342 | /* | ||
| 343 | * Now we know which copy is newer. If the copy flag of the PEB with | ||
| 344 | * newer version is not set, then we just return, otherwise we have to | ||
| 345 | * check data CRC. For the second PEB we already have the VID header, | ||
| 346 | * for the first one - we'll need to re-read it from flash. | ||
| 347 | * | ||
| 348 | * Note: this may be optimized so that we wouldn't read twice. | ||
| 349 | */ | ||
| 350 | |||
| 351 | if (second_is_newer) { | ||
| 352 | if (!vid_hdr->copy_flag) { | ||
| 353 | /* It is not a copy, so it is newer */ | ||
| 354 | dbg_bld("second PEB %d is newer, copy_flag is unset", | ||
| 355 | pnum); | ||
| 356 | return 1; | ||
| 357 | } | ||
| 358 | } else { | ||
| 359 | if (!seb->copy_flag) { | ||
| 360 | /* It is not a copy, so it is newer */ | ||
| 361 | dbg_bld("first PEB %d is newer, copy_flag is unset", | ||
| 362 | pnum); | ||
| 363 | return bitflips << 1; | ||
| 364 | } | ||
| 365 | |||
| 366 | vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); | ||
| 367 | if (!vh) | ||
| 368 | return -ENOMEM; | ||
| 369 | |||
| 370 | pnum = seb->pnum; | ||
| 371 | err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); | ||
| 372 | if (err) { | ||
| 373 | if (err == UBI_IO_BITFLIPS) | ||
| 374 | bitflips = 1; | ||
| 375 | else { | ||
| 376 | dbg_err("VID of PEB %d header is bad, but it " | ||
| 377 | "was OK earlier, err %d", pnum, err); | ||
| 378 | if (err > 0) | ||
| 379 | err = -EIO; | ||
| 380 | |||
| 381 | goto out_free_vidh; | ||
| 382 | } | ||
| 383 | } | ||
| 384 | |||
| 385 | vid_hdr = vh; | ||
| 386 | } | ||
| 387 | |||
| 388 | /* Read the data of the copy and check the CRC */ | ||
| 389 | |||
| 390 | len = be32_to_cpu(vid_hdr->data_size); | ||
| 391 | buf = vmalloc(len); | ||
| 392 | if (!buf) { | ||
| 393 | err = -ENOMEM; | ||
| 394 | goto out_free_vidh; | ||
| 395 | } | ||
| 396 | |||
| 397 | err = ubi_io_read_data(ubi, buf, pnum, 0, len); | ||
| 398 | if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) | ||
| 399 | goto out_free_buf; | ||
| 400 | |||
| 401 | data_crc = be32_to_cpu(vid_hdr->data_crc); | ||
| 402 | crc = crc32(UBI_CRC32_INIT, buf, len); | ||
| 403 | if (crc != data_crc) { | ||
| 404 | dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", | ||
| 405 | pnum, crc, data_crc); | ||
| 406 | corrupted = 1; | ||
| 407 | bitflips = 0; | ||
| 408 | second_is_newer = !second_is_newer; | ||
| 409 | } else { | ||
| 410 | dbg_bld("PEB %d CRC is OK", pnum); | ||
| 411 | bitflips = !!err; | ||
| 412 | } | ||
| 413 | |||
| 414 | vfree(buf); | ||
| 415 | ubi_free_vid_hdr(ubi, vh); | ||
| 416 | |||
| 417 | if (second_is_newer) | ||
| 418 | dbg_bld("second PEB %d is newer, copy_flag is set", pnum); | ||
| 419 | else | ||
| 420 | dbg_bld("first PEB %d is newer, copy_flag is set", pnum); | ||
| 421 | |||
| 422 | return second_is_newer | (bitflips << 1) | (corrupted << 2); | ||
| 423 | |||
| 424 | out_free_buf: | ||
| 425 | vfree(buf); | ||
| 426 | out_free_vidh: | ||
| 427 | ubi_free_vid_hdr(ubi, vh); | ||
| 428 | return err; | ||
| 429 | } | ||
| 430 | |||
| 431 | /** | ||
| 432 | * ubi_scan_add_used - add physical eraseblock to the scanning information. | ||
| 433 | * @ubi: UBI device description object | ||
| 434 | * @si: scanning information | ||
| 435 | * @pnum: the physical eraseblock number | ||
| 436 | * @ec: erase counter | ||
| 437 | * @vid_hdr: the volume identifier header | ||
| 438 | * @bitflips: if bit-flips were detected when this physical eraseblock was read | ||
| 439 | * | ||
| 440 | * This function adds information about a used physical eraseblock to the | ||
| 441 | * 'used' tree of the corresponding volume. The function is rather complex | ||
| 442 | * because it has to handle cases when this is not the first physical | ||
| 443 | * eraseblock belonging to the same logical eraseblock, and the newer one has | ||
| 444 | * to be picked, while the older one has to be dropped. This function returns | ||
| 445 | * zero in case of success and a negative error code in case of failure. | ||
| 446 | */ | ||
| 447 | int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, | ||
| 448 | int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, | ||
| 449 | int bitflips) | ||
| 450 | { | ||
| 451 | int err, vol_id, lnum; | ||
| 452 | unsigned long long sqnum; | ||
| 453 | struct ubi_scan_volume *sv; | ||
| 454 | struct ubi_scan_leb *seb; | ||
| 455 | struct rb_node **p, *parent = NULL; | ||
| 456 | |||
| 457 | vol_id = be32_to_cpu(vid_hdr->vol_id); | ||
| 458 | lnum = be32_to_cpu(vid_hdr->lnum); | ||
| 459 | sqnum = be64_to_cpu(vid_hdr->sqnum); | ||
| 460 | |||
| 461 | dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", | ||
| 462 | pnum, vol_id, lnum, ec, sqnum, bitflips); | ||
| 463 | |||
| 464 | sv = add_volume(si, vol_id, pnum, vid_hdr); | ||
| 465 | if (IS_ERR(sv)) | ||
| 466 | return PTR_ERR(sv); | ||
| 467 | |||
| 468 | if (si->max_sqnum < sqnum) | ||
| 469 | si->max_sqnum = sqnum; | ||
| 470 | |||
| 471 | /* | ||
| 472 | * Walk the RB-tree of logical eraseblocks of volume @vol_id to look | ||
| 473 | * if this is the first instance of this logical eraseblock or not. | ||
| 474 | */ | ||
| 475 | p = &sv->root.rb_node; | ||
| 476 | while (*p) { | ||
| 477 | int cmp_res; | ||
| 478 | |||
| 479 | parent = *p; | ||
| 480 | seb = rb_entry(parent, struct ubi_scan_leb, u.rb); | ||
| 481 | if (lnum != seb->lnum) { | ||
| 482 | if (lnum < seb->lnum) | ||
| 483 | p = &(*p)->rb_left; | ||
| 484 | else | ||
| 485 | p = &(*p)->rb_right; | ||
| 486 | continue; | ||
| 487 | } | ||
| 488 | |||
| 489 | /* | ||
| 490 | * There is already a physical eraseblock describing the same | ||
| 491 | * logical eraseblock present. | ||
| 492 | */ | ||
| 493 | |||
| 494 | dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " | ||
| 495 | "EC %d", seb->pnum, seb->sqnum, seb->ec); | ||
| 496 | |||
| 497 | /* | ||
| 498 | * Make sure that the logical eraseblocks have different | ||
| 499 | * sequence numbers. Otherwise the image is bad. | ||
| 500 | * | ||
| 501 | * However, if the sequence number is zero, we assume it must | ||
| 502 | * be an ancient UBI image from the era when UBI did not have | ||
| 503 | * sequence numbers. We still can attach these images, unless | ||
| 504 | * there is a need to distinguish between old and new | ||
| 505 | * eraseblocks, in which case we'll refuse the image in | ||
| 506 | * 'compare_lebs()'. In other words, we attach old clean | ||
| 507 | * images, but refuse attaching old images with duplicated | ||
| 508 | * logical eraseblocks because there was an unclean reboot. | ||
| 509 | */ | ||
| 510 | if (seb->sqnum == sqnum && sqnum != 0) { | ||
| 511 | ubi_err("two LEBs with same sequence number %llu", | ||
| 512 | sqnum); | ||
| 513 | ubi_dbg_dump_seb(seb, 0); | ||
| 514 | ubi_dbg_dump_vid_hdr(vid_hdr); | ||
| 515 | return -EINVAL; | ||
| 516 | } | ||
| 517 | |||
| 518 | /* | ||
| 519 | * Now we have to drop the older one and preserve the newer | ||
| 520 | * one. | ||
| 521 | */ | ||
| 522 | cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); | ||
| 523 | if (cmp_res < 0) | ||
| 524 | return cmp_res; | ||
| 525 | |||
| 526 | if (cmp_res & 1) { | ||
| 527 | /* | ||
| 528 | * This logical eraseblock is newer than the one | ||
| 529 | * found earlier. | ||
| 530 | */ | ||
| 531 | err = validate_vid_hdr(vid_hdr, sv, pnum); | ||
| 532 | if (err) | ||
| 533 | return err; | ||
| 534 | |||
| 535 | err = add_to_list(si, seb->pnum, seb->ec, cmp_res & 4, | ||
| 536 | &si->erase); | ||
| 537 | if (err) | ||
| 538 | return err; | ||
| 539 | |||
| 540 | seb->ec = ec; | ||
| 541 | seb->pnum = pnum; | ||
| 542 | seb->scrub = ((cmp_res & 2) || bitflips); | ||
| 543 | seb->copy_flag = vid_hdr->copy_flag; | ||
| 544 | seb->sqnum = sqnum; | ||
| 545 | |||
| 546 | if (sv->highest_lnum == lnum) | ||
| 547 | sv->last_data_size = | ||
| 548 | be32_to_cpu(vid_hdr->data_size); | ||
| 549 | |||
| 550 | return 0; | ||
| 551 | } else { | ||
| 552 | /* | ||
| 553 | * This logical eraseblock is older than the one found | ||
| 554 | * previously. | ||
| 555 | */ | ||
| 556 | return add_to_list(si, pnum, ec, cmp_res & 4, | ||
| 557 | &si->erase); | ||
| 558 | } | ||
| 559 | } | ||
| 560 | |||
| 561 | /* | ||
| 562 | * We've met this logical eraseblock for the first time, add it to the | ||
| 563 | * scanning information. | ||
| 564 | */ | ||
| 565 | |||
| 566 | err = validate_vid_hdr(vid_hdr, sv, pnum); | ||
| 567 | if (err) | ||
| 568 | return err; | ||
| 569 | |||
| 570 | seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL); | ||
| 571 | if (!seb) | ||
| 572 | return -ENOMEM; | ||
| 573 | |||
| 574 | seb->ec = ec; | ||
| 575 | seb->pnum = pnum; | ||
| 576 | seb->lnum = lnum; | ||
| 577 | seb->scrub = bitflips; | ||
| 578 | seb->copy_flag = vid_hdr->copy_flag; | ||
| 579 | seb->sqnum = sqnum; | ||
| 580 | |||
| 581 | if (sv->highest_lnum <= lnum) { | ||
| 582 | sv->highest_lnum = lnum; | ||
| 583 | sv->last_data_size = be32_to_cpu(vid_hdr->data_size); | ||
| 584 | } | ||
| 585 | |||
| 586 | sv->leb_count += 1; | ||
| 587 | rb_link_node(&seb->u.rb, parent, p); | ||
| 588 | rb_insert_color(&seb->u.rb, &sv->root); | ||
| 589 | return 0; | ||
| 590 | } | ||
| 591 | |||
| 592 | /** | ||
| 593 | * ubi_scan_find_sv - find volume in the scanning information. | ||
| 594 | * @si: scanning information | ||
| 595 | * @vol_id: the requested volume ID | ||
| 596 | * | ||
| 597 | * This function returns a pointer to the volume description or %NULL if there | ||
| 598 | * are no data about this volume in the scanning information. | ||
| 599 | */ | ||
| 600 | struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, | ||
| 601 | int vol_id) | ||
| 602 | { | ||
| 603 | struct ubi_scan_volume *sv; | ||
| 604 | struct rb_node *p = si->volumes.rb_node; | ||
| 605 | |||
| 606 | while (p) { | ||
| 607 | sv = rb_entry(p, struct ubi_scan_volume, rb); | ||
| 608 | |||
| 609 | if (vol_id == sv->vol_id) | ||
| 610 | return sv; | ||
| 611 | |||
| 612 | if (vol_id > sv->vol_id) | ||
| 613 | p = p->rb_left; | ||
| 614 | else | ||
| 615 | p = p->rb_right; | ||
| 616 | } | ||
| 617 | |||
| 618 | return NULL; | ||
| 619 | } | ||
| 620 | |||
| 621 | /** | ||
| 622 | * ubi_scan_find_seb - find LEB in the volume scanning information. | ||
| 623 | * @sv: a pointer to the volume scanning information | ||
| 624 | * @lnum: the requested logical eraseblock | ||
| 625 | * | ||
| 626 | * This function returns a pointer to the scanning logical eraseblock or %NULL | ||
| 627 | * if there are no data about it in the scanning volume information. | ||
| 628 | */ | ||
| 629 | struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, | ||
| 630 | int lnum) | ||
| 631 | { | ||
| 632 | struct ubi_scan_leb *seb; | ||
| 633 | struct rb_node *p = sv->root.rb_node; | ||
| 634 | |||
| 635 | while (p) { | ||
| 636 | seb = rb_entry(p, struct ubi_scan_leb, u.rb); | ||
| 637 | |||
| 638 | if (lnum == seb->lnum) | ||
| 639 | return seb; | ||
| 640 | |||
| 641 | if (lnum > seb->lnum) | ||
| 642 | p = p->rb_left; | ||
| 643 | else | ||
| 644 | p = p->rb_right; | ||
| 645 | } | ||
| 646 | |||
| 647 | return NULL; | ||
| 648 | } | ||
| 649 | |||
| 650 | /** | ||
| 651 | * ubi_scan_rm_volume - delete scanning information about a volume. | ||
| 652 | * @si: scanning information | ||
| 653 | * @sv: the volume scanning information to delete | ||
| 654 | */ | ||
| 655 | void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) | ||
| 656 | { | ||
| 657 | struct rb_node *rb; | ||
| 658 | struct ubi_scan_leb *seb; | ||
| 659 | |||
| 660 | dbg_bld("remove scanning information about volume %d", sv->vol_id); | ||
| 661 | |||
| 662 | while ((rb = rb_first(&sv->root))) { | ||
| 663 | seb = rb_entry(rb, struct ubi_scan_leb, u.rb); | ||
| 664 | rb_erase(&seb->u.rb, &sv->root); | ||
| 665 | list_add_tail(&seb->u.list, &si->erase); | ||
| 666 | } | ||
| 667 | |||
| 668 | rb_erase(&sv->rb, &si->volumes); | ||
| 669 | kfree(sv); | ||
| 670 | si->vols_found -= 1; | ||
| 671 | } | ||
| 672 | |||
| 673 | /** | ||
| 674 | * ubi_scan_erase_peb - erase a physical eraseblock. | ||
| 675 | * @ubi: UBI device description object | ||
| 676 | * @si: scanning information | ||
| 677 | * @pnum: physical eraseblock number to erase; | ||
| 678 | * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) | ||
| 679 | * | ||
| 680 | * This function erases physical eraseblock 'pnum', and writes the erase | ||
| 681 | * counter header to it. This function should only be used on UBI device | ||
| 682 | * initialization stages, when the EBA sub-system had not been yet initialized. | ||
| 683 | * This function returns zero in case of success and a negative error code in | ||
| 684 | * case of failure. | ||
| 685 | */ | ||
| 686 | int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, | ||
| 687 | int pnum, int ec) | ||
| 688 | { | ||
| 689 | int err; | ||
| 690 | struct ubi_ec_hdr *ec_hdr; | ||
| 691 | |||
| 692 | if ((long long)ec >= UBI_MAX_ERASECOUNTER) { | ||
| 693 | /* | ||
| 694 | * Erase counter overflow. Upgrade UBI and use 64-bit | ||
| 695 | * erase counters internally. | ||
| 696 | */ | ||
| 697 | ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); | ||
| 698 | return -EINVAL; | ||
| 699 | } | ||
| 700 | |||
| 701 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | ||
| 702 | if (!ec_hdr) | ||
| 703 | return -ENOMEM; | ||
| 704 | |||
| 705 | ec_hdr->ec = cpu_to_be64(ec); | ||
| 706 | |||
| 707 | err = ubi_io_sync_erase(ubi, pnum, 0); | ||
| 708 | if (err < 0) | ||
| 709 | goto out_free; | ||
| 710 | |||
| 711 | err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); | ||
| 712 | |||
| 713 | out_free: | ||
| 714 | kfree(ec_hdr); | ||
| 715 | return err; | ||
| 716 | } | ||
| 717 | |||
| 718 | /** | ||
| 719 | * ubi_scan_get_free_peb - get a free physical eraseblock. | ||
| 720 | * @ubi: UBI device description object | ||
| 721 | * @si: scanning information | ||
| 722 | * | ||
| 723 | * This function returns a free physical eraseblock. It is supposed to be | ||
| 724 | * called on the UBI initialization stages when the wear-leveling sub-system is | ||
| 725 | * not initialized yet. This function picks a physical eraseblocks from one of | ||
| 726 | * the lists, writes the EC header if it is needed, and removes it from the | ||
| 727 | * list. | ||
| 728 | * | ||
| 729 | * This function returns scanning physical eraseblock information in case of | ||
| 730 | * success and an error code in case of failure. | ||
| 731 | */ | ||
| 732 | struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, | ||
| 733 | struct ubi_scan_info *si) | ||
| 734 | { | ||
| 735 | int err = 0; | ||
| 736 | struct ubi_scan_leb *seb, *tmp_seb; | ||
| 737 | |||
| 738 | if (!list_empty(&si->free)) { | ||
| 739 | seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); | ||
| 740 | list_del(&seb->u.list); | ||
| 741 | dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); | ||
| 742 | return seb; | ||
| 743 | } | ||
| 744 | |||
| 745 | /* | ||
| 746 | * We try to erase the first physical eraseblock from the erase list | ||
| 747 | * and pick it if we succeed, or try to erase the next one if not. And | ||
| 748 | * so forth. We don't want to take care about bad eraseblocks here - | ||
| 749 | * they'll be handled later. | ||
| 750 | */ | ||
| 751 | list_for_each_entry_safe(seb, tmp_seb, &si->erase, u.list) { | ||
| 752 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
| 753 | seb->ec = si->mean_ec; | ||
| 754 | |||
| 755 | err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); | ||
| 756 | if (err) | ||
| 757 | continue; | ||
| 758 | |||
| 759 | seb->ec += 1; | ||
| 760 | list_del(&seb->u.list); | ||
| 761 | dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); | ||
| 762 | return seb; | ||
| 763 | } | ||
| 764 | |||
| 765 | ubi_err("no free eraseblocks"); | ||
| 766 | return ERR_PTR(-ENOSPC); | ||
| 767 | } | ||
| 768 | |||
| 769 | /** | ||
| 770 | * check_corruption - check the data area of PEB. | ||
| 771 | * @ubi: UBI device description object | ||
| 772 | * @vid_hrd: the (corrupted) VID header of this PEB | ||
| 773 | * @pnum: the physical eraseblock number to check | ||
| 774 | * | ||
| 775 | * This is a helper function which is used to distinguish between VID header | ||
| 776 | * corruptions caused by power cuts and other reasons. If the PEB contains only | ||
| 777 | * 0xFF bytes in the data area, the VID header is most probably corrupted | ||
| 778 | * because of a power cut (%0 is returned in this case). Otherwise, it was | ||
| 779 | * probably corrupted for some other reasons (%1 is returned in this case). A | ||
| 780 | * negative error code is returned if a read error occurred. | ||
| 781 | * | ||
| 782 | * If the corruption reason was a power cut, UBI can safely erase this PEB. | ||
| 783 | * Otherwise, it should preserve it to avoid possibly destroying important | ||
| 784 | * information. | ||
| 785 | */ | ||
| 786 | static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, | ||
| 787 | int pnum) | ||
| 788 | { | ||
| 789 | int err; | ||
| 790 | |||
| 791 | mutex_lock(&ubi->buf_mutex); | ||
| 792 | memset(ubi->peb_buf1, 0x00, ubi->leb_size); | ||
| 793 | |||
| 794 | err = ubi_io_read(ubi, ubi->peb_buf1, pnum, ubi->leb_start, | ||
| 795 | ubi->leb_size); | ||
| 796 | if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { | ||
| 797 | /* | ||
| 798 | * Bit-flips or integrity errors while reading the data area. | ||
| 799 | * It is difficult to say for sure what type of corruption is | ||
| 800 | * this, but presumably a power cut happened while this PEB was | ||
| 801 | * erased, so it became unstable and corrupted, and should be | ||
| 802 | * erased. | ||
| 803 | */ | ||
| 804 | err = 0; | ||
| 805 | goto out_unlock; | ||
| 806 | } | ||
| 807 | |||
| 808 | if (err) | ||
| 809 | goto out_unlock; | ||
| 810 | |||
| 811 | if (ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->leb_size)) | ||
| 812 | goto out_unlock; | ||
| 813 | |||
| 814 | ubi_err("PEB %d contains corrupted VID header, and the data does not " | ||
| 815 | "contain all 0xFF, this may be a non-UBI PEB or a severe VID " | ||
| 816 | "header corruption which requires manual inspection", pnum); | ||
| 817 | ubi_dbg_dump_vid_hdr(vid_hdr); | ||
| 818 | dbg_msg("hexdump of PEB %d offset %d, length %d", | ||
| 819 | pnum, ubi->leb_start, ubi->leb_size); | ||
| 820 | ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, | ||
| 821 | ubi->peb_buf1, ubi->leb_size, 1); | ||
| 822 | err = 1; | ||
| 823 | |||
| 824 | out_unlock: | ||
| 825 | mutex_unlock(&ubi->buf_mutex); | ||
| 826 | return err; | ||
| 827 | } | ||
| 828 | |||
| 829 | /** | ||
| 830 | * process_eb - read, check UBI headers, and add them to scanning information. | ||
| 831 | * @ubi: UBI device description object | ||
| 832 | * @si: scanning information | ||
| 833 | * @pnum: the physical eraseblock number | ||
| 834 | * | ||
| 835 | * This function returns a zero if the physical eraseblock was successfully | ||
| 836 | * handled and a negative error code in case of failure. | ||
| 837 | */ | ||
| 838 | static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, | ||
| 839 | int pnum) | ||
| 840 | { | ||
| 841 | long long uninitialized_var(ec); | ||
| 842 | int err, bitflips = 0, vol_id, ec_err = 0; | ||
| 843 | |||
| 844 | dbg_bld("scan PEB %d", pnum); | ||
| 845 | |||
| 846 | /* Skip bad physical eraseblocks */ | ||
| 847 | err = ubi_io_is_bad(ubi, pnum); | ||
| 848 | if (err < 0) | ||
| 849 | return err; | ||
| 850 | else if (err) { | ||
| 851 | /* | ||
| 852 | * FIXME: this is actually duty of the I/O sub-system to | ||
| 853 | * initialize this, but MTD does not provide enough | ||
| 854 | * information. | ||
| 855 | */ | ||
| 856 | si->bad_peb_count += 1; | ||
| 857 | return 0; | ||
| 858 | } | ||
| 859 | |||
| 860 | err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); | ||
| 861 | if (err < 0) | ||
| 862 | return err; | ||
| 863 | switch (err) { | ||
| 864 | case 0: | ||
| 865 | break; | ||
| 866 | case UBI_IO_BITFLIPS: | ||
| 867 | bitflips = 1; | ||
| 868 | break; | ||
| 869 | case UBI_IO_FF: | ||
| 870 | si->empty_peb_count += 1; | ||
| 871 | return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 0, | ||
| 872 | &si->erase); | ||
| 873 | case UBI_IO_FF_BITFLIPS: | ||
| 874 | si->empty_peb_count += 1; | ||
| 875 | return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 1, | ||
| 876 | &si->erase); | ||
| 877 | case UBI_IO_BAD_HDR_EBADMSG: | ||
| 878 | case UBI_IO_BAD_HDR: | ||
| 879 | /* | ||
| 880 | * We have to also look at the VID header, possibly it is not | ||
| 881 | * corrupted. Set %bitflips flag in order to make this PEB be | ||
| 882 | * moved and EC be re-created. | ||
| 883 | */ | ||
| 884 | ec_err = err; | ||
| 885 | ec = UBI_SCAN_UNKNOWN_EC; | ||
| 886 | bitflips = 1; | ||
| 887 | break; | ||
| 888 | default: | ||
| 889 | ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err); | ||
| 890 | return -EINVAL; | ||
| 891 | } | ||
| 892 | |||
| 893 | if (!ec_err) { | ||
| 894 | int image_seq; | ||
| 895 | |||
| 896 | /* Make sure UBI version is OK */ | ||
| 897 | if (ech->version != UBI_VERSION) { | ||
| 898 | ubi_err("this UBI version is %d, image version is %d", | ||
| 899 | UBI_VERSION, (int)ech->version); | ||
| 900 | return -EINVAL; | ||
| 901 | } | ||
| 902 | |||
| 903 | ec = be64_to_cpu(ech->ec); | ||
| 904 | if (ec > UBI_MAX_ERASECOUNTER) { | ||
| 905 | /* | ||
| 906 | * Erase counter overflow. The EC headers have 64 bits | ||
| 907 | * reserved, but we anyway make use of only 31 bit | ||
| 908 | * values, as this seems to be enough for any existing | ||
| 909 | * flash. Upgrade UBI and use 64-bit erase counters | ||
| 910 | * internally. | ||
| 911 | */ | ||
| 912 | ubi_err("erase counter overflow, max is %d", | ||
| 913 | UBI_MAX_ERASECOUNTER); | ||
| 914 | ubi_dbg_dump_ec_hdr(ech); | ||
| 915 | return -EINVAL; | ||
| 916 | } | ||
| 917 | |||
| 918 | /* | ||
| 919 | * Make sure that all PEBs have the same image sequence number. | ||
| 920 | * This allows us to detect situations when users flash UBI | ||
| 921 | * images incorrectly, so that the flash has the new UBI image | ||
| 922 | * and leftovers from the old one. This feature was added | ||
| 923 | * relatively recently, and the sequence number was always | ||
| 924 | * zero, because old UBI implementations always set it to zero. | ||
| 925 | * For this reasons, we do not panic if some PEBs have zero | ||
| 926 | * sequence number, while other PEBs have non-zero sequence | ||
| 927 | * number. | ||
| 928 | */ | ||
| 929 | image_seq = be32_to_cpu(ech->image_seq); | ||
| 930 | if (!ubi->image_seq && image_seq) | ||
| 931 | ubi->image_seq = image_seq; | ||
| 932 | if (ubi->image_seq && image_seq && | ||
| 933 | ubi->image_seq != image_seq) { | ||
| 934 | ubi_err("bad image sequence number %d in PEB %d, " | ||
| 935 | "expected %d", image_seq, pnum, ubi->image_seq); | ||
| 936 | ubi_dbg_dump_ec_hdr(ech); | ||
| 937 | return -EINVAL; | ||
| 938 | } | ||
| 939 | } | ||
| 940 | |||
| 941 | /* OK, we've done with the EC header, let's look at the VID header */ | ||
| 942 | |||
| 943 | err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); | ||
| 944 | if (err < 0) | ||
| 945 | return err; | ||
| 946 | switch (err) { | ||
| 947 | case 0: | ||
| 948 | break; | ||
| 949 | case UBI_IO_BITFLIPS: | ||
| 950 | bitflips = 1; | ||
| 951 | break; | ||
| 952 | case UBI_IO_BAD_HDR_EBADMSG: | ||
| 953 | if (ec_err == UBI_IO_BAD_HDR_EBADMSG) | ||
| 954 | /* | ||
| 955 | * Both EC and VID headers are corrupted and were read | ||
| 956 | * with data integrity error, probably this is a bad | ||
| 957 | * PEB, bit it is not marked as bad yet. This may also | ||
| 958 | * be a result of power cut during erasure. | ||
| 959 | */ | ||
| 960 | si->maybe_bad_peb_count += 1; | ||
| 961 | case UBI_IO_BAD_HDR: | ||
| 962 | if (ec_err) | ||
| 963 | /* | ||
| 964 | * Both headers are corrupted. There is a possibility | ||
| 965 | * that this a valid UBI PEB which has corresponding | ||
| 966 | * LEB, but the headers are corrupted. However, it is | ||
| 967 | * impossible to distinguish it from a PEB which just | ||
| 968 | * contains garbage because of a power cut during erase | ||
| 969 | * operation. So we just schedule this PEB for erasure. | ||
| 970 | * | ||
| 971 | * Besides, in case of NOR flash, we deliberately | ||
| 972 | * corrupt both headers because NOR flash erasure is | ||
| 973 | * slow and can start from the end. | ||
| 974 | */ | ||
| 975 | err = 0; | ||
| 976 | else | ||
| 977 | /* | ||
| 978 | * The EC was OK, but the VID header is corrupted. We | ||
| 979 | * have to check what is in the data area. | ||
| 980 | */ | ||
| 981 | err = check_corruption(ubi, vidh, pnum); | ||
| 982 | |||
| 983 | if (err < 0) | ||
| 984 | return err; | ||
| 985 | else if (!err) | ||
| 986 | /* This corruption is caused by a power cut */ | ||
| 987 | err = add_to_list(si, pnum, ec, 1, &si->erase); | ||
| 988 | else | ||
| 989 | /* This is an unexpected corruption */ | ||
| 990 | err = add_corrupted(si, pnum, ec); | ||
| 991 | if (err) | ||
| 992 | return err; | ||
| 993 | goto adjust_mean_ec; | ||
| 994 | case UBI_IO_FF_BITFLIPS: | ||
| 995 | err = add_to_list(si, pnum, ec, 1, &si->erase); | ||
| 996 | if (err) | ||
| 997 | return err; | ||
| 998 | goto adjust_mean_ec; | ||
| 999 | case UBI_IO_FF: | ||
| 1000 | if (ec_err) | ||
| 1001 | err = add_to_list(si, pnum, ec, 1, &si->erase); | ||
| 1002 | else | ||
| 1003 | err = add_to_list(si, pnum, ec, 0, &si->free); | ||
| 1004 | if (err) | ||
| 1005 | return err; | ||
| 1006 | goto adjust_mean_ec; | ||
| 1007 | default: | ||
| 1008 | ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d", | ||
| 1009 | err); | ||
| 1010 | return -EINVAL; | ||
| 1011 | } | ||
| 1012 | |||
| 1013 | vol_id = be32_to_cpu(vidh->vol_id); | ||
| 1014 | if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { | ||
| 1015 | int lnum = be32_to_cpu(vidh->lnum); | ||
| 1016 | |||
| 1017 | /* Unsupported internal volume */ | ||
| 1018 | switch (vidh->compat) { | ||
| 1019 | case UBI_COMPAT_DELETE: | ||
| 1020 | ubi_msg("\"delete\" compatible internal volume %d:%d" | ||
| 1021 | " found, will remove it", vol_id, lnum); | ||
| 1022 | err = add_to_list(si, pnum, ec, 1, &si->erase); | ||
| 1023 | if (err) | ||
| 1024 | return err; | ||
| 1025 | return 0; | ||
| 1026 | |||
| 1027 | case UBI_COMPAT_RO: | ||
| 1028 | ubi_msg("read-only compatible internal volume %d:%d" | ||
| 1029 | " found, switch to read-only mode", | ||
| 1030 | vol_id, lnum); | ||
| 1031 | ubi->ro_mode = 1; | ||
| 1032 | break; | ||
| 1033 | |||
| 1034 | case UBI_COMPAT_PRESERVE: | ||
| 1035 | ubi_msg("\"preserve\" compatible internal volume %d:%d" | ||
| 1036 | " found", vol_id, lnum); | ||
| 1037 | err = add_to_list(si, pnum, ec, 0, &si->alien); | ||
| 1038 | if (err) | ||
| 1039 | return err; | ||
| 1040 | return 0; | ||
| 1041 | |||
| 1042 | case UBI_COMPAT_REJECT: | ||
| 1043 | ubi_err("incompatible internal volume %d:%d found", | ||
| 1044 | vol_id, lnum); | ||
| 1045 | return -EINVAL; | ||
| 1046 | } | ||
| 1047 | } | ||
| 1048 | |||
| 1049 | if (ec_err) | ||
| 1050 | ubi_warn("valid VID header but corrupted EC header at PEB %d", | ||
| 1051 | pnum); | ||
| 1052 | err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); | ||
| 1053 | if (err) | ||
| 1054 | return err; | ||
| 1055 | |||
| 1056 | adjust_mean_ec: | ||
| 1057 | if (!ec_err) { | ||
| 1058 | si->ec_sum += ec; | ||
| 1059 | si->ec_count += 1; | ||
| 1060 | if (ec > si->max_ec) | ||
| 1061 | si->max_ec = ec; | ||
| 1062 | if (ec < si->min_ec) | ||
| 1063 | si->min_ec = ec; | ||
| 1064 | } | ||
| 1065 | |||
| 1066 | return 0; | ||
| 1067 | } | ||
| 1068 | |||
| 1069 | /** | ||
| 1070 | * check_what_we_have - check what PEB were found by scanning. | ||
| 1071 | * @ubi: UBI device description object | ||
| 1072 | * @si: scanning information | ||
| 1073 | * | ||
| 1074 | * This is a helper function which takes a look what PEBs were found by | ||
| 1075 | * scanning, and decides whether the flash is empty and should be formatted and | ||
| 1076 | * whether there are too many corrupted PEBs and we should not attach this | ||
| 1077 | * MTD device. Returns zero if we should proceed with attaching the MTD device, | ||
| 1078 | * and %-EINVAL if we should not. | ||
| 1079 | */ | ||
| 1080 | static int check_what_we_have(struct ubi_device *ubi, struct ubi_scan_info *si) | ||
| 1081 | { | ||
| 1082 | struct ubi_scan_leb *seb; | ||
| 1083 | int max_corr, peb_count; | ||
| 1084 | |||
| 1085 | peb_count = ubi->peb_count - si->bad_peb_count - si->alien_peb_count; | ||
| 1086 | max_corr = peb_count / 20 ?: 8; | ||
| 1087 | |||
| 1088 | /* | ||
| 1089 | * Few corrupted PEBs is not a problem and may be just a result of | ||
| 1090 | * unclean reboots. However, many of them may indicate some problems | ||
| 1091 | * with the flash HW or driver. | ||
| 1092 | */ | ||
| 1093 | if (si->corr_peb_count) { | ||
| 1094 | ubi_err("%d PEBs are corrupted and preserved", | ||
| 1095 | si->corr_peb_count); | ||
| 1096 | printk(KERN_ERR "Corrupted PEBs are:"); | ||
| 1097 | list_for_each_entry(seb, &si->corr, u.list) | ||
| 1098 | printk(KERN_CONT " %d", seb->pnum); | ||
| 1099 | printk(KERN_CONT "\n"); | ||
| 1100 | |||
| 1101 | /* | ||
| 1102 | * If too many PEBs are corrupted, we refuse attaching, | ||
| 1103 | * otherwise, only print a warning. | ||
| 1104 | */ | ||
| 1105 | if (si->corr_peb_count >= max_corr) { | ||
| 1106 | ubi_err("too many corrupted PEBs, refusing"); | ||
| 1107 | return -EINVAL; | ||
| 1108 | } | ||
| 1109 | } | ||
| 1110 | |||
| 1111 | if (si->empty_peb_count + si->maybe_bad_peb_count == peb_count) { | ||
| 1112 | /* | ||
| 1113 | * All PEBs are empty, or almost all - a couple PEBs look like | ||
| 1114 | * they may be bad PEBs which were not marked as bad yet. | ||
| 1115 | * | ||
| 1116 | * This piece of code basically tries to distinguish between | ||
| 1117 | * the following situations: | ||
| 1118 | * | ||
| 1119 | * 1. Flash is empty, but there are few bad PEBs, which are not | ||
| 1120 | * marked as bad so far, and which were read with error. We | ||
| 1121 | * want to go ahead and format this flash. While formatting, | ||
| 1122 | * the faulty PEBs will probably be marked as bad. | ||
| 1123 | * | ||
| 1124 | * 2. Flash contains non-UBI data and we do not want to format | ||
| 1125 | * it and destroy possibly important information. | ||
| 1126 | */ | ||
| 1127 | if (si->maybe_bad_peb_count <= 2) { | ||
| 1128 | si->is_empty = 1; | ||
| 1129 | ubi_msg("empty MTD device detected"); | ||
| 1130 | get_random_bytes(&ubi->image_seq, | ||
| 1131 | sizeof(ubi->image_seq)); | ||
| 1132 | } else { | ||
| 1133 | ubi_err("MTD device is not UBI-formatted and possibly " | ||
| 1134 | "contains non-UBI data - refusing it"); | ||
| 1135 | return -EINVAL; | ||
| 1136 | } | ||
| 1137 | |||
| 1138 | } | ||
| 1139 | |||
| 1140 | return 0; | ||
| 1141 | } | ||
| 1142 | |||
| 1143 | /** | ||
| 1144 | * ubi_scan - scan an MTD device. | ||
| 1145 | * @ubi: UBI device description object | ||
| 1146 | * | ||
| 1147 | * This function does full scanning of an MTD device and returns complete | ||
| 1148 | * information about it. In case of failure, an error code is returned. | ||
| 1149 | */ | ||
| 1150 | struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) | ||
| 1151 | { | ||
| 1152 | int err, pnum; | ||
| 1153 | struct rb_node *rb1, *rb2; | ||
| 1154 | struct ubi_scan_volume *sv; | ||
| 1155 | struct ubi_scan_leb *seb; | ||
| 1156 | struct ubi_scan_info *si; | ||
| 1157 | |||
| 1158 | si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); | ||
| 1159 | if (!si) | ||
| 1160 | return ERR_PTR(-ENOMEM); | ||
| 1161 | |||
| 1162 | INIT_LIST_HEAD(&si->corr); | ||
| 1163 | INIT_LIST_HEAD(&si->free); | ||
| 1164 | INIT_LIST_HEAD(&si->erase); | ||
| 1165 | INIT_LIST_HEAD(&si->alien); | ||
| 1166 | si->volumes = RB_ROOT; | ||
| 1167 | |||
| 1168 | err = -ENOMEM; | ||
| 1169 | si->scan_leb_slab = kmem_cache_create("ubi_scan_leb_slab", | ||
| 1170 | sizeof(struct ubi_scan_leb), | ||
| 1171 | 0, 0, NULL); | ||
| 1172 | if (!si->scan_leb_slab) | ||
| 1173 | goto out_si; | ||
| 1174 | |||
| 1175 | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | ||
| 1176 | if (!ech) | ||
| 1177 | goto out_slab; | ||
| 1178 | |||
| 1179 | vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); | ||
| 1180 | if (!vidh) | ||
| 1181 | goto out_ech; | ||
| 1182 | |||
| 1183 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { | ||
| 1184 | cond_resched(); | ||
| 1185 | |||
| 1186 | dbg_gen("process PEB %d", pnum); | ||
| 1187 | err = process_eb(ubi, si, pnum); | ||
| 1188 | if (err < 0) | ||
| 1189 | goto out_vidh; | ||
| 1190 | } | ||
| 1191 | |||
| 1192 | dbg_msg("scanning is finished"); | ||
| 1193 | |||
| 1194 | /* Calculate mean erase counter */ | ||
| 1195 | if (si->ec_count) | ||
| 1196 | si->mean_ec = div_u64(si->ec_sum, si->ec_count); | ||
| 1197 | |||
| 1198 | err = check_what_we_have(ubi, si); | ||
| 1199 | if (err) | ||
| 1200 | goto out_vidh; | ||
| 1201 | |||
| 1202 | /* | ||
| 1203 | * In case of unknown erase counter we use the mean erase counter | ||
| 1204 | * value. | ||
| 1205 | */ | ||
| 1206 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | ||
| 1207 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) | ||
| 1208 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
| 1209 | seb->ec = si->mean_ec; | ||
| 1210 | } | ||
| 1211 | |||
| 1212 | list_for_each_entry(seb, &si->free, u.list) { | ||
| 1213 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
| 1214 | seb->ec = si->mean_ec; | ||
| 1215 | } | ||
| 1216 | |||
| 1217 | list_for_each_entry(seb, &si->corr, u.list) | ||
| 1218 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
| 1219 | seb->ec = si->mean_ec; | ||
| 1220 | |||
| 1221 | list_for_each_entry(seb, &si->erase, u.list) | ||
| 1222 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
| 1223 | seb->ec = si->mean_ec; | ||
| 1224 | |||
| 1225 | err = paranoid_check_si(ubi, si); | ||
| 1226 | if (err) | ||
| 1227 | goto out_vidh; | ||
| 1228 | |||
| 1229 | ubi_free_vid_hdr(ubi, vidh); | ||
| 1230 | kfree(ech); | ||
| 1231 | |||
| 1232 | return si; | ||
| 1233 | |||
| 1234 | out_vidh: | ||
| 1235 | ubi_free_vid_hdr(ubi, vidh); | ||
| 1236 | out_ech: | ||
| 1237 | kfree(ech); | ||
| 1238 | out_slab: | ||
| 1239 | kmem_cache_destroy(si->scan_leb_slab); | ||
| 1240 | out_si: | ||
| 1241 | ubi_scan_destroy_si(si); | ||
| 1242 | return ERR_PTR(err); | ||
| 1243 | } | ||
| 1244 | |||
| 1245 | /** | ||
| 1246 | * destroy_sv - free the scanning volume information | ||
| 1247 | * @sv: scanning volume information | ||
| 1248 | * @si: scanning information | ||
| 1249 | * | ||
| 1250 | * This function destroys the volume RB-tree (@sv->root) and the scanning | ||
| 1251 | * volume information. | ||
| 1252 | */ | ||
| 1253 | static void destroy_sv(struct ubi_scan_info *si, struct ubi_scan_volume *sv) | ||
| 1254 | { | ||
| 1255 | struct ubi_scan_leb *seb; | ||
| 1256 | struct rb_node *this = sv->root.rb_node; | ||
| 1257 | |||
| 1258 | while (this) { | ||
| 1259 | if (this->rb_left) | ||
| 1260 | this = this->rb_left; | ||
| 1261 | else if (this->rb_right) | ||
| 1262 | this = this->rb_right; | ||
| 1263 | else { | ||
| 1264 | seb = rb_entry(this, struct ubi_scan_leb, u.rb); | ||
| 1265 | this = rb_parent(this); | ||
| 1266 | if (this) { | ||
| 1267 | if (this->rb_left == &seb->u.rb) | ||
| 1268 | this->rb_left = NULL; | ||
| 1269 | else | ||
| 1270 | this->rb_right = NULL; | ||
| 1271 | } | ||
| 1272 | |||
| 1273 | kmem_cache_free(si->scan_leb_slab, seb); | ||
| 1274 | } | ||
| 1275 | } | ||
| 1276 | kfree(sv); | ||
| 1277 | } | ||
| 1278 | |||
| 1279 | /** | ||
| 1280 | * ubi_scan_destroy_si - destroy scanning information. | ||
| 1281 | * @si: scanning information | ||
| 1282 | */ | ||
| 1283 | void ubi_scan_destroy_si(struct ubi_scan_info *si) | ||
| 1284 | { | ||
| 1285 | struct ubi_scan_leb *seb, *seb_tmp; | ||
| 1286 | struct ubi_scan_volume *sv; | ||
| 1287 | struct rb_node *rb; | ||
| 1288 | |||
| 1289 | list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { | ||
| 1290 | list_del(&seb->u.list); | ||
| 1291 | kmem_cache_free(si->scan_leb_slab, seb); | ||
| 1292 | } | ||
| 1293 | list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { | ||
| 1294 | list_del(&seb->u.list); | ||
| 1295 | kmem_cache_free(si->scan_leb_slab, seb); | ||
| 1296 | } | ||
| 1297 | list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { | ||
| 1298 | list_del(&seb->u.list); | ||
| 1299 | kmem_cache_free(si->scan_leb_slab, seb); | ||
| 1300 | } | ||
| 1301 | list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { | ||
| 1302 | list_del(&seb->u.list); | ||
| 1303 | kmem_cache_free(si->scan_leb_slab, seb); | ||
| 1304 | } | ||
| 1305 | |||
| 1306 | /* Destroy the volume RB-tree */ | ||
| 1307 | rb = si->volumes.rb_node; | ||
| 1308 | while (rb) { | ||
| 1309 | if (rb->rb_left) | ||
| 1310 | rb = rb->rb_left; | ||
| 1311 | else if (rb->rb_right) | ||
| 1312 | rb = rb->rb_right; | ||
| 1313 | else { | ||
| 1314 | sv = rb_entry(rb, struct ubi_scan_volume, rb); | ||
| 1315 | |||
| 1316 | rb = rb_parent(rb); | ||
| 1317 | if (rb) { | ||
| 1318 | if (rb->rb_left == &sv->rb) | ||
| 1319 | rb->rb_left = NULL; | ||
| 1320 | else | ||
| 1321 | rb->rb_right = NULL; | ||
| 1322 | } | ||
| 1323 | |||
| 1324 | destroy_sv(si, sv); | ||
| 1325 | } | ||
| 1326 | } | ||
| 1327 | |||
| 1328 | kmem_cache_destroy(si->scan_leb_slab); | ||
| 1329 | kfree(si); | ||
| 1330 | } | ||
| 1331 | |||
| 1332 | #ifdef CONFIG_MTD_UBI_DEBUG | ||
| 1333 | |||
| 1334 | /** | ||
| 1335 | * paranoid_check_si - check the scanning information. | ||
| 1336 | * @ubi: UBI device description object | ||
| 1337 | * @si: scanning information | ||
| 1338 | * | ||
| 1339 | * This function returns zero if the scanning information is all right, and a | ||
| 1340 | * negative error code if not or if an error occurred. | ||
| 1341 | */ | ||
| 1342 | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) | ||
| 1343 | { | ||
| 1344 | int pnum, err, vols_found = 0; | ||
| 1345 | struct rb_node *rb1, *rb2; | ||
| 1346 | struct ubi_scan_volume *sv; | ||
| 1347 | struct ubi_scan_leb *seb, *last_seb; | ||
| 1348 | uint8_t *buf; | ||
| 1349 | |||
| 1350 | if (!ubi->dbg->chk_gen) | ||
| 1351 | return 0; | ||
| 1352 | |||
| 1353 | /* | ||
| 1354 | * At first, check that scanning information is OK. | ||
| 1355 | */ | ||
| 1356 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | ||
| 1357 | int leb_count = 0; | ||
| 1358 | |||
| 1359 | cond_resched(); | ||
| 1360 | |||
| 1361 | vols_found += 1; | ||
| 1362 | |||
| 1363 | if (si->is_empty) { | ||
| 1364 | ubi_err("bad is_empty flag"); | ||
| 1365 | goto bad_sv; | ||
| 1366 | } | ||
| 1367 | |||
| 1368 | if (sv->vol_id < 0 || sv->highest_lnum < 0 || | ||
| 1369 | sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || | ||
| 1370 | sv->data_pad < 0 || sv->last_data_size < 0) { | ||
| 1371 | ubi_err("negative values"); | ||
| 1372 | goto bad_sv; | ||
| 1373 | } | ||
| 1374 | |||
| 1375 | if (sv->vol_id >= UBI_MAX_VOLUMES && | ||
| 1376 | sv->vol_id < UBI_INTERNAL_VOL_START) { | ||
| 1377 | ubi_err("bad vol_id"); | ||
| 1378 | goto bad_sv; | ||
| 1379 | } | ||
| 1380 | |||
| 1381 | if (sv->vol_id > si->highest_vol_id) { | ||
| 1382 | ubi_err("highest_vol_id is %d, but vol_id %d is there", | ||
| 1383 | si->highest_vol_id, sv->vol_id); | ||
| 1384 | goto out; | ||
| 1385 | } | ||
| 1386 | |||
| 1387 | if (sv->vol_type != UBI_DYNAMIC_VOLUME && | ||
| 1388 | sv->vol_type != UBI_STATIC_VOLUME) { | ||
| 1389 | ubi_err("bad vol_type"); | ||
| 1390 | goto bad_sv; | ||
| 1391 | } | ||
| 1392 | |||
| 1393 | if (sv->data_pad > ubi->leb_size / 2) { | ||
| 1394 | ubi_err("bad data_pad"); | ||
| 1395 | goto bad_sv; | ||
| 1396 | } | ||
| 1397 | |||
| 1398 | last_seb = NULL; | ||
| 1399 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | ||
| 1400 | cond_resched(); | ||
| 1401 | |||
| 1402 | last_seb = seb; | ||
| 1403 | leb_count += 1; | ||
| 1404 | |||
| 1405 | if (seb->pnum < 0 || seb->ec < 0) { | ||
| 1406 | ubi_err("negative values"); | ||
| 1407 | goto bad_seb; | ||
| 1408 | } | ||
| 1409 | |||
| 1410 | if (seb->ec < si->min_ec) { | ||
| 1411 | ubi_err("bad si->min_ec (%d), %d found", | ||
| 1412 | si->min_ec, seb->ec); | ||
| 1413 | goto bad_seb; | ||
| 1414 | } | ||
| 1415 | |||
| 1416 | if (seb->ec > si->max_ec) { | ||
| 1417 | ubi_err("bad si->max_ec (%d), %d found", | ||
| 1418 | si->max_ec, seb->ec); | ||
| 1419 | goto bad_seb; | ||
| 1420 | } | ||
| 1421 | |||
| 1422 | if (seb->pnum >= ubi->peb_count) { | ||
| 1423 | ubi_err("too high PEB number %d, total PEBs %d", | ||
| 1424 | seb->pnum, ubi->peb_count); | ||
| 1425 | goto bad_seb; | ||
| 1426 | } | ||
| 1427 | |||
| 1428 | if (sv->vol_type == UBI_STATIC_VOLUME) { | ||
| 1429 | if (seb->lnum >= sv->used_ebs) { | ||
| 1430 | ubi_err("bad lnum or used_ebs"); | ||
| 1431 | goto bad_seb; | ||
| 1432 | } | ||
| 1433 | } else { | ||
| 1434 | if (sv->used_ebs != 0) { | ||
| 1435 | ubi_err("non-zero used_ebs"); | ||
| 1436 | goto bad_seb; | ||
| 1437 | } | ||
| 1438 | } | ||
| 1439 | |||
| 1440 | if (seb->lnum > sv->highest_lnum) { | ||
| 1441 | ubi_err("incorrect highest_lnum or lnum"); | ||
| 1442 | goto bad_seb; | ||
| 1443 | } | ||
| 1444 | } | ||
| 1445 | |||
| 1446 | if (sv->leb_count != leb_count) { | ||
| 1447 | ubi_err("bad leb_count, %d objects in the tree", | ||
| 1448 | leb_count); | ||
| 1449 | goto bad_sv; | ||
| 1450 | } | ||
| 1451 | |||
| 1452 | if (!last_seb) | ||
| 1453 | continue; | ||
| 1454 | |||
| 1455 | seb = last_seb; | ||
| 1456 | |||
| 1457 | if (seb->lnum != sv->highest_lnum) { | ||
| 1458 | ubi_err("bad highest_lnum"); | ||
| 1459 | goto bad_seb; | ||
| 1460 | } | ||
| 1461 | } | ||
| 1462 | |||
| 1463 | if (vols_found != si->vols_found) { | ||
| 1464 | ubi_err("bad si->vols_found %d, should be %d", | ||
| 1465 | si->vols_found, vols_found); | ||
| 1466 | goto out; | ||
| 1467 | } | ||
| 1468 | |||
| 1469 | /* Check that scanning information is correct */ | ||
| 1470 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | ||
| 1471 | last_seb = NULL; | ||
| 1472 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | ||
| 1473 | int vol_type; | ||
| 1474 | |||
| 1475 | cond_resched(); | ||
| 1476 | |||
| 1477 | last_seb = seb; | ||
| 1478 | |||
| 1479 | err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); | ||
| 1480 | if (err && err != UBI_IO_BITFLIPS) { | ||
| 1481 | ubi_err("VID header is not OK (%d)", err); | ||
| 1482 | if (err > 0) | ||
| 1483 | err = -EIO; | ||
| 1484 | return err; | ||
| 1485 | } | ||
| 1486 | |||
| 1487 | vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? | ||
| 1488 | UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; | ||
| 1489 | if (sv->vol_type != vol_type) { | ||
| 1490 | ubi_err("bad vol_type"); | ||
| 1491 | goto bad_vid_hdr; | ||
| 1492 | } | ||
| 1493 | |||
| 1494 | if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { | ||
| 1495 | ubi_err("bad sqnum %llu", seb->sqnum); | ||
| 1496 | goto bad_vid_hdr; | ||
| 1497 | } | ||
| 1498 | |||
| 1499 | if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { | ||
| 1500 | ubi_err("bad vol_id %d", sv->vol_id); | ||
| 1501 | goto bad_vid_hdr; | ||
| 1502 | } | ||
| 1503 | |||
| 1504 | if (sv->compat != vidh->compat) { | ||
| 1505 | ubi_err("bad compat %d", vidh->compat); | ||
| 1506 | goto bad_vid_hdr; | ||
| 1507 | } | ||
| 1508 | |||
| 1509 | if (seb->lnum != be32_to_cpu(vidh->lnum)) { | ||
| 1510 | ubi_err("bad lnum %d", seb->lnum); | ||
| 1511 | goto bad_vid_hdr; | ||
| 1512 | } | ||
| 1513 | |||
| 1514 | if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { | ||
| 1515 | ubi_err("bad used_ebs %d", sv->used_ebs); | ||
| 1516 | goto bad_vid_hdr; | ||
| 1517 | } | ||
| 1518 | |||
| 1519 | if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { | ||
| 1520 | ubi_err("bad data_pad %d", sv->data_pad); | ||
| 1521 | goto bad_vid_hdr; | ||
| 1522 | } | ||
| 1523 | } | ||
| 1524 | |||
| 1525 | if (!last_seb) | ||
| 1526 | continue; | ||
| 1527 | |||
| 1528 | if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { | ||
| 1529 | ubi_err("bad highest_lnum %d", sv->highest_lnum); | ||
| 1530 | goto bad_vid_hdr; | ||
| 1531 | } | ||
| 1532 | |||
| 1533 | if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { | ||
| 1534 | ubi_err("bad last_data_size %d", sv->last_data_size); | ||
| 1535 | goto bad_vid_hdr; | ||
| 1536 | } | ||
| 1537 | } | ||
| 1538 | |||
| 1539 | /* | ||
| 1540 | * Make sure that all the physical eraseblocks are in one of the lists | ||
| 1541 | * or trees. | ||
| 1542 | */ | ||
| 1543 | buf = kzalloc(ubi->peb_count, GFP_KERNEL); | ||
| 1544 | if (!buf) | ||
| 1545 | return -ENOMEM; | ||
| 1546 | |||
| 1547 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { | ||
| 1548 | err = ubi_io_is_bad(ubi, pnum); | ||
| 1549 | if (err < 0) { | ||
| 1550 | kfree(buf); | ||
| 1551 | return err; | ||
| 1552 | } else if (err) | ||
| 1553 | buf[pnum] = 1; | ||
| 1554 | } | ||
| 1555 | |||
| 1556 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) | ||
| 1557 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) | ||
| 1558 | buf[seb->pnum] = 1; | ||
| 1559 | |||
| 1560 | list_for_each_entry(seb, &si->free, u.list) | ||
| 1561 | buf[seb->pnum] = 1; | ||
| 1562 | |||
| 1563 | list_for_each_entry(seb, &si->corr, u.list) | ||
| 1564 | buf[seb->pnum] = 1; | ||
| 1565 | |||
| 1566 | list_for_each_entry(seb, &si->erase, u.list) | ||
| 1567 | buf[seb->pnum] = 1; | ||
| 1568 | |||
| 1569 | list_for_each_entry(seb, &si->alien, u.list) | ||
| 1570 | buf[seb->pnum] = 1; | ||
| 1571 | |||
| 1572 | err = 0; | ||
| 1573 | for (pnum = 0; pnum < ubi->peb_count; pnum++) | ||
| 1574 | if (!buf[pnum]) { | ||
| 1575 | ubi_err("PEB %d is not referred", pnum); | ||
| 1576 | err = 1; | ||
| 1577 | } | ||
| 1578 | |||
| 1579 | kfree(buf); | ||
| 1580 | if (err) | ||
| 1581 | goto out; | ||
| 1582 | return 0; | ||
| 1583 | |||
| 1584 | bad_seb: | ||
| 1585 | ubi_err("bad scanning information about LEB %d", seb->lnum); | ||
| 1586 | ubi_dbg_dump_seb(seb, 0); | ||
| 1587 | ubi_dbg_dump_sv(sv); | ||
| 1588 | goto out; | ||
| 1589 | |||
| 1590 | bad_sv: | ||
| 1591 | ubi_err("bad scanning information about volume %d", sv->vol_id); | ||
| 1592 | ubi_dbg_dump_sv(sv); | ||
| 1593 | goto out; | ||
| 1594 | |||
| 1595 | bad_vid_hdr: | ||
| 1596 | ubi_err("bad scanning information about volume %d", sv->vol_id); | ||
| 1597 | ubi_dbg_dump_sv(sv); | ||
| 1598 | ubi_dbg_dump_vid_hdr(vidh); | ||
| 1599 | |||
| 1600 | out: | ||
| 1601 | ubi_dbg_dump_stack(); | ||
| 1602 | return -EINVAL; | ||
| 1603 | } | ||
| 1604 | |||
| 1605 | #endif /* CONFIG_MTD_UBI_DEBUG */ | ||
diff --git a/drivers/mtd/ubi/scan.h b/drivers/mtd/ubi/scan.h new file mode 100644 index 00000000000..d48aef15ab5 --- /dev/null +++ b/drivers/mtd/ubi/scan.h | |||
| @@ -0,0 +1,174 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (c) International Business Machines Corp., 2006 | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation; either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | ||
| 12 | * the GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program; if not, write to the Free Software | ||
| 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
| 17 | * | ||
| 18 | * Author: Artem Bityutskiy (Битюцкий Артём) | ||
| 19 | */ | ||
| 20 | |||
| 21 | #ifndef __UBI_SCAN_H__ | ||
| 22 | #define __UBI_SCAN_H__ | ||
| 23 | |||
| 24 | /* The erase counter value for this physical eraseblock is unknown */ | ||
| 25 | #define UBI_SCAN_UNKNOWN_EC (-1) | ||
| 26 | |||
| 27 | /** | ||
| 28 | * struct ubi_scan_leb - scanning information about a physical eraseblock. | ||
| 29 | * @ec: erase counter (%UBI_SCAN_UNKNOWN_EC if it is unknown) | ||
| 30 | * @pnum: physical eraseblock number | ||
| 31 | * @lnum: logical eraseblock number | ||
| 32 | * @scrub: if this physical eraseblock needs scrubbing | ||
| 33 | * @copy_flag: this LEB is a copy (@copy_flag is set in VID header of this LEB) | ||
| 34 | * @sqnum: sequence number | ||
| 35 | * @u: unions RB-tree or @list links | ||
| 36 | * @u.rb: link in the per-volume RB-tree of &struct ubi_scan_leb objects | ||
| 37 | * @u.list: link in one of the eraseblock lists | ||
| 38 | * | ||
| 39 | * One object of this type is allocated for each physical eraseblock during | ||
| 40 | * scanning. | ||
| 41 | */ | ||
| 42 | struct ubi_scan_leb { | ||
| 43 | int ec; | ||
| 44 | int pnum; | ||
| 45 | int lnum; | ||
| 46 | unsigned int scrub:1; | ||
| 47 | unsigned int copy_flag:1; | ||
| 48 | unsigned long long sqnum; | ||
| 49 | union { | ||
| 50 | struct rb_node rb; | ||
| 51 | struct list_head list; | ||
| 52 | } u; | ||
| 53 | }; | ||
| 54 | |||
| 55 | /** | ||
| 56 | * struct ubi_scan_volume - scanning information about a volume. | ||
| 57 | * @vol_id: volume ID | ||
| 58 | * @highest_lnum: highest logical eraseblock number in this volume | ||
| 59 | * @leb_count: number of logical eraseblocks in this volume | ||
| 60 | * @vol_type: volume type | ||
| 61 | * @used_ebs: number of used logical eraseblocks in this volume (only for | ||
| 62 | * static volumes) | ||
| 63 | * @last_data_size: amount of data in the last logical eraseblock of this | ||
| 64 | * volume (always equivalent to the usable logical eraseblock | ||
| 65 | * size in case of dynamic volumes) | ||
| 66 | * @data_pad: how many bytes at the end of logical eraseblocks of this volume | ||
| 67 | * are not used (due to volume alignment) | ||
| 68 | * @compat: compatibility flags of this volume | ||
| 69 | * @rb: link in the volume RB-tree | ||
| 70 | * @root: root of the RB-tree containing all the eraseblock belonging to this | ||
| 71 | * volume (&struct ubi_scan_leb objects) | ||
| 72 | * | ||
| 73 | * One object of this type is allocated for each volume during scanning. | ||
| 74 | */ | ||
| 75 | struct ubi_scan_volume { | ||
| 76 | int vol_id; | ||
| 77 | int highest_lnum; | ||
| 78 | int leb_count; | ||
| 79 | int vol_type; | ||
| 80 | int used_ebs; | ||
| 81 | int last_data_size; | ||
| 82 | int data_pad; | ||
| 83 | int compat; | ||
| 84 | struct rb_node rb; | ||
| 85 | struct rb_root root; | ||
| 86 | }; | ||
| 87 | |||
| 88 | /** | ||
| 89 | * struct ubi_scan_info - UBI scanning information. | ||
| 90 | * @volumes: root of the volume RB-tree | ||
| 91 | * @corr: list of corrupted physical eraseblocks | ||
| 92 | * @free: list of free physical eraseblocks | ||
| 93 | * @erase: list of physical eraseblocks which have to be erased | ||
| 94 | * @alien: list of physical eraseblocks which should not be used by UBI (e.g., | ||
| 95 | * those belonging to "preserve"-compatible internal volumes) | ||
| 96 | * @corr_peb_count: count of PEBs in the @corr list | ||
| 97 | * @empty_peb_count: count of PEBs which are presumably empty (contain only | ||
| 98 | * 0xFF bytes) | ||
| 99 | * @alien_peb_count: count of PEBs in the @alien list | ||
| 100 | * @bad_peb_count: count of bad physical eraseblocks | ||
| 101 | * @maybe_bad_peb_count: count of bad physical eraseblocks which are not marked | ||
| 102 | * as bad yet, but which look like bad | ||
| 103 | * @vols_found: number of volumes found during scanning | ||
| 104 | * @highest_vol_id: highest volume ID | ||
| 105 | * @is_empty: flag indicating whether the MTD device is empty or not | ||
| 106 | * @min_ec: lowest erase counter value | ||
| 107 | * @max_ec: highest erase counter value | ||
| 108 | * @max_sqnum: highest sequence number value | ||
| 109 | * @mean_ec: mean erase counter value | ||
| 110 | * @ec_sum: a temporary variable used when calculating @mean_ec | ||
| 111 | * @ec_count: a temporary variable used when calculating @mean_ec | ||
| 112 | * @scan_leb_slab: slab cache for &struct ubi_scan_leb objects | ||
| 113 | * | ||
| 114 | * This data structure contains the result of scanning and may be used by other | ||
| 115 | * UBI sub-systems to build final UBI data structures, further error-recovery | ||
| 116 | * and so on. | ||
| 117 | */ | ||
| 118 | struct ubi_scan_info { | ||
| 119 | struct rb_root volumes; | ||
| 120 | struct list_head corr; | ||
| 121 | struct list_head free; | ||
| 122 | struct list_head erase; | ||
| 123 | struct list_head alien; | ||
| 124 | int corr_peb_count; | ||
| 125 | int empty_peb_count; | ||
| 126 | int alien_peb_count; | ||
| 127 | int bad_peb_count; | ||
| 128 | int maybe_bad_peb_count; | ||
| 129 | int vols_found; | ||
| 130 | int highest_vol_id; | ||
| 131 | int is_empty; | ||
| 132 | int min_ec; | ||
| 133 | int max_ec; | ||
| 134 | unsigned long long max_sqnum; | ||
| 135 | int mean_ec; | ||
| 136 | uint64_t ec_sum; | ||
| 137 | int ec_count; | ||
| 138 | struct kmem_cache *scan_leb_slab; | ||
| 139 | }; | ||
| 140 | |||
| 141 | struct ubi_device; | ||
| 142 | struct ubi_vid_hdr; | ||
| 143 | |||
| 144 | /* | ||
| 145 | * ubi_scan_move_to_list - move a PEB from the volume tree to a list. | ||
| 146 | * | ||
| 147 | * @sv: volume scanning information | ||
| 148 | * @seb: scanning eraseblock information | ||
| 149 | * @list: the list to move to | ||
| 150 | */ | ||
| 151 | static inline void ubi_scan_move_to_list(struct ubi_scan_volume *sv, | ||
| 152 | struct ubi_scan_leb *seb, | ||
| 153 | struct list_head *list) | ||
| 154 | { | ||
| 155 | rb_erase(&seb->u.rb, &sv->root); | ||
| 156 | list_add_tail(&seb->u.list, list); | ||
| 157 | } | ||
| 158 | |||
| 159 | int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, | ||
| 160 | int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, | ||
| 161 | int bitflips); | ||
| 162 | struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, | ||
| 163 | int vol_id); | ||
| 164 | struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, | ||
| 165 | int lnum); | ||
| 166 | void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv); | ||
| 167 | struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, | ||
| 168 | struct ubi_scan_info *si); | ||
| 169 | int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, | ||
| 170 | int pnum, int ec); | ||
| 171 | struct ubi_scan_info *ubi_scan(struct ubi_device *ubi); | ||
| 172 | void ubi_scan_destroy_si(struct ubi_scan_info *si); | ||
| 173 | |||
| 174 | #endif /* !__UBI_SCAN_H__ */ | ||
