diff options
author | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
---|---|---|
committer | Jonathan Herman <hermanjl@cs.unc.edu> | 2013-01-22 10:38:37 -0500 |
commit | fcc9d2e5a6c89d22b8b773a64fb4ad21ac318446 (patch) | |
tree | a57612d1888735a2ec7972891b68c1ac5ec8faea /drivers/mtd | |
parent | 8dea78da5cee153b8af9c07a2745f6c55057fe12 (diff) |
Diffstat (limited to 'drivers/mtd')
-rw-r--r-- | drivers/mtd/devices/tegra_nand.c | 1802 | ||||
-rw-r--r-- | drivers/mtd/devices/tegra_nand.h | 148 | ||||
-rw-r--r-- | drivers/mtd/maps/bcm963xx-flash.c | 276 | ||||
-rw-r--r-- | drivers/mtd/maps/cdb89712.c | 278 | ||||
-rw-r--r-- | drivers/mtd/maps/ceiva.c | 341 | ||||
-rw-r--r-- | drivers/mtd/maps/edb7312.c | 134 | ||||
-rw-r--r-- | drivers/mtd/maps/fortunet.c | 277 | ||||
-rw-r--r-- | drivers/mtd/maps/tegra_nor.c | 483 | ||||
-rw-r--r-- | drivers/mtd/maps/wr_sbc82xx_flash.c | 181 | ||||
-rw-r--r-- | drivers/mtd/nand/autcpu12.c | 239 | ||||
-rw-r--r-- | drivers/mtd/nand/bcm_umi_bch.c | 213 | ||||
-rw-r--r-- | drivers/mtd/nand/bcm_umi_nand.c | 579 | ||||
-rw-r--r-- | drivers/mtd/nand/edb7312.c | 203 | ||||
-rw-r--r-- | drivers/mtd/nand/nand_bcm_umi.c | 149 | ||||
-rw-r--r-- | drivers/mtd/nand/nand_bcm_umi.h | 337 | ||||
-rw-r--r-- | drivers/mtd/nand/nomadik_nand.c | 246 | ||||
-rw-r--r-- | drivers/mtd/nand/spia.c | 176 | ||||
-rw-r--r-- | drivers/mtd/ubi/scan.c | 1605 | ||||
-rw-r--r-- | drivers/mtd/ubi/scan.h | 174 |
19 files changed, 7841 insertions, 0 deletions
diff --git a/drivers/mtd/devices/tegra_nand.c b/drivers/mtd/devices/tegra_nand.c new file mode 100644 index 00000000000..c8a3e7090b9 --- /dev/null +++ b/drivers/mtd/devices/tegra_nand.c | |||
@@ -0,0 +1,1802 @@ | |||
1 | /* | ||
2 | * drivers/mtd/devices/tegra_nand.c | ||
3 | * | ||
4 | * Copyright (C) 2010 Google, Inc. | ||
5 | * Author: Dima Zavin <dima@android.com> | ||
6 | * Colin Cross <ccross@android.com> | ||
7 | * | ||
8 | * Copyright (C) 2010-2011 Nvidia Graphics Pvt. Ltd. | ||
9 | * http://www.nvidia.com | ||
10 | * | ||
11 | * This software is licensed under the terms of the GNU General Public | ||
12 | * License version 2, as published by the Free Software Foundation, and | ||
13 | * may be copied, distributed, and modified under those terms. | ||
14 | * | ||
15 | * This program is distributed in the hope that it will be useful, | ||
16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
18 | * GNU General Public License for more details. | ||
19 | * | ||
20 | * Derived from: drivers/mtd/nand/nand_base.c | ||
21 | * drivers/mtd/nand/pxa3xx.c | ||
22 | * | ||
23 | */ | ||
24 | |||
25 | #include <linux/delay.h> | ||
26 | #include <linux/dma-mapping.h> | ||
27 | #include <linux/init.h> | ||
28 | #include <linux/interrupt.h> | ||
29 | #include <linux/io.h> | ||
30 | #include <linux/module.h> | ||
31 | #include <linux/mutex.h> | ||
32 | #include <linux/mtd/nand.h> | ||
33 | #include <linux/mtd/mtd.h> | ||
34 | #include <linux/mtd/partitions.h> | ||
35 | #include <linux/platform_device.h> | ||
36 | #include <linux/types.h> | ||
37 | #include <linux/clk.h> | ||
38 | #include <linux/slab.h> | ||
39 | #include <linux/gpio.h> | ||
40 | |||
41 | #include <mach/nand.h> | ||
42 | |||
43 | #include "tegra_nand.h" | ||
44 | |||
45 | #define DRIVER_NAME "tegra_nand" | ||
46 | #define DRIVER_DESC "Nvidia Tegra NAND Flash Controller driver" | ||
47 | |||
48 | #define MAX_DMA_SZ SZ_64K | ||
49 | #define ECC_BUF_SZ SZ_1K | ||
50 | |||
51 | /* FIXME: is this right?! | ||
52 | * NvRM code says it should be 128 bytes, but that seems awfully small | ||
53 | */ | ||
54 | |||
55 | /*#define TEGRA_NAND_DEBUG | ||
56 | #define TEGRA_NAND_DEBUG_PEDANTIC*/ | ||
57 | |||
58 | #ifdef TEGRA_NAND_DEBUG | ||
59 | #define TEGRA_DBG(fmt, args...) \ | ||
60 | do { pr_info(fmt, ##args); } while (0) | ||
61 | #else | ||
62 | #define TEGRA_DBG(fmt, args...) | ||
63 | #endif | ||
64 | |||
65 | /* TODO: will vary with devices, move into appropriate device spcific header */ | ||
66 | #define SCAN_TIMING_VAL 0x3f0bd214 | ||
67 | #define SCAN_TIMING2_VAL 0xb | ||
68 | |||
69 | #define TIMEOUT (2 * HZ) | ||
70 | /* TODO: pull in the register defs (fields, masks, etc) from Nvidia files | ||
71 | * so we don't have to redefine them */ | ||
72 | |||
73 | static const char *part_probes[] = { "cmdlinepart", NULL, }; | ||
74 | |||
75 | struct tegra_nand_chip { | ||
76 | spinlock_t lock; | ||
77 | uint32_t chipsize; | ||
78 | int num_chips; | ||
79 | int curr_chip; | ||
80 | |||
81 | /* addr >> chip_shift == chip number */ | ||
82 | uint32_t chip_shift; | ||
83 | /* (addr >> page_shift) & page_mask == page number within chip */ | ||
84 | uint32_t page_shift; | ||
85 | uint32_t page_mask; | ||
86 | /* column within page */ | ||
87 | uint32_t column_mask; | ||
88 | /* addr >> block_shift == block number (across the whole mtd dev, not | ||
89 | * just a single chip. */ | ||
90 | uint32_t block_shift; | ||
91 | |||
92 | void *priv; | ||
93 | }; | ||
94 | |||
95 | struct tegra_nand_info { | ||
96 | struct tegra_nand_chip chip; | ||
97 | struct mtd_info mtd; | ||
98 | struct tegra_nand_platform *plat; | ||
99 | struct device *dev; | ||
100 | struct mtd_partition *parts; | ||
101 | |||
102 | /* synchronizes access to accessing the actual NAND controller */ | ||
103 | struct mutex lock; | ||
104 | /* partial_unaligned_rw_buffer is temporary buffer used during | ||
105 | reading of unaligned data from nand pages or if data to be read | ||
106 | is less than nand page size. | ||
107 | */ | ||
108 | uint8_t *partial_unaligned_rw_buffer; | ||
109 | |||
110 | void *oob_dma_buf; | ||
111 | dma_addr_t oob_dma_addr; | ||
112 | /* ecc error vector info (offset into page and data mask to apply */ | ||
113 | void *ecc_buf; | ||
114 | dma_addr_t ecc_addr; | ||
115 | /* ecc error status (page number, err_cnt) */ | ||
116 | uint32_t *ecc_errs; | ||
117 | uint32_t num_ecc_errs; | ||
118 | uint32_t max_ecc_errs; | ||
119 | spinlock_t ecc_lock; | ||
120 | |||
121 | uint32_t command_reg; | ||
122 | uint32_t config_reg; | ||
123 | uint32_t dmactrl_reg; | ||
124 | |||
125 | struct completion cmd_complete; | ||
126 | struct completion dma_complete; | ||
127 | |||
128 | /* bad block bitmap: 1 == good, 0 == bad/unknown */ | ||
129 | unsigned long *bb_bitmap; | ||
130 | |||
131 | struct clk *clk; | ||
132 | uint32_t is_data_bus_width_16; | ||
133 | uint32_t device_id; | ||
134 | uint32_t vendor_id; | ||
135 | uint32_t dev_parms; | ||
136 | uint32_t num_bad_blocks; | ||
137 | }; | ||
138 | #define MTD_TO_INFO(mtd) container_of((mtd), struct tegra_nand_info, mtd) | ||
139 | |||
140 | /* 64 byte oob block info for large page (== 2KB) device | ||
141 | * | ||
142 | * OOB flash layout for Tegra with Reed-Solomon 4 symbol correct ECC: | ||
143 | * Skipped bytes(4) | ||
144 | * Main area Ecc(36) | ||
145 | * Tag data(20) | ||
146 | * Tag data Ecc(4) | ||
147 | * | ||
148 | * Yaffs2 will use 16 tag bytes. | ||
149 | */ | ||
150 | |||
151 | static struct nand_ecclayout tegra_nand_oob_64 = { | ||
152 | .eccbytes = 36, | ||
153 | .eccpos = { | ||
154 | 4, 5, 6, 7, 8, 9, 10, 11, 12, | ||
155 | 13, 14, 15, 16, 17, 18, 19, 20, 21, | ||
156 | 22, 23, 24, 25, 26, 27, 28, 29, 30, | ||
157 | 31, 32, 33, 34, 35, 36, 37, 38, 39, | ||
158 | }, | ||
159 | .oobavail = 20, | ||
160 | .oobfree = { | ||
161 | {.offset = 40, | ||
162 | .length = 20, | ||
163 | }, | ||
164 | }, | ||
165 | }; | ||
166 | |||
167 | static struct nand_ecclayout tegra_nand_oob_128 = { | ||
168 | .eccbytes = 72, | ||
169 | .eccpos = { | ||
170 | 4, 5, 6, 7, 8, 9, 10, 11, 12, | ||
171 | 13, 14, 15, 16, 17, 18, 19, 20, 21, | ||
172 | 22, 23, 24, 25, 26, 27, 28, 29, 30, | ||
173 | 31, 32, 33, 34, 35, 36, 37, 38, 39, | ||
174 | 40, 41, 42, 43, 44, 45, 46, 47, 48, | ||
175 | 49, 50, 51, 52, 53, 54, 55, 56, 57, | ||
176 | 58, 59, 60, 61, 62, 63, 64, 65, 66, | ||
177 | /* ECC POS is only of size 64 bytes so commenting the remaining | ||
178 | * bytes here. As driver uses the Hardware ECC so it there is | ||
179 | * no issue with it | ||
180 | */ | ||
181 | /*67, 68, 69, 70, 71, 72, 73, 74, 75, */ | ||
182 | }, | ||
183 | .oobavail = 48, | ||
184 | .oobfree = { | ||
185 | {.offset = 76, | ||
186 | .length = 48, | ||
187 | }, | ||
188 | }, | ||
189 | }; | ||
190 | |||
191 | static struct nand_flash_dev *find_nand_flash_device(int dev_id) | ||
192 | { | ||
193 | struct nand_flash_dev *dev = &nand_flash_ids[0]; | ||
194 | |||
195 | while (dev->name && dev->id != dev_id) | ||
196 | dev++; | ||
197 | return dev->name ? dev : NULL; | ||
198 | } | ||
199 | |||
200 | static struct nand_manufacturers *find_nand_flash_vendor(int vendor_id) | ||
201 | { | ||
202 | struct nand_manufacturers *vendor = &nand_manuf_ids[0]; | ||
203 | |||
204 | while (vendor->id && vendor->id != vendor_id) | ||
205 | vendor++; | ||
206 | return vendor->id ? vendor : NULL; | ||
207 | } | ||
208 | |||
209 | #define REG_NAME(name) { name, #name } | ||
210 | static struct { | ||
211 | uint32_t addr; | ||
212 | char *name; | ||
213 | } reg_names[] = { | ||
214 | REG_NAME(COMMAND_REG), | ||
215 | REG_NAME(STATUS_REG), | ||
216 | REG_NAME(ISR_REG), | ||
217 | REG_NAME(IER_REG), | ||
218 | REG_NAME(CONFIG_REG), | ||
219 | REG_NAME(TIMING_REG), | ||
220 | REG_NAME(RESP_REG), | ||
221 | REG_NAME(TIMING2_REG), | ||
222 | REG_NAME(CMD_REG1), | ||
223 | REG_NAME(CMD_REG2), | ||
224 | REG_NAME(ADDR_REG1), | ||
225 | REG_NAME(ADDR_REG2), | ||
226 | REG_NAME(DMA_MST_CTRL_REG), | ||
227 | REG_NAME(DMA_CFG_A_REG), | ||
228 | REG_NAME(DMA_CFG_B_REG), | ||
229 | REG_NAME(FIFO_CTRL_REG), | ||
230 | REG_NAME(DATA_BLOCK_PTR_REG), | ||
231 | REG_NAME(TAG_PTR_REG), | ||
232 | REG_NAME(ECC_PTR_REG), | ||
233 | REG_NAME(DEC_STATUS_REG), | ||
234 | REG_NAME(HWSTATUS_CMD_REG), | ||
235 | REG_NAME(HWSTATUS_MASK_REG), | ||
236 | {0, NULL}, | ||
237 | }; | ||
238 | |||
239 | #undef REG_NAME | ||
240 | |||
241 | static int dump_nand_regs(void) | ||
242 | { | ||
243 | int i = 0; | ||
244 | |||
245 | TEGRA_DBG("%s: dumping registers\n", __func__); | ||
246 | while (reg_names[i].name != NULL) { | ||
247 | TEGRA_DBG("%s = 0x%08x\n", reg_names[i].name, | ||
248 | readl(reg_names[i].addr)); | ||
249 | i++; | ||
250 | } | ||
251 | TEGRA_DBG("%s: end of reg dump\n", __func__); | ||
252 | return 1; | ||
253 | } | ||
254 | |||
255 | static inline void enable_ints(struct tegra_nand_info *info, uint32_t mask) | ||
256 | { | ||
257 | (void)info; | ||
258 | writel(readl(IER_REG) | mask, IER_REG); | ||
259 | } | ||
260 | |||
261 | static inline void disable_ints(struct tegra_nand_info *info, uint32_t mask) | ||
262 | { | ||
263 | (void)info; | ||
264 | writel(readl(IER_REG) & ~mask, IER_REG); | ||
265 | } | ||
266 | |||
267 | static inline void | ||
268 | split_addr(struct tegra_nand_info *info, loff_t offset, int *chipnr, | ||
269 | uint32_t *page, uint32_t *column) | ||
270 | { | ||
271 | *chipnr = (int)(offset >> info->chip.chip_shift); | ||
272 | *page = (offset >> info->chip.page_shift) & info->chip.page_mask; | ||
273 | *column = offset & info->chip.column_mask; | ||
274 | } | ||
275 | |||
276 | static irqreturn_t tegra_nand_irq(int irq, void *dev_id) | ||
277 | { | ||
278 | struct tegra_nand_info *info = dev_id; | ||
279 | uint32_t isr; | ||
280 | uint32_t ier; | ||
281 | uint32_t dma_ctrl; | ||
282 | uint32_t tmp; | ||
283 | |||
284 | isr = readl(ISR_REG); | ||
285 | ier = readl(IER_REG); | ||
286 | dma_ctrl = readl(DMA_MST_CTRL_REG); | ||
287 | #ifdef DEBUG_DUMP_IRQ | ||
288 | pr_info("IRQ: ISR=0x%08x IER=0x%08x DMA_IS=%d DMA_IE=%d\n", | ||
289 | isr, ier, !!(dma_ctrl & (1 << 20)), !!(dma_ctrl & (1 << 28))); | ||
290 | #endif | ||
291 | if (isr & ISR_CMD_DONE) { | ||
292 | if (likely(!(readl(COMMAND_REG) & COMMAND_GO))) | ||
293 | complete(&info->cmd_complete); | ||
294 | else | ||
295 | pr_err("tegra_nand_irq: Spurious cmd done irq!\n"); | ||
296 | } | ||
297 | |||
298 | if (isr & ISR_ECC_ERR) { | ||
299 | /* always want to read the decode status so xfers don't stall. */ | ||
300 | tmp = readl(DEC_STATUS_REG); | ||
301 | |||
302 | /* was ECC check actually enabled */ | ||
303 | if ((ier & IER_ECC_ERR)) { | ||
304 | unsigned long flags; | ||
305 | spin_lock_irqsave(&info->ecc_lock, flags); | ||
306 | info->ecc_errs[info->num_ecc_errs++] = tmp; | ||
307 | spin_unlock_irqrestore(&info->ecc_lock, flags); | ||
308 | } | ||
309 | } | ||
310 | |||
311 | if ((dma_ctrl & DMA_CTRL_IS_DMA_DONE) && | ||
312 | (dma_ctrl & DMA_CTRL_IE_DMA_DONE)) { | ||
313 | complete(&info->dma_complete); | ||
314 | writel(dma_ctrl, DMA_MST_CTRL_REG); | ||
315 | } | ||
316 | |||
317 | if ((isr & ISR_UND) && (ier & IER_UND)) | ||
318 | pr_err("%s: fifo underrun.\n", __func__); | ||
319 | |||
320 | if ((isr & ISR_OVR) && (ier & IER_OVR)) | ||
321 | pr_err("%s: fifo overrun.\n", __func__); | ||
322 | |||
323 | /* clear ALL interrupts?! */ | ||
324 | writel(isr & 0xfffc, ISR_REG); | ||
325 | |||
326 | return IRQ_HANDLED; | ||
327 | } | ||
328 | |||
329 | static inline int tegra_nand_is_cmd_done(struct tegra_nand_info *info) | ||
330 | { | ||
331 | return (readl(COMMAND_REG) & COMMAND_GO) ? 0 : 1; | ||
332 | } | ||
333 | |||
334 | static int tegra_nand_wait_cmd_done(struct tegra_nand_info *info) | ||
335 | { | ||
336 | uint32_t timeout = TIMEOUT; /* TODO: make this realistic */ | ||
337 | int ret; | ||
338 | |||
339 | ret = wait_for_completion_timeout(&info->cmd_complete, timeout); | ||
340 | |||
341 | #ifdef TEGRA_NAND_DEBUG_PEDANTIC | ||
342 | BUG_ON(!ret && dump_nand_regs()); | ||
343 | #endif | ||
344 | |||
345 | return ret ? 0 : ret; | ||
346 | } | ||
347 | |||
348 | static inline void select_chip(struct tegra_nand_info *info, int chipnr) | ||
349 | { | ||
350 | BUG_ON(chipnr != -1 && chipnr >= info->plat->max_chips); | ||
351 | info->chip.curr_chip = chipnr; | ||
352 | } | ||
353 | |||
354 | static void cfg_hwstatus_mon(struct tegra_nand_info *info) | ||
355 | { | ||
356 | uint32_t val; | ||
357 | |||
358 | val = (HWSTATUS_RDSTATUS_MASK(1) | | ||
359 | HWSTATUS_RDSTATUS_EXP_VAL(0) | | ||
360 | HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | | ||
361 | HWSTATUS_RBSY_EXP_VAL(NAND_STATUS_READY)); | ||
362 | writel(NAND_CMD_STATUS, HWSTATUS_CMD_REG); | ||
363 | writel(val, HWSTATUS_MASK_REG); | ||
364 | } | ||
365 | |||
366 | /* Tells the NAND controller to initiate the command. */ | ||
367 | static int tegra_nand_go(struct tegra_nand_info *info) | ||
368 | { | ||
369 | BUG_ON(!tegra_nand_is_cmd_done(info)); | ||
370 | |||
371 | INIT_COMPLETION(info->cmd_complete); | ||
372 | writel(info->command_reg | COMMAND_GO, COMMAND_REG); | ||
373 | |||
374 | if (unlikely(tegra_nand_wait_cmd_done(info))) { | ||
375 | /* TODO: abort command if needed? */ | ||
376 | pr_err("%s: Timeout while waiting for command\n", __func__); | ||
377 | return -ETIMEDOUT; | ||
378 | } | ||
379 | |||
380 | /* TODO: maybe wait for dma here? */ | ||
381 | return 0; | ||
382 | } | ||
383 | |||
384 | static void tegra_nand_prep_readid(struct tegra_nand_info *info) | ||
385 | { | ||
386 | info->command_reg = | ||
387 | (COMMAND_CLE | COMMAND_ALE | COMMAND_PIO | COMMAND_RX | | ||
388 | COMMAND_ALE_BYTE_SIZE(0) | COMMAND_TRANS_SIZE(3) | | ||
389 | (COMMAND_CE(info->chip.curr_chip))); | ||
390 | writel(NAND_CMD_READID, CMD_REG1); | ||
391 | writel(0, CMD_REG2); | ||
392 | writel(0, ADDR_REG1); | ||
393 | writel(0, ADDR_REG2); | ||
394 | writel(0, CONFIG_REG); | ||
395 | } | ||
396 | |||
397 | static int | ||
398 | tegra_nand_cmd_readid(struct tegra_nand_info *info, uint32_t *chip_id) | ||
399 | { | ||
400 | int err; | ||
401 | |||
402 | #ifdef TEGRA_NAND_DEBUG_PEDANTIC | ||
403 | BUG_ON(info->chip.curr_chip == -1); | ||
404 | #endif | ||
405 | |||
406 | tegra_nand_prep_readid(info); | ||
407 | err = tegra_nand_go(info); | ||
408 | if (err != 0) | ||
409 | return err; | ||
410 | |||
411 | *chip_id = readl(RESP_REG); | ||
412 | return 0; | ||
413 | } | ||
414 | |||
415 | /* assumes right locks are held */ | ||
416 | static int nand_cmd_get_status(struct tegra_nand_info *info, uint32_t *status) | ||
417 | { | ||
418 | int err; | ||
419 | |||
420 | info->command_reg = (COMMAND_CLE | COMMAND_PIO | COMMAND_RX | | ||
421 | COMMAND_RBSY_CHK | | ||
422 | (COMMAND_CE(info->chip.curr_chip))); | ||
423 | writel(NAND_CMD_STATUS, CMD_REG1); | ||
424 | writel(0, CMD_REG2); | ||
425 | writel(0, ADDR_REG1); | ||
426 | writel(0, ADDR_REG2); | ||
427 | writel(CONFIG_COM_BSY, CONFIG_REG); | ||
428 | |||
429 | err = tegra_nand_go(info); | ||
430 | if (err != 0) | ||
431 | return err; | ||
432 | |||
433 | *status = readl(RESP_REG) & 0xff; | ||
434 | return 0; | ||
435 | } | ||
436 | |||
437 | /* must be called with lock held */ | ||
438 | static int check_block_isbad(struct mtd_info *mtd, loff_t offs) | ||
439 | { | ||
440 | struct tegra_nand_info *info = MTD_TO_INFO(mtd); | ||
441 | uint32_t block = offs >> info->chip.block_shift; | ||
442 | int chipnr; | ||
443 | uint32_t page; | ||
444 | uint32_t column; | ||
445 | int ret = 0; | ||
446 | int i; | ||
447 | |||
448 | if (info->bb_bitmap[BIT_WORD(block)] & BIT_MASK(block)) | ||
449 | return 0; | ||
450 | |||
451 | offs &= ~(mtd->erasesize - 1); | ||
452 | |||
453 | if (info->is_data_bus_width_16) | ||
454 | writel(CONFIG_COM_BSY | CONFIG_BUS_WIDTH, CONFIG_REG); | ||
455 | else | ||
456 | writel(CONFIG_COM_BSY, CONFIG_REG); | ||
457 | |||
458 | split_addr(info, offs, &chipnr, &page, &column); | ||
459 | select_chip(info, chipnr); | ||
460 | |||
461 | column = mtd->writesize & 0xffff; /* force to be the offset of OOB */ | ||
462 | |||
463 | /* check fist two pages of the block */ | ||
464 | if (info->is_data_bus_width_16) | ||
465 | column = column >> 1; | ||
466 | for (i = 0; i < 2; ++i) { | ||
467 | info->command_reg = | ||
468 | COMMAND_CE(info->chip.curr_chip) | COMMAND_CLE | | ||
469 | COMMAND_ALE | COMMAND_ALE_BYTE_SIZE(4) | COMMAND_RX | | ||
470 | COMMAND_PIO | COMMAND_TRANS_SIZE(1) | COMMAND_A_VALID | | ||
471 | COMMAND_RBSY_CHK | COMMAND_SEC_CMD; | ||
472 | writel(NAND_CMD_READ0, CMD_REG1); | ||
473 | writel(NAND_CMD_READSTART, CMD_REG2); | ||
474 | |||
475 | writel(column | ((page & 0xffff) << 16), ADDR_REG1); | ||
476 | writel((page >> 16) & 0xff, ADDR_REG2); | ||
477 | |||
478 | /* ... poison me ... */ | ||
479 | writel(0xaa55aa55, RESP_REG); | ||
480 | ret = tegra_nand_go(info); | ||
481 | if (ret != 0) { | ||
482 | pr_info("baaaaaad\n"); | ||
483 | goto out; | ||
484 | } | ||
485 | |||
486 | if ((readl(RESP_REG) & 0xffff) != 0xffff) { | ||
487 | ret = 1; | ||
488 | goto out; | ||
489 | } | ||
490 | |||
491 | /* Note: The assumption here is that we cannot cross chip | ||
492 | * boundary since the we are only looking at the first 2 pages in | ||
493 | * a block, i.e. erasesize > writesize ALWAYS */ | ||
494 | page++; | ||
495 | } | ||
496 | |||
497 | out: | ||
498 | /* update the bitmap if the block is good */ | ||
499 | if (ret == 0) | ||
500 | set_bit(block, info->bb_bitmap); | ||
501 | return ret; | ||
502 | } | ||
503 | |||
504 | static int tegra_nand_block_isbad(struct mtd_info *mtd, loff_t offs) | ||
505 | { | ||
506 | struct tegra_nand_info *info = MTD_TO_INFO(mtd); | ||
507 | int ret; | ||
508 | |||
509 | if (offs >= mtd->size) | ||
510 | return -EINVAL; | ||
511 | |||
512 | mutex_lock(&info->lock); | ||
513 | ret = check_block_isbad(mtd, offs); | ||
514 | mutex_unlock(&info->lock); | ||
515 | |||
516 | #if 0 | ||
517 | if (ret > 0) | ||
518 | pr_info("block @ 0x%llx is bad.\n", offs); | ||
519 | else if (ret < 0) | ||
520 | pr_err("error checking block @ 0x%llx for badness.\n", offs); | ||
521 | #endif | ||
522 | |||
523 | return ret; | ||
524 | } | ||
525 | |||
526 | static int tegra_nand_block_markbad(struct mtd_info *mtd, loff_t offs) | ||
527 | { | ||
528 | struct tegra_nand_info *info = MTD_TO_INFO(mtd); | ||
529 | uint32_t block = offs >> info->chip.block_shift; | ||
530 | int chipnr; | ||
531 | uint32_t page; | ||
532 | uint32_t column; | ||
533 | int ret = 0; | ||
534 | int i; | ||
535 | |||
536 | if (offs >= mtd->size) | ||
537 | return -EINVAL; | ||
538 | |||
539 | pr_info("tegra_nand: setting block %d bad\n", block); | ||
540 | |||
541 | mutex_lock(&info->lock); | ||
542 | offs &= ~(mtd->erasesize - 1); | ||
543 | |||
544 | /* mark the block bad in our bitmap */ | ||
545 | clear_bit(block, info->bb_bitmap); | ||
546 | mtd->ecc_stats.badblocks++; | ||
547 | |||
548 | if (info->is_data_bus_width_16) | ||
549 | writel(CONFIG_COM_BSY | CONFIG_BUS_WIDTH, CONFIG_REG); | ||
550 | else | ||
551 | writel(CONFIG_COM_BSY, CONFIG_REG); | ||
552 | |||
553 | split_addr(info, offs, &chipnr, &page, &column); | ||
554 | select_chip(info, chipnr); | ||
555 | |||
556 | column = mtd->writesize & 0xffff; /* force to be the offset of OOB */ | ||
557 | if (info->is_data_bus_width_16) | ||
558 | column = column >> 1; | ||
559 | /* write to fist two pages in the block */ | ||
560 | for (i = 0; i < 2; ++i) { | ||
561 | info->command_reg = | ||
562 | COMMAND_CE(info->chip.curr_chip) | COMMAND_CLE | | ||
563 | COMMAND_ALE | COMMAND_ALE_BYTE_SIZE(4) | COMMAND_TX | | ||
564 | COMMAND_PIO | COMMAND_TRANS_SIZE(1) | COMMAND_A_VALID | | ||
565 | COMMAND_RBSY_CHK | COMMAND_AFT_DAT | COMMAND_SEC_CMD; | ||
566 | writel(NAND_CMD_SEQIN, CMD_REG1); | ||
567 | writel(NAND_CMD_PAGEPROG, CMD_REG2); | ||
568 | |||
569 | writel(column | ((page & 0xffff) << 16), ADDR_REG1); | ||
570 | writel((page >> 16) & 0xff, ADDR_REG2); | ||
571 | |||
572 | writel(0x0, RESP_REG); | ||
573 | ret = tegra_nand_go(info); | ||
574 | if (ret != 0) | ||
575 | goto out; | ||
576 | |||
577 | /* TODO: check if the program op worked? */ | ||
578 | page++; | ||
579 | } | ||
580 | |||
581 | out: | ||
582 | mutex_unlock(&info->lock); | ||
583 | return ret; | ||
584 | } | ||
585 | |||
586 | static int tegra_nand_erase(struct mtd_info *mtd, struct erase_info *instr) | ||
587 | { | ||
588 | struct tegra_nand_info *info = MTD_TO_INFO(mtd); | ||
589 | uint32_t num_blocks; | ||
590 | uint32_t offs; | ||
591 | int chipnr; | ||
592 | uint32_t page; | ||
593 | uint32_t column; | ||
594 | uint32_t status = 0; | ||
595 | |||
596 | TEGRA_DBG("tegra_nand_erase: addr=0x%08llx len=%lld\n", instr->addr, | ||
597 | instr->len); | ||
598 | |||
599 | if ((instr->addr + instr->len) > mtd->size) { | ||
600 | pr_err("tegra_nand_erase: Can't erase past end of device\n"); | ||
601 | instr->state = MTD_ERASE_FAILED; | ||
602 | return -EINVAL; | ||
603 | } | ||
604 | |||
605 | if (instr->addr & (mtd->erasesize - 1)) { | ||
606 | pr_err("tegra_nand_erase: addr=0x%08llx not block-aligned\n", | ||
607 | instr->addr); | ||
608 | instr->state = MTD_ERASE_FAILED; | ||
609 | return -EINVAL; | ||
610 | } | ||
611 | |||
612 | if (instr->len & (mtd->erasesize - 1)) { | ||
613 | pr_err("tegra_nand_erase: len=%lld not block-aligned\n", | ||
614 | instr->len); | ||
615 | instr->state = MTD_ERASE_FAILED; | ||
616 | return -EINVAL; | ||
617 | } | ||
618 | |||
619 | instr->fail_addr = 0xffffffff; | ||
620 | |||
621 | mutex_lock(&info->lock); | ||
622 | |||
623 | instr->state = MTD_ERASING; | ||
624 | |||
625 | offs = instr->addr; | ||
626 | num_blocks = instr->len >> info->chip.block_shift; | ||
627 | |||
628 | select_chip(info, -1); | ||
629 | |||
630 | while (num_blocks--) { | ||
631 | split_addr(info, offs, &chipnr, &page, &column); | ||
632 | if (chipnr != info->chip.curr_chip) | ||
633 | select_chip(info, chipnr); | ||
634 | TEGRA_DBG("tegra_nand_erase: addr=0x%08x, page=0x%08x\n", offs, | ||
635 | page); | ||
636 | |||
637 | if (check_block_isbad(mtd, offs)) { | ||
638 | pr_info("%s: skipping bad block @ 0x%08x\n", __func__, | ||
639 | offs); | ||
640 | goto next_block; | ||
641 | } | ||
642 | |||
643 | info->command_reg = | ||
644 | COMMAND_CE(info->chip.curr_chip) | COMMAND_CLE | | ||
645 | COMMAND_ALE | COMMAND_ALE_BYTE_SIZE(2) | | ||
646 | COMMAND_RBSY_CHK | COMMAND_SEC_CMD; | ||
647 | writel(NAND_CMD_ERASE1, CMD_REG1); | ||
648 | writel(NAND_CMD_ERASE2, CMD_REG2); | ||
649 | |||
650 | writel(page & 0xffffff, ADDR_REG1); | ||
651 | writel(0, ADDR_REG2); | ||
652 | writel(CONFIG_COM_BSY, CONFIG_REG); | ||
653 | |||
654 | if (tegra_nand_go(info) != 0) { | ||
655 | instr->fail_addr = offs; | ||
656 | goto out_err; | ||
657 | } | ||
658 | |||
659 | /* TODO: do we want a timeout here? */ | ||
660 | if ((nand_cmd_get_status(info, &status) != 0) || | ||
661 | (status & NAND_STATUS_FAIL) || | ||
662 | ((status & NAND_STATUS_READY) != NAND_STATUS_READY)) { | ||
663 | instr->fail_addr = offs; | ||
664 | pr_info("%s: erase failed @ 0x%08x (stat=0x%08x)\n", | ||
665 | __func__, offs, status); | ||
666 | goto out_err; | ||
667 | } | ||
668 | next_block: | ||
669 | offs += mtd->erasesize; | ||
670 | } | ||
671 | |||
672 | instr->state = MTD_ERASE_DONE; | ||
673 | mutex_unlock(&info->lock); | ||
674 | mtd_erase_callback(instr); | ||
675 | return 0; | ||
676 | |||
677 | out_err: | ||
678 | instr->state = MTD_ERASE_FAILED; | ||
679 | mutex_unlock(&info->lock); | ||
680 | return -EIO; | ||
681 | } | ||
682 | |||
683 | static inline void dump_mtd_oob_ops(struct mtd_oob_ops *ops) | ||
684 | { | ||
685 | pr_info("%s: oob_ops: mode=%s len=0x%x ooblen=0x%x " | ||
686 | "ooboffs=0x%x dat=0x%p oob=0x%p\n", __func__, | ||
687 | (ops->mode == MTD_OOB_AUTO ? "MTD_OOB_AUTO" : | ||
688 | (ops->mode == | ||
689 | MTD_OOB_PLACE ? "MTD_OOB_PLACE" : "MTD_OOB_RAW")), ops->len, | ||
690 | ops->ooblen, ops->ooboffs, ops->datbuf, ops->oobbuf); | ||
691 | } | ||
692 | |||
693 | static int | ||
694 | tegra_nand_read(struct mtd_info *mtd, loff_t from, size_t len, | ||
695 | size_t *retlen, uint8_t *buf) | ||
696 | { | ||
697 | struct mtd_oob_ops ops; | ||
698 | int ret; | ||
699 | |||
700 | pr_debug("%s: read: from=0x%llx len=0x%x\n", __func__, from, len); | ||
701 | ops.mode = MTD_OOB_AUTO; | ||
702 | ops.len = len; | ||
703 | ops.datbuf = buf; | ||
704 | ops.oobbuf = NULL; | ||
705 | ret = mtd->read_oob(mtd, from, &ops); | ||
706 | *retlen = ops.retlen; | ||
707 | return ret; | ||
708 | } | ||
709 | |||
710 | static void | ||
711 | correct_ecc_errors_on_blank_page(struct tegra_nand_info *info, u8 *datbuf, | ||
712 | u8 *oobbuf, unsigned int a_len, | ||
713 | unsigned int b_len) | ||
714 | { | ||
715 | int i; | ||
716 | int all_ff = 1; | ||
717 | unsigned long flags; | ||
718 | |||
719 | spin_lock_irqsave(&info->ecc_lock, flags); | ||
720 | if (info->num_ecc_errs) { | ||
721 | if (datbuf) { | ||
722 | for (i = 0; i < a_len; i++) | ||
723 | if (datbuf[i] != 0xFF) | ||
724 | all_ff = 0; | ||
725 | } | ||
726 | if (oobbuf) { | ||
727 | for (i = 0; i < b_len; i++) | ||
728 | if (oobbuf[i] != 0xFF) | ||
729 | all_ff = 0; | ||
730 | } | ||
731 | if (all_ff) | ||
732 | info->num_ecc_errs = 0; | ||
733 | } | ||
734 | spin_unlock_irqrestore(&info->ecc_lock, flags); | ||
735 | } | ||
736 | |||
737 | static void update_ecc_counts(struct tegra_nand_info *info, int check_oob) | ||
738 | { | ||
739 | unsigned long flags; | ||
740 | int i; | ||
741 | |||
742 | spin_lock_irqsave(&info->ecc_lock, flags); | ||
743 | for (i = 0; i < info->num_ecc_errs; ++i) { | ||
744 | /* correctable */ | ||
745 | info->mtd.ecc_stats.corrected += | ||
746 | DEC_STATUS_ERR_CNT(info->ecc_errs[i]); | ||
747 | |||
748 | /* uncorrectable */ | ||
749 | if (info->ecc_errs[i] & DEC_STATUS_ECC_FAIL_A) | ||
750 | info->mtd.ecc_stats.failed++; | ||
751 | if (check_oob && (info->ecc_errs[i] & DEC_STATUS_ECC_FAIL_B)) | ||
752 | info->mtd.ecc_stats.failed++; | ||
753 | } | ||
754 | info->num_ecc_errs = 0; | ||
755 | spin_unlock_irqrestore(&info->ecc_lock, flags); | ||
756 | } | ||
757 | |||
758 | static inline void clear_regs(struct tegra_nand_info *info) | ||
759 | { | ||
760 | info->command_reg = 0; | ||
761 | info->config_reg = 0; | ||
762 | info->dmactrl_reg = 0; | ||
763 | } | ||
764 | |||
765 | static void | ||
766 | prep_transfer_dma(struct tegra_nand_info *info, int rx, int do_ecc, | ||
767 | uint32_t page, uint32_t column, dma_addr_t data_dma, | ||
768 | uint32_t data_len, dma_addr_t oob_dma, uint32_t oob_len) | ||
769 | { | ||
770 | uint32_t tag_sz = oob_len; | ||
771 | |||
772 | uint32_t page_size_sel = (info->mtd.writesize >> 11) + 2; | ||
773 | #if 0 | ||
774 | pr_info("%s: rx=%d ecc=%d page=%d col=%d data_dma=0x%x " | ||
775 | "data_len=0x%08x oob_dma=0x%x ooblen=%d\n", __func__, | ||
776 | rx, do_ecc, page, column, data_dma, data_len, oob_dma, oob_len); | ||
777 | #endif | ||
778 | |||
779 | info->command_reg = | ||
780 | COMMAND_CE(info->chip.curr_chip) | COMMAND_CLE | COMMAND_ALE | | ||
781 | COMMAND_ALE_BYTE_SIZE(4) | COMMAND_SEC_CMD | COMMAND_RBSY_CHK | | ||
782 | COMMAND_TRANS_SIZE(8); | ||
783 | |||
784 | info->config_reg = (CONFIG_PIPELINE_EN | CONFIG_EDO_MODE | | ||
785 | CONFIG_COM_BSY); | ||
786 | if (info->is_data_bus_width_16) | ||
787 | info->config_reg |= CONFIG_BUS_WIDTH; | ||
788 | info->dmactrl_reg = (DMA_CTRL_DMA_GO | | ||
789 | DMA_CTRL_DMA_PERF_EN | DMA_CTRL_IE_DMA_DONE | | ||
790 | DMA_CTRL_IS_DMA_DONE | DMA_CTRL_BURST_SIZE(4)); | ||
791 | |||
792 | if (rx) { | ||
793 | if (do_ecc) | ||
794 | info->config_reg |= CONFIG_HW_ERR_CORRECTION; | ||
795 | info->command_reg |= COMMAND_RX; | ||
796 | info->dmactrl_reg |= DMA_CTRL_REUSE_BUFFER; | ||
797 | writel(NAND_CMD_READ0, CMD_REG1); | ||
798 | writel(NAND_CMD_READSTART, CMD_REG2); | ||
799 | } else { | ||
800 | info->command_reg |= (COMMAND_TX | COMMAND_AFT_DAT); | ||
801 | info->dmactrl_reg |= DMA_CTRL_DIR; /* DMA_RD == TX */ | ||
802 | writel(NAND_CMD_SEQIN, CMD_REG1); | ||
803 | writel(NAND_CMD_PAGEPROG, CMD_REG2); | ||
804 | } | ||
805 | |||
806 | if (data_len) { | ||
807 | if (do_ecc) | ||
808 | info->config_reg |= CONFIG_HW_ECC | CONFIG_ECC_SEL; | ||
809 | info->config_reg |= | ||
810 | CONFIG_PAGE_SIZE_SEL(page_size_sel) | CONFIG_TVALUE(0) | | ||
811 | CONFIG_SKIP_SPARE | CONFIG_SKIP_SPARE_SEL(0); | ||
812 | info->command_reg |= COMMAND_A_VALID; | ||
813 | info->dmactrl_reg |= DMA_CTRL_DMA_EN_A; | ||
814 | writel(DMA_CFG_BLOCK_SIZE(data_len - 1), DMA_CFG_A_REG); | ||
815 | writel(data_dma, DATA_BLOCK_PTR_REG); | ||
816 | } else { | ||
817 | column = info->mtd.writesize; | ||
818 | if (do_ecc) | ||
819 | column += info->mtd.ecclayout->oobfree[0].offset; | ||
820 | writel(0, DMA_CFG_A_REG); | ||
821 | writel(0, DATA_BLOCK_PTR_REG); | ||
822 | } | ||
823 | |||
824 | if (oob_len) { | ||
825 | if (do_ecc) { | ||
826 | oob_len = info->mtd.oobavail; | ||
827 | tag_sz = info->mtd.oobavail; | ||
828 | tag_sz += 4; /* size of tag ecc */ | ||
829 | if (rx) | ||
830 | oob_len += 4; /* size of tag ecc */ | ||
831 | info->config_reg |= CONFIG_ECC_EN_TAG; | ||
832 | } | ||
833 | if (data_len && rx) | ||
834 | oob_len += 4; /* num of skipped bytes */ | ||
835 | |||
836 | info->command_reg |= COMMAND_B_VALID; | ||
837 | info->config_reg |= CONFIG_TAG_BYTE_SIZE(tag_sz - 1); | ||
838 | info->dmactrl_reg |= DMA_CTRL_DMA_EN_B; | ||
839 | writel(DMA_CFG_BLOCK_SIZE(oob_len - 1), DMA_CFG_B_REG); | ||
840 | writel(oob_dma, TAG_PTR_REG); | ||
841 | } else { | ||
842 | writel(0, DMA_CFG_B_REG); | ||
843 | writel(0, TAG_PTR_REG); | ||
844 | } | ||
845 | /* For x16 bit we needs to divide the column number by 2 */ | ||
846 | if (info->is_data_bus_width_16) | ||
847 | column = column >> 1; | ||
848 | writel((column & 0xffff) | ((page & 0xffff) << 16), ADDR_REG1); | ||
849 | writel((page >> 16) & 0xff, ADDR_REG2); | ||
850 | } | ||
851 | |||
852 | static dma_addr_t | ||
853 | tegra_nand_dma_map(struct device *dev, void *addr, size_t size, | ||
854 | enum dma_data_direction dir) | ||
855 | { | ||
856 | struct page *page; | ||
857 | unsigned long offset = (unsigned long)addr & ~PAGE_MASK; | ||
858 | if (virt_addr_valid(addr)) | ||
859 | page = virt_to_page(addr); | ||
860 | else { | ||
861 | if (WARN_ON(size + offset > PAGE_SIZE)) | ||
862 | return ~0; | ||
863 | page = vmalloc_to_page(addr); | ||
864 | } | ||
865 | return dma_map_page(dev, page, offset, size, dir); | ||
866 | } | ||
867 | |||
868 | static ssize_t show_vendor_id(struct device *dev, struct device_attribute *attr, | ||
869 | char *buf) | ||
870 | { | ||
871 | struct tegra_nand_info *info = dev_get_drvdata(dev); | ||
872 | return sprintf(buf, "0x%x\n", info->vendor_id); | ||
873 | } | ||
874 | |||
875 | static DEVICE_ATTR(vendor_id, S_IRUSR, show_vendor_id, NULL); | ||
876 | |||
877 | static ssize_t show_device_id(struct device *dev, struct device_attribute *attr, | ||
878 | char *buf) | ||
879 | { | ||
880 | struct tegra_nand_info *info = dev_get_drvdata(dev); | ||
881 | return sprintf(buf, "0x%x\n", info->device_id); | ||
882 | } | ||
883 | |||
884 | static DEVICE_ATTR(device_id, S_IRUSR, show_device_id, NULL); | ||
885 | |||
886 | static ssize_t show_flash_size(struct device *dev, | ||
887 | struct device_attribute *attr, char *buf) | ||
888 | { | ||
889 | struct tegra_nand_info *info = dev_get_drvdata(dev); | ||
890 | struct mtd_info *mtd = &info->mtd; | ||
891 | return sprintf(buf, "%llu bytes\n", mtd->size); | ||
892 | } | ||
893 | |||
894 | static DEVICE_ATTR(flash_size, S_IRUSR, show_flash_size, NULL); | ||
895 | |||
896 | static ssize_t show_num_bad_blocks(struct device *dev, | ||
897 | struct device_attribute *attr, char *buf) | ||
898 | { | ||
899 | struct tegra_nand_info *info = dev_get_drvdata(dev); | ||
900 | return sprintf(buf, "%d\n", info->num_bad_blocks); | ||
901 | } | ||
902 | |||
903 | static DEVICE_ATTR(num_bad_blocks, S_IRUSR, show_num_bad_blocks, NULL); | ||
904 | |||
905 | static ssize_t show_bb_bitmap(struct device *dev, struct device_attribute *attr, | ||
906 | char *buf) | ||
907 | { | ||
908 | struct tegra_nand_info *info = dev_get_drvdata(dev); | ||
909 | struct mtd_info *mtd = &info->mtd; | ||
910 | int num_blocks = mtd->size >> info->chip.block_shift, i, ret = 0, size = | ||
911 | 0; | ||
912 | |||
913 | for (i = 0; i < num_blocks / (8 * sizeof(unsigned long)); i++) { | ||
914 | size = sprintf(buf, "0x%lx\n", info->bb_bitmap[i]); | ||
915 | ret += size; | ||
916 | buf += size; | ||
917 | } | ||
918 | return ret; | ||
919 | } | ||
920 | |||
921 | static DEVICE_ATTR(bb_bitmap, S_IRUSR, show_bb_bitmap, NULL); | ||
922 | |||
923 | /* | ||
924 | * Independent of Mode, we read main data and the OOB data from the oobfree areas as | ||
925 | * specified nand_ecclayout | ||
926 | * This function also checks buffer pool partial_unaligned_rw_buffer | ||
927 | * if the address is already present and is not 'unused' then it will use | ||
928 | * data in buffer else it will go for DMA. | ||
929 | */ | ||
930 | static int | ||
931 | do_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) | ||
932 | { | ||
933 | struct tegra_nand_info *info = MTD_TO_INFO(mtd); | ||
934 | struct mtd_ecc_stats old_ecc_stats; | ||
935 | int chipnr; | ||
936 | uint32_t page; | ||
937 | uint32_t column; | ||
938 | uint8_t *datbuf = ops->datbuf; | ||
939 | uint8_t *oobbuf = ops->oobbuf; | ||
940 | uint32_t ooblen = oobbuf ? ops->ooblen : 0; | ||
941 | uint32_t oobsz; | ||
942 | uint32_t page_count; | ||
943 | int err; | ||
944 | int unaligned = from & info->chip.column_mask; | ||
945 | uint32_t len = datbuf ? ((ops->len) + unaligned) : 0; | ||
946 | int do_ecc = 1; | ||
947 | dma_addr_t datbuf_dma_addr = 0; | ||
948 | |||
949 | #if 0 | ||
950 | dump_mtd_oob_ops(ops); | ||
951 | #endif | ||
952 | ops->retlen = 0; | ||
953 | ops->oobretlen = 0; | ||
954 | from = from - unaligned; | ||
955 | |||
956 | /* Don't care about the MTD_OOB_ value field always use oobavail and ecc. */ | ||
957 | oobsz = mtd->oobavail; | ||
958 | if (unlikely(ops->oobbuf && ops->ooblen > oobsz)) { | ||
959 | pr_err("%s: can't read OOB from multiple pages (%d > %d)\n", | ||
960 | __func__, ops->ooblen, oobsz); | ||
961 | return -EINVAL; | ||
962 | } else if (ops->oobbuf && !len) { | ||
963 | page_count = 1; | ||
964 | } else { | ||
965 | page_count = | ||
966 | (uint32_t) ((len + mtd->writesize - 1) / mtd->writesize); | ||
967 | } | ||
968 | |||
969 | mutex_lock(&info->lock); | ||
970 | |||
971 | memcpy(&old_ecc_stats, &mtd->ecc_stats, sizeof(old_ecc_stats)); | ||
972 | |||
973 | if (do_ecc) { | ||
974 | enable_ints(info, IER_ECC_ERR); | ||
975 | writel(info->ecc_addr, ECC_PTR_REG); | ||
976 | } else | ||
977 | disable_ints(info, IER_ECC_ERR); | ||
978 | |||
979 | split_addr(info, from, &chipnr, &page, &column); | ||
980 | select_chip(info, chipnr); | ||
981 | |||
982 | /* reset it to point back to beginning of page */ | ||
983 | from -= column; | ||
984 | |||
985 | while (page_count--) { | ||
986 | int a_len = min(mtd->writesize - column, len); | ||
987 | int b_len = min(oobsz, ooblen); | ||
988 | int temp_len = 0; | ||
989 | char *temp_buf = NULL; | ||
990 | /* Take care when read is of less than page size. | ||
991 | * Otherwise there will be kernel Panic due to DMA timeout */ | ||
992 | if (((a_len < mtd->writesize) && len) || unaligned) { | ||
993 | temp_len = a_len; | ||
994 | a_len = mtd->writesize; | ||
995 | temp_buf = datbuf; | ||
996 | datbuf = info->partial_unaligned_rw_buffer; | ||
997 | } | ||
998 | #if 0 | ||
999 | pr_info("%s: chip:=%d page=%d col=%d\n", __func__, chipnr, | ||
1000 | page, column); | ||
1001 | #endif | ||
1002 | |||
1003 | clear_regs(info); | ||
1004 | if (datbuf) | ||
1005 | datbuf_dma_addr = | ||
1006 | tegra_nand_dma_map(info->dev, datbuf, a_len, | ||
1007 | DMA_FROM_DEVICE); | ||
1008 | |||
1009 | prep_transfer_dma(info, 1, do_ecc, page, column, | ||
1010 | datbuf_dma_addr, a_len, info->oob_dma_addr, | ||
1011 | b_len); | ||
1012 | writel(info->config_reg, CONFIG_REG); | ||
1013 | writel(info->dmactrl_reg, DMA_MST_CTRL_REG); | ||
1014 | |||
1015 | INIT_COMPLETION(info->dma_complete); | ||
1016 | err = tegra_nand_go(info); | ||
1017 | if (err != 0) | ||
1018 | goto out_err; | ||
1019 | |||
1020 | if (!wait_for_completion_timeout(&info->dma_complete, TIMEOUT)) { | ||
1021 | pr_err("%s: dma completion timeout\n", __func__); | ||
1022 | dump_nand_regs(); | ||
1023 | err = -ETIMEDOUT; | ||
1024 | goto out_err; | ||
1025 | } | ||
1026 | |||
1027 | /*pr_info("tegra_read_oob: DMA complete\n"); */ | ||
1028 | |||
1029 | /* if we are here, transfer is done */ | ||
1030 | if (datbuf) | ||
1031 | dma_unmap_page(info->dev, datbuf_dma_addr, a_len, | ||
1032 | DMA_FROM_DEVICE); | ||
1033 | |||
1034 | if (oobbuf) { | ||
1035 | uint32_t ofs = datbuf && oobbuf ? 4 : 0; /* skipped bytes */ | ||
1036 | memcpy(oobbuf, info->oob_dma_buf + ofs, b_len); | ||
1037 | } | ||
1038 | |||
1039 | correct_ecc_errors_on_blank_page(info, datbuf, oobbuf, a_len, | ||
1040 | b_len); | ||
1041 | /* Take care when read is of less than page size */ | ||
1042 | if (temp_len) { | ||
1043 | memcpy(temp_buf, datbuf + unaligned, | ||
1044 | temp_len - unaligned); | ||
1045 | a_len = temp_len; | ||
1046 | datbuf = temp_buf; | ||
1047 | } | ||
1048 | if (datbuf) { | ||
1049 | len -= a_len; | ||
1050 | datbuf += a_len - unaligned; | ||
1051 | ops->retlen += a_len - unaligned; | ||
1052 | } | ||
1053 | |||
1054 | if (oobbuf) { | ||
1055 | ooblen -= b_len; | ||
1056 | oobbuf += b_len; | ||
1057 | ops->oobretlen += b_len; | ||
1058 | } | ||
1059 | |||
1060 | unaligned = 0; | ||
1061 | update_ecc_counts(info, oobbuf != NULL); | ||
1062 | |||
1063 | if (!page_count) | ||
1064 | break; | ||
1065 | |||
1066 | from += mtd->writesize; | ||
1067 | column = 0; | ||
1068 | |||
1069 | split_addr(info, from, &chipnr, &page, &column); | ||
1070 | if (chipnr != info->chip.curr_chip) | ||
1071 | select_chip(info, chipnr); | ||
1072 | } | ||
1073 | |||
1074 | disable_ints(info, IER_ECC_ERR); | ||
1075 | |||
1076 | if (mtd->ecc_stats.failed != old_ecc_stats.failed) | ||
1077 | err = -EBADMSG; | ||
1078 | else if (mtd->ecc_stats.corrected != old_ecc_stats.corrected) | ||
1079 | err = -EUCLEAN; | ||
1080 | else | ||
1081 | err = 0; | ||
1082 | |||
1083 | mutex_unlock(&info->lock); | ||
1084 | return err; | ||
1085 | |||
1086 | out_err: | ||
1087 | ops->retlen = 0; | ||
1088 | ops->oobretlen = 0; | ||
1089 | |||
1090 | disable_ints(info, IER_ECC_ERR); | ||
1091 | mutex_unlock(&info->lock); | ||
1092 | return err; | ||
1093 | } | ||
1094 | |||
1095 | /* just does some parameter checking and calls do_read_oob */ | ||
1096 | static int | ||
1097 | tegra_nand_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) | ||
1098 | { | ||
1099 | if (ops->datbuf && unlikely((from + ops->len) > mtd->size)) { | ||
1100 | pr_err("%s: Can't read past end of device.\n", __func__); | ||
1101 | return -EINVAL; | ||
1102 | } | ||
1103 | |||
1104 | if (unlikely(ops->oobbuf && !ops->ooblen)) { | ||
1105 | pr_err("%s: Reading 0 bytes from OOB is meaningless\n", | ||
1106 | __func__); | ||
1107 | return -EINVAL; | ||
1108 | } | ||
1109 | |||
1110 | if (unlikely(ops->mode != MTD_OOB_AUTO)) { | ||
1111 | if (ops->oobbuf && ops->datbuf) { | ||
1112 | pr_err("%s: can't read OOB + Data in non-AUTO mode.\n", | ||
1113 | __func__); | ||
1114 | return -EINVAL; | ||
1115 | } | ||
1116 | if ((ops->mode == MTD_OOB_RAW) && !ops->datbuf) { | ||
1117 | pr_err("%s: Raw mode only supports reading data area.\n", | ||
1118 | __func__); | ||
1119 | return -EINVAL; | ||
1120 | } | ||
1121 | } | ||
1122 | |||
1123 | return do_read_oob(mtd, from, ops); | ||
1124 | } | ||
1125 | |||
1126 | static int | ||
1127 | tegra_nand_write(struct mtd_info *mtd, loff_t to, size_t len, | ||
1128 | size_t *retlen, const uint8_t *buf) | ||
1129 | { | ||
1130 | struct mtd_oob_ops ops; | ||
1131 | int ret; | ||
1132 | |||
1133 | pr_debug("%s: write: to=0x%llx len=0x%x\n", __func__, to, len); | ||
1134 | ops.mode = MTD_OOB_AUTO; | ||
1135 | ops.len = len; | ||
1136 | ops.datbuf = (uint8_t *) buf; | ||
1137 | ops.oobbuf = NULL; | ||
1138 | ret = mtd->write_oob(mtd, to, &ops); | ||
1139 | *retlen = ops.retlen; | ||
1140 | return ret; | ||
1141 | } | ||
1142 | |||
1143 | static int | ||
1144 | do_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) | ||
1145 | { | ||
1146 | struct tegra_nand_info *info = MTD_TO_INFO(mtd); | ||
1147 | int chipnr; | ||
1148 | uint32_t page; | ||
1149 | uint32_t column; | ||
1150 | uint8_t *datbuf = ops->datbuf; | ||
1151 | uint8_t *oobbuf = ops->oobbuf; | ||
1152 | uint32_t len = datbuf ? ops->len : 0; | ||
1153 | uint32_t ooblen = oobbuf ? ops->ooblen : 0; | ||
1154 | uint32_t oobsz; | ||
1155 | uint32_t page_count; | ||
1156 | int err; | ||
1157 | int do_ecc = 1; | ||
1158 | dma_addr_t datbuf_dma_addr = 0; | ||
1159 | |||
1160 | #if 0 | ||
1161 | dump_mtd_oob_ops(ops); | ||
1162 | #endif | ||
1163 | |||
1164 | ops->retlen = 0; | ||
1165 | ops->oobretlen = 0; | ||
1166 | |||
1167 | if (!ops->len) | ||
1168 | return 0; | ||
1169 | |||
1170 | oobsz = mtd->oobavail; | ||
1171 | |||
1172 | if (unlikely(ops->oobbuf && ops->ooblen > oobsz)) { | ||
1173 | pr_err("%s: can't write OOB to multiple pages (%d > %d)\n", | ||
1174 | __func__, ops->ooblen, oobsz); | ||
1175 | return -EINVAL; | ||
1176 | } else if (ops->oobbuf && !len) { | ||
1177 | page_count = 1; | ||
1178 | } else | ||
1179 | page_count = | ||
1180 | max((uint32_t) (ops->len / mtd->writesize), (uint32_t) 1); | ||
1181 | |||
1182 | mutex_lock(&info->lock); | ||
1183 | |||
1184 | split_addr(info, to, &chipnr, &page, &column); | ||
1185 | select_chip(info, chipnr); | ||
1186 | |||
1187 | while (page_count--) { | ||
1188 | int a_len = min(mtd->writesize, len); | ||
1189 | int b_len = min(oobsz, ooblen); | ||
1190 | int temp_len = 0; | ||
1191 | char *temp_buf = NULL; | ||
1192 | /* Take care when write is of less than page size. Otherwise | ||
1193 | * there will be kernel panic due to dma timeout */ | ||
1194 | if ((a_len < mtd->writesize) && len) { | ||
1195 | temp_len = a_len; | ||
1196 | a_len = mtd->writesize; | ||
1197 | temp_buf = datbuf; | ||
1198 | datbuf = info->partial_unaligned_rw_buffer; | ||
1199 | memset(datbuf, 0xff, a_len); | ||
1200 | memcpy(datbuf, temp_buf, temp_len); | ||
1201 | } | ||
1202 | |||
1203 | if (datbuf) | ||
1204 | datbuf_dma_addr = | ||
1205 | tegra_nand_dma_map(info->dev, datbuf, a_len, | ||
1206 | DMA_TO_DEVICE); | ||
1207 | if (oobbuf) | ||
1208 | memcpy(info->oob_dma_buf, oobbuf, b_len); | ||
1209 | |||
1210 | clear_regs(info); | ||
1211 | prep_transfer_dma(info, 0, do_ecc, page, column, | ||
1212 | datbuf_dma_addr, a_len, info->oob_dma_addr, | ||
1213 | b_len); | ||
1214 | |||
1215 | writel(info->config_reg, CONFIG_REG); | ||
1216 | writel(info->dmactrl_reg, DMA_MST_CTRL_REG); | ||
1217 | |||
1218 | INIT_COMPLETION(info->dma_complete); | ||
1219 | err = tegra_nand_go(info); | ||
1220 | if (err != 0) | ||
1221 | goto out_err; | ||
1222 | |||
1223 | if (!wait_for_completion_timeout(&info->dma_complete, TIMEOUT)) { | ||
1224 | pr_err("%s: dma completion timeout\n", __func__); | ||
1225 | dump_nand_regs(); | ||
1226 | goto out_err; | ||
1227 | } | ||
1228 | if (temp_len) { | ||
1229 | a_len = temp_len; | ||
1230 | datbuf = temp_buf; | ||
1231 | } | ||
1232 | |||
1233 | if (datbuf) { | ||
1234 | dma_unmap_page(info->dev, datbuf_dma_addr, a_len, | ||
1235 | DMA_TO_DEVICE); | ||
1236 | len -= a_len; | ||
1237 | datbuf += a_len; | ||
1238 | ops->retlen += a_len; | ||
1239 | } | ||
1240 | if (oobbuf) { | ||
1241 | ooblen -= b_len; | ||
1242 | oobbuf += b_len; | ||
1243 | ops->oobretlen += b_len; | ||
1244 | } | ||
1245 | |||
1246 | if (!page_count) | ||
1247 | break; | ||
1248 | |||
1249 | to += mtd->writesize; | ||
1250 | column = 0; | ||
1251 | |||
1252 | split_addr(info, to, &chipnr, &page, &column); | ||
1253 | if (chipnr != info->chip.curr_chip) | ||
1254 | select_chip(info, chipnr); | ||
1255 | } | ||
1256 | |||
1257 | mutex_unlock(&info->lock); | ||
1258 | return err; | ||
1259 | |||
1260 | out_err: | ||
1261 | ops->retlen = 0; | ||
1262 | ops->oobretlen = 0; | ||
1263 | |||
1264 | mutex_unlock(&info->lock); | ||
1265 | return err; | ||
1266 | } | ||
1267 | |||
1268 | static int | ||
1269 | tegra_nand_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) | ||
1270 | { | ||
1271 | struct tegra_nand_info *info = MTD_TO_INFO(mtd); | ||
1272 | |||
1273 | if (unlikely(to & info->chip.column_mask)) { | ||
1274 | pr_err("%s: Unaligned write (to 0x%llx) not supported\n", | ||
1275 | __func__, to); | ||
1276 | return -EINVAL; | ||
1277 | } | ||
1278 | |||
1279 | if (unlikely(ops->oobbuf && !ops->ooblen)) { | ||
1280 | pr_err("%s: Writing 0 bytes to OOB is meaningless\n", __func__); | ||
1281 | return -EINVAL; | ||
1282 | } | ||
1283 | |||
1284 | return do_write_oob(mtd, to, ops); | ||
1285 | } | ||
1286 | |||
1287 | static int tegra_nand_suspend(struct mtd_info *mtd) | ||
1288 | { | ||
1289 | return 0; | ||
1290 | } | ||
1291 | |||
1292 | static void | ||
1293 | set_chip_timing(struct tegra_nand_info *info, uint32_t vendor_id, | ||
1294 | uint32_t dev_id, uint32_t fourth_id_field) | ||
1295 | { | ||
1296 | struct tegra_nand_chip_parms *chip_parms = NULL; | ||
1297 | uint32_t tmp; | ||
1298 | int i = 0; | ||
1299 | unsigned long nand_clk_freq_khz = clk_get_rate(info->clk) / 1000; | ||
1300 | for (i = 0; i < info->plat->nr_chip_parms; i++) | ||
1301 | if (info->plat->chip_parms[i].vendor_id == vendor_id && | ||
1302 | info->plat->chip_parms[i].device_id == dev_id && | ||
1303 | info->plat->chip_parms[i].read_id_fourth_byte == | ||
1304 | fourth_id_field) | ||
1305 | chip_parms = &info->plat->chip_parms[i]; | ||
1306 | |||
1307 | if (!chip_parms) { | ||
1308 | pr_warn("WARNING:tegra_nand: timing for vendor-id: " | ||
1309 | "%x device-id: %x fourth-id-field: %x not found. Using Bootloader timing", | ||
1310 | vendor_id, dev_id, fourth_id_field); | ||
1311 | return; | ||
1312 | } | ||
1313 | /* TODO: Handle the change of frequency if DVFS is enabled */ | ||
1314 | #define CNT(t) (((((t) * nand_clk_freq_khz) + 1000000 - 1) / 1000000) - 1) | ||
1315 | tmp = (TIMING_TRP_RESP(CNT(chip_parms->timing.trp_resp)) | | ||
1316 | TIMING_TWB(CNT(chip_parms->timing.twb)) | | ||
1317 | TIMING_TCR_TAR_TRR(CNT(chip_parms->timing.tcr_tar_trr)) | | ||
1318 | TIMING_TWHR(CNT(chip_parms->timing.twhr)) | | ||
1319 | TIMING_TCS(CNT(chip_parms->timing.tcs)) | | ||
1320 | TIMING_TWH(CNT(chip_parms->timing.twh)) | | ||
1321 | TIMING_TWP(CNT(chip_parms->timing.twp)) | | ||
1322 | TIMING_TRH(CNT(chip_parms->timing.trh)) | | ||
1323 | TIMING_TRP(CNT(chip_parms->timing.trp))); | ||
1324 | writel(tmp, TIMING_REG); | ||
1325 | writel(TIMING2_TADL(CNT(chip_parms->timing.tadl)), TIMING2_REG); | ||
1326 | #undef CNT | ||
1327 | } | ||
1328 | |||
1329 | static void tegra_nand_resume(struct mtd_info *mtd) | ||
1330 | { | ||
1331 | struct tegra_nand_info *info = MTD_TO_INFO(mtd); | ||
1332 | |||
1333 | cfg_hwstatus_mon(info); | ||
1334 | |||
1335 | /* clear all pending interrupts */ | ||
1336 | writel(readl(ISR_REG), ISR_REG); | ||
1337 | |||
1338 | /* clear dma interrupt */ | ||
1339 | writel(DMA_CTRL_IS_DMA_DONE, DMA_MST_CTRL_REG); | ||
1340 | |||
1341 | /* enable interrupts */ | ||
1342 | disable_ints(info, 0xffffffff); | ||
1343 | enable_ints(info, | ||
1344 | IER_ERR_TRIG_VAL(4) | IER_UND | IER_OVR | IER_CMD_DONE | | ||
1345 | IER_ECC_ERR | IER_GIE); | ||
1346 | |||
1347 | writel(0, CONFIG_REG); | ||
1348 | |||
1349 | set_chip_timing(info, info->vendor_id, | ||
1350 | info->device_id, info->dev_parms); | ||
1351 | |||
1352 | return; | ||
1353 | } | ||
1354 | |||
1355 | static int scan_bad_blocks(struct tegra_nand_info *info) | ||
1356 | { | ||
1357 | struct mtd_info *mtd = &info->mtd; | ||
1358 | int num_blocks = mtd->size >> info->chip.block_shift; | ||
1359 | uint32_t block; | ||
1360 | int is_bad = 0; | ||
1361 | info->num_bad_blocks = 0; | ||
1362 | |||
1363 | for (block = 0; block < num_blocks; ++block) { | ||
1364 | /* make sure the bit is cleared, meaning it's bad/unknown before | ||
1365 | * we check. */ | ||
1366 | clear_bit(block, info->bb_bitmap); | ||
1367 | is_bad = mtd->block_isbad(mtd, block << info->chip.block_shift); | ||
1368 | |||
1369 | if (is_bad == 0) | ||
1370 | set_bit(block, info->bb_bitmap); | ||
1371 | else if (is_bad > 0) { | ||
1372 | info->num_bad_blocks++; | ||
1373 | pr_debug("block 0x%08x is bad.\n", block); | ||
1374 | } else { | ||
1375 | pr_err("Fatal error (%d) while scanning for " | ||
1376 | "bad blocks\n", is_bad); | ||
1377 | return is_bad; | ||
1378 | } | ||
1379 | } | ||
1380 | return 0; | ||
1381 | } | ||
1382 | |||
1383 | /* Scans for nand flash devices, identifies them, and fills in the | ||
1384 | * device info. */ | ||
1385 | static int tegra_nand_scan(struct mtd_info *mtd, int maxchips) | ||
1386 | { | ||
1387 | struct tegra_nand_info *info = MTD_TO_INFO(mtd); | ||
1388 | struct nand_flash_dev *dev_info; | ||
1389 | struct nand_manufacturers *vendor_info; | ||
1390 | uint32_t tmp; | ||
1391 | uint32_t dev_id; | ||
1392 | uint32_t vendor_id; | ||
1393 | uint32_t dev_parms; | ||
1394 | uint32_t mlc_parms; | ||
1395 | int cnt; | ||
1396 | int err = 0; | ||
1397 | |||
1398 | writel(SCAN_TIMING_VAL, TIMING_REG); | ||
1399 | writel(SCAN_TIMING2_VAL, TIMING2_REG); | ||
1400 | writel(0, CONFIG_REG); | ||
1401 | |||
1402 | select_chip(info, 0); | ||
1403 | err = tegra_nand_cmd_readid(info, &tmp); | ||
1404 | if (err != 0) | ||
1405 | goto out_error; | ||
1406 | |||
1407 | vendor_id = tmp & 0xff; | ||
1408 | dev_id = (tmp >> 8) & 0xff; | ||
1409 | mlc_parms = (tmp >> 16) & 0xff; | ||
1410 | dev_parms = (tmp >> 24) & 0xff; | ||
1411 | |||
1412 | dev_info = find_nand_flash_device(dev_id); | ||
1413 | if (dev_info == NULL) { | ||
1414 | pr_err("%s: unknown flash device id (0x%02x) found.\n", | ||
1415 | __func__, dev_id); | ||
1416 | err = -ENODEV; | ||
1417 | goto out_error; | ||
1418 | } | ||
1419 | |||
1420 | vendor_info = find_nand_flash_vendor(vendor_id); | ||
1421 | if (vendor_info == NULL) { | ||
1422 | pr_err("%s: unknown flash vendor id (0x%02x) found.\n", | ||
1423 | __func__, vendor_id); | ||
1424 | err = -ENODEV; | ||
1425 | goto out_error; | ||
1426 | } | ||
1427 | |||
1428 | /* loop through and see if we can find more devices */ | ||
1429 | for (cnt = 1; cnt < info->plat->max_chips; ++cnt) { | ||
1430 | select_chip(info, cnt); | ||
1431 | /* TODO: figure out what to do about errors here */ | ||
1432 | err = tegra_nand_cmd_readid(info, &tmp); | ||
1433 | if (err != 0) | ||
1434 | goto out_error; | ||
1435 | if ((dev_id != ((tmp >> 8) & 0xff)) || | ||
1436 | (vendor_id != (tmp & 0xff))) | ||
1437 | break; | ||
1438 | } | ||
1439 | |||
1440 | pr_info("%s: %d NAND chip(s) found (vend=0x%02x, dev=0x%02x) (%s %s)\n", | ||
1441 | DRIVER_NAME, cnt, vendor_id, dev_id, vendor_info->name, | ||
1442 | dev_info->name); | ||
1443 | info->vendor_id = vendor_id; | ||
1444 | info->device_id = dev_id; | ||
1445 | info->dev_parms = dev_parms; | ||
1446 | info->chip.num_chips = cnt; | ||
1447 | info->chip.chipsize = dev_info->chipsize << 20; | ||
1448 | mtd->size = info->chip.num_chips * info->chip.chipsize; | ||
1449 | |||
1450 | /* format of 4th id byte returned by READ ID | ||
1451 | * bit 7 = rsvd | ||
1452 | * bit 6 = bus width. 1 == 16bit, 0 == 8bit | ||
1453 | * bits 5:4 = data block size. 64kb * (2^val) | ||
1454 | * bit 3 = rsvd | ||
1455 | * bit 2 = spare area size / 512 bytes. 0 == 8bytes, 1 == 16bytes | ||
1456 | * bits 1:0 = page size. 1kb * (2^val) | ||
1457 | */ | ||
1458 | |||
1459 | /* page_size */ | ||
1460 | tmp = dev_parms & 0x3; | ||
1461 | mtd->writesize = 1024 << tmp; | ||
1462 | info->chip.column_mask = mtd->writesize - 1; | ||
1463 | |||
1464 | if (mtd->writesize > 4096) { | ||
1465 | pr_err("%s: Large page devices with pagesize > 4kb are NOT " | ||
1466 | "supported\n", __func__); | ||
1467 | goto out_error; | ||
1468 | } else if (mtd->writesize < 2048) { | ||
1469 | pr_err("%s: Small page devices are NOT supported\n", __func__); | ||
1470 | goto out_error; | ||
1471 | } | ||
1472 | |||
1473 | /* spare area, must be at least 64 bytes */ | ||
1474 | tmp = (dev_parms >> 2) & 0x1; | ||
1475 | tmp = (8 << tmp) * (mtd->writesize / 512); | ||
1476 | if (tmp < 64) { | ||
1477 | pr_err("%s: Spare area (%d bytes) too small\n", __func__, tmp); | ||
1478 | goto out_error; | ||
1479 | } | ||
1480 | mtd->oobsize = tmp; | ||
1481 | |||
1482 | /* data block size (erase size) (w/o spare) */ | ||
1483 | tmp = (dev_parms >> 4) & 0x3; | ||
1484 | mtd->erasesize = (64 * 1024) << tmp; | ||
1485 | info->chip.block_shift = ffs(mtd->erasesize) - 1; | ||
1486 | /* bus width of the nand chip 8/16 */ | ||
1487 | tmp = (dev_parms >> 6) & 0x1; | ||
1488 | info->is_data_bus_width_16 = tmp; | ||
1489 | /* used to select the appropriate chip/page in case multiple devices | ||
1490 | * are connected */ | ||
1491 | info->chip.chip_shift = ffs(info->chip.chipsize) - 1; | ||
1492 | info->chip.page_shift = ffs(mtd->writesize) - 1; | ||
1493 | info->chip.page_mask = | ||
1494 | (info->chip.chipsize >> info->chip.page_shift) - 1; | ||
1495 | |||
1496 | /* now fill in the rest of the mtd fields */ | ||
1497 | if (mtd->oobsize == 64) | ||
1498 | mtd->ecclayout = &tegra_nand_oob_64; | ||
1499 | else | ||
1500 | mtd->ecclayout = &tegra_nand_oob_128; | ||
1501 | |||
1502 | mtd->oobavail = mtd->ecclayout->oobavail; | ||
1503 | mtd->type = MTD_NANDFLASH; | ||
1504 | mtd->flags = MTD_CAP_NANDFLASH; | ||
1505 | |||
1506 | mtd->erase = tegra_nand_erase; | ||
1507 | mtd->lock = NULL; | ||
1508 | mtd->point = NULL; | ||
1509 | mtd->unpoint = NULL; | ||
1510 | mtd->read = tegra_nand_read; | ||
1511 | mtd->write = tegra_nand_write; | ||
1512 | mtd->read_oob = tegra_nand_read_oob; | ||
1513 | mtd->write_oob = tegra_nand_write_oob; | ||
1514 | |||
1515 | mtd->resume = tegra_nand_resume; | ||
1516 | mtd->suspend = tegra_nand_suspend; | ||
1517 | mtd->block_isbad = tegra_nand_block_isbad; | ||
1518 | mtd->block_markbad = tegra_nand_block_markbad; | ||
1519 | |||
1520 | set_chip_timing(info, vendor_id, dev_id, dev_parms); | ||
1521 | |||
1522 | return 0; | ||
1523 | |||
1524 | out_error: | ||
1525 | pr_err("%s: NAND device scan aborted due to error(s).\n", __func__); | ||
1526 | return err; | ||
1527 | } | ||
1528 | |||
1529 | static int __devinit tegra_nand_probe(struct platform_device *pdev) | ||
1530 | { | ||
1531 | struct tegra_nand_platform *plat = pdev->dev.platform_data; | ||
1532 | struct tegra_nand_info *info = NULL; | ||
1533 | struct tegra_nand_chip *chip = NULL; | ||
1534 | struct mtd_info *mtd = NULL; | ||
1535 | int err = 0; | ||
1536 | uint64_t num_erase_blocks; | ||
1537 | |||
1538 | pr_debug("%s: probing (%p)\n", __func__, pdev); | ||
1539 | |||
1540 | if (!plat) { | ||
1541 | pr_err("%s: no platform device info\n", __func__); | ||
1542 | return -EINVAL; | ||
1543 | } else if (!plat->chip_parms) { | ||
1544 | pr_err("%s: no platform nand parms\n", __func__); | ||
1545 | return -EINVAL; | ||
1546 | } | ||
1547 | |||
1548 | info = kzalloc(sizeof(struct tegra_nand_info), GFP_KERNEL); | ||
1549 | if (!info) { | ||
1550 | pr_err("%s: no memory for flash info\n", __func__); | ||
1551 | return -ENOMEM; | ||
1552 | } | ||
1553 | |||
1554 | info->dev = &pdev->dev; | ||
1555 | info->plat = plat; | ||
1556 | |||
1557 | platform_set_drvdata(pdev, info); | ||
1558 | |||
1559 | init_completion(&info->cmd_complete); | ||
1560 | init_completion(&info->dma_complete); | ||
1561 | |||
1562 | mutex_init(&info->lock); | ||
1563 | spin_lock_init(&info->ecc_lock); | ||
1564 | |||
1565 | chip = &info->chip; | ||
1566 | chip->priv = &info->mtd; | ||
1567 | chip->curr_chip = -1; | ||
1568 | |||
1569 | mtd = &info->mtd; | ||
1570 | mtd->name = dev_name(&pdev->dev); | ||
1571 | mtd->priv = &info->chip; | ||
1572 | mtd->owner = THIS_MODULE; | ||
1573 | |||
1574 | /* HACK: allocate a dma buffer to hold 1 page oob data */ | ||
1575 | info->oob_dma_buf = dma_alloc_coherent(NULL, 128, | ||
1576 | &info->oob_dma_addr, GFP_KERNEL); | ||
1577 | if (!info->oob_dma_buf) { | ||
1578 | err = -ENOMEM; | ||
1579 | goto out_free_info; | ||
1580 | } | ||
1581 | |||
1582 | /* this will store the ecc error vector info */ | ||
1583 | info->ecc_buf = dma_alloc_coherent(NULL, ECC_BUF_SZ, &info->ecc_addr, | ||
1584 | GFP_KERNEL); | ||
1585 | if (!info->ecc_buf) { | ||
1586 | err = -ENOMEM; | ||
1587 | goto out_free_dma_buf; | ||
1588 | } | ||
1589 | |||
1590 | /* grab the irq */ | ||
1591 | if (!(pdev->resource[0].flags & IORESOURCE_IRQ)) { | ||
1592 | pr_err("NAND IRQ resource not defined\n"); | ||
1593 | err = -EINVAL; | ||
1594 | goto out_free_ecc_buf; | ||
1595 | } | ||
1596 | |||
1597 | err = request_irq(pdev->resource[0].start, tegra_nand_irq, | ||
1598 | IRQF_SHARED, DRIVER_NAME, info); | ||
1599 | if (err) { | ||
1600 | pr_err("Unable to request IRQ %d (%d)\n", | ||
1601 | pdev->resource[0].start, err); | ||
1602 | goto out_free_ecc_buf; | ||
1603 | } | ||
1604 | |||
1605 | /* TODO: configure pinmux here?? */ | ||
1606 | info->clk = clk_get(&pdev->dev, NULL); | ||
1607 | |||
1608 | if (IS_ERR(info->clk)) { | ||
1609 | err = PTR_ERR(info->clk); | ||
1610 | goto out_free_ecc_buf; | ||
1611 | } | ||
1612 | err = clk_enable(info->clk); | ||
1613 | if (err != 0) | ||
1614 | goto out_free_ecc_buf; | ||
1615 | |||
1616 | if (plat->wp_gpio) { | ||
1617 | gpio_request(plat->wp_gpio, "nand_wp"); | ||
1618 | tegra_gpio_enable(plat->wp_gpio); | ||
1619 | gpio_direction_output(plat->wp_gpio, 1); | ||
1620 | } | ||
1621 | |||
1622 | cfg_hwstatus_mon(info); | ||
1623 | |||
1624 | /* clear all pending interrupts */ | ||
1625 | writel(readl(ISR_REG), ISR_REG); | ||
1626 | |||
1627 | /* clear dma interrupt */ | ||
1628 | writel(DMA_CTRL_IS_DMA_DONE, DMA_MST_CTRL_REG); | ||
1629 | |||
1630 | /* enable interrupts */ | ||
1631 | disable_ints(info, 0xffffffff); | ||
1632 | enable_ints(info, | ||
1633 | IER_ERR_TRIG_VAL(4) | IER_UND | IER_OVR | IER_CMD_DONE | | ||
1634 | IER_ECC_ERR | IER_GIE); | ||
1635 | |||
1636 | if (tegra_nand_scan(mtd, plat->max_chips)) { | ||
1637 | err = -ENXIO; | ||
1638 | goto out_dis_irq; | ||
1639 | } | ||
1640 | pr_info("%s: NVIDIA Tegra NAND controller @ base=0x%08x irq=%d.\n", | ||
1641 | DRIVER_NAME, TEGRA_NAND_PHYS, pdev->resource[0].start); | ||
1642 | |||
1643 | /* allocate memory to hold the ecc error info */ | ||
1644 | info->max_ecc_errs = MAX_DMA_SZ / mtd->writesize; | ||
1645 | info->ecc_errs = kmalloc(info->max_ecc_errs * sizeof(uint32_t), | ||
1646 | GFP_KERNEL); | ||
1647 | if (!info->ecc_errs) { | ||
1648 | err = -ENOMEM; | ||
1649 | goto out_dis_irq; | ||
1650 | } | ||
1651 | |||
1652 | /* alloc the bad block bitmap */ | ||
1653 | num_erase_blocks = mtd->size; | ||
1654 | do_div(num_erase_blocks, mtd->erasesize); | ||
1655 | info->bb_bitmap = kzalloc(BITS_TO_LONGS(num_erase_blocks) * | ||
1656 | sizeof(unsigned long), GFP_KERNEL); | ||
1657 | if (!info->bb_bitmap) { | ||
1658 | err = -ENOMEM; | ||
1659 | goto out_free_ecc; | ||
1660 | } | ||
1661 | |||
1662 | err = scan_bad_blocks(info); | ||
1663 | if (err != 0) | ||
1664 | goto out_free_bbbmap; | ||
1665 | |||
1666 | #if 0 | ||
1667 | dump_nand_regs(); | ||
1668 | #endif | ||
1669 | |||
1670 | err = parse_mtd_partitions(mtd, part_probes, &info->parts, 0); | ||
1671 | if (err > 0) { | ||
1672 | err = mtd_device_register(mtd, info->parts, err); | ||
1673 | } else if (err <= 0 && plat->parts) { | ||
1674 | err = mtd_device_register(mtd, plat->parts, plat->nr_parts); | ||
1675 | } else | ||
1676 | err = mtd_device_register(mtd, NULL, 0); | ||
1677 | if (err != 0) | ||
1678 | goto out_free_bbbmap; | ||
1679 | |||
1680 | dev_set_drvdata(&pdev->dev, info); | ||
1681 | |||
1682 | info->partial_unaligned_rw_buffer = kzalloc(mtd->writesize, GFP_KERNEL); | ||
1683 | if (!info->partial_unaligned_rw_buffer) { | ||
1684 | err = -ENOMEM; | ||
1685 | goto out_free_bbbmap; | ||
1686 | } | ||
1687 | |||
1688 | err = device_create_file(&pdev->dev, &dev_attr_device_id); | ||
1689 | if (err != 0) | ||
1690 | goto out_free_rw_buffer; | ||
1691 | |||
1692 | err = device_create_file(&pdev->dev, &dev_attr_vendor_id); | ||
1693 | if (err != 0) | ||
1694 | goto err_nand_sysfs_vendorid_failed; | ||
1695 | |||
1696 | err = device_create_file(&pdev->dev, &dev_attr_flash_size); | ||
1697 | if (err != 0) | ||
1698 | goto err_nand_sysfs_flash_size_failed; | ||
1699 | |||
1700 | err = device_create_file(&pdev->dev, &dev_attr_num_bad_blocks); | ||
1701 | if (err != 0) | ||
1702 | goto err_nand_sysfs_num_bad_blocks_failed; | ||
1703 | |||
1704 | err = device_create_file(&pdev->dev, &dev_attr_bb_bitmap); | ||
1705 | if (err != 0) | ||
1706 | goto err_nand_sysfs_bb_bitmap_failed; | ||
1707 | |||
1708 | pr_debug("%s: probe done.\n", __func__); | ||
1709 | return 0; | ||
1710 | |||
1711 | err_nand_sysfs_bb_bitmap_failed: | ||
1712 | device_remove_file(&pdev->dev, &dev_attr_num_bad_blocks); | ||
1713 | |||
1714 | err_nand_sysfs_num_bad_blocks_failed: | ||
1715 | device_remove_file(&pdev->dev, &dev_attr_flash_size); | ||
1716 | |||
1717 | err_nand_sysfs_flash_size_failed: | ||
1718 | device_remove_file(&pdev->dev, &dev_attr_vendor_id); | ||
1719 | |||
1720 | err_nand_sysfs_vendorid_failed: | ||
1721 | device_remove_file(&pdev->dev, &dev_attr_device_id); | ||
1722 | |||
1723 | out_free_rw_buffer: | ||
1724 | kfree(info->partial_unaligned_rw_buffer); | ||
1725 | |||
1726 | out_free_bbbmap: | ||
1727 | kfree(info->bb_bitmap); | ||
1728 | |||
1729 | out_free_ecc: | ||
1730 | kfree(info->ecc_errs); | ||
1731 | |||
1732 | out_dis_irq: | ||
1733 | disable_ints(info, 0xffffffff); | ||
1734 | free_irq(pdev->resource[0].start, info); | ||
1735 | |||
1736 | out_free_ecc_buf: | ||
1737 | dma_free_coherent(NULL, ECC_BUF_SZ, info->ecc_buf, info->ecc_addr); | ||
1738 | |||
1739 | out_free_dma_buf: | ||
1740 | dma_free_coherent(NULL, 128, info->oob_dma_buf, info->oob_dma_addr); | ||
1741 | |||
1742 | out_free_info: | ||
1743 | platform_set_drvdata(pdev, NULL); | ||
1744 | kfree(info); | ||
1745 | |||
1746 | return err; | ||
1747 | } | ||
1748 | |||
1749 | static int __devexit tegra_nand_remove(struct platform_device *pdev) | ||
1750 | { | ||
1751 | struct tegra_nand_info *info = dev_get_drvdata(&pdev->dev); | ||
1752 | |||
1753 | dev_set_drvdata(&pdev->dev, NULL); | ||
1754 | |||
1755 | if (info) { | ||
1756 | free_irq(pdev->resource[0].start, info); | ||
1757 | kfree(info->bb_bitmap); | ||
1758 | kfree(info->ecc_errs); | ||
1759 | kfree(info->partial_unaligned_rw_buffer); | ||
1760 | |||
1761 | device_remove_file(&pdev->dev, &dev_attr_device_id); | ||
1762 | device_remove_file(&pdev->dev, &dev_attr_vendor_id); | ||
1763 | device_remove_file(&pdev->dev, &dev_attr_flash_size); | ||
1764 | device_remove_file(&pdev->dev, &dev_attr_num_bad_blocks); | ||
1765 | device_remove_file(&pdev->dev, &dev_attr_bb_bitmap); | ||
1766 | |||
1767 | dma_free_coherent(NULL, ECC_BUF_SZ, info->ecc_buf, | ||
1768 | info->ecc_addr); | ||
1769 | dma_free_coherent(NULL, info->mtd.writesize + info->mtd.oobsize, | ||
1770 | info->oob_dma_buf, info->oob_dma_addr); | ||
1771 | kfree(info); | ||
1772 | } | ||
1773 | |||
1774 | return 0; | ||
1775 | } | ||
1776 | |||
1777 | static struct platform_driver tegra_nand_driver = { | ||
1778 | .probe = tegra_nand_probe, | ||
1779 | .remove = __devexit_p(tegra_nand_remove), | ||
1780 | .suspend = NULL, | ||
1781 | .resume = NULL, | ||
1782 | .driver = { | ||
1783 | .name = "tegra_nand", | ||
1784 | .owner = THIS_MODULE, | ||
1785 | }, | ||
1786 | }; | ||
1787 | |||
1788 | static int __init tegra_nand_init(void) | ||
1789 | { | ||
1790 | return platform_driver_register(&tegra_nand_driver); | ||
1791 | } | ||
1792 | |||
1793 | static void __exit tegra_nand_exit(void) | ||
1794 | { | ||
1795 | platform_driver_unregister(&tegra_nand_driver); | ||
1796 | } | ||
1797 | |||
1798 | module_init(tegra_nand_init); | ||
1799 | module_exit(tegra_nand_exit); | ||
1800 | |||
1801 | MODULE_LICENSE("GPL"); | ||
1802 | MODULE_DESCRIPTION(DRIVER_DESC); | ||
diff --git a/drivers/mtd/devices/tegra_nand.h b/drivers/mtd/devices/tegra_nand.h new file mode 100644 index 00000000000..339d6cc7330 --- /dev/null +++ b/drivers/mtd/devices/tegra_nand.h | |||
@@ -0,0 +1,148 @@ | |||
1 | /* | ||
2 | * drivers/mtd/devices/tegra_nand.h | ||
3 | * | ||
4 | * Copyright (C) 2010 Google, Inc. | ||
5 | * Author: Dima Zavin <dima@android.com> | ||
6 | * Colin Cross <ccross@android.com> | ||
7 | * | ||
8 | * This software is licensed under the terms of the GNU General Public | ||
9 | * License version 2, as published by the Free Software Foundation, and | ||
10 | * may be copied, distributed, and modified under those terms. | ||
11 | * | ||
12 | * This program is distributed in the hope that it will be useful, | ||
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | * GNU General Public License for more details. | ||
16 | * | ||
17 | */ | ||
18 | |||
19 | #ifndef __MTD_DEV_TEGRA_NAND_H | ||
20 | #define __MTD_DEV_TEGRA_NAND_H | ||
21 | |||
22 | #include <mach/io.h> | ||
23 | |||
24 | #define __BITMASK0(len) ((1 << (len)) - 1) | ||
25 | #define __BITMASK(start, len) (__BITMASK0(len) << (start)) | ||
26 | #define REG_BIT(bit) (1 << (bit)) | ||
27 | #define REG_FIELD(val, start, len) (((val) & __BITMASK0(len)) << (start)) | ||
28 | #define REG_FIELD_MASK(start, len) (~(__BITMASK((start), (len)))) | ||
29 | #define REG_GET_FIELD(val, start, len) (((val) >> (start)) & __BITMASK0(len)) | ||
30 | |||
31 | /* tegra nand registers... */ | ||
32 | #define TEGRA_NAND_PHYS 0x70008000 | ||
33 | #define TEGRA_NAND_BASE IO_TO_VIRT(TEGRA_NAND_PHYS) | ||
34 | #define COMMAND_REG (TEGRA_NAND_BASE + 0x00) | ||
35 | #define STATUS_REG (TEGRA_NAND_BASE + 0x04) | ||
36 | #define ISR_REG (TEGRA_NAND_BASE + 0x08) | ||
37 | #define IER_REG (TEGRA_NAND_BASE + 0x0c) | ||
38 | #define CONFIG_REG (TEGRA_NAND_BASE + 0x10) | ||
39 | #define TIMING_REG (TEGRA_NAND_BASE + 0x14) | ||
40 | #define RESP_REG (TEGRA_NAND_BASE + 0x18) | ||
41 | #define TIMING2_REG (TEGRA_NAND_BASE + 0x1c) | ||
42 | #define CMD_REG1 (TEGRA_NAND_BASE + 0x20) | ||
43 | #define CMD_REG2 (TEGRA_NAND_BASE + 0x24) | ||
44 | #define ADDR_REG1 (TEGRA_NAND_BASE + 0x28) | ||
45 | #define ADDR_REG2 (TEGRA_NAND_BASE + 0x2c) | ||
46 | #define DMA_MST_CTRL_REG (TEGRA_NAND_BASE + 0x30) | ||
47 | #define DMA_CFG_A_REG (TEGRA_NAND_BASE + 0x34) | ||
48 | #define DMA_CFG_B_REG (TEGRA_NAND_BASE + 0x38) | ||
49 | #define FIFO_CTRL_REG (TEGRA_NAND_BASE + 0x3c) | ||
50 | #define DATA_BLOCK_PTR_REG (TEGRA_NAND_BASE + 0x40) | ||
51 | #define TAG_PTR_REG (TEGRA_NAND_BASE + 0x44) | ||
52 | #define ECC_PTR_REG (TEGRA_NAND_BASE + 0x48) | ||
53 | #define DEC_STATUS_REG (TEGRA_NAND_BASE + 0x4c) | ||
54 | #define HWSTATUS_CMD_REG (TEGRA_NAND_BASE + 0x50) | ||
55 | #define HWSTATUS_MASK_REG (TEGRA_NAND_BASE + 0x54) | ||
56 | #define LL_CONFIG_REG (TEGRA_NAND_BASE + 0x58) | ||
57 | #define LL_PTR_REG (TEGRA_NAND_BASE + 0x5c) | ||
58 | #define LL_STATUS_REG (TEGRA_NAND_BASE + 0x60) | ||
59 | |||
60 | /* nand_command bits */ | ||
61 | #define COMMAND_GO REG_BIT(31) | ||
62 | #define COMMAND_CLE REG_BIT(30) | ||
63 | #define COMMAND_ALE REG_BIT(29) | ||
64 | #define COMMAND_PIO REG_BIT(28) | ||
65 | #define COMMAND_TX REG_BIT(27) | ||
66 | #define COMMAND_RX REG_BIT(26) | ||
67 | #define COMMAND_SEC_CMD REG_BIT(25) | ||
68 | #define COMMAND_AFT_DAT REG_BIT(24) | ||
69 | #define COMMAND_TRANS_SIZE(val) REG_FIELD((val), 20, 4) | ||
70 | #define COMMAND_A_VALID REG_BIT(19) | ||
71 | #define COMMAND_B_VALID REG_BIT(18) | ||
72 | #define COMMAND_RD_STATUS_CHK REG_BIT(17) | ||
73 | #define COMMAND_RBSY_CHK REG_BIT(16) | ||
74 | #define COMMAND_CE(val) REG_BIT(8 + ((val) & 0x7)) | ||
75 | #define COMMAND_CLE_BYTE_SIZE(val) REG_FIELD((val), 4, 2) | ||
76 | #define COMMAND_ALE_BYTE_SIZE(val) REG_FIELD((val), 0, 4) | ||
77 | |||
78 | /* nand isr bits */ | ||
79 | #define ISR_UND REG_BIT(7) | ||
80 | #define ISR_OVR REG_BIT(6) | ||
81 | #define ISR_CMD_DONE REG_BIT(5) | ||
82 | #define ISR_ECC_ERR REG_BIT(4) | ||
83 | |||
84 | /* nand ier bits */ | ||
85 | #define IER_ERR_TRIG_VAL(val) REG_FIELD((val), 16, 4) | ||
86 | #define IER_UND REG_BIT(7) | ||
87 | #define IER_OVR REG_BIT(6) | ||
88 | #define IER_CMD_DONE REG_BIT(5) | ||
89 | #define IER_ECC_ERR REG_BIT(4) | ||
90 | #define IER_GIE REG_BIT(0) | ||
91 | |||
92 | /* nand config bits */ | ||
93 | #define CONFIG_HW_ECC REG_BIT(31) | ||
94 | #define CONFIG_ECC_SEL REG_BIT(30) | ||
95 | #define CONFIG_HW_ERR_CORRECTION REG_BIT(29) | ||
96 | #define CONFIG_PIPELINE_EN REG_BIT(28) | ||
97 | #define CONFIG_ECC_EN_TAG REG_BIT(27) | ||
98 | #define CONFIG_TVALUE(val) REG_FIELD((val), 24, 2) | ||
99 | #define CONFIG_SKIP_SPARE REG_BIT(23) | ||
100 | #define CONFIG_COM_BSY REG_BIT(22) | ||
101 | #define CONFIG_BUS_WIDTH REG_BIT(21) | ||
102 | #define CONFIG_EDO_MODE REG_BIT(19) | ||
103 | #define CONFIG_PAGE_SIZE_SEL(val) REG_FIELD((val), 16, 3) | ||
104 | #define CONFIG_SKIP_SPARE_SEL(val) REG_FIELD((val), 14, 2) | ||
105 | #define CONFIG_TAG_BYTE_SIZE(val) REG_FIELD((val), 0, 8) | ||
106 | |||
107 | /* nand timing bits */ | ||
108 | #define TIMING_TRP_RESP(val) REG_FIELD((val), 28, 4) | ||
109 | #define TIMING_TWB(val) REG_FIELD((val), 24, 4) | ||
110 | #define TIMING_TCR_TAR_TRR(val) REG_FIELD((val), 20, 4) | ||
111 | #define TIMING_TWHR(val) REG_FIELD((val), 16, 4) | ||
112 | #define TIMING_TCS(val) REG_FIELD((val), 14, 2) | ||
113 | #define TIMING_TWH(val) REG_FIELD((val), 12, 2) | ||
114 | #define TIMING_TWP(val) REG_FIELD((val), 8, 4) | ||
115 | #define TIMING_TRH(val) REG_FIELD((val), 4, 2) | ||
116 | #define TIMING_TRP(val) REG_FIELD((val), 0, 4) | ||
117 | |||
118 | /* nand timing2 bits */ | ||
119 | #define TIMING2_TADL(val) REG_FIELD((val), 0, 4) | ||
120 | |||
121 | /* nand dma_mst_ctrl bits */ | ||
122 | #define DMA_CTRL_DMA_GO REG_BIT(31) | ||
123 | #define DMA_CTRL_DIR REG_BIT(30) | ||
124 | #define DMA_CTRL_DMA_PERF_EN REG_BIT(29) | ||
125 | #define DMA_CTRL_IE_DMA_DONE REG_BIT(28) | ||
126 | #define DMA_CTRL_REUSE_BUFFER REG_BIT(27) | ||
127 | #define DMA_CTRL_BURST_SIZE(val) REG_FIELD((val), 24, 3) | ||
128 | #define DMA_CTRL_IS_DMA_DONE REG_BIT(20) | ||
129 | #define DMA_CTRL_DMA_EN_A REG_BIT(2) | ||
130 | #define DMA_CTRL_DMA_EN_B REG_BIT(1) | ||
131 | |||
132 | /* nand dma_cfg_a/cfg_b bits */ | ||
133 | #define DMA_CFG_BLOCK_SIZE(val) REG_FIELD((val), 0, 16) | ||
134 | |||
135 | /* nand dec_status bits */ | ||
136 | #define DEC_STATUS_ERR_PAGE_NUM(val) REG_GET_FIELD((val), 24, 8) | ||
137 | #define DEC_STATUS_ERR_CNT(val) REG_GET_FIELD((val), 16, 8) | ||
138 | #define DEC_STATUS_ECC_FAIL_A REG_BIT(1) | ||
139 | #define DEC_STATUS_ECC_FAIL_B REG_BIT(0) | ||
140 | |||
141 | /* nand hwstatus_mask bits */ | ||
142 | #define HWSTATUS_RDSTATUS_MASK(val) REG_FIELD((val), 24, 8) | ||
143 | #define HWSTATUS_RDSTATUS_EXP_VAL(val) REG_FIELD((val), 16, 8) | ||
144 | #define HWSTATUS_RBSY_MASK(val) REG_FIELD((val), 8, 8) | ||
145 | #define HWSTATUS_RBSY_EXP_VAL(val) REG_FIELD((val), 0, 8) | ||
146 | |||
147 | #endif | ||
148 | |||
diff --git a/drivers/mtd/maps/bcm963xx-flash.c b/drivers/mtd/maps/bcm963xx-flash.c new file mode 100644 index 00000000000..608967fe74c --- /dev/null +++ b/drivers/mtd/maps/bcm963xx-flash.c | |||
@@ -0,0 +1,276 @@ | |||
1 | /* | ||
2 | * Copyright © 2006-2008 Florian Fainelli <florian@openwrt.org> | ||
3 | * Mike Albon <malbon@openwrt.org> | ||
4 | * Copyright © 2009-2010 Daniel Dickinson <openwrt@cshore.neomailbox.net> | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License as published by | ||
8 | * the Free Software Foundation; either version 2 of the License, or | ||
9 | * (at your option) any later version. | ||
10 | * | ||
11 | * This program is distributed in the hope that it will be useful, | ||
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | * GNU General Public License for more details. | ||
15 | * | ||
16 | * You should have received a copy of the GNU General Public License | ||
17 | * along with this program; if not, write to the Free Software | ||
18 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
19 | */ | ||
20 | |||
21 | #include <linux/init.h> | ||
22 | #include <linux/kernel.h> | ||
23 | #include <linux/slab.h> | ||
24 | #include <linux/mtd/map.h> | ||
25 | #include <linux/mtd/mtd.h> | ||
26 | #include <linux/mtd/partitions.h> | ||
27 | #include <linux/vmalloc.h> | ||
28 | #include <linux/platform_device.h> | ||
29 | #include <linux/io.h> | ||
30 | |||
31 | #include <asm/mach-bcm63xx/bcm963xx_tag.h> | ||
32 | |||
33 | #define BCM63XX_BUSWIDTH 2 /* Buswidth */ | ||
34 | #define BCM63XX_EXTENDED_SIZE 0xBFC00000 /* Extended flash address */ | ||
35 | |||
36 | #define PFX KBUILD_MODNAME ": " | ||
37 | |||
38 | static struct mtd_partition *parsed_parts; | ||
39 | |||
40 | static struct mtd_info *bcm963xx_mtd_info; | ||
41 | |||
42 | static struct map_info bcm963xx_map = { | ||
43 | .name = "bcm963xx", | ||
44 | .bankwidth = BCM63XX_BUSWIDTH, | ||
45 | }; | ||
46 | |||
47 | static int parse_cfe_partitions(struct mtd_info *master, | ||
48 | struct mtd_partition **pparts) | ||
49 | { | ||
50 | /* CFE, NVRAM and global Linux are always present */ | ||
51 | int nrparts = 3, curpart = 0; | ||
52 | struct bcm_tag *buf; | ||
53 | struct mtd_partition *parts; | ||
54 | int ret; | ||
55 | size_t retlen; | ||
56 | unsigned int rootfsaddr, kerneladdr, spareaddr; | ||
57 | unsigned int rootfslen, kernellen, sparelen, totallen; | ||
58 | int namelen = 0; | ||
59 | int i; | ||
60 | char *boardid; | ||
61 | char *tagversion; | ||
62 | |||
63 | /* Allocate memory for buffer */ | ||
64 | buf = vmalloc(sizeof(struct bcm_tag)); | ||
65 | if (!buf) | ||
66 | return -ENOMEM; | ||
67 | |||
68 | /* Get the tag */ | ||
69 | ret = master->read(master, master->erasesize, sizeof(struct bcm_tag), | ||
70 | &retlen, (void *)buf); | ||
71 | if (retlen != sizeof(struct bcm_tag)) { | ||
72 | vfree(buf); | ||
73 | return -EIO; | ||
74 | } | ||
75 | |||
76 | sscanf(buf->kernel_address, "%u", &kerneladdr); | ||
77 | sscanf(buf->kernel_length, "%u", &kernellen); | ||
78 | sscanf(buf->total_length, "%u", &totallen); | ||
79 | tagversion = &(buf->tag_version[0]); | ||
80 | boardid = &(buf->board_id[0]); | ||
81 | |||
82 | printk(KERN_INFO PFX "CFE boot tag found with version %s " | ||
83 | "and board type %s\n", tagversion, boardid); | ||
84 | |||
85 | kerneladdr = kerneladdr - BCM63XX_EXTENDED_SIZE; | ||
86 | rootfsaddr = kerneladdr + kernellen; | ||
87 | spareaddr = roundup(totallen, master->erasesize) + master->erasesize; | ||
88 | sparelen = master->size - spareaddr - master->erasesize; | ||
89 | rootfslen = spareaddr - rootfsaddr; | ||
90 | |||
91 | /* Determine number of partitions */ | ||
92 | namelen = 8; | ||
93 | if (rootfslen > 0) { | ||
94 | nrparts++; | ||
95 | namelen += 6; | ||
96 | }; | ||
97 | if (kernellen > 0) { | ||
98 | nrparts++; | ||
99 | namelen += 6; | ||
100 | }; | ||
101 | |||
102 | /* Ask kernel for more memory */ | ||
103 | parts = kzalloc(sizeof(*parts) * nrparts + 10 * nrparts, GFP_KERNEL); | ||
104 | if (!parts) { | ||
105 | vfree(buf); | ||
106 | return -ENOMEM; | ||
107 | }; | ||
108 | |||
109 | /* Start building partition list */ | ||
110 | parts[curpart].name = "CFE"; | ||
111 | parts[curpart].offset = 0; | ||
112 | parts[curpart].size = master->erasesize; | ||
113 | curpart++; | ||
114 | |||
115 | if (kernellen > 0) { | ||
116 | parts[curpart].name = "kernel"; | ||
117 | parts[curpart].offset = kerneladdr; | ||
118 | parts[curpart].size = kernellen; | ||
119 | curpart++; | ||
120 | }; | ||
121 | |||
122 | if (rootfslen > 0) { | ||
123 | parts[curpart].name = "rootfs"; | ||
124 | parts[curpart].offset = rootfsaddr; | ||
125 | parts[curpart].size = rootfslen; | ||
126 | if (sparelen > 0) | ||
127 | parts[curpart].size += sparelen; | ||
128 | curpart++; | ||
129 | }; | ||
130 | |||
131 | parts[curpart].name = "nvram"; | ||
132 | parts[curpart].offset = master->size - master->erasesize; | ||
133 | parts[curpart].size = master->erasesize; | ||
134 | |||
135 | /* Global partition "linux" to make easy firmware upgrade */ | ||
136 | curpart++; | ||
137 | parts[curpart].name = "linux"; | ||
138 | parts[curpart].offset = parts[0].size; | ||
139 | parts[curpart].size = master->size - parts[0].size - parts[3].size; | ||
140 | |||
141 | for (i = 0; i < nrparts; i++) | ||
142 | printk(KERN_INFO PFX "Partition %d is %s offset %lx and " | ||
143 | "length %lx\n", i, parts[i].name, | ||
144 | (long unsigned int)(parts[i].offset), | ||
145 | (long unsigned int)(parts[i].size)); | ||
146 | |||
147 | printk(KERN_INFO PFX "Spare partition is %x offset and length %x\n", | ||
148 | spareaddr, sparelen); | ||
149 | *pparts = parts; | ||
150 | vfree(buf); | ||
151 | |||
152 | return nrparts; | ||
153 | }; | ||
154 | |||
155 | static int bcm963xx_detect_cfe(struct mtd_info *master) | ||
156 | { | ||
157 | int idoffset = 0x4e0; | ||
158 | static char idstring[8] = "CFE1CFE1"; | ||
159 | char buf[9]; | ||
160 | int ret; | ||
161 | size_t retlen; | ||
162 | |||
163 | ret = master->read(master, idoffset, 8, &retlen, (void *)buf); | ||
164 | buf[retlen] = 0; | ||
165 | printk(KERN_INFO PFX "Read Signature value of %s\n", buf); | ||
166 | |||
167 | return strncmp(idstring, buf, 8); | ||
168 | } | ||
169 | |||
170 | static int bcm963xx_probe(struct platform_device *pdev) | ||
171 | { | ||
172 | int err = 0; | ||
173 | int parsed_nr_parts = 0; | ||
174 | char *part_type; | ||
175 | struct resource *r; | ||
176 | |||
177 | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
178 | if (!r) { | ||
179 | dev_err(&pdev->dev, "no resource supplied\n"); | ||
180 | return -ENODEV; | ||
181 | } | ||
182 | |||
183 | bcm963xx_map.phys = r->start; | ||
184 | bcm963xx_map.size = resource_size(r); | ||
185 | bcm963xx_map.virt = ioremap(r->start, resource_size(r)); | ||
186 | if (!bcm963xx_map.virt) { | ||
187 | dev_err(&pdev->dev, "failed to ioremap\n"); | ||
188 | return -EIO; | ||
189 | } | ||
190 | |||
191 | dev_info(&pdev->dev, "0x%08lx at 0x%08x\n", | ||
192 | bcm963xx_map.size, bcm963xx_map.phys); | ||
193 | |||
194 | simple_map_init(&bcm963xx_map); | ||
195 | |||
196 | bcm963xx_mtd_info = do_map_probe("cfi_probe", &bcm963xx_map); | ||
197 | if (!bcm963xx_mtd_info) { | ||
198 | dev_err(&pdev->dev, "failed to probe using CFI\n"); | ||
199 | bcm963xx_mtd_info = do_map_probe("jedec_probe", &bcm963xx_map); | ||
200 | if (bcm963xx_mtd_info) | ||
201 | goto probe_ok; | ||
202 | dev_err(&pdev->dev, "failed to probe using JEDEC\n"); | ||
203 | err = -EIO; | ||
204 | goto err_probe; | ||
205 | } | ||
206 | |||
207 | probe_ok: | ||
208 | bcm963xx_mtd_info->owner = THIS_MODULE; | ||
209 | |||
210 | /* This is mutually exclusive */ | ||
211 | if (bcm963xx_detect_cfe(bcm963xx_mtd_info) == 0) { | ||
212 | dev_info(&pdev->dev, "CFE bootloader detected\n"); | ||
213 | if (parsed_nr_parts == 0) { | ||
214 | int ret = parse_cfe_partitions(bcm963xx_mtd_info, | ||
215 | &parsed_parts); | ||
216 | if (ret > 0) { | ||
217 | part_type = "CFE"; | ||
218 | parsed_nr_parts = ret; | ||
219 | } | ||
220 | } | ||
221 | } else { | ||
222 | dev_info(&pdev->dev, "unsupported bootloader\n"); | ||
223 | err = -ENODEV; | ||
224 | goto err_probe; | ||
225 | } | ||
226 | |||
227 | return mtd_device_register(bcm963xx_mtd_info, parsed_parts, | ||
228 | parsed_nr_parts); | ||
229 | |||
230 | err_probe: | ||
231 | iounmap(bcm963xx_map.virt); | ||
232 | return err; | ||
233 | } | ||
234 | |||
235 | static int bcm963xx_remove(struct platform_device *pdev) | ||
236 | { | ||
237 | if (bcm963xx_mtd_info) { | ||
238 | mtd_device_unregister(bcm963xx_mtd_info); | ||
239 | map_destroy(bcm963xx_mtd_info); | ||
240 | } | ||
241 | |||
242 | if (bcm963xx_map.virt) { | ||
243 | iounmap(bcm963xx_map.virt); | ||
244 | bcm963xx_map.virt = 0; | ||
245 | } | ||
246 | |||
247 | return 0; | ||
248 | } | ||
249 | |||
250 | static struct platform_driver bcm63xx_mtd_dev = { | ||
251 | .probe = bcm963xx_probe, | ||
252 | .remove = bcm963xx_remove, | ||
253 | .driver = { | ||
254 | .name = "bcm963xx-flash", | ||
255 | .owner = THIS_MODULE, | ||
256 | }, | ||
257 | }; | ||
258 | |||
259 | static int __init bcm963xx_mtd_init(void) | ||
260 | { | ||
261 | return platform_driver_register(&bcm63xx_mtd_dev); | ||
262 | } | ||
263 | |||
264 | static void __exit bcm963xx_mtd_exit(void) | ||
265 | { | ||
266 | platform_driver_unregister(&bcm63xx_mtd_dev); | ||
267 | } | ||
268 | |||
269 | module_init(bcm963xx_mtd_init); | ||
270 | module_exit(bcm963xx_mtd_exit); | ||
271 | |||
272 | MODULE_LICENSE("GPL"); | ||
273 | MODULE_DESCRIPTION("Broadcom BCM63xx MTD driver for CFE and RedBoot"); | ||
274 | MODULE_AUTHOR("Daniel Dickinson <openwrt@cshore.neomailbox.net>"); | ||
275 | MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>"); | ||
276 | MODULE_AUTHOR("Mike Albon <malbon@openwrt.org>"); | ||
diff --git a/drivers/mtd/maps/cdb89712.c b/drivers/mtd/maps/cdb89712.c new file mode 100644 index 00000000000..c29cbf87ea0 --- /dev/null +++ b/drivers/mtd/maps/cdb89712.c | |||
@@ -0,0 +1,278 @@ | |||
1 | /* | ||
2 | * Flash on Cirrus CDB89712 | ||
3 | * | ||
4 | */ | ||
5 | |||
6 | #include <linux/module.h> | ||
7 | #include <linux/types.h> | ||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/ioport.h> | ||
10 | #include <linux/init.h> | ||
11 | #include <asm/io.h> | ||
12 | #include <mach/hardware.h> | ||
13 | #include <linux/mtd/mtd.h> | ||
14 | #include <linux/mtd/map.h> | ||
15 | #include <linux/mtd/partitions.h> | ||
16 | |||
17 | /* dynamic ioremap() areas */ | ||
18 | #define FLASH_START 0x00000000 | ||
19 | #define FLASH_SIZE 0x800000 | ||
20 | #define FLASH_WIDTH 4 | ||
21 | |||
22 | #define SRAM_START 0x60000000 | ||
23 | #define SRAM_SIZE 0xc000 | ||
24 | #define SRAM_WIDTH 4 | ||
25 | |||
26 | #define BOOTROM_START 0x70000000 | ||
27 | #define BOOTROM_SIZE 0x80 | ||
28 | #define BOOTROM_WIDTH 4 | ||
29 | |||
30 | |||
31 | static struct mtd_info *flash_mtd; | ||
32 | |||
33 | struct map_info cdb89712_flash_map = { | ||
34 | .name = "flash", | ||
35 | .size = FLASH_SIZE, | ||
36 | .bankwidth = FLASH_WIDTH, | ||
37 | .phys = FLASH_START, | ||
38 | }; | ||
39 | |||
40 | struct resource cdb89712_flash_resource = { | ||
41 | .name = "Flash", | ||
42 | .start = FLASH_START, | ||
43 | .end = FLASH_START + FLASH_SIZE - 1, | ||
44 | .flags = IORESOURCE_IO | IORESOURCE_BUSY, | ||
45 | }; | ||
46 | |||
47 | static int __init init_cdb89712_flash (void) | ||
48 | { | ||
49 | int err; | ||
50 | |||
51 | if (request_resource (&ioport_resource, &cdb89712_flash_resource)) { | ||
52 | printk(KERN_NOTICE "Failed to reserve Cdb89712 FLASH space\n"); | ||
53 | err = -EBUSY; | ||
54 | goto out; | ||
55 | } | ||
56 | |||
57 | cdb89712_flash_map.virt = ioremap(FLASH_START, FLASH_SIZE); | ||
58 | if (!cdb89712_flash_map.virt) { | ||
59 | printk(KERN_NOTICE "Failed to ioremap Cdb89712 FLASH space\n"); | ||
60 | err = -EIO; | ||
61 | goto out_resource; | ||
62 | } | ||
63 | simple_map_init(&cdb89712_flash_map); | ||
64 | flash_mtd = do_map_probe("cfi_probe", &cdb89712_flash_map); | ||
65 | if (!flash_mtd) { | ||
66 | flash_mtd = do_map_probe("map_rom", &cdb89712_flash_map); | ||
67 | if (flash_mtd) | ||
68 | flash_mtd->erasesize = 0x10000; | ||
69 | } | ||
70 | if (!flash_mtd) { | ||
71 | printk("FLASH probe failed\n"); | ||
72 | err = -ENXIO; | ||
73 | goto out_ioremap; | ||
74 | } | ||
75 | |||
76 | flash_mtd->owner = THIS_MODULE; | ||
77 | |||
78 | if (mtd_device_register(flash_mtd, NULL, 0)) { | ||
79 | printk("FLASH device addition failed\n"); | ||
80 | err = -ENOMEM; | ||
81 | goto out_probe; | ||
82 | } | ||
83 | |||
84 | return 0; | ||
85 | |||
86 | out_probe: | ||
87 | map_destroy(flash_mtd); | ||
88 | flash_mtd = 0; | ||
89 | out_ioremap: | ||
90 | iounmap((void *)cdb89712_flash_map.virt); | ||
91 | out_resource: | ||
92 | release_resource (&cdb89712_flash_resource); | ||
93 | out: | ||
94 | return err; | ||
95 | } | ||
96 | |||
97 | |||
98 | |||
99 | |||
100 | |||
101 | static struct mtd_info *sram_mtd; | ||
102 | |||
103 | struct map_info cdb89712_sram_map = { | ||
104 | .name = "SRAM", | ||
105 | .size = SRAM_SIZE, | ||
106 | .bankwidth = SRAM_WIDTH, | ||
107 | .phys = SRAM_START, | ||
108 | }; | ||
109 | |||
110 | struct resource cdb89712_sram_resource = { | ||
111 | .name = "SRAM", | ||
112 | .start = SRAM_START, | ||
113 | .end = SRAM_START + SRAM_SIZE - 1, | ||
114 | .flags = IORESOURCE_IO | IORESOURCE_BUSY, | ||
115 | }; | ||
116 | |||
117 | static int __init init_cdb89712_sram (void) | ||
118 | { | ||
119 | int err; | ||
120 | |||
121 | if (request_resource (&ioport_resource, &cdb89712_sram_resource)) { | ||
122 | printk(KERN_NOTICE "Failed to reserve Cdb89712 SRAM space\n"); | ||
123 | err = -EBUSY; | ||
124 | goto out; | ||
125 | } | ||
126 | |||
127 | cdb89712_sram_map.virt = ioremap(SRAM_START, SRAM_SIZE); | ||
128 | if (!cdb89712_sram_map.virt) { | ||
129 | printk(KERN_NOTICE "Failed to ioremap Cdb89712 SRAM space\n"); | ||
130 | err = -EIO; | ||
131 | goto out_resource; | ||
132 | } | ||
133 | simple_map_init(&cdb89712_sram_map); | ||
134 | sram_mtd = do_map_probe("map_ram", &cdb89712_sram_map); | ||
135 | if (!sram_mtd) { | ||
136 | printk("SRAM probe failed\n"); | ||
137 | err = -ENXIO; | ||
138 | goto out_ioremap; | ||
139 | } | ||
140 | |||
141 | sram_mtd->owner = THIS_MODULE; | ||
142 | sram_mtd->erasesize = 16; | ||
143 | |||
144 | if (mtd_device_register(sram_mtd, NULL, 0)) { | ||
145 | printk("SRAM device addition failed\n"); | ||
146 | err = -ENOMEM; | ||
147 | goto out_probe; | ||
148 | } | ||
149 | |||
150 | return 0; | ||
151 | |||
152 | out_probe: | ||
153 | map_destroy(sram_mtd); | ||
154 | sram_mtd = 0; | ||
155 | out_ioremap: | ||
156 | iounmap((void *)cdb89712_sram_map.virt); | ||
157 | out_resource: | ||
158 | release_resource (&cdb89712_sram_resource); | ||
159 | out: | ||
160 | return err; | ||
161 | } | ||
162 | |||
163 | |||
164 | |||
165 | |||
166 | |||
167 | |||
168 | |||
169 | static struct mtd_info *bootrom_mtd; | ||
170 | |||
171 | struct map_info cdb89712_bootrom_map = { | ||
172 | .name = "BootROM", | ||
173 | .size = BOOTROM_SIZE, | ||
174 | .bankwidth = BOOTROM_WIDTH, | ||
175 | .phys = BOOTROM_START, | ||
176 | }; | ||
177 | |||
178 | struct resource cdb89712_bootrom_resource = { | ||
179 | .name = "BootROM", | ||
180 | .start = BOOTROM_START, | ||
181 | .end = BOOTROM_START + BOOTROM_SIZE - 1, | ||
182 | .flags = IORESOURCE_IO | IORESOURCE_BUSY, | ||
183 | }; | ||
184 | |||
185 | static int __init init_cdb89712_bootrom (void) | ||
186 | { | ||
187 | int err; | ||
188 | |||
189 | if (request_resource (&ioport_resource, &cdb89712_bootrom_resource)) { | ||
190 | printk(KERN_NOTICE "Failed to reserve Cdb89712 BOOTROM space\n"); | ||
191 | err = -EBUSY; | ||
192 | goto out; | ||
193 | } | ||
194 | |||
195 | cdb89712_bootrom_map.virt = ioremap(BOOTROM_START, BOOTROM_SIZE); | ||
196 | if (!cdb89712_bootrom_map.virt) { | ||
197 | printk(KERN_NOTICE "Failed to ioremap Cdb89712 BootROM space\n"); | ||
198 | err = -EIO; | ||
199 | goto out_resource; | ||
200 | } | ||
201 | simple_map_init(&cdb89712_bootrom_map); | ||
202 | bootrom_mtd = do_map_probe("map_rom", &cdb89712_bootrom_map); | ||
203 | if (!bootrom_mtd) { | ||
204 | printk("BootROM probe failed\n"); | ||
205 | err = -ENXIO; | ||
206 | goto out_ioremap; | ||
207 | } | ||
208 | |||
209 | bootrom_mtd->owner = THIS_MODULE; | ||
210 | bootrom_mtd->erasesize = 0x10000; | ||
211 | |||
212 | if (mtd_device_register(bootrom_mtd, NULL, 0)) { | ||
213 | printk("BootROM device addition failed\n"); | ||
214 | err = -ENOMEM; | ||
215 | goto out_probe; | ||
216 | } | ||
217 | |||
218 | return 0; | ||
219 | |||
220 | out_probe: | ||
221 | map_destroy(bootrom_mtd); | ||
222 | bootrom_mtd = 0; | ||
223 | out_ioremap: | ||
224 | iounmap((void *)cdb89712_bootrom_map.virt); | ||
225 | out_resource: | ||
226 | release_resource (&cdb89712_bootrom_resource); | ||
227 | out: | ||
228 | return err; | ||
229 | } | ||
230 | |||
231 | |||
232 | |||
233 | |||
234 | |||
235 | static int __init init_cdb89712_maps(void) | ||
236 | { | ||
237 | |||
238 | printk(KERN_INFO "Cirrus CDB89712 MTD mappings:\n Flash 0x%x at 0x%x\n SRAM 0x%x at 0x%x\n BootROM 0x%x at 0x%x\n", | ||
239 | FLASH_SIZE, FLASH_START, SRAM_SIZE, SRAM_START, BOOTROM_SIZE, BOOTROM_START); | ||
240 | |||
241 | init_cdb89712_flash(); | ||
242 | init_cdb89712_sram(); | ||
243 | init_cdb89712_bootrom(); | ||
244 | |||
245 | return 0; | ||
246 | } | ||
247 | |||
248 | |||
249 | static void __exit cleanup_cdb89712_maps(void) | ||
250 | { | ||
251 | if (sram_mtd) { | ||
252 | mtd_device_unregister(sram_mtd); | ||
253 | map_destroy(sram_mtd); | ||
254 | iounmap((void *)cdb89712_sram_map.virt); | ||
255 | release_resource (&cdb89712_sram_resource); | ||
256 | } | ||
257 | |||
258 | if (flash_mtd) { | ||
259 | mtd_device_unregister(flash_mtd); | ||
260 | map_destroy(flash_mtd); | ||
261 | iounmap((void *)cdb89712_flash_map.virt); | ||
262 | release_resource (&cdb89712_flash_resource); | ||
263 | } | ||
264 | |||
265 | if (bootrom_mtd) { | ||
266 | mtd_device_unregister(bootrom_mtd); | ||
267 | map_destroy(bootrom_mtd); | ||
268 | iounmap((void *)cdb89712_bootrom_map.virt); | ||
269 | release_resource (&cdb89712_bootrom_resource); | ||
270 | } | ||
271 | } | ||
272 | |||
273 | module_init(init_cdb89712_maps); | ||
274 | module_exit(cleanup_cdb89712_maps); | ||
275 | |||
276 | MODULE_AUTHOR("Ray L"); | ||
277 | MODULE_DESCRIPTION("ARM CDB89712 map driver"); | ||
278 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/mtd/maps/ceiva.c b/drivers/mtd/maps/ceiva.c new file mode 100644 index 00000000000..06f9c981572 --- /dev/null +++ b/drivers/mtd/maps/ceiva.c | |||
@@ -0,0 +1,341 @@ | |||
1 | /* | ||
2 | * Ceiva flash memory driver. | ||
3 | * Copyright (C) 2002 Rob Scott <rscott@mtrob.fdns.net> | ||
4 | * | ||
5 | * Note: this driver supports jedec compatible devices. Modification | ||
6 | * for CFI compatible devices should be straight forward: change | ||
7 | * jedec_probe to cfi_probe. | ||
8 | * | ||
9 | * Based on: sa1100-flash.c, which has the following copyright: | ||
10 | * Flash memory access on SA11x0 based devices | ||
11 | * | ||
12 | * (C) 2000 Nicolas Pitre <nico@fluxnic.net> | ||
13 | * | ||
14 | */ | ||
15 | |||
16 | #include <linux/module.h> | ||
17 | #include <linux/types.h> | ||
18 | #include <linux/ioport.h> | ||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/init.h> | ||
21 | #include <linux/slab.h> | ||
22 | |||
23 | #include <linux/mtd/mtd.h> | ||
24 | #include <linux/mtd/map.h> | ||
25 | #include <linux/mtd/partitions.h> | ||
26 | #include <linux/mtd/concat.h> | ||
27 | |||
28 | #include <mach/hardware.h> | ||
29 | #include <asm/mach-types.h> | ||
30 | #include <asm/io.h> | ||
31 | #include <asm/sizes.h> | ||
32 | |||
33 | /* | ||
34 | * This isn't complete yet, so... | ||
35 | */ | ||
36 | #define CONFIG_MTD_CEIVA_STATICMAP | ||
37 | |||
38 | #ifdef CONFIG_MTD_CEIVA_STATICMAP | ||
39 | /* | ||
40 | * See include/linux/mtd/partitions.h for definition of the mtd_partition | ||
41 | * structure. | ||
42 | * | ||
43 | * Please note: | ||
44 | * 1. The flash size given should be the largest flash size that can | ||
45 | * be accommodated. | ||
46 | * | ||
47 | * 2. The bus width must defined in clps_setup_flash. | ||
48 | * | ||
49 | * The MTD layer will detect flash chip aliasing and reduce the size of | ||
50 | * the map accordingly. | ||
51 | * | ||
52 | */ | ||
53 | |||
54 | #ifdef CONFIG_ARCH_CEIVA | ||
55 | /* Flash / Partition sizing */ | ||
56 | /* For the 28F8003, we use the block mapping to calcuate the sizes */ | ||
57 | #define MAX_SIZE_KiB (16 + 8 + 8 + 96 + (7*128)) | ||
58 | #define BOOT_PARTITION_SIZE_KiB (16) | ||
59 | #define PARAMS_PARTITION_SIZE_KiB (8) | ||
60 | #define KERNEL_PARTITION_SIZE_KiB (4*128) | ||
61 | /* Use both remaining portion of first flash, and all of second flash */ | ||
62 | #define ROOT_PARTITION_SIZE_KiB (3*128) + (8*128) | ||
63 | |||
64 | static struct mtd_partition ceiva_partitions[] = { | ||
65 | { | ||
66 | .name = "Ceiva BOOT partition", | ||
67 | .size = BOOT_PARTITION_SIZE_KiB*1024, | ||
68 | .offset = 0, | ||
69 | |||
70 | },{ | ||
71 | .name = "Ceiva parameters partition", | ||
72 | .size = PARAMS_PARTITION_SIZE_KiB*1024, | ||
73 | .offset = (16 + 8) * 1024, | ||
74 | },{ | ||
75 | .name = "Ceiva kernel partition", | ||
76 | .size = (KERNEL_PARTITION_SIZE_KiB)*1024, | ||
77 | .offset = 0x20000, | ||
78 | |||
79 | },{ | ||
80 | .name = "Ceiva root filesystem partition", | ||
81 | .offset = MTDPART_OFS_APPEND, | ||
82 | .size = (ROOT_PARTITION_SIZE_KiB)*1024, | ||
83 | } | ||
84 | }; | ||
85 | #endif | ||
86 | |||
87 | static int __init clps_static_partitions(struct mtd_partition **parts) | ||
88 | { | ||
89 | int nb_parts = 0; | ||
90 | |||
91 | #ifdef CONFIG_ARCH_CEIVA | ||
92 | if (machine_is_ceiva()) { | ||
93 | *parts = ceiva_partitions; | ||
94 | nb_parts = ARRAY_SIZE(ceiva_partitions); | ||
95 | } | ||
96 | #endif | ||
97 | return nb_parts; | ||
98 | } | ||
99 | #endif | ||
100 | |||
101 | struct clps_info { | ||
102 | unsigned long base; | ||
103 | unsigned long size; | ||
104 | int width; | ||
105 | void *vbase; | ||
106 | struct map_info *map; | ||
107 | struct mtd_info *mtd; | ||
108 | struct resource *res; | ||
109 | }; | ||
110 | |||
111 | #define NR_SUBMTD 4 | ||
112 | |||
113 | static struct clps_info info[NR_SUBMTD]; | ||
114 | |||
115 | static int __init clps_setup_mtd(struct clps_info *clps, int nr, struct mtd_info **rmtd) | ||
116 | { | ||
117 | struct mtd_info *subdev[nr]; | ||
118 | struct map_info *maps; | ||
119 | int i, found = 0, ret = 0; | ||
120 | |||
121 | /* | ||
122 | * Allocate the map_info structs in one go. | ||
123 | */ | ||
124 | maps = kzalloc(sizeof(struct map_info) * nr, GFP_KERNEL); | ||
125 | if (!maps) | ||
126 | return -ENOMEM; | ||
127 | /* | ||
128 | * Claim and then map the memory regions. | ||
129 | */ | ||
130 | for (i = 0; i < nr; i++) { | ||
131 | if (clps[i].base == (unsigned long)-1) | ||
132 | break; | ||
133 | |||
134 | clps[i].res = request_mem_region(clps[i].base, clps[i].size, "clps flash"); | ||
135 | if (!clps[i].res) { | ||
136 | ret = -EBUSY; | ||
137 | break; | ||
138 | } | ||
139 | |||
140 | clps[i].map = maps + i; | ||
141 | |||
142 | clps[i].map->name = "clps flash"; | ||
143 | clps[i].map->phys = clps[i].base; | ||
144 | |||
145 | clps[i].vbase = ioremap(clps[i].base, clps[i].size); | ||
146 | if (!clps[i].vbase) { | ||
147 | ret = -ENOMEM; | ||
148 | break; | ||
149 | } | ||
150 | |||
151 | clps[i].map->virt = (void __iomem *)clps[i].vbase; | ||
152 | clps[i].map->bankwidth = clps[i].width; | ||
153 | clps[i].map->size = clps[i].size; | ||
154 | |||
155 | simple_map_init(&clps[i].map); | ||
156 | |||
157 | clps[i].mtd = do_map_probe("jedec_probe", clps[i].map); | ||
158 | if (clps[i].mtd == NULL) { | ||
159 | ret = -ENXIO; | ||
160 | break; | ||
161 | } | ||
162 | clps[i].mtd->owner = THIS_MODULE; | ||
163 | subdev[i] = clps[i].mtd; | ||
164 | |||
165 | printk(KERN_INFO "clps flash: JEDEC device at 0x%08lx, %dMiB, " | ||
166 | "%d-bit\n", clps[i].base, clps[i].mtd->size >> 20, | ||
167 | clps[i].width * 8); | ||
168 | found += 1; | ||
169 | } | ||
170 | |||
171 | /* | ||
172 | * ENXIO is special. It means we didn't find a chip when | ||
173 | * we probed. We need to tear down the mapping, free the | ||
174 | * resource and mark it as such. | ||
175 | */ | ||
176 | if (ret == -ENXIO) { | ||
177 | iounmap(clps[i].vbase); | ||
178 | clps[i].vbase = NULL; | ||
179 | release_resource(clps[i].res); | ||
180 | clps[i].res = NULL; | ||
181 | } | ||
182 | |||
183 | /* | ||
184 | * If we found one device, don't bother with concat support. | ||
185 | * If we found multiple devices, use concat if we have it | ||
186 | * available, otherwise fail. | ||
187 | */ | ||
188 | if (ret == 0 || ret == -ENXIO) { | ||
189 | if (found == 1) { | ||
190 | *rmtd = subdev[0]; | ||
191 | ret = 0; | ||
192 | } else if (found > 1) { | ||
193 | /* | ||
194 | * We detected multiple devices. Concatenate | ||
195 | * them together. | ||
196 | */ | ||
197 | *rmtd = mtd_concat_create(subdev, found, | ||
198 | "clps flash"); | ||
199 | if (*rmtd == NULL) | ||
200 | ret = -ENXIO; | ||
201 | } | ||
202 | } | ||
203 | |||
204 | /* | ||
205 | * If we failed, clean up. | ||
206 | */ | ||
207 | if (ret) { | ||
208 | do { | ||
209 | if (clps[i].mtd) | ||
210 | map_destroy(clps[i].mtd); | ||
211 | if (clps[i].vbase) | ||
212 | iounmap(clps[i].vbase); | ||
213 | if (clps[i].res) | ||
214 | release_resource(clps[i].res); | ||
215 | } while (i--); | ||
216 | |||
217 | kfree(maps); | ||
218 | } | ||
219 | |||
220 | return ret; | ||
221 | } | ||
222 | |||
223 | static void __exit clps_destroy_mtd(struct clps_info *clps, struct mtd_info *mtd) | ||
224 | { | ||
225 | int i; | ||
226 | |||
227 | mtd_device_unregister(mtd); | ||
228 | |||
229 | if (mtd != clps[0].mtd) | ||
230 | mtd_concat_destroy(mtd); | ||
231 | |||
232 | for (i = NR_SUBMTD; i >= 0; i--) { | ||
233 | if (clps[i].mtd) | ||
234 | map_destroy(clps[i].mtd); | ||
235 | if (clps[i].vbase) | ||
236 | iounmap(clps[i].vbase); | ||
237 | if (clps[i].res) | ||
238 | release_resource(clps[i].res); | ||
239 | } | ||
240 | kfree(clps[0].map); | ||
241 | } | ||
242 | |||
243 | /* | ||
244 | * We define the memory space, size, and width for the flash memory | ||
245 | * space here. | ||
246 | */ | ||
247 | |||
248 | static int __init clps_setup_flash(void) | ||
249 | { | ||
250 | int nr = 0; | ||
251 | |||
252 | #ifdef CONFIG_ARCH_CEIVA | ||
253 | if (machine_is_ceiva()) { | ||
254 | info[0].base = CS0_PHYS_BASE; | ||
255 | info[0].size = SZ_32M; | ||
256 | info[0].width = CEIVA_FLASH_WIDTH; | ||
257 | info[1].base = CS1_PHYS_BASE; | ||
258 | info[1].size = SZ_32M; | ||
259 | info[1].width = CEIVA_FLASH_WIDTH; | ||
260 | nr = 2; | ||
261 | } | ||
262 | #endif | ||
263 | return nr; | ||
264 | } | ||
265 | |||
266 | static struct mtd_partition *parsed_parts; | ||
267 | static const char *probes[] = { "cmdlinepart", "RedBoot", NULL }; | ||
268 | |||
269 | static void __init clps_locate_partitions(struct mtd_info *mtd) | ||
270 | { | ||
271 | const char *part_type = NULL; | ||
272 | int nr_parts = 0; | ||
273 | do { | ||
274 | /* | ||
275 | * Partition selection stuff. | ||
276 | */ | ||
277 | nr_parts = parse_mtd_partitions(mtd, probes, &parsed_parts, 0); | ||
278 | if (nr_parts > 0) { | ||
279 | part_type = "command line"; | ||
280 | break; | ||
281 | } | ||
282 | #ifdef CONFIG_MTD_CEIVA_STATICMAP | ||
283 | nr_parts = clps_static_partitions(&parsed_parts); | ||
284 | if (nr_parts > 0) { | ||
285 | part_type = "static"; | ||
286 | break; | ||
287 | } | ||
288 | printk("found: %d partitions\n", nr_parts); | ||
289 | #endif | ||
290 | } while (0); | ||
291 | |||
292 | if (nr_parts == 0) { | ||
293 | printk(KERN_NOTICE "clps flash: no partition info " | ||
294 | "available, registering whole flash\n"); | ||
295 | mtd_device_register(mtd, NULL, 0); | ||
296 | } else { | ||
297 | printk(KERN_NOTICE "clps flash: using %s partition " | ||
298 | "definition\n", part_type); | ||
299 | mtd_device_register(mtd, parsed_parts, nr_parts); | ||
300 | } | ||
301 | |||
302 | /* Always succeeds. */ | ||
303 | } | ||
304 | |||
305 | static void __exit clps_destroy_partitions(void) | ||
306 | { | ||
307 | kfree(parsed_parts); | ||
308 | } | ||
309 | |||
310 | static struct mtd_info *mymtd; | ||
311 | |||
312 | static int __init clps_mtd_init(void) | ||
313 | { | ||
314 | int ret; | ||
315 | int nr; | ||
316 | |||
317 | nr = clps_setup_flash(); | ||
318 | if (nr < 0) | ||
319 | return nr; | ||
320 | |||
321 | ret = clps_setup_mtd(info, nr, &mymtd); | ||
322 | if (ret) | ||
323 | return ret; | ||
324 | |||
325 | clps_locate_partitions(mymtd); | ||
326 | |||
327 | return 0; | ||
328 | } | ||
329 | |||
330 | static void __exit clps_mtd_cleanup(void) | ||
331 | { | ||
332 | clps_destroy_mtd(info, mymtd); | ||
333 | clps_destroy_partitions(); | ||
334 | } | ||
335 | |||
336 | module_init(clps_mtd_init); | ||
337 | module_exit(clps_mtd_cleanup); | ||
338 | |||
339 | MODULE_AUTHOR("Rob Scott"); | ||
340 | MODULE_DESCRIPTION("Cirrus Logic JEDEC map driver"); | ||
341 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/mtd/maps/edb7312.c b/drivers/mtd/maps/edb7312.c new file mode 100644 index 00000000000..fe42a212bb3 --- /dev/null +++ b/drivers/mtd/maps/edb7312.c | |||
@@ -0,0 +1,134 @@ | |||
1 | /* | ||
2 | * Handle mapping of the NOR flash on Cogent EDB7312 boards | ||
3 | * | ||
4 | * Copyright 2002 SYSGO Real-Time Solutions GmbH | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License version 2 as | ||
8 | * published by the Free Software Foundation. | ||
9 | */ | ||
10 | |||
11 | #include <linux/module.h> | ||
12 | #include <linux/types.h> | ||
13 | #include <linux/kernel.h> | ||
14 | #include <linux/init.h> | ||
15 | #include <asm/io.h> | ||
16 | #include <linux/mtd/mtd.h> | ||
17 | #include <linux/mtd/map.h> | ||
18 | #include <linux/mtd/partitions.h> | ||
19 | |||
20 | #define WINDOW_ADDR 0x00000000 /* physical properties of flash */ | ||
21 | #define WINDOW_SIZE 0x01000000 | ||
22 | #define BUSWIDTH 2 | ||
23 | #define FLASH_BLOCKSIZE_MAIN 0x20000 | ||
24 | #define FLASH_NUMBLOCKS_MAIN 128 | ||
25 | /* can be "cfi_probe", "jedec_probe", "map_rom", NULL }; */ | ||
26 | #define PROBETYPES { "cfi_probe", NULL } | ||
27 | |||
28 | #define MSG_PREFIX "EDB7312-NOR:" /* prefix for our printk()'s */ | ||
29 | #define MTDID "edb7312-nor" /* for mtdparts= partitioning */ | ||
30 | |||
31 | static struct mtd_info *mymtd; | ||
32 | |||
33 | struct map_info edb7312nor_map = { | ||
34 | .name = "NOR flash on EDB7312", | ||
35 | .size = WINDOW_SIZE, | ||
36 | .bankwidth = BUSWIDTH, | ||
37 | .phys = WINDOW_ADDR, | ||
38 | }; | ||
39 | |||
40 | /* | ||
41 | * MTD partitioning stuff | ||
42 | */ | ||
43 | static struct mtd_partition static_partitions[3] = | ||
44 | { | ||
45 | { | ||
46 | .name = "ARMboot", | ||
47 | .size = 0x40000, | ||
48 | .offset = 0 | ||
49 | }, | ||
50 | { | ||
51 | .name = "Kernel", | ||
52 | .size = 0x200000, | ||
53 | .offset = 0x40000 | ||
54 | }, | ||
55 | { | ||
56 | .name = "RootFS", | ||
57 | .size = 0xDC0000, | ||
58 | .offset = 0x240000 | ||
59 | }, | ||
60 | }; | ||
61 | |||
62 | static const char *probes[] = { "RedBoot", "cmdlinepart", NULL }; | ||
63 | |||
64 | static int mtd_parts_nb = 0; | ||
65 | static struct mtd_partition *mtd_parts = 0; | ||
66 | |||
67 | static int __init init_edb7312nor(void) | ||
68 | { | ||
69 | static const char *rom_probe_types[] = PROBETYPES; | ||
70 | const char **type; | ||
71 | const char *part_type = 0; | ||
72 | |||
73 | printk(KERN_NOTICE MSG_PREFIX "0x%08x at 0x%08x\n", | ||
74 | WINDOW_SIZE, WINDOW_ADDR); | ||
75 | edb7312nor_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE); | ||
76 | |||
77 | if (!edb7312nor_map.virt) { | ||
78 | printk(MSG_PREFIX "failed to ioremap\n"); | ||
79 | return -EIO; | ||
80 | } | ||
81 | |||
82 | simple_map_init(&edb7312nor_map); | ||
83 | |||
84 | mymtd = 0; | ||
85 | type = rom_probe_types; | ||
86 | for(; !mymtd && *type; type++) { | ||
87 | mymtd = do_map_probe(*type, &edb7312nor_map); | ||
88 | } | ||
89 | if (mymtd) { | ||
90 | mymtd->owner = THIS_MODULE; | ||
91 | |||
92 | mtd_parts_nb = parse_mtd_partitions(mymtd, probes, &mtd_parts, MTDID); | ||
93 | if (mtd_parts_nb > 0) | ||
94 | part_type = "detected"; | ||
95 | |||
96 | if (mtd_parts_nb == 0) { | ||
97 | mtd_parts = static_partitions; | ||
98 | mtd_parts_nb = ARRAY_SIZE(static_partitions); | ||
99 | part_type = "static"; | ||
100 | } | ||
101 | |||
102 | if (mtd_parts_nb == 0) | ||
103 | printk(KERN_NOTICE MSG_PREFIX "no partition info available\n"); | ||
104 | else | ||
105 | printk(KERN_NOTICE MSG_PREFIX | ||
106 | "using %s partition definition\n", part_type); | ||
107 | /* Register the whole device first. */ | ||
108 | mtd_device_register(mymtd, NULL, 0); | ||
109 | mtd_device_register(mymtd, mtd_parts, mtd_parts_nb); | ||
110 | return 0; | ||
111 | } | ||
112 | |||
113 | iounmap((void *)edb7312nor_map.virt); | ||
114 | return -ENXIO; | ||
115 | } | ||
116 | |||
117 | static void __exit cleanup_edb7312nor(void) | ||
118 | { | ||
119 | if (mymtd) { | ||
120 | mtd_device_unregister(mymtd); | ||
121 | map_destroy(mymtd); | ||
122 | } | ||
123 | if (edb7312nor_map.virt) { | ||
124 | iounmap((void *)edb7312nor_map.virt); | ||
125 | edb7312nor_map.virt = 0; | ||
126 | } | ||
127 | } | ||
128 | |||
129 | module_init(init_edb7312nor); | ||
130 | module_exit(cleanup_edb7312nor); | ||
131 | |||
132 | MODULE_LICENSE("GPL"); | ||
133 | MODULE_AUTHOR("Marius Groeger <mag@sysgo.de>"); | ||
134 | MODULE_DESCRIPTION("Generic configurable MTD map driver"); | ||
diff --git a/drivers/mtd/maps/fortunet.c b/drivers/mtd/maps/fortunet.c new file mode 100644 index 00000000000..956e2e4f30e --- /dev/null +++ b/drivers/mtd/maps/fortunet.c | |||
@@ -0,0 +1,277 @@ | |||
1 | /* fortunet.c memory map | ||
2 | * | ||
3 | */ | ||
4 | |||
5 | #include <linux/module.h> | ||
6 | #include <linux/types.h> | ||
7 | #include <linux/kernel.h> | ||
8 | #include <linux/init.h> | ||
9 | #include <linux/string.h> | ||
10 | |||
11 | #include <linux/mtd/mtd.h> | ||
12 | #include <linux/mtd/map.h> | ||
13 | #include <linux/mtd/partitions.h> | ||
14 | |||
15 | #include <asm/io.h> | ||
16 | |||
17 | #define MAX_NUM_REGIONS 4 | ||
18 | #define MAX_NUM_PARTITIONS 8 | ||
19 | |||
20 | #define DEF_WINDOW_ADDR_PHY 0x00000000 | ||
21 | #define DEF_WINDOW_SIZE 0x00800000 // 8 Mega Bytes | ||
22 | |||
23 | #define MTD_FORTUNET_PK "MTD FortuNet: " | ||
24 | |||
25 | #define MAX_NAME_SIZE 128 | ||
26 | |||
27 | struct map_region | ||
28 | { | ||
29 | int window_addr_physical; | ||
30 | int altbankwidth; | ||
31 | struct map_info map_info; | ||
32 | struct mtd_info *mymtd; | ||
33 | struct mtd_partition parts[MAX_NUM_PARTITIONS]; | ||
34 | char map_name[MAX_NAME_SIZE]; | ||
35 | char parts_name[MAX_NUM_PARTITIONS][MAX_NAME_SIZE]; | ||
36 | }; | ||
37 | |||
38 | static struct map_region map_regions[MAX_NUM_REGIONS]; | ||
39 | static int map_regions_set[MAX_NUM_REGIONS] = {0,0,0,0}; | ||
40 | static int map_regions_parts[MAX_NUM_REGIONS] = {0,0,0,0}; | ||
41 | |||
42 | |||
43 | |||
44 | struct map_info default_map = { | ||
45 | .size = DEF_WINDOW_SIZE, | ||
46 | .bankwidth = 4, | ||
47 | }; | ||
48 | |||
49 | static char * __init get_string_option(char *dest,int dest_size,char *sor) | ||
50 | { | ||
51 | if(!dest_size) | ||
52 | return sor; | ||
53 | dest_size--; | ||
54 | while(*sor) | ||
55 | { | ||
56 | if(*sor==',') | ||
57 | { | ||
58 | sor++; | ||
59 | break; | ||
60 | } | ||
61 | else if(*sor=='\"') | ||
62 | { | ||
63 | sor++; | ||
64 | while(*sor) | ||
65 | { | ||
66 | if(*sor=='\"') | ||
67 | { | ||
68 | sor++; | ||
69 | break; | ||
70 | } | ||
71 | *dest = *sor; | ||
72 | dest++; | ||
73 | sor++; | ||
74 | dest_size--; | ||
75 | if(!dest_size) | ||
76 | { | ||
77 | *dest = 0; | ||
78 | return sor; | ||
79 | } | ||
80 | } | ||
81 | } | ||
82 | else | ||
83 | { | ||
84 | *dest = *sor; | ||
85 | dest++; | ||
86 | sor++; | ||
87 | dest_size--; | ||
88 | if(!dest_size) | ||
89 | { | ||
90 | *dest = 0; | ||
91 | return sor; | ||
92 | } | ||
93 | } | ||
94 | } | ||
95 | *dest = 0; | ||
96 | return sor; | ||
97 | } | ||
98 | |||
99 | static int __init MTD_New_Region(char *line) | ||
100 | { | ||
101 | char string[MAX_NAME_SIZE]; | ||
102 | int params[6]; | ||
103 | get_options (get_string_option(string,sizeof(string),line),6,params); | ||
104 | if(params[0]<1) | ||
105 | { | ||
106 | printk(MTD_FORTUNET_PK "Bad parameters for MTD Region " | ||
107 | " name,region-number[,base,size,bankwidth,altbankwidth]\n"); | ||
108 | return 1; | ||
109 | } | ||
110 | if((params[1]<0)||(params[1]>=MAX_NUM_REGIONS)) | ||
111 | { | ||
112 | printk(MTD_FORTUNET_PK "Bad region index of %d only have 0..%u regions\n", | ||
113 | params[1],MAX_NUM_REGIONS-1); | ||
114 | return 1; | ||
115 | } | ||
116 | memset(&map_regions[params[1]],0,sizeof(map_regions[params[1]])); | ||
117 | memcpy(&map_regions[params[1]].map_info, | ||
118 | &default_map,sizeof(map_regions[params[1]].map_info)); | ||
119 | map_regions_set[params[1]] = 1; | ||
120 | map_regions[params[1]].window_addr_physical = DEF_WINDOW_ADDR_PHY; | ||
121 | map_regions[params[1]].altbankwidth = 2; | ||
122 | map_regions[params[1]].mymtd = NULL; | ||
123 | map_regions[params[1]].map_info.name = map_regions[params[1]].map_name; | ||
124 | strcpy(map_regions[params[1]].map_info.name,string); | ||
125 | if(params[0]>1) | ||
126 | { | ||
127 | map_regions[params[1]].window_addr_physical = params[2]; | ||
128 | } | ||
129 | if(params[0]>2) | ||
130 | { | ||
131 | map_regions[params[1]].map_info.size = params[3]; | ||
132 | } | ||
133 | if(params[0]>3) | ||
134 | { | ||
135 | map_regions[params[1]].map_info.bankwidth = params[4]; | ||
136 | } | ||
137 | if(params[0]>4) | ||
138 | { | ||
139 | map_regions[params[1]].altbankwidth = params[5]; | ||
140 | } | ||
141 | return 1; | ||
142 | } | ||
143 | |||
144 | static int __init MTD_New_Partition(char *line) | ||
145 | { | ||
146 | char string[MAX_NAME_SIZE]; | ||
147 | int params[4]; | ||
148 | get_options (get_string_option(string,sizeof(string),line),4,params); | ||
149 | if(params[0]<3) | ||
150 | { | ||
151 | printk(MTD_FORTUNET_PK "Bad parameters for MTD Partition " | ||
152 | " name,region-number,size,offset\n"); | ||
153 | return 1; | ||
154 | } | ||
155 | if((params[1]<0)||(params[1]>=MAX_NUM_REGIONS)) | ||
156 | { | ||
157 | printk(MTD_FORTUNET_PK "Bad region index of %d only have 0..%u regions\n", | ||
158 | params[1],MAX_NUM_REGIONS-1); | ||
159 | return 1; | ||
160 | } | ||
161 | if(map_regions_parts[params[1]]>=MAX_NUM_PARTITIONS) | ||
162 | { | ||
163 | printk(MTD_FORTUNET_PK "Out of space for partition in this region\n"); | ||
164 | return 1; | ||
165 | } | ||
166 | map_regions[params[1]].parts[map_regions_parts[params[1]]].name = | ||
167 | map_regions[params[1]]. parts_name[map_regions_parts[params[1]]]; | ||
168 | strcpy(map_regions[params[1]].parts[map_regions_parts[params[1]]].name,string); | ||
169 | map_regions[params[1]].parts[map_regions_parts[params[1]]].size = | ||
170 | params[2]; | ||
171 | map_regions[params[1]].parts[map_regions_parts[params[1]]].offset = | ||
172 | params[3]; | ||
173 | map_regions[params[1]].parts[map_regions_parts[params[1]]].mask_flags = 0; | ||
174 | map_regions_parts[params[1]]++; | ||
175 | return 1; | ||
176 | } | ||
177 | |||
178 | __setup("MTD_Region=", MTD_New_Region); | ||
179 | __setup("MTD_Partition=", MTD_New_Partition); | ||
180 | |||
181 | /* Backwards-spelling-compatibility */ | ||
182 | __setup("MTD_Partion=", MTD_New_Partition); | ||
183 | |||
184 | static int __init init_fortunet(void) | ||
185 | { | ||
186 | int ix,iy; | ||
187 | for(iy=ix=0;ix<MAX_NUM_REGIONS;ix++) | ||
188 | { | ||
189 | if(map_regions_parts[ix]&&(!map_regions_set[ix])) | ||
190 | { | ||
191 | printk(MTD_FORTUNET_PK "Region %d is not setup (Setting to default)\n", | ||
192 | ix); | ||
193 | memset(&map_regions[ix],0,sizeof(map_regions[ix])); | ||
194 | memcpy(&map_regions[ix].map_info,&default_map, | ||
195 | sizeof(map_regions[ix].map_info)); | ||
196 | map_regions_set[ix] = 1; | ||
197 | map_regions[ix].window_addr_physical = DEF_WINDOW_ADDR_PHY; | ||
198 | map_regions[ix].altbankwidth = 2; | ||
199 | map_regions[ix].mymtd = NULL; | ||
200 | map_regions[ix].map_info.name = map_regions[ix].map_name; | ||
201 | strcpy(map_regions[ix].map_info.name,"FORTUNET"); | ||
202 | } | ||
203 | if(map_regions_set[ix]) | ||
204 | { | ||
205 | iy++; | ||
206 | printk(KERN_NOTICE MTD_FORTUNET_PK "%s flash device at physically " | ||
207 | " address %x size %x\n", | ||
208 | map_regions[ix].map_info.name, | ||
209 | map_regions[ix].window_addr_physical, | ||
210 | map_regions[ix].map_info.size); | ||
211 | |||
212 | map_regions[ix].map_info.phys = map_regions[ix].window_addr_physical, | ||
213 | |||
214 | map_regions[ix].map_info.virt = | ||
215 | ioremap_nocache( | ||
216 | map_regions[ix].window_addr_physical, | ||
217 | map_regions[ix].map_info.size); | ||
218 | if(!map_regions[ix].map_info.virt) | ||
219 | { | ||
220 | int j = 0; | ||
221 | printk(MTD_FORTUNET_PK "%s flash failed to ioremap!\n", | ||
222 | map_regions[ix].map_info.name); | ||
223 | for (j = 0 ; j < ix; j++) | ||
224 | iounmap(map_regions[j].map_info.virt); | ||
225 | return -ENXIO; | ||
226 | } | ||
227 | simple_map_init(&map_regions[ix].map_info); | ||
228 | |||
229 | printk(KERN_NOTICE MTD_FORTUNET_PK "%s flash is virtually at: %x\n", | ||
230 | map_regions[ix].map_info.name, | ||
231 | map_regions[ix].map_info.virt); | ||
232 | map_regions[ix].mymtd = do_map_probe("cfi_probe", | ||
233 | &map_regions[ix].map_info); | ||
234 | if((!map_regions[ix].mymtd)&&( | ||
235 | map_regions[ix].altbankwidth!=map_regions[ix].map_info.bankwidth)) | ||
236 | { | ||
237 | printk(KERN_NOTICE MTD_FORTUNET_PK "Trying alternate bankwidth " | ||
238 | "for %s flash.\n", | ||
239 | map_regions[ix].map_info.name); | ||
240 | map_regions[ix].map_info.bankwidth = | ||
241 | map_regions[ix].altbankwidth; | ||
242 | map_regions[ix].mymtd = do_map_probe("cfi_probe", | ||
243 | &map_regions[ix].map_info); | ||
244 | } | ||
245 | map_regions[ix].mymtd->owner = THIS_MODULE; | ||
246 | mtd_device_register(map_regions[ix].mymtd, | ||
247 | map_regions[ix].parts, | ||
248 | map_regions_parts[ix]); | ||
249 | } | ||
250 | } | ||
251 | if(iy) | ||
252 | return 0; | ||
253 | return -ENXIO; | ||
254 | } | ||
255 | |||
256 | static void __exit cleanup_fortunet(void) | ||
257 | { | ||
258 | int ix; | ||
259 | for(ix=0;ix<MAX_NUM_REGIONS;ix++) | ||
260 | { | ||
261 | if(map_regions_set[ix]) | ||
262 | { | ||
263 | if( map_regions[ix].mymtd ) | ||
264 | { | ||
265 | mtd_device_unregister(map_regions[ix].mymtd); | ||
266 | map_destroy( map_regions[ix].mymtd ); | ||
267 | } | ||
268 | iounmap((void *)map_regions[ix].map_info.virt); | ||
269 | } | ||
270 | } | ||
271 | } | ||
272 | |||
273 | module_init(init_fortunet); | ||
274 | module_exit(cleanup_fortunet); | ||
275 | |||
276 | MODULE_AUTHOR("FortuNet, Inc."); | ||
277 | MODULE_DESCRIPTION("MTD map driver for FortuNet boards"); | ||
diff --git a/drivers/mtd/maps/tegra_nor.c b/drivers/mtd/maps/tegra_nor.c new file mode 100644 index 00000000000..b455fd5e1c0 --- /dev/null +++ b/drivers/mtd/maps/tegra_nor.c | |||
@@ -0,0 +1,483 @@ | |||
1 | /* | ||
2 | * drivers/mtd/maps/tegra_nor.c | ||
3 | * | ||
4 | * MTD mapping driver for the internal SNOR controller in Tegra SoCs | ||
5 | * | ||
6 | * Copyright (C) 2009 - 2012 NVIDIA Corporation | ||
7 | * | ||
8 | * Author: | ||
9 | * Raghavendra VK <rvk@nvidia.com> | ||
10 | * | ||
11 | * This program is free software; you can redistribute it and/or modify | ||
12 | * it under the terms of the GNU General Public License as published by | ||
13 | * the Free Software Foundation; either version 2 of the License, or | ||
14 | * (at your option) any later version. | ||
15 | * | ||
16 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
18 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
19 | * more details. | ||
20 | * | ||
21 | * You should have received a copy of the GNU General Public License along | ||
22 | * with this program; if not, write to the Free Software Foundation, Inc., | ||
23 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | ||
24 | */ | ||
25 | |||
26 | #include <linux/platform_device.h> | ||
27 | #include <linux/module.h> | ||
28 | #include <linux/types.h> | ||
29 | #include <linux/kernel.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/ioport.h> | ||
32 | #include <linux/slab.h> | ||
33 | #include <linux/interrupt.h> | ||
34 | #include <linux/irq.h> | ||
35 | #include <linux/mutex.h> | ||
36 | #include <linux/mtd/mtd.h> | ||
37 | #include <linux/mtd/map.h> | ||
38 | #include <linux/mtd/partitions.h> | ||
39 | #include <linux/dma-mapping.h> | ||
40 | #include <linux/proc_fs.h> | ||
41 | #include <linux/io.h> | ||
42 | #include <linux/uaccess.h> | ||
43 | #include <linux/clk.h> | ||
44 | #include <linux/platform_data/tegra_nor.h> | ||
45 | #include <asm/cacheflush.h> | ||
46 | |||
47 | #define __BITMASK0(len) (BIT(len) - 1) | ||
48 | #define REG_FIELD(val, start, len) (((val) & __BITMASK0(len)) << (start)) | ||
49 | #define REG_GET_FIELD(val, start, len) (((val) >> (start)) & __BITMASK0(len)) | ||
50 | |||
51 | /* tegra gmi registers... */ | ||
52 | #define TEGRA_SNOR_CONFIG_REG 0x00 | ||
53 | #define TEGRA_SNOR_NOR_ADDR_PTR_REG 0x08 | ||
54 | #define TEGRA_SNOR_AHB_ADDR_PTR_REG 0x0C | ||
55 | #define TEGRA_SNOR_TIMING0_REG 0x10 | ||
56 | #define TEGRA_SNOR_TIMING1_REG 0x14 | ||
57 | #define TEGRA_SNOR_DMA_CFG_REG 0x20 | ||
58 | |||
59 | /* config register */ | ||
60 | #define TEGRA_SNOR_CONFIG_GO BIT(31) | ||
61 | #define TEGRA_SNOR_CONFIG_WORDWIDE BIT(30) | ||
62 | #define TEGRA_SNOR_CONFIG_DEVICE_TYPE BIT(29) | ||
63 | #define TEGRA_SNOR_CONFIG_MUX_MODE BIT(28) | ||
64 | #define TEGRA_SNOR_CONFIG_BURST_LEN(val) REG_FIELD((val), 26, 2) | ||
65 | #define TEGRA_SNOR_CONFIG_RDY_ACTIVE BIT(24) | ||
66 | #define TEGRA_SNOR_CONFIG_RDY_POLARITY BIT(23) | ||
67 | #define TEGRA_SNOR_CONFIG_ADV_POLARITY BIT(22) | ||
68 | #define TEGRA_SNOR_CONFIG_OE_WE_POLARITY BIT(21) | ||
69 | #define TEGRA_SNOR_CONFIG_CS_POLARITY BIT(20) | ||
70 | #define TEGRA_SNOR_CONFIG_NOR_DPD BIT(19) | ||
71 | #define TEGRA_SNOR_CONFIG_WP BIT(15) | ||
72 | #define TEGRA_SNOR_CONFIG_PAGE_SZ(val) REG_FIELD((val), 8, 2) | ||
73 | #define TEGRA_SNOR_CONFIG_MST_ENB BIT(7) | ||
74 | #define TEGRA_SNOR_CONFIG_SNOR_CS(val) REG_FIELD((val), 4, 2) | ||
75 | #define TEGRA_SNOR_CONFIG_CE_LAST REG_FIELD(3) | ||
76 | #define TEGRA_SNOR_CONFIG_CE_FIRST REG_FIELD(2) | ||
77 | #define TEGRA_SNOR_CONFIG_DEVICE_MODE(val) REG_FIELD((val), 0, 2) | ||
78 | |||
79 | /* dma config register */ | ||
80 | #define TEGRA_SNOR_DMA_CFG_GO BIT(31) | ||
81 | #define TEGRA_SNOR_DMA_CFG_BSY BIT(30) | ||
82 | #define TEGRA_SNOR_DMA_CFG_DIR BIT(29) | ||
83 | #define TEGRA_SNOR_DMA_CFG_INT_ENB BIT(28) | ||
84 | #define TEGRA_SNOR_DMA_CFG_INT_STA BIT(27) | ||
85 | #define TEGRA_SNOR_DMA_CFG_BRST_SZ(val) REG_FIELD((val), 24, 3) | ||
86 | #define TEGRA_SNOR_DMA_CFG_WRD_CNT(val) REG_FIELD((val), 2, 14) | ||
87 | |||
88 | /* timing 0 register */ | ||
89 | #define TEGRA_SNOR_TIMING0_PG_RDY(val) REG_FIELD((val), 28, 4) | ||
90 | #define TEGRA_SNOR_TIMING0_PG_SEQ(val) REG_FIELD((val), 20, 4) | ||
91 | #define TEGRA_SNOR_TIMING0_MUX(val) REG_FIELD((val), 12, 4) | ||
92 | #define TEGRA_SNOR_TIMING0_HOLD(val) REG_FIELD((val), 8, 4) | ||
93 | #define TEGRA_SNOR_TIMING0_ADV(val) REG_FIELD((val), 4, 4) | ||
94 | #define TEGRA_SNOR_TIMING0_CE(val) REG_FIELD((val), 0, 4) | ||
95 | |||
96 | /* timing 1 register */ | ||
97 | #define TEGRA_SNOR_TIMING1_WE(val) REG_FIELD((val), 16, 8) | ||
98 | #define TEGRA_SNOR_TIMING1_OE(val) REG_FIELD((val), 8, 8) | ||
99 | #define TEGRA_SNOR_TIMING1_WAIT(val) REG_FIELD((val), 0, 8) | ||
100 | |||
101 | /* SNOR DMA supports 2^14 AHB (32-bit words) | ||
102 | * Maximum data in one transfer = 2^16 bytes | ||
103 | */ | ||
104 | #define TEGRA_SNOR_DMA_LIMIT 0x10000 | ||
105 | #define TEGRA_SNOR_DMA_LIMIT_WORDS (TEGRA_SNOR_DMA_LIMIT >> 2) | ||
106 | |||
107 | /* Even if BW is 1 MB/s, maximum time to | ||
108 | * transfer SNOR_DMA_LIMIT bytes is 66 ms | ||
109 | */ | ||
110 | #define TEGRA_SNOR_DMA_TIMEOUT_MS 67 | ||
111 | |||
112 | struct tegra_nor_info { | ||
113 | struct tegra_nor_platform_data *plat; | ||
114 | struct device *dev; | ||
115 | struct clk *clk; | ||
116 | struct mtd_partition *parts; | ||
117 | struct mtd_info *mtd; | ||
118 | struct map_info map; | ||
119 | struct completion dma_complete; | ||
120 | void __iomem *base; | ||
121 | void *dma_virt_buffer; | ||
122 | dma_addr_t dma_phys_buffer; | ||
123 | u32 init_config; | ||
124 | u32 timing0_default, timing1_default; | ||
125 | u32 timing0_read, timing1_read; | ||
126 | }; | ||
127 | |||
128 | static inline unsigned long snor_tegra_readl(struct tegra_nor_info *tnor, | ||
129 | unsigned long reg) | ||
130 | { | ||
131 | return readl(tnor->base + reg); | ||
132 | } | ||
133 | |||
134 | static inline void snor_tegra_writel(struct tegra_nor_info *tnor, | ||
135 | unsigned long val, unsigned long reg) | ||
136 | { | ||
137 | writel(val, tnor->base + reg); | ||
138 | } | ||
139 | |||
140 | #define DRV_NAME "tegra-nor" | ||
141 | |||
142 | static const char * const part_probes[] = { "cmdlinepart", NULL }; | ||
143 | |||
144 | static int wait_for_dma_completion(struct tegra_nor_info *info) | ||
145 | { | ||
146 | unsigned long dma_timeout; | ||
147 | int ret; | ||
148 | |||
149 | dma_timeout = msecs_to_jiffies(TEGRA_SNOR_DMA_TIMEOUT_MS); | ||
150 | ret = wait_for_completion_timeout(&info->dma_complete, dma_timeout); | ||
151 | return ret ? 0 : -ETIMEDOUT; | ||
152 | } | ||
153 | |||
154 | static void tegra_flash_dma(struct map_info *map, | ||
155 | void *to, unsigned long from, ssize_t len) | ||
156 | { | ||
157 | u32 snor_config, dma_config = 0; | ||
158 | int dma_transfer_count = 0, word32_count = 0; | ||
159 | u32 nor_address, current_transfer = 0; | ||
160 | u32 copy_to = (u32)to; | ||
161 | struct tegra_nor_info *c = | ||
162 | container_of(map, struct tegra_nor_info, map); | ||
163 | unsigned int bytes_remaining = len; | ||
164 | |||
165 | snor_config = c->init_config; | ||
166 | snor_tegra_writel(c, c->timing0_read, TEGRA_SNOR_TIMING0_REG); | ||
167 | snor_tegra_writel(c, c->timing1_read, TEGRA_SNOR_TIMING1_REG); | ||
168 | |||
169 | if (len > 32) { | ||
170 | word32_count = len >> 2; | ||
171 | bytes_remaining = len & 0x00000003; | ||
172 | /* | ||
173 | * The parameters can be setup in any order since we write to | ||
174 | * controller register only after all parameters are set. | ||
175 | */ | ||
176 | /* SNOR CONFIGURATION SETUP */ | ||
177 | snor_config |= TEGRA_SNOR_CONFIG_DEVICE_MODE(1); | ||
178 | /* 8 word page */ | ||
179 | snor_config |= TEGRA_SNOR_CONFIG_PAGE_SZ(2); | ||
180 | snor_config |= TEGRA_SNOR_CONFIG_MST_ENB; | ||
181 | /* SNOR DMA CONFIGURATION SETUP */ | ||
182 | /* NOR -> AHB */ | ||
183 | dma_config &= ~TEGRA_SNOR_DMA_CFG_DIR; | ||
184 | /* One word burst */ | ||
185 | dma_config |= TEGRA_SNOR_DMA_CFG_BRST_SZ(4); | ||
186 | |||
187 | for (nor_address = (unsigned int)(map->phys + from); | ||
188 | word32_count > 0; | ||
189 | word32_count -= current_transfer, | ||
190 | dma_transfer_count += current_transfer, | ||
191 | nor_address += (current_transfer * 4), | ||
192 | copy_to += (current_transfer * 4)) { | ||
193 | |||
194 | current_transfer = | ||
195 | (word32_count > TEGRA_SNOR_DMA_LIMIT_WORDS) | ||
196 | ? (TEGRA_SNOR_DMA_LIMIT_WORDS) : word32_count; | ||
197 | /* Start NOR operation */ | ||
198 | snor_config |= TEGRA_SNOR_CONFIG_GO; | ||
199 | dma_config |= TEGRA_SNOR_DMA_CFG_GO; | ||
200 | /* Enable interrupt before every transaction since the | ||
201 | * interrupt handler disables it */ | ||
202 | dma_config |= TEGRA_SNOR_DMA_CFG_INT_ENB; | ||
203 | /* Num of AHB (32-bit) words to transferred minus 1 */ | ||
204 | dma_config |= | ||
205 | TEGRA_SNOR_DMA_CFG_WRD_CNT(current_transfer - 1); | ||
206 | snor_tegra_writel(c, c->dma_phys_buffer, | ||
207 | TEGRA_SNOR_AHB_ADDR_PTR_REG); | ||
208 | snor_tegra_writel(c, nor_address, | ||
209 | TEGRA_SNOR_NOR_ADDR_PTR_REG); | ||
210 | snor_tegra_writel(c, snor_config, | ||
211 | TEGRA_SNOR_CONFIG_REG); | ||
212 | snor_tegra_writel(c, dma_config, | ||
213 | TEGRA_SNOR_DMA_CFG_REG); | ||
214 | if (wait_for_dma_completion(c)) { | ||
215 | dev_err(c->dev, "timout waiting for DMA\n"); | ||
216 | /* Transfer the remaining words by memcpy */ | ||
217 | bytes_remaining += (word32_count << 2); | ||
218 | break; | ||
219 | } | ||
220 | memcpy((char *)(copy_to), (char *)(c->dma_virt_buffer), | ||
221 | (current_transfer << 2)); | ||
222 | |||
223 | } | ||
224 | } | ||
225 | /* Put the controller back into slave mode. */ | ||
226 | snor_config = snor_tegra_readl(c, TEGRA_SNOR_CONFIG_REG); | ||
227 | snor_config &= ~TEGRA_SNOR_CONFIG_MST_ENB; | ||
228 | snor_config |= TEGRA_SNOR_CONFIG_DEVICE_MODE(0); | ||
229 | snor_tegra_writel(c, snor_config, TEGRA_SNOR_CONFIG_REG); | ||
230 | |||
231 | memcpy_fromio(((char *)to + (dma_transfer_count << 2)), | ||
232 | ((char *)(map->virt + from) + (dma_transfer_count << 2)), | ||
233 | bytes_remaining); | ||
234 | |||
235 | snor_tegra_writel(c, c->timing0_default, TEGRA_SNOR_TIMING0_REG); | ||
236 | snor_tegra_writel(c, c->timing1_default, TEGRA_SNOR_TIMING1_REG); | ||
237 | } | ||
238 | |||
239 | static irqreturn_t tegra_nor_isr(int flag, void *dev_id) | ||
240 | { | ||
241 | struct tegra_nor_info *info = (struct tegra_nor_info *)dev_id; | ||
242 | u32 dma_config = snor_tegra_readl(info, TEGRA_SNOR_DMA_CFG_REG); | ||
243 | if (dma_config & TEGRA_SNOR_DMA_CFG_INT_STA) { | ||
244 | /* Disable interrupts. WAR for BUG:821560 */ | ||
245 | dma_config &= ~TEGRA_SNOR_DMA_CFG_INT_ENB; | ||
246 | snor_tegra_writel(info, dma_config, TEGRA_SNOR_DMA_CFG_REG); | ||
247 | complete(&info->dma_complete); | ||
248 | } else { | ||
249 | pr_err("%s: Spurious interrupt\n", __func__); | ||
250 | } | ||
251 | return IRQ_HANDLED; | ||
252 | } | ||
253 | |||
254 | static int tegra_snor_controller_init(struct tegra_nor_info *info) | ||
255 | { | ||
256 | struct tegra_nor_chip_parms *chip_parm = &info->plat->chip_parms; | ||
257 | u32 width = info->plat->flash.width; | ||
258 | u32 config = 0; | ||
259 | |||
260 | config |= TEGRA_SNOR_CONFIG_DEVICE_MODE(0); | ||
261 | config |= TEGRA_SNOR_CONFIG_SNOR_CS(0); | ||
262 | config &= ~TEGRA_SNOR_CONFIG_DEVICE_TYPE; /* Select NOR */ | ||
263 | config |= TEGRA_SNOR_CONFIG_WP; /* Enable writes */ | ||
264 | switch (width) { | ||
265 | case 2: | ||
266 | config &= ~TEGRA_SNOR_CONFIG_WORDWIDE; /* 16 bit */ | ||
267 | break; | ||
268 | case 4: | ||
269 | config |= TEGRA_SNOR_CONFIG_WORDWIDE; /* 32 bit */ | ||
270 | break; | ||
271 | default: | ||
272 | return -EINVAL; | ||
273 | } | ||
274 | config |= TEGRA_SNOR_CONFIG_BURST_LEN(0); | ||
275 | config &= ~TEGRA_SNOR_CONFIG_MUX_MODE; | ||
276 | snor_tegra_writel(info, config, TEGRA_SNOR_CONFIG_REG); | ||
277 | info->init_config = config; | ||
278 | |||
279 | info->timing0_default = chip_parm->timing_default.timing0; | ||
280 | info->timing0_read = chip_parm->timing_read.timing0; | ||
281 | info->timing1_default = chip_parm->timing_default.timing1; | ||
282 | info->timing1_read = chip_parm->timing_read.timing0; | ||
283 | |||
284 | snor_tegra_writel(info, info->timing1_default, TEGRA_SNOR_TIMING1_REG); | ||
285 | snor_tegra_writel(info, info->timing0_default, TEGRA_SNOR_TIMING0_REG); | ||
286 | return 0; | ||
287 | } | ||
288 | |||
289 | static int tegra_nor_probe(struct platform_device *pdev) | ||
290 | { | ||
291 | int err = 0; | ||
292 | struct tegra_nor_platform_data *plat = pdev->dev.platform_data; | ||
293 | struct tegra_nor_info *info = NULL; | ||
294 | struct device *dev = &pdev->dev; | ||
295 | struct resource *res; | ||
296 | int irq; | ||
297 | |||
298 | if (!plat) { | ||
299 | pr_err("%s: no platform device info\n", __func__); | ||
300 | err = -EINVAL; | ||
301 | goto fail; | ||
302 | } | ||
303 | |||
304 | info = devm_kzalloc(dev, sizeof(struct tegra_nor_info), | ||
305 | GFP_KERNEL); | ||
306 | if (!info) { | ||
307 | err = -ENOMEM; | ||
308 | goto fail; | ||
309 | } | ||
310 | |||
311 | /* Get NOR controller & map the same */ | ||
312 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
313 | if (!res) { | ||
314 | dev_err(dev, "no mem resource?\n"); | ||
315 | err = -ENODEV; | ||
316 | goto fail; | ||
317 | } | ||
318 | |||
319 | if (!devm_request_mem_region(dev, res->start, resource_size(res), | ||
320 | dev_name(&pdev->dev))) { | ||
321 | dev_err(dev, "NOR region already claimed\n"); | ||
322 | err = -EBUSY; | ||
323 | goto fail; | ||
324 | } | ||
325 | |||
326 | info->base = devm_ioremap(dev, res->start, resource_size(res)); | ||
327 | if (!info->base) { | ||
328 | dev_err(dev, "Can't ioremap NOR region\n"); | ||
329 | err = -ENOMEM; | ||
330 | goto fail; | ||
331 | } | ||
332 | |||
333 | /* Get NOR flash aperture & map the same */ | ||
334 | res = platform_get_resource(pdev, IORESOURCE_MEM, 1); | ||
335 | if (!res) { | ||
336 | dev_err(dev, "no mem resource?\n"); | ||
337 | err = -ENODEV; | ||
338 | goto fail; | ||
339 | } | ||
340 | |||
341 | if (!devm_request_mem_region(dev, res->start, resource_size(res), | ||
342 | dev_name(dev))) { | ||
343 | dev_err(dev, "NOR region already claimed\n"); | ||
344 | err = -EBUSY; | ||
345 | goto fail; | ||
346 | } | ||
347 | |||
348 | info->map.virt = devm_ioremap(dev, res->start, | ||
349 | resource_size(res)); | ||
350 | if (!info->map.virt) { | ||
351 | dev_err(dev, "Can't ioremap NOR region\n"); | ||
352 | err = -ENOMEM; | ||
353 | goto fail; | ||
354 | } | ||
355 | |||
356 | info->plat = plat; | ||
357 | info->dev = dev; | ||
358 | info->map.bankwidth = plat->flash.width; | ||
359 | info->map.name = dev_name(dev); | ||
360 | info->map.phys = res->start; | ||
361 | info->map.size = resource_size(res); | ||
362 | |||
363 | info->clk = clk_get(dev, NULL); | ||
364 | if (IS_ERR(info->clk)) { | ||
365 | err = PTR_ERR(info->clk); | ||
366 | goto fail; | ||
367 | } | ||
368 | |||
369 | err = clk_enable(info->clk); | ||
370 | if (err != 0) | ||
371 | goto out_clk_put; | ||
372 | |||
373 | simple_map_init(&info->map); | ||
374 | info->map.copy_from = tegra_flash_dma; | ||
375 | |||
376 | /* Intialise the SNOR controller before probe */ | ||
377 | err = tegra_snor_controller_init(info); | ||
378 | if (err) { | ||
379 | dev_err(dev, "Error initializing controller\n"); | ||
380 | goto out_clk_disable; | ||
381 | } | ||
382 | |||
383 | init_completion(&info->dma_complete); | ||
384 | |||
385 | irq = platform_get_irq(pdev, 0); | ||
386 | if (!irq) { | ||
387 | dev_err(dev, "no irq resource?\n"); | ||
388 | err = -ENODEV; | ||
389 | goto out_clk_disable; | ||
390 | } | ||
391 | |||
392 | /* Register SNOR DMA completion interrupt */ | ||
393 | err = devm_request_irq(dev, irq, tegra_nor_isr, IRQF_DISABLED, | ||
394 | dev_name(dev), info); | ||
395 | if (err) { | ||
396 | dev_err(dev, "Failed to request irq %i\n", irq); | ||
397 | goto out_clk_disable; | ||
398 | } | ||
399 | info->dma_virt_buffer = dma_alloc_coherent(dev, | ||
400 | TEGRA_SNOR_DMA_LIMIT, | ||
401 | &info->dma_phys_buffer, | ||
402 | GFP_KERNEL); | ||
403 | if (info->dma_virt_buffer == NULL) { | ||
404 | dev_err(&pdev->dev, "Could not allocate buffer for DMA"); | ||
405 | err = -ENOMEM; | ||
406 | goto out_clk_disable; | ||
407 | } | ||
408 | |||
409 | info->mtd = do_map_probe(plat->flash.map_name, &info->map); | ||
410 | if (!info->mtd) { | ||
411 | err = -EIO; | ||
412 | goto out_dma_free_coherent; | ||
413 | } | ||
414 | info->mtd->owner = THIS_MODULE; | ||
415 | info->parts = NULL; | ||
416 | |||
417 | platform_set_drvdata(pdev, info); | ||
418 | err = parse_mtd_partitions(info->mtd, part_probes, &info->parts, 0); | ||
419 | if (err > 0) | ||
420 | err = mtd_device_register(info->mtd, info->parts, err); | ||
421 | else if (err <= 0 && plat->flash.parts) | ||
422 | err = | ||
423 | mtd_device_register(info->mtd, plat->flash.parts, | ||
424 | plat->flash.nr_parts); | ||
425 | else | ||
426 | mtd_device_register(info->mtd, NULL, 0); | ||
427 | |||
428 | return 0; | ||
429 | |||
430 | out_dma_free_coherent: | ||
431 | dma_free_coherent(dev, TEGRA_SNOR_DMA_LIMIT, | ||
432 | info->dma_virt_buffer, info->dma_phys_buffer); | ||
433 | out_clk_disable: | ||
434 | clk_disable(info->clk); | ||
435 | out_clk_put: | ||
436 | clk_put(info->clk); | ||
437 | fail: | ||
438 | pr_err("Tegra NOR probe failed\n"); | ||
439 | return err; | ||
440 | } | ||
441 | |||
442 | static int tegra_nor_remove(struct platform_device *pdev) | ||
443 | { | ||
444 | struct tegra_nor_info *info = platform_get_drvdata(pdev); | ||
445 | |||
446 | mtd_device_unregister(info->mtd); | ||
447 | if (info->parts) | ||
448 | kfree(info->parts); | ||
449 | dma_free_coherent(&pdev->dev, TEGRA_SNOR_DMA_LIMIT, | ||
450 | info->dma_virt_buffer, info->dma_phys_buffer); | ||
451 | map_destroy(info->mtd); | ||
452 | clk_disable(info->clk); | ||
453 | clk_put(info->clk); | ||
454 | |||
455 | return 0; | ||
456 | } | ||
457 | |||
458 | static struct platform_driver __refdata tegra_nor_driver = { | ||
459 | .probe = tegra_nor_probe, | ||
460 | .remove = __devexit_p(tegra_nor_remove), | ||
461 | .driver = { | ||
462 | .name = DRV_NAME, | ||
463 | .owner = THIS_MODULE, | ||
464 | }, | ||
465 | }; | ||
466 | |||
467 | static int __init tegra_nor_init(void) | ||
468 | { | ||
469 | return platform_driver_register(&tegra_nor_driver); | ||
470 | } | ||
471 | |||
472 | static void __exit tegra_nor_exit(void) | ||
473 | { | ||
474 | platform_driver_unregister(&tegra_nor_driver); | ||
475 | } | ||
476 | |||
477 | module_init(tegra_nor_init); | ||
478 | module_exit(tegra_nor_exit); | ||
479 | |||
480 | MODULE_AUTHOR("Raghavendra VK <rvk@nvidia.com>"); | ||
481 | MODULE_DESCRIPTION("NOR Flash mapping driver for NVIDIA Tegra based boards"); | ||
482 | MODULE_LICENSE("GPL"); | ||
483 | MODULE_ALIAS("platform:" DRV_NAME); | ||
diff --git a/drivers/mtd/maps/wr_sbc82xx_flash.c b/drivers/mtd/maps/wr_sbc82xx_flash.c new file mode 100644 index 00000000000..901ce968efa --- /dev/null +++ b/drivers/mtd/maps/wr_sbc82xx_flash.c | |||
@@ -0,0 +1,181 @@ | |||
1 | /* | ||
2 | * Map for flash chips on Wind River PowerQUICC II SBC82xx board. | ||
3 | * | ||
4 | * Copyright (C) 2004 Red Hat, Inc. | ||
5 | * | ||
6 | * Author: David Woodhouse <dwmw2@infradead.org> | ||
7 | * | ||
8 | */ | ||
9 | |||
10 | #include <linux/module.h> | ||
11 | #include <linux/types.h> | ||
12 | #include <linux/kernel.h> | ||
13 | #include <linux/init.h> | ||
14 | #include <linux/slab.h> | ||
15 | #include <asm/io.h> | ||
16 | #include <linux/mtd/mtd.h> | ||
17 | #include <linux/mtd/map.h> | ||
18 | #include <linux/mtd/partitions.h> | ||
19 | |||
20 | #include <asm/immap_cpm2.h> | ||
21 | |||
22 | static struct mtd_info *sbcmtd[3]; | ||
23 | static struct mtd_partition *sbcmtd_parts[3]; | ||
24 | |||
25 | struct map_info sbc82xx_flash_map[3] = { | ||
26 | {.name = "Boot flash"}, | ||
27 | {.name = "Alternate boot flash"}, | ||
28 | {.name = "User flash"} | ||
29 | }; | ||
30 | |||
31 | static struct mtd_partition smallflash_parts[] = { | ||
32 | { | ||
33 | .name = "space", | ||
34 | .size = 0x100000, | ||
35 | .offset = 0, | ||
36 | }, { | ||
37 | .name = "bootloader", | ||
38 | .size = MTDPART_SIZ_FULL, | ||
39 | .offset = MTDPART_OFS_APPEND, | ||
40 | } | ||
41 | }; | ||
42 | |||
43 | static struct mtd_partition bigflash_parts[] = { | ||
44 | { | ||
45 | .name = "bootloader", | ||
46 | .size = 0x00100000, | ||
47 | .offset = 0, | ||
48 | }, { | ||
49 | .name = "file system", | ||
50 | .size = 0x01f00000, | ||
51 | .offset = MTDPART_OFS_APPEND, | ||
52 | }, { | ||
53 | .name = "boot config", | ||
54 | .size = 0x00100000, | ||
55 | .offset = MTDPART_OFS_APPEND, | ||
56 | }, { | ||
57 | .name = "space", | ||
58 | .size = 0x01f00000, | ||
59 | .offset = MTDPART_OFS_APPEND, | ||
60 | } | ||
61 | }; | ||
62 | |||
63 | static const char *part_probes[] __initdata = {"cmdlinepart", "RedBoot", NULL}; | ||
64 | |||
65 | #define init_sbc82xx_one_flash(map, br, or) \ | ||
66 | do { \ | ||
67 | (map).phys = (br & 1) ? (br & 0xffff8000) : 0; \ | ||
68 | (map).size = (br & 1) ? (~(or & 0xffff8000) + 1) : 0; \ | ||
69 | switch (br & 0x00001800) { \ | ||
70 | case 0x00000000: \ | ||
71 | case 0x00000800: (map).bankwidth = 1; break; \ | ||
72 | case 0x00001000: (map).bankwidth = 2; break; \ | ||
73 | case 0x00001800: (map).bankwidth = 4; break; \ | ||
74 | } \ | ||
75 | } while (0); | ||
76 | |||
77 | static int __init init_sbc82xx_flash(void) | ||
78 | { | ||
79 | volatile memctl_cpm2_t *mc = &cpm2_immr->im_memctl; | ||
80 | int bigflash; | ||
81 | int i; | ||
82 | |||
83 | #ifdef CONFIG_SBC8560 | ||
84 | mc = ioremap(0xff700000 + 0x5000, sizeof(memctl_cpm2_t)); | ||
85 | #else | ||
86 | mc = &cpm2_immr->im_memctl; | ||
87 | #endif | ||
88 | |||
89 | bigflash = 1; | ||
90 | if ((mc->memc_br0 & 0x00001800) == 0x00001800) | ||
91 | bigflash = 0; | ||
92 | |||
93 | init_sbc82xx_one_flash(sbc82xx_flash_map[0], mc->memc_br0, mc->memc_or0); | ||
94 | init_sbc82xx_one_flash(sbc82xx_flash_map[1], mc->memc_br6, mc->memc_or6); | ||
95 | init_sbc82xx_one_flash(sbc82xx_flash_map[2], mc->memc_br1, mc->memc_or1); | ||
96 | |||
97 | #ifdef CONFIG_SBC8560 | ||
98 | iounmap((void *) mc); | ||
99 | #endif | ||
100 | |||
101 | for (i=0; i<3; i++) { | ||
102 | int8_t flashcs[3] = { 0, 6, 1 }; | ||
103 | int nr_parts; | ||
104 | |||
105 | printk(KERN_NOTICE "PowerQUICC II %s (%ld MiB on CS%d", | ||
106 | sbc82xx_flash_map[i].name, | ||
107 | (sbc82xx_flash_map[i].size >> 20), | ||
108 | flashcs[i]); | ||
109 | if (!sbc82xx_flash_map[i].phys) { | ||
110 | /* We know it can't be at zero. */ | ||
111 | printk("): disabled by bootloader.\n"); | ||
112 | continue; | ||
113 | } | ||
114 | printk(" at %08lx)\n", sbc82xx_flash_map[i].phys); | ||
115 | |||
116 | sbc82xx_flash_map[i].virt = ioremap(sbc82xx_flash_map[i].phys, sbc82xx_flash_map[i].size); | ||
117 | |||
118 | if (!sbc82xx_flash_map[i].virt) { | ||
119 | printk("Failed to ioremap\n"); | ||
120 | continue; | ||
121 | } | ||
122 | |||
123 | simple_map_init(&sbc82xx_flash_map[i]); | ||
124 | |||
125 | sbcmtd[i] = do_map_probe("cfi_probe", &sbc82xx_flash_map[i]); | ||
126 | |||
127 | if (!sbcmtd[i]) | ||
128 | continue; | ||
129 | |||
130 | sbcmtd[i]->owner = THIS_MODULE; | ||
131 | |||
132 | nr_parts = parse_mtd_partitions(sbcmtd[i], part_probes, | ||
133 | &sbcmtd_parts[i], 0); | ||
134 | if (nr_parts > 0) { | ||
135 | mtd_device_register(sbcmtd[i], sbcmtd_parts[i], | ||
136 | nr_parts); | ||
137 | continue; | ||
138 | } | ||
139 | |||
140 | /* No partitioning detected. Use default */ | ||
141 | if (i == 2) { | ||
142 | mtd_device_register(sbcmtd[i], NULL, 0); | ||
143 | } else if (i == bigflash) { | ||
144 | mtd_device_register(sbcmtd[i], bigflash_parts, | ||
145 | ARRAY_SIZE(bigflash_parts)); | ||
146 | } else { | ||
147 | mtd_device_register(sbcmtd[i], smallflash_parts, | ||
148 | ARRAY_SIZE(smallflash_parts)); | ||
149 | } | ||
150 | } | ||
151 | return 0; | ||
152 | } | ||
153 | |||
154 | static void __exit cleanup_sbc82xx_flash(void) | ||
155 | { | ||
156 | int i; | ||
157 | |||
158 | for (i=0; i<3; i++) { | ||
159 | if (!sbcmtd[i]) | ||
160 | continue; | ||
161 | |||
162 | if (i<2 || sbcmtd_parts[i]) | ||
163 | mtd_device_unregister(sbcmtd[i]); | ||
164 | else | ||
165 | mtd_device_unregister(sbcmtd[i]); | ||
166 | |||
167 | kfree(sbcmtd_parts[i]); | ||
168 | map_destroy(sbcmtd[i]); | ||
169 | |||
170 | iounmap((void *)sbc82xx_flash_map[i].virt); | ||
171 | sbc82xx_flash_map[i].virt = 0; | ||
172 | } | ||
173 | } | ||
174 | |||
175 | module_init(init_sbc82xx_flash); | ||
176 | module_exit(cleanup_sbc82xx_flash); | ||
177 | |||
178 | |||
179 | MODULE_LICENSE("GPL"); | ||
180 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); | ||
181 | MODULE_DESCRIPTION("Flash map driver for WindRiver PowerQUICC II"); | ||
diff --git a/drivers/mtd/nand/autcpu12.c b/drivers/mtd/nand/autcpu12.c new file mode 100644 index 00000000000..eddc9a22498 --- /dev/null +++ b/drivers/mtd/nand/autcpu12.c | |||
@@ -0,0 +1,239 @@ | |||
1 | /* | ||
2 | * drivers/mtd/autcpu12.c | ||
3 | * | ||
4 | * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de> | ||
5 | * | ||
6 | * Derived from drivers/mtd/spia.c | ||
7 | * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify | ||
10 | * it under the terms of the GNU General Public License version 2 as | ||
11 | * published by the Free Software Foundation. | ||
12 | * | ||
13 | * Overview: | ||
14 | * This is a device driver for the NAND flash device found on the | ||
15 | * autronix autcpu12 board, which is a SmartMediaCard. It supports | ||
16 | * 16MiB, 32MiB and 64MiB cards. | ||
17 | * | ||
18 | * | ||
19 | * 02-12-2002 TG Cleanup of module params | ||
20 | * | ||
21 | * 02-20-2002 TG adjusted for different rd/wr address support | ||
22 | * added support for read device ready/busy line | ||
23 | * added page_cache | ||
24 | * | ||
25 | * 10-06-2002 TG 128K card support added | ||
26 | */ | ||
27 | |||
28 | #include <linux/slab.h> | ||
29 | #include <linux/init.h> | ||
30 | #include <linux/module.h> | ||
31 | #include <linux/mtd/mtd.h> | ||
32 | #include <linux/mtd/nand.h> | ||
33 | #include <linux/mtd/partitions.h> | ||
34 | #include <asm/io.h> | ||
35 | #include <mach/hardware.h> | ||
36 | #include <asm/sizes.h> | ||
37 | #include <mach/autcpu12.h> | ||
38 | |||
39 | /* | ||
40 | * MTD structure for AUTCPU12 board | ||
41 | */ | ||
42 | static struct mtd_info *autcpu12_mtd = NULL; | ||
43 | static void __iomem *autcpu12_fio_base; | ||
44 | |||
45 | /* | ||
46 | * Define partitions for flash devices | ||
47 | */ | ||
48 | static struct mtd_partition partition_info16k[] = { | ||
49 | { .name = "AUTCPU12 flash partition 1", | ||
50 | .offset = 0, | ||
51 | .size = 8 * SZ_1M }, | ||
52 | { .name = "AUTCPU12 flash partition 2", | ||
53 | .offset = 8 * SZ_1M, | ||
54 | .size = 8 * SZ_1M }, | ||
55 | }; | ||
56 | |||
57 | static struct mtd_partition partition_info32k[] = { | ||
58 | { .name = "AUTCPU12 flash partition 1", | ||
59 | .offset = 0, | ||
60 | .size = 8 * SZ_1M }, | ||
61 | { .name = "AUTCPU12 flash partition 2", | ||
62 | .offset = 8 * SZ_1M, | ||
63 | .size = 24 * SZ_1M }, | ||
64 | }; | ||
65 | |||
66 | static struct mtd_partition partition_info64k[] = { | ||
67 | { .name = "AUTCPU12 flash partition 1", | ||
68 | .offset = 0, | ||
69 | .size = 16 * SZ_1M }, | ||
70 | { .name = "AUTCPU12 flash partition 2", | ||
71 | .offset = 16 * SZ_1M, | ||
72 | .size = 48 * SZ_1M }, | ||
73 | }; | ||
74 | |||
75 | static struct mtd_partition partition_info128k[] = { | ||
76 | { .name = "AUTCPU12 flash partition 1", | ||
77 | .offset = 0, | ||
78 | .size = 16 * SZ_1M }, | ||
79 | { .name = "AUTCPU12 flash partition 2", | ||
80 | .offset = 16 * SZ_1M, | ||
81 | .size = 112 * SZ_1M }, | ||
82 | }; | ||
83 | |||
84 | #define NUM_PARTITIONS16K 2 | ||
85 | #define NUM_PARTITIONS32K 2 | ||
86 | #define NUM_PARTITIONS64K 2 | ||
87 | #define NUM_PARTITIONS128K 2 | ||
88 | /* | ||
89 | * hardware specific access to control-lines | ||
90 | * | ||
91 | * ALE bit 4 autcpu12_pedr | ||
92 | * CLE bit 5 autcpu12_pedr | ||
93 | * NCE bit 0 fio_ctrl | ||
94 | * | ||
95 | */ | ||
96 | static void autcpu12_hwcontrol(struct mtd_info *mtd, int cmd, | ||
97 | unsigned int ctrl) | ||
98 | { | ||
99 | struct nand_chip *chip = mtd->priv; | ||
100 | |||
101 | if (ctrl & NAND_CTRL_CHANGE) { | ||
102 | void __iomem *addr; | ||
103 | unsigned char bits; | ||
104 | |||
105 | addr = CS89712_VIRT_BASE + AUTCPU12_SMC_PORT_OFFSET; | ||
106 | bits = (ctrl & NAND_CLE) << 4; | ||
107 | bits |= (ctrl & NAND_ALE) << 2; | ||
108 | writeb((readb(addr) & ~0x30) | bits, addr); | ||
109 | |||
110 | addr = autcpu12_fio_base + AUTCPU12_SMC_SELECT_OFFSET; | ||
111 | writeb((readb(addr) & ~0x1) | (ctrl & NAND_NCE), addr); | ||
112 | } | ||
113 | |||
114 | if (cmd != NAND_CMD_NONE) | ||
115 | writeb(cmd, chip->IO_ADDR_W); | ||
116 | } | ||
117 | |||
118 | /* | ||
119 | * read device ready pin | ||
120 | */ | ||
121 | int autcpu12_device_ready(struct mtd_info *mtd) | ||
122 | { | ||
123 | void __iomem *addr = CS89712_VIRT_BASE + AUTCPU12_SMC_PORT_OFFSET; | ||
124 | |||
125 | return readb(addr) & AUTCPU12_SMC_RDY; | ||
126 | } | ||
127 | |||
128 | /* | ||
129 | * Main initialization routine | ||
130 | */ | ||
131 | static int __init autcpu12_init(void) | ||
132 | { | ||
133 | struct nand_chip *this; | ||
134 | int err = 0; | ||
135 | |||
136 | /* Allocate memory for MTD device structure and private data */ | ||
137 | autcpu12_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), | ||
138 | GFP_KERNEL); | ||
139 | if (!autcpu12_mtd) { | ||
140 | printk("Unable to allocate AUTCPU12 NAND MTD device structure.\n"); | ||
141 | err = -ENOMEM; | ||
142 | goto out; | ||
143 | } | ||
144 | |||
145 | /* map physical address */ | ||
146 | autcpu12_fio_base = ioremap(AUTCPU12_PHYS_SMC, SZ_1K); | ||
147 | if (!autcpu12_fio_base) { | ||
148 | printk("Ioremap autcpu12 SmartMedia Card failed\n"); | ||
149 | err = -EIO; | ||
150 | goto out_mtd; | ||
151 | } | ||
152 | |||
153 | /* Get pointer to private data */ | ||
154 | this = (struct nand_chip *)(&autcpu12_mtd[1]); | ||
155 | |||
156 | /* Initialize structures */ | ||
157 | memset(autcpu12_mtd, 0, sizeof(struct mtd_info)); | ||
158 | memset(this, 0, sizeof(struct nand_chip)); | ||
159 | |||
160 | /* Link the private data with the MTD structure */ | ||
161 | autcpu12_mtd->priv = this; | ||
162 | autcpu12_mtd->owner = THIS_MODULE; | ||
163 | |||
164 | /* Set address of NAND IO lines */ | ||
165 | this->IO_ADDR_R = autcpu12_fio_base; | ||
166 | this->IO_ADDR_W = autcpu12_fio_base; | ||
167 | this->cmd_ctrl = autcpu12_hwcontrol; | ||
168 | this->dev_ready = autcpu12_device_ready; | ||
169 | /* 20 us command delay time */ | ||
170 | this->chip_delay = 20; | ||
171 | this->ecc.mode = NAND_ECC_SOFT; | ||
172 | |||
173 | /* Enable the following for a flash based bad block table */ | ||
174 | /* | ||
175 | this->options = NAND_USE_FLASH_BBT; | ||
176 | */ | ||
177 | this->options = NAND_USE_FLASH_BBT; | ||
178 | |||
179 | /* Scan to find existence of the device */ | ||
180 | if (nand_scan(autcpu12_mtd, 1)) { | ||
181 | err = -ENXIO; | ||
182 | goto out_ior; | ||
183 | } | ||
184 | |||
185 | /* Register the partitions */ | ||
186 | switch (autcpu12_mtd->size) { | ||
187 | case SZ_16M: | ||
188 | mtd_device_register(autcpu12_mtd, partition_info16k, | ||
189 | NUM_PARTITIONS16K); | ||
190 | break; | ||
191 | case SZ_32M: | ||
192 | mtd_device_register(autcpu12_mtd, partition_info32k, | ||
193 | NUM_PARTITIONS32K); | ||
194 | break; | ||
195 | case SZ_64M: | ||
196 | mtd_device_register(autcpu12_mtd, partition_info64k, | ||
197 | NUM_PARTITIONS64K); | ||
198 | break; | ||
199 | case SZ_128M: | ||
200 | mtd_device_register(autcpu12_mtd, partition_info128k, | ||
201 | NUM_PARTITIONS128K); | ||
202 | break; | ||
203 | default: | ||
204 | printk("Unsupported SmartMedia device\n"); | ||
205 | err = -ENXIO; | ||
206 | goto out_ior; | ||
207 | } | ||
208 | goto out; | ||
209 | |||
210 | out_ior: | ||
211 | iounmap(autcpu12_fio_base); | ||
212 | out_mtd: | ||
213 | kfree(autcpu12_mtd); | ||
214 | out: | ||
215 | return err; | ||
216 | } | ||
217 | |||
218 | module_init(autcpu12_init); | ||
219 | |||
220 | /* | ||
221 | * Clean up routine | ||
222 | */ | ||
223 | static void __exit autcpu12_cleanup(void) | ||
224 | { | ||
225 | /* Release resources, unregister device */ | ||
226 | nand_release(autcpu12_mtd); | ||
227 | |||
228 | /* unmap physical address */ | ||
229 | iounmap(autcpu12_fio_base); | ||
230 | |||
231 | /* Free the MTD device structure */ | ||
232 | kfree(autcpu12_mtd); | ||
233 | } | ||
234 | |||
235 | module_exit(autcpu12_cleanup); | ||
236 | |||
237 | MODULE_LICENSE("GPL"); | ||
238 | MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); | ||
239 | MODULE_DESCRIPTION("Glue layer for SmartMediaCard on autronix autcpu12"); | ||
diff --git a/drivers/mtd/nand/bcm_umi_bch.c b/drivers/mtd/nand/bcm_umi_bch.c new file mode 100644 index 00000000000..a930666d068 --- /dev/null +++ b/drivers/mtd/nand/bcm_umi_bch.c | |||
@@ -0,0 +1,213 @@ | |||
1 | /***************************************************************************** | ||
2 | * Copyright 2004 - 2009 Broadcom Corporation. All rights reserved. | ||
3 | * | ||
4 | * Unless you and Broadcom execute a separate written software license | ||
5 | * agreement governing use of this software, this software is licensed to you | ||
6 | * under the terms of the GNU General Public License version 2, available at | ||
7 | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). | ||
8 | * | ||
9 | * Notwithstanding the above, under no circumstances may you combine this | ||
10 | * software in any way with any other Broadcom software provided under a | ||
11 | * license other than the GPL, without Broadcom's express prior written | ||
12 | * consent. | ||
13 | *****************************************************************************/ | ||
14 | |||
15 | /* ---- Include Files ---------------------------------------------------- */ | ||
16 | #include "nand_bcm_umi.h" | ||
17 | |||
18 | /* ---- External Variable Declarations ----------------------------------- */ | ||
19 | /* ---- External Function Prototypes ------------------------------------- */ | ||
20 | /* ---- Public Variables ------------------------------------------------- */ | ||
21 | /* ---- Private Constants and Types -------------------------------------- */ | ||
22 | |||
23 | /* ---- Private Function Prototypes -------------------------------------- */ | ||
24 | static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd, | ||
25 | struct nand_chip *chip, uint8_t *buf, int page); | ||
26 | static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd, | ||
27 | struct nand_chip *chip, const uint8_t *buf); | ||
28 | |||
29 | /* ---- Private Variables ------------------------------------------------ */ | ||
30 | |||
31 | /* | ||
32 | ** nand_hw_eccoob | ||
33 | ** New oob placement block for use with hardware ecc generation. | ||
34 | */ | ||
35 | static struct nand_ecclayout nand_hw_eccoob_512 = { | ||
36 | /* Reserve 5 for BI indicator */ | ||
37 | .oobfree = { | ||
38 | #if (NAND_ECC_NUM_BYTES > 3) | ||
39 | {.offset = 0, .length = 2} | ||
40 | #else | ||
41 | {.offset = 0, .length = 5}, | ||
42 | {.offset = 6, .length = 7} | ||
43 | #endif | ||
44 | } | ||
45 | }; | ||
46 | |||
47 | /* | ||
48 | ** We treat the OOB for a 2K page as if it were 4 512 byte oobs, | ||
49 | ** except the BI is at byte 0. | ||
50 | */ | ||
51 | static struct nand_ecclayout nand_hw_eccoob_2048 = { | ||
52 | /* Reserve 0 as BI indicator */ | ||
53 | .oobfree = { | ||
54 | #if (NAND_ECC_NUM_BYTES > 10) | ||
55 | {.offset = 1, .length = 2}, | ||
56 | #elif (NAND_ECC_NUM_BYTES > 7) | ||
57 | {.offset = 1, .length = 5}, | ||
58 | {.offset = 16, .length = 6}, | ||
59 | {.offset = 32, .length = 6}, | ||
60 | {.offset = 48, .length = 6} | ||
61 | #else | ||
62 | {.offset = 1, .length = 8}, | ||
63 | {.offset = 16, .length = 9}, | ||
64 | {.offset = 32, .length = 9}, | ||
65 | {.offset = 48, .length = 9} | ||
66 | #endif | ||
67 | } | ||
68 | }; | ||
69 | |||
70 | /* We treat the OOB for a 4K page as if it were 8 512 byte oobs, | ||
71 | * except the BI is at byte 0. */ | ||
72 | static struct nand_ecclayout nand_hw_eccoob_4096 = { | ||
73 | /* Reserve 0 as BI indicator */ | ||
74 | .oobfree = { | ||
75 | #if (NAND_ECC_NUM_BYTES > 10) | ||
76 | {.offset = 1, .length = 2}, | ||
77 | {.offset = 16, .length = 3}, | ||
78 | {.offset = 32, .length = 3}, | ||
79 | {.offset = 48, .length = 3}, | ||
80 | {.offset = 64, .length = 3}, | ||
81 | {.offset = 80, .length = 3}, | ||
82 | {.offset = 96, .length = 3}, | ||
83 | {.offset = 112, .length = 3} | ||
84 | #else | ||
85 | {.offset = 1, .length = 5}, | ||
86 | {.offset = 16, .length = 6}, | ||
87 | {.offset = 32, .length = 6}, | ||
88 | {.offset = 48, .length = 6}, | ||
89 | {.offset = 64, .length = 6}, | ||
90 | {.offset = 80, .length = 6}, | ||
91 | {.offset = 96, .length = 6}, | ||
92 | {.offset = 112, .length = 6} | ||
93 | #endif | ||
94 | } | ||
95 | }; | ||
96 | |||
97 | /* ---- Private Functions ------------------------------------------------ */ | ||
98 | /* ==== Public Functions ================================================= */ | ||
99 | |||
100 | /**************************************************************************** | ||
101 | * | ||
102 | * bcm_umi_bch_read_page_hwecc - hardware ecc based page read function | ||
103 | * @mtd: mtd info structure | ||
104 | * @chip: nand chip info structure | ||
105 | * @buf: buffer to store read data | ||
106 | * | ||
107 | ***************************************************************************/ | ||
108 | static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd, | ||
109 | struct nand_chip *chip, uint8_t * buf, | ||
110 | int page) | ||
111 | { | ||
112 | int sectorIdx = 0; | ||
113 | int eccsize = chip->ecc.size; | ||
114 | int eccsteps = chip->ecc.steps; | ||
115 | uint8_t *datap = buf; | ||
116 | uint8_t eccCalc[NAND_ECC_NUM_BYTES]; | ||
117 | int sectorOobSize = mtd->oobsize / eccsteps; | ||
118 | int stat; | ||
119 | |||
120 | for (sectorIdx = 0; sectorIdx < eccsteps; | ||
121 | sectorIdx++, datap += eccsize) { | ||
122 | if (sectorIdx > 0) { | ||
123 | /* Seek to page location within sector */ | ||
124 | chip->cmdfunc(mtd, NAND_CMD_RNDOUT, sectorIdx * eccsize, | ||
125 | -1); | ||
126 | } | ||
127 | |||
128 | /* Enable hardware ECC before reading the buf */ | ||
129 | nand_bcm_umi_bch_enable_read_hwecc(); | ||
130 | |||
131 | /* Read in data */ | ||
132 | bcm_umi_nand_read_buf(mtd, datap, eccsize); | ||
133 | |||
134 | /* Pause hardware ECC after reading the buf */ | ||
135 | nand_bcm_umi_bch_pause_read_ecc_calc(); | ||
136 | |||
137 | /* Read the OOB ECC */ | ||
138 | chip->cmdfunc(mtd, NAND_CMD_RNDOUT, | ||
139 | mtd->writesize + sectorIdx * sectorOobSize, -1); | ||
140 | nand_bcm_umi_bch_read_oobEcc(mtd->writesize, eccCalc, | ||
141 | NAND_ECC_NUM_BYTES, | ||
142 | chip->oob_poi + | ||
143 | sectorIdx * sectorOobSize); | ||
144 | |||
145 | /* Correct any ECC detected errors */ | ||
146 | stat = | ||
147 | nand_bcm_umi_bch_correct_page(datap, eccCalc, | ||
148 | NAND_ECC_NUM_BYTES); | ||
149 | |||
150 | /* Update Stats */ | ||
151 | if (stat < 0) { | ||
152 | #if defined(NAND_BCM_UMI_DEBUG) | ||
153 | printk(KERN_WARNING "%s uncorr_err sectorIdx=%d\n", | ||
154 | __func__, sectorIdx); | ||
155 | printk(KERN_WARNING | ||
156 | "%s data %02x %02x %02x %02x " | ||
157 | "%02x %02x %02x %02x\n", | ||
158 | __func__, datap[0], datap[1], datap[2], datap[3], | ||
159 | datap[4], datap[5], datap[6], datap[7]); | ||
160 | printk(KERN_WARNING | ||
161 | "%s ecc %02x %02x %02x %02x " | ||
162 | "%02x %02x %02x %02x %02x %02x " | ||
163 | "%02x %02x %02x\n", | ||
164 | __func__, eccCalc[0], eccCalc[1], eccCalc[2], | ||
165 | eccCalc[3], eccCalc[4], eccCalc[5], eccCalc[6], | ||
166 | eccCalc[7], eccCalc[8], eccCalc[9], eccCalc[10], | ||
167 | eccCalc[11], eccCalc[12]); | ||
168 | BUG(); | ||
169 | #endif | ||
170 | mtd->ecc_stats.failed++; | ||
171 | } else { | ||
172 | #if defined(NAND_BCM_UMI_DEBUG) | ||
173 | if (stat > 0) { | ||
174 | printk(KERN_INFO | ||
175 | "%s %d correctable_errors detected\n", | ||
176 | __func__, stat); | ||
177 | } | ||
178 | #endif | ||
179 | mtd->ecc_stats.corrected += stat; | ||
180 | } | ||
181 | } | ||
182 | return 0; | ||
183 | } | ||
184 | |||
185 | /**************************************************************************** | ||
186 | * | ||
187 | * bcm_umi_bch_write_page_hwecc - hardware ecc based page write function | ||
188 | * @mtd: mtd info structure | ||
189 | * @chip: nand chip info structure | ||
190 | * @buf: data buffer | ||
191 | * | ||
192 | ***************************************************************************/ | ||
193 | static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd, | ||
194 | struct nand_chip *chip, const uint8_t *buf) | ||
195 | { | ||
196 | int sectorIdx = 0; | ||
197 | int eccsize = chip->ecc.size; | ||
198 | int eccsteps = chip->ecc.steps; | ||
199 | const uint8_t *datap = buf; | ||
200 | uint8_t *oobp = chip->oob_poi; | ||
201 | int sectorOobSize = mtd->oobsize / eccsteps; | ||
202 | |||
203 | for (sectorIdx = 0; sectorIdx < eccsteps; | ||
204 | sectorIdx++, datap += eccsize, oobp += sectorOobSize) { | ||
205 | /* Enable hardware ECC before writing the buf */ | ||
206 | nand_bcm_umi_bch_enable_write_hwecc(); | ||
207 | bcm_umi_nand_write_buf(mtd, datap, eccsize); | ||
208 | nand_bcm_umi_bch_write_oobEcc(mtd->writesize, oobp, | ||
209 | NAND_ECC_NUM_BYTES); | ||
210 | } | ||
211 | |||
212 | bcm_umi_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); | ||
213 | } | ||
diff --git a/drivers/mtd/nand/bcm_umi_nand.c b/drivers/mtd/nand/bcm_umi_nand.c new file mode 100644 index 00000000000..8c569e454dc --- /dev/null +++ b/drivers/mtd/nand/bcm_umi_nand.c | |||
@@ -0,0 +1,579 @@ | |||
1 | /***************************************************************************** | ||
2 | * Copyright 2004 - 2009 Broadcom Corporation. All rights reserved. | ||
3 | * | ||
4 | * Unless you and Broadcom execute a separate written software license | ||
5 | * agreement governing use of this software, this software is licensed to you | ||
6 | * under the terms of the GNU General Public License version 2, available at | ||
7 | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). | ||
8 | * | ||
9 | * Notwithstanding the above, under no circumstances may you combine this | ||
10 | * software in any way with any other Broadcom software provided under a | ||
11 | * license other than the GPL, without Broadcom's express prior written | ||
12 | * consent. | ||
13 | *****************************************************************************/ | ||
14 | |||
15 | /* ---- Include Files ---------------------------------------------------- */ | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/types.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/slab.h> | ||
21 | #include <linux/string.h> | ||
22 | #include <linux/ioport.h> | ||
23 | #include <linux/device.h> | ||
24 | #include <linux/delay.h> | ||
25 | #include <linux/err.h> | ||
26 | #include <linux/io.h> | ||
27 | #include <linux/platform_device.h> | ||
28 | #include <linux/mtd/mtd.h> | ||
29 | #include <linux/mtd/nand.h> | ||
30 | #include <linux/mtd/nand_ecc.h> | ||
31 | #include <linux/mtd/partitions.h> | ||
32 | |||
33 | #include <asm/mach-types.h> | ||
34 | #include <asm/system.h> | ||
35 | |||
36 | #include <mach/reg_nand.h> | ||
37 | #include <mach/reg_umi.h> | ||
38 | |||
39 | #include "nand_bcm_umi.h" | ||
40 | |||
41 | #include <mach/memory_settings.h> | ||
42 | |||
43 | #define USE_DMA 1 | ||
44 | #include <mach/dma.h> | ||
45 | #include <linux/dma-mapping.h> | ||
46 | #include <linux/completion.h> | ||
47 | |||
48 | /* ---- External Variable Declarations ----------------------------------- */ | ||
49 | /* ---- External Function Prototypes ------------------------------------- */ | ||
50 | /* ---- Public Variables ------------------------------------------------- */ | ||
51 | /* ---- Private Constants and Types -------------------------------------- */ | ||
52 | static const __devinitconst char gBanner[] = KERN_INFO \ | ||
53 | "BCM UMI MTD NAND Driver: 1.00\n"; | ||
54 | |||
55 | const char *part_probes[] = { "cmdlinepart", NULL }; | ||
56 | |||
57 | #if NAND_ECC_BCH | ||
58 | static uint8_t scan_ff_pattern[] = { 0xff }; | ||
59 | |||
60 | static struct nand_bbt_descr largepage_bbt = { | ||
61 | .options = 0, | ||
62 | .offs = 0, | ||
63 | .len = 1, | ||
64 | .pattern = scan_ff_pattern | ||
65 | }; | ||
66 | #endif | ||
67 | |||
68 | /* | ||
69 | ** Preallocate a buffer to avoid having to do this every dma operation. | ||
70 | ** This is the size of the preallocated coherent DMA buffer. | ||
71 | */ | ||
72 | #if USE_DMA | ||
73 | #define DMA_MIN_BUFLEN 512 | ||
74 | #define DMA_MAX_BUFLEN PAGE_SIZE | ||
75 | #define USE_DIRECT_IO(len) (((len) < DMA_MIN_BUFLEN) || \ | ||
76 | ((len) > DMA_MAX_BUFLEN)) | ||
77 | |||
78 | /* | ||
79 | * The current NAND data space goes from 0x80001900 to 0x80001FFF, | ||
80 | * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page | ||
81 | * size NAND flash. Need to break the DMA down to multiple 1Ks. | ||
82 | * | ||
83 | * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000 | ||
84 | */ | ||
85 | #define DMA_MAX_LEN 1024 | ||
86 | |||
87 | #else /* !USE_DMA */ | ||
88 | #define DMA_MIN_BUFLEN 0 | ||
89 | #define DMA_MAX_BUFLEN 0 | ||
90 | #define USE_DIRECT_IO(len) 1 | ||
91 | #endif | ||
92 | /* ---- Private Function Prototypes -------------------------------------- */ | ||
93 | static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len); | ||
94 | static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf, | ||
95 | int len); | ||
96 | |||
97 | /* ---- Private Variables ------------------------------------------------ */ | ||
98 | static struct mtd_info *board_mtd; | ||
99 | static void __iomem *bcm_umi_io_base; | ||
100 | static void *virtPtr; | ||
101 | static dma_addr_t physPtr; | ||
102 | static struct completion nand_comp; | ||
103 | |||
104 | /* ---- Private Functions ------------------------------------------------ */ | ||
105 | #if NAND_ECC_BCH | ||
106 | #include "bcm_umi_bch.c" | ||
107 | #else | ||
108 | #include "bcm_umi_hamming.c" | ||
109 | #endif | ||
110 | |||
111 | #if USE_DMA | ||
112 | |||
113 | /* Handler called when the DMA finishes. */ | ||
114 | static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData) | ||
115 | { | ||
116 | complete(&nand_comp); | ||
117 | } | ||
118 | |||
119 | static int nand_dma_init(void) | ||
120 | { | ||
121 | int rc; | ||
122 | |||
123 | rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM, | ||
124 | nand_dma_handler, NULL); | ||
125 | if (rc != 0) { | ||
126 | printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc); | ||
127 | return rc; | ||
128 | } | ||
129 | |||
130 | virtPtr = | ||
131 | dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL); | ||
132 | if (virtPtr == NULL) { | ||
133 | printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n"); | ||
134 | return -ENOMEM; | ||
135 | } | ||
136 | |||
137 | return 0; | ||
138 | } | ||
139 | |||
140 | static void nand_dma_term(void) | ||
141 | { | ||
142 | if (virtPtr != NULL) | ||
143 | dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr); | ||
144 | } | ||
145 | |||
146 | static void nand_dma_read(void *buf, int len) | ||
147 | { | ||
148 | int offset = 0; | ||
149 | int tmp_len = 0; | ||
150 | int len_left = len; | ||
151 | DMA_Handle_t hndl; | ||
152 | |||
153 | if (virtPtr == NULL) | ||
154 | panic("nand_dma_read: virtPtr == NULL\n"); | ||
155 | |||
156 | if ((void *)physPtr == NULL) | ||
157 | panic("nand_dma_read: physPtr == NULL\n"); | ||
158 | |||
159 | hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM); | ||
160 | if (hndl < 0) { | ||
161 | printk(KERN_ERR | ||
162 | "nand_dma_read: unable to allocate dma channel: %d\n", | ||
163 | (int)hndl); | ||
164 | panic("\n"); | ||
165 | } | ||
166 | |||
167 | while (len_left > 0) { | ||
168 | if (len_left > DMA_MAX_LEN) { | ||
169 | tmp_len = DMA_MAX_LEN; | ||
170 | len_left -= DMA_MAX_LEN; | ||
171 | } else { | ||
172 | tmp_len = len_left; | ||
173 | len_left = 0; | ||
174 | } | ||
175 | |||
176 | init_completion(&nand_comp); | ||
177 | dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR, | ||
178 | physPtr + offset, tmp_len); | ||
179 | wait_for_completion(&nand_comp); | ||
180 | |||
181 | offset += tmp_len; | ||
182 | } | ||
183 | |||
184 | dma_free_channel(hndl); | ||
185 | |||
186 | if (buf != NULL) | ||
187 | memcpy(buf, virtPtr, len); | ||
188 | } | ||
189 | |||
190 | static void nand_dma_write(const void *buf, int len) | ||
191 | { | ||
192 | int offset = 0; | ||
193 | int tmp_len = 0; | ||
194 | int len_left = len; | ||
195 | DMA_Handle_t hndl; | ||
196 | |||
197 | if (buf == NULL) | ||
198 | panic("nand_dma_write: buf == NULL\n"); | ||
199 | |||
200 | if (virtPtr == NULL) | ||
201 | panic("nand_dma_write: virtPtr == NULL\n"); | ||
202 | |||
203 | if ((void *)physPtr == NULL) | ||
204 | panic("nand_dma_write: physPtr == NULL\n"); | ||
205 | |||
206 | memcpy(virtPtr, buf, len); | ||
207 | |||
208 | |||
209 | hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM); | ||
210 | if (hndl < 0) { | ||
211 | printk(KERN_ERR | ||
212 | "nand_dma_write: unable to allocate dma channel: %d\n", | ||
213 | (int)hndl); | ||
214 | panic("\n"); | ||
215 | } | ||
216 | |||
217 | while (len_left > 0) { | ||
218 | if (len_left > DMA_MAX_LEN) { | ||
219 | tmp_len = DMA_MAX_LEN; | ||
220 | len_left -= DMA_MAX_LEN; | ||
221 | } else { | ||
222 | tmp_len = len_left; | ||
223 | len_left = 0; | ||
224 | } | ||
225 | |||
226 | init_completion(&nand_comp); | ||
227 | dma_transfer_mem_to_mem(hndl, physPtr + offset, | ||
228 | REG_NAND_DATA_PADDR, tmp_len); | ||
229 | wait_for_completion(&nand_comp); | ||
230 | |||
231 | offset += tmp_len; | ||
232 | } | ||
233 | |||
234 | dma_free_channel(hndl); | ||
235 | } | ||
236 | |||
237 | #endif | ||
238 | |||
239 | static int nand_dev_ready(struct mtd_info *mtd) | ||
240 | { | ||
241 | return nand_bcm_umi_dev_ready(); | ||
242 | } | ||
243 | |||
244 | /**************************************************************************** | ||
245 | * | ||
246 | * bcm_umi_nand_inithw | ||
247 | * | ||
248 | * This routine does the necessary hardware (board-specific) | ||
249 | * initializations. This includes setting up the timings, etc. | ||
250 | * | ||
251 | ***************************************************************************/ | ||
252 | int bcm_umi_nand_inithw(void) | ||
253 | { | ||
254 | /* Configure nand timing parameters */ | ||
255 | REG_UMI_NAND_TCR &= ~0x7ffff; | ||
256 | REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR; | ||
257 | |||
258 | #if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS) | ||
259 | /* enable software control of CS */ | ||
260 | REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL; | ||
261 | #endif | ||
262 | |||
263 | /* keep NAND chip select asserted */ | ||
264 | REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED; | ||
265 | |||
266 | REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16; | ||
267 | /* enable writes to flash */ | ||
268 | REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP; | ||
269 | |||
270 | writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET); | ||
271 | nand_bcm_umi_wait_till_ready(); | ||
272 | |||
273 | #if NAND_ECC_BCH | ||
274 | nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES); | ||
275 | #endif | ||
276 | |||
277 | return 0; | ||
278 | } | ||
279 | |||
280 | /* Used to turn latch the proper register for access. */ | ||
281 | static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd, | ||
282 | unsigned int ctrl) | ||
283 | { | ||
284 | /* send command to hardware */ | ||
285 | struct nand_chip *chip = mtd->priv; | ||
286 | if (ctrl & NAND_CTRL_CHANGE) { | ||
287 | if (ctrl & NAND_CLE) { | ||
288 | chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET; | ||
289 | goto CMD; | ||
290 | } | ||
291 | if (ctrl & NAND_ALE) { | ||
292 | chip->IO_ADDR_W = | ||
293 | bcm_umi_io_base + REG_NAND_ADDR_OFFSET; | ||
294 | goto CMD; | ||
295 | } | ||
296 | chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; | ||
297 | } | ||
298 | |||
299 | CMD: | ||
300 | /* Send command to chip directly */ | ||
301 | if (cmd != NAND_CMD_NONE) | ||
302 | writeb(cmd, chip->IO_ADDR_W); | ||
303 | } | ||
304 | |||
305 | static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf, | ||
306 | int len) | ||
307 | { | ||
308 | if (USE_DIRECT_IO(len)) { | ||
309 | /* Do it the old way if the buffer is small or too large. | ||
310 | * Probably quicker than starting and checking dma. */ | ||
311 | int i; | ||
312 | struct nand_chip *this = mtd->priv; | ||
313 | |||
314 | for (i = 0; i < len; i++) | ||
315 | writeb(buf[i], this->IO_ADDR_W); | ||
316 | } | ||
317 | #if USE_DMA | ||
318 | else | ||
319 | nand_dma_write(buf, len); | ||
320 | #endif | ||
321 | } | ||
322 | |||
323 | static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len) | ||
324 | { | ||
325 | if (USE_DIRECT_IO(len)) { | ||
326 | int i; | ||
327 | struct nand_chip *this = mtd->priv; | ||
328 | |||
329 | for (i = 0; i < len; i++) | ||
330 | buf[i] = readb(this->IO_ADDR_R); | ||
331 | } | ||
332 | #if USE_DMA | ||
333 | else | ||
334 | nand_dma_read(buf, len); | ||
335 | #endif | ||
336 | } | ||
337 | |||
338 | static uint8_t readbackbuf[NAND_MAX_PAGESIZE]; | ||
339 | static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf, | ||
340 | int len) | ||
341 | { | ||
342 | /* | ||
343 | * Try to readback page with ECC correction. This is necessary | ||
344 | * for MLC parts which may have permanently stuck bits. | ||
345 | */ | ||
346 | struct nand_chip *chip = mtd->priv; | ||
347 | int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0); | ||
348 | if (ret < 0) | ||
349 | return -EFAULT; | ||
350 | else { | ||
351 | if (memcmp(readbackbuf, buf, len) == 0) | ||
352 | return 0; | ||
353 | |||
354 | return -EFAULT; | ||
355 | } | ||
356 | return 0; | ||
357 | } | ||
358 | |||
359 | static int __devinit bcm_umi_nand_probe(struct platform_device *pdev) | ||
360 | { | ||
361 | struct nand_chip *this; | ||
362 | struct resource *r; | ||
363 | int err = 0; | ||
364 | |||
365 | printk(gBanner); | ||
366 | |||
367 | /* Allocate memory for MTD device structure and private data */ | ||
368 | board_mtd = | ||
369 | kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), | ||
370 | GFP_KERNEL); | ||
371 | if (!board_mtd) { | ||
372 | printk(KERN_WARNING | ||
373 | "Unable to allocate NAND MTD device structure.\n"); | ||
374 | return -ENOMEM; | ||
375 | } | ||
376 | |||
377 | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
378 | |||
379 | if (!r) | ||
380 | return -ENXIO; | ||
381 | |||
382 | /* map physical address */ | ||
383 | bcm_umi_io_base = ioremap(r->start, resource_size(r)); | ||
384 | |||
385 | if (!bcm_umi_io_base) { | ||
386 | printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n"); | ||
387 | kfree(board_mtd); | ||
388 | return -EIO; | ||
389 | } | ||
390 | |||
391 | /* Get pointer to private data */ | ||
392 | this = (struct nand_chip *)(&board_mtd[1]); | ||
393 | |||
394 | /* Initialize structures */ | ||
395 | memset((char *)board_mtd, 0, sizeof(struct mtd_info)); | ||
396 | memset((char *)this, 0, sizeof(struct nand_chip)); | ||
397 | |||
398 | /* Link the private data with the MTD structure */ | ||
399 | board_mtd->priv = this; | ||
400 | |||
401 | /* Initialize the NAND hardware. */ | ||
402 | if (bcm_umi_nand_inithw() < 0) { | ||
403 | printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n"); | ||
404 | iounmap(bcm_umi_io_base); | ||
405 | kfree(board_mtd); | ||
406 | return -EIO; | ||
407 | } | ||
408 | |||
409 | /* Set address of NAND IO lines */ | ||
410 | this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; | ||
411 | this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; | ||
412 | |||
413 | /* Set command delay time, see datasheet for correct value */ | ||
414 | this->chip_delay = 0; | ||
415 | /* Assign the device ready function, if available */ | ||
416 | this->dev_ready = nand_dev_ready; | ||
417 | this->options = 0; | ||
418 | |||
419 | this->write_buf = bcm_umi_nand_write_buf; | ||
420 | this->read_buf = bcm_umi_nand_read_buf; | ||
421 | this->verify_buf = bcm_umi_nand_verify_buf; | ||
422 | |||
423 | this->cmd_ctrl = bcm_umi_nand_hwcontrol; | ||
424 | this->ecc.mode = NAND_ECC_HW; | ||
425 | this->ecc.size = 512; | ||
426 | this->ecc.bytes = NAND_ECC_NUM_BYTES; | ||
427 | #if NAND_ECC_BCH | ||
428 | this->ecc.read_page = bcm_umi_bch_read_page_hwecc; | ||
429 | this->ecc.write_page = bcm_umi_bch_write_page_hwecc; | ||
430 | #else | ||
431 | this->ecc.correct = nand_correct_data512; | ||
432 | this->ecc.calculate = bcm_umi_hamming_get_hw_ecc; | ||
433 | this->ecc.hwctl = bcm_umi_hamming_enable_hwecc; | ||
434 | #endif | ||
435 | |||
436 | #if USE_DMA | ||
437 | err = nand_dma_init(); | ||
438 | if (err != 0) | ||
439 | return err; | ||
440 | #endif | ||
441 | |||
442 | /* Figure out the size of the device that we have. | ||
443 | * We need to do this to figure out which ECC | ||
444 | * layout we'll be using. | ||
445 | */ | ||
446 | |||
447 | err = nand_scan_ident(board_mtd, 1, NULL); | ||
448 | if (err) { | ||
449 | printk(KERN_ERR "nand_scan failed: %d\n", err); | ||
450 | iounmap(bcm_umi_io_base); | ||
451 | kfree(board_mtd); | ||
452 | return err; | ||
453 | } | ||
454 | |||
455 | /* Now that we know the nand size, we can setup the ECC layout */ | ||
456 | |||
457 | switch (board_mtd->writesize) { /* writesize is the pagesize */ | ||
458 | case 4096: | ||
459 | this->ecc.layout = &nand_hw_eccoob_4096; | ||
460 | break; | ||
461 | case 2048: | ||
462 | this->ecc.layout = &nand_hw_eccoob_2048; | ||
463 | break; | ||
464 | case 512: | ||
465 | this->ecc.layout = &nand_hw_eccoob_512; | ||
466 | break; | ||
467 | default: | ||
468 | { | ||
469 | printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n", | ||
470 | board_mtd->writesize); | ||
471 | return -EINVAL; | ||
472 | } | ||
473 | } | ||
474 | |||
475 | #if NAND_ECC_BCH | ||
476 | if (board_mtd->writesize > 512) { | ||
477 | if (this->options & NAND_USE_FLASH_BBT) | ||
478 | largepage_bbt.options = NAND_BBT_SCAN2NDPAGE; | ||
479 | this->badblock_pattern = &largepage_bbt; | ||
480 | } | ||
481 | #endif | ||
482 | |||
483 | /* Now finish off the scan, now that ecc.layout has been initialized. */ | ||
484 | |||
485 | err = nand_scan_tail(board_mtd); | ||
486 | if (err) { | ||
487 | printk(KERN_ERR "nand_scan failed: %d\n", err); | ||
488 | iounmap(bcm_umi_io_base); | ||
489 | kfree(board_mtd); | ||
490 | return err; | ||
491 | } | ||
492 | |||
493 | /* Register the partitions */ | ||
494 | { | ||
495 | int nr_partitions; | ||
496 | struct mtd_partition *partition_info; | ||
497 | |||
498 | board_mtd->name = "bcm_umi-nand"; | ||
499 | nr_partitions = | ||
500 | parse_mtd_partitions(board_mtd, part_probes, | ||
501 | &partition_info, 0); | ||
502 | |||
503 | if (nr_partitions <= 0) { | ||
504 | printk(KERN_ERR "BCM UMI NAND: Too few partitions - %d\n", | ||
505 | nr_partitions); | ||
506 | iounmap(bcm_umi_io_base); | ||
507 | kfree(board_mtd); | ||
508 | return -EIO; | ||
509 | } | ||
510 | mtd_device_register(board_mtd, partition_info, nr_partitions); | ||
511 | } | ||
512 | |||
513 | /* Return happy */ | ||
514 | return 0; | ||
515 | } | ||
516 | |||
517 | static int bcm_umi_nand_remove(struct platform_device *pdev) | ||
518 | { | ||
519 | #if USE_DMA | ||
520 | nand_dma_term(); | ||
521 | #endif | ||
522 | |||
523 | /* Release resources, unregister device */ | ||
524 | nand_release(board_mtd); | ||
525 | |||
526 | /* unmap physical address */ | ||
527 | iounmap(bcm_umi_io_base); | ||
528 | |||
529 | /* Free the MTD device structure */ | ||
530 | kfree(board_mtd); | ||
531 | |||
532 | return 0; | ||
533 | } | ||
534 | |||
535 | #ifdef CONFIG_PM | ||
536 | static int bcm_umi_nand_suspend(struct platform_device *pdev, | ||
537 | pm_message_t state) | ||
538 | { | ||
539 | printk(KERN_ERR "MTD NAND suspend is being called\n"); | ||
540 | return 0; | ||
541 | } | ||
542 | |||
543 | static int bcm_umi_nand_resume(struct platform_device *pdev) | ||
544 | { | ||
545 | printk(KERN_ERR "MTD NAND resume is being called\n"); | ||
546 | return 0; | ||
547 | } | ||
548 | #else | ||
549 | #define bcm_umi_nand_suspend NULL | ||
550 | #define bcm_umi_nand_resume NULL | ||
551 | #endif | ||
552 | |||
553 | static struct platform_driver nand_driver = { | ||
554 | .driver = { | ||
555 | .name = "bcm-nand", | ||
556 | .owner = THIS_MODULE, | ||
557 | }, | ||
558 | .probe = bcm_umi_nand_probe, | ||
559 | .remove = bcm_umi_nand_remove, | ||
560 | .suspend = bcm_umi_nand_suspend, | ||
561 | .resume = bcm_umi_nand_resume, | ||
562 | }; | ||
563 | |||
564 | static int __init nand_init(void) | ||
565 | { | ||
566 | return platform_driver_register(&nand_driver); | ||
567 | } | ||
568 | |||
569 | static void __exit nand_exit(void) | ||
570 | { | ||
571 | platform_driver_unregister(&nand_driver); | ||
572 | } | ||
573 | |||
574 | module_init(nand_init); | ||
575 | module_exit(nand_exit); | ||
576 | |||
577 | MODULE_LICENSE("GPL"); | ||
578 | MODULE_AUTHOR("Broadcom"); | ||
579 | MODULE_DESCRIPTION("BCM UMI MTD NAND driver"); | ||
diff --git a/drivers/mtd/nand/edb7312.c b/drivers/mtd/nand/edb7312.c new file mode 100644 index 00000000000..8400d0f6dad --- /dev/null +++ b/drivers/mtd/nand/edb7312.c | |||
@@ -0,0 +1,203 @@ | |||
1 | /* | ||
2 | * drivers/mtd/nand/edb7312.c | ||
3 | * | ||
4 | * Copyright (C) 2002 Marius Gröger (mag@sysgo.de) | ||
5 | * | ||
6 | * Derived from drivers/mtd/nand/autcpu12.c | ||
7 | * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify | ||
10 | * it under the terms of the GNU General Public License version 2 as | ||
11 | * published by the Free Software Foundation. | ||
12 | * | ||
13 | * Overview: | ||
14 | * This is a device driver for the NAND flash device found on the | ||
15 | * CLEP7312 board which utilizes the Toshiba TC58V64AFT part. This is | ||
16 | * a 64Mibit (8MiB x 8 bits) NAND flash device. | ||
17 | */ | ||
18 | |||
19 | #include <linux/slab.h> | ||
20 | #include <linux/module.h> | ||
21 | #include <linux/init.h> | ||
22 | #include <linux/mtd/mtd.h> | ||
23 | #include <linux/mtd/nand.h> | ||
24 | #include <linux/mtd/partitions.h> | ||
25 | #include <asm/io.h> | ||
26 | #include <mach/hardware.h> /* for CLPS7111_VIRT_BASE */ | ||
27 | #include <asm/sizes.h> | ||
28 | #include <asm/hardware/clps7111.h> | ||
29 | |||
30 | /* | ||
31 | * MTD structure for EDB7312 board | ||
32 | */ | ||
33 | static struct mtd_info *ep7312_mtd = NULL; | ||
34 | |||
35 | /* | ||
36 | * Values specific to the EDB7312 board (used with EP7312 processor) | ||
37 | */ | ||
38 | #define EP7312_FIO_PBASE 0x10000000 /* Phys address of flash */ | ||
39 | #define EP7312_PXDR 0x0001 /* | ||
40 | * IO offset to Port B data register | ||
41 | * where the CLE, ALE and NCE pins | ||
42 | * are wired to. | ||
43 | */ | ||
44 | #define EP7312_PXDDR 0x0041 /* | ||
45 | * IO offset to Port B data direction | ||
46 | * register so we can control the IO | ||
47 | * lines. | ||
48 | */ | ||
49 | |||
50 | /* | ||
51 | * Module stuff | ||
52 | */ | ||
53 | |||
54 | static unsigned long ep7312_fio_pbase = EP7312_FIO_PBASE; | ||
55 | static void __iomem *ep7312_pxdr = (void __iomem *)EP7312_PXDR; | ||
56 | static void __iomem *ep7312_pxddr = (void __iomem *)EP7312_PXDDR; | ||
57 | |||
58 | /* | ||
59 | * Define static partitions for flash device | ||
60 | */ | ||
61 | static struct mtd_partition partition_info[] = { | ||
62 | {.name = "EP7312 Nand Flash", | ||
63 | .offset = 0, | ||
64 | .size = 8 * 1024 * 1024} | ||
65 | }; | ||
66 | |||
67 | #define NUM_PARTITIONS 1 | ||
68 | |||
69 | /* | ||
70 | * hardware specific access to control-lines | ||
71 | * | ||
72 | * NAND_NCE: bit 0 -> bit 6 (bit 7 = 1) | ||
73 | * NAND_CLE: bit 1 -> bit 4 | ||
74 | * NAND_ALE: bit 2 -> bit 5 | ||
75 | */ | ||
76 | static void ep7312_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) | ||
77 | { | ||
78 | struct nand_chip *chip = mtd->priv; | ||
79 | |||
80 | if (ctrl & NAND_CTRL_CHANGE) { | ||
81 | unsigned char bits = 0x80; | ||
82 | |||
83 | bits |= (ctrl & (NAND_CLE | NAND_ALE)) << 3; | ||
84 | bits |= (ctrl & NAND_NCE) ? 0x00 : 0x40; | ||
85 | |||
86 | clps_writeb((clps_readb(ep7312_pxdr) & 0xF0) | bits, | ||
87 | ep7312_pxdr); | ||
88 | } | ||
89 | if (cmd != NAND_CMD_NONE) | ||
90 | writeb(cmd, chip->IO_ADDR_W); | ||
91 | } | ||
92 | |||
93 | /* | ||
94 | * read device ready pin | ||
95 | */ | ||
96 | static int ep7312_device_ready(struct mtd_info *mtd) | ||
97 | { | ||
98 | return 1; | ||
99 | } | ||
100 | |||
101 | const char *part_probes[] = { "cmdlinepart", NULL }; | ||
102 | |||
103 | /* | ||
104 | * Main initialization routine | ||
105 | */ | ||
106 | static int __init ep7312_init(void) | ||
107 | { | ||
108 | struct nand_chip *this; | ||
109 | const char *part_type = 0; | ||
110 | int mtd_parts_nb = 0; | ||
111 | struct mtd_partition *mtd_parts = 0; | ||
112 | void __iomem *ep7312_fio_base; | ||
113 | |||
114 | /* Allocate memory for MTD device structure and private data */ | ||
115 | ep7312_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); | ||
116 | if (!ep7312_mtd) { | ||
117 | printk("Unable to allocate EDB7312 NAND MTD device structure.\n"); | ||
118 | return -ENOMEM; | ||
119 | } | ||
120 | |||
121 | /* map physical address */ | ||
122 | ep7312_fio_base = ioremap(ep7312_fio_pbase, SZ_1K); | ||
123 | if (!ep7312_fio_base) { | ||
124 | printk("ioremap EDB7312 NAND flash failed\n"); | ||
125 | kfree(ep7312_mtd); | ||
126 | return -EIO; | ||
127 | } | ||
128 | |||
129 | /* Get pointer to private data */ | ||
130 | this = (struct nand_chip *)(&ep7312_mtd[1]); | ||
131 | |||
132 | /* Initialize structures */ | ||
133 | memset(ep7312_mtd, 0, sizeof(struct mtd_info)); | ||
134 | memset(this, 0, sizeof(struct nand_chip)); | ||
135 | |||
136 | /* Link the private data with the MTD structure */ | ||
137 | ep7312_mtd->priv = this; | ||
138 | ep7312_mtd->owner = THIS_MODULE; | ||
139 | |||
140 | /* | ||
141 | * Set GPIO Port B control register so that the pins are configured | ||
142 | * to be outputs for controlling the NAND flash. | ||
143 | */ | ||
144 | clps_writeb(0xf0, ep7312_pxddr); | ||
145 | |||
146 | /* insert callbacks */ | ||
147 | this->IO_ADDR_R = ep7312_fio_base; | ||
148 | this->IO_ADDR_W = ep7312_fio_base; | ||
149 | this->cmd_ctrl = ep7312_hwcontrol; | ||
150 | this->dev_ready = ep7312_device_ready; | ||
151 | /* 15 us command delay time */ | ||
152 | this->chip_delay = 15; | ||
153 | |||
154 | /* Scan to find existence of the device */ | ||
155 | if (nand_scan(ep7312_mtd, 1)) { | ||
156 | iounmap((void *)ep7312_fio_base); | ||
157 | kfree(ep7312_mtd); | ||
158 | return -ENXIO; | ||
159 | } | ||
160 | ep7312_mtd->name = "edb7312-nand"; | ||
161 | mtd_parts_nb = parse_mtd_partitions(ep7312_mtd, part_probes, &mtd_parts, 0); | ||
162 | if (mtd_parts_nb > 0) | ||
163 | part_type = "command line"; | ||
164 | else | ||
165 | mtd_parts_nb = 0; | ||
166 | if (mtd_parts_nb == 0) { | ||
167 | mtd_parts = partition_info; | ||
168 | mtd_parts_nb = NUM_PARTITIONS; | ||
169 | part_type = "static"; | ||
170 | } | ||
171 | |||
172 | /* Register the partitions */ | ||
173 | printk(KERN_NOTICE "Using %s partition definition\n", part_type); | ||
174 | mtd_device_register(ep7312_mtd, mtd_parts, mtd_parts_nb); | ||
175 | |||
176 | /* Return happy */ | ||
177 | return 0; | ||
178 | } | ||
179 | |||
180 | module_init(ep7312_init); | ||
181 | |||
182 | /* | ||
183 | * Clean up routine | ||
184 | */ | ||
185 | static void __exit ep7312_cleanup(void) | ||
186 | { | ||
187 | struct nand_chip *this = (struct nand_chip *)&ep7312_mtd[1]; | ||
188 | |||
189 | /* Release resources, unregister device */ | ||
190 | nand_release(ap7312_mtd); | ||
191 | |||
192 | /* Release io resource */ | ||
193 | iounmap(this->IO_ADDR_R); | ||
194 | |||
195 | /* Free the MTD device structure */ | ||
196 | kfree(ep7312_mtd); | ||
197 | } | ||
198 | |||
199 | module_exit(ep7312_cleanup); | ||
200 | |||
201 | MODULE_LICENSE("GPL"); | ||
202 | MODULE_AUTHOR("Marius Groeger <mag@sysgo.de>"); | ||
203 | MODULE_DESCRIPTION("MTD map driver for Cogent EDB7312 board"); | ||
diff --git a/drivers/mtd/nand/nand_bcm_umi.c b/drivers/mtd/nand/nand_bcm_umi.c new file mode 100644 index 00000000000..46a6bc9c4b7 --- /dev/null +++ b/drivers/mtd/nand/nand_bcm_umi.c | |||
@@ -0,0 +1,149 @@ | |||
1 | /***************************************************************************** | ||
2 | * Copyright 2004 - 2009 Broadcom Corporation. All rights reserved. | ||
3 | * | ||
4 | * Unless you and Broadcom execute a separate written software license | ||
5 | * agreement governing use of this software, this software is licensed to you | ||
6 | * under the terms of the GNU General Public License version 2, available at | ||
7 | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). | ||
8 | * | ||
9 | * Notwithstanding the above, under no circumstances may you combine this | ||
10 | * software in any way with any other Broadcom software provided under a | ||
11 | * license other than the GPL, without Broadcom's express prior written | ||
12 | * consent. | ||
13 | *****************************************************************************/ | ||
14 | |||
15 | /* ---- Include Files ---------------------------------------------------- */ | ||
16 | #include <mach/reg_umi.h> | ||
17 | #include "nand_bcm_umi.h" | ||
18 | #ifdef BOOT0_BUILD | ||
19 | #include <uart.h> | ||
20 | #endif | ||
21 | |||
22 | /* ---- External Variable Declarations ----------------------------------- */ | ||
23 | /* ---- External Function Prototypes ------------------------------------- */ | ||
24 | /* ---- Public Variables ------------------------------------------------- */ | ||
25 | /* ---- Private Constants and Types -------------------------------------- */ | ||
26 | /* ---- Private Function Prototypes -------------------------------------- */ | ||
27 | /* ---- Private Variables ------------------------------------------------ */ | ||
28 | /* ---- Private Functions ------------------------------------------------ */ | ||
29 | |||
30 | #if NAND_ECC_BCH | ||
31 | /**************************************************************************** | ||
32 | * nand_bch_ecc_flip_bit - Routine to flip an errored bit | ||
33 | * | ||
34 | * PURPOSE: | ||
35 | * This is a helper routine that flips the bit (0 -> 1 or 1 -> 0) of the | ||
36 | * errored bit specified | ||
37 | * | ||
38 | * PARAMETERS: | ||
39 | * datap - Container that holds the 512 byte data | ||
40 | * errorLocation - Location of the bit that needs to be flipped | ||
41 | * | ||
42 | * RETURNS: | ||
43 | * None | ||
44 | ****************************************************************************/ | ||
45 | static void nand_bcm_umi_bch_ecc_flip_bit(uint8_t *datap, int errorLocation) | ||
46 | { | ||
47 | int locWithinAByte = (errorLocation & REG_UMI_BCH_ERR_LOC_BYTE) >> 0; | ||
48 | int locWithinAWord = (errorLocation & REG_UMI_BCH_ERR_LOC_WORD) >> 3; | ||
49 | int locWithinAPage = (errorLocation & REG_UMI_BCH_ERR_LOC_PAGE) >> 5; | ||
50 | |||
51 | uint8_t errorByte = 0; | ||
52 | uint8_t byteMask = 1 << locWithinAByte; | ||
53 | |||
54 | /* BCH uses big endian, need to change the location | ||
55 | * bits to little endian */ | ||
56 | locWithinAWord = 3 - locWithinAWord; | ||
57 | |||
58 | errorByte = datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord]; | ||
59 | |||
60 | #ifdef BOOT0_BUILD | ||
61 | puthexs("\nECC Correct Offset: ", | ||
62 | locWithinAPage * sizeof(uint32_t) + locWithinAWord); | ||
63 | puthexs(" errorByte:", errorByte); | ||
64 | puthex8(" Bit: ", locWithinAByte); | ||
65 | #endif | ||
66 | |||
67 | if (errorByte & byteMask) { | ||
68 | /* bit needs to be cleared */ | ||
69 | errorByte &= ~byteMask; | ||
70 | } else { | ||
71 | /* bit needs to be set */ | ||
72 | errorByte |= byteMask; | ||
73 | } | ||
74 | |||
75 | /* write back the value with the fixed bit */ | ||
76 | datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord] = errorByte; | ||
77 | } | ||
78 | |||
79 | /**************************************************************************** | ||
80 | * nand_correct_page_bch - Routine to correct bit errors when reading NAND | ||
81 | * | ||
82 | * PURPOSE: | ||
83 | * This routine reads the BCH registers to determine if there are any bit | ||
84 | * errors during the read of the last 512 bytes of data + ECC bytes. If | ||
85 | * errors exists, the routine fixes it. | ||
86 | * | ||
87 | * PARAMETERS: | ||
88 | * datap - Container that holds the 512 byte data | ||
89 | * | ||
90 | * RETURNS: | ||
91 | * 0 or greater = Number of errors corrected | ||
92 | * (No errors are found or errors have been fixed) | ||
93 | * -1 = Error(s) cannot be fixed | ||
94 | ****************************************************************************/ | ||
95 | int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData, | ||
96 | int numEccBytes) | ||
97 | { | ||
98 | int numErrors; | ||
99 | int errorLocation; | ||
100 | int idx; | ||
101 | uint32_t regValue; | ||
102 | |||
103 | /* wait for read ECC to be valid */ | ||
104 | regValue = nand_bcm_umi_bch_poll_read_ecc_calc(); | ||
105 | |||
106 | /* | ||
107 | * read the control status register to determine if there | ||
108 | * are error'ed bits | ||
109 | * see if errors are correctible | ||
110 | */ | ||
111 | if ((regValue & REG_UMI_BCH_CTRL_STATUS_UNCORR_ERR) > 0) { | ||
112 | int i; | ||
113 | |||
114 | for (i = 0; i < numEccBytes; i++) { | ||
115 | if (readEccData[i] != 0xff) { | ||
116 | /* errors cannot be fixed, return -1 */ | ||
117 | return -1; | ||
118 | } | ||
119 | } | ||
120 | /* If ECC is unprogrammed then we can't correct, | ||
121 | * assume everything OK */ | ||
122 | return 0; | ||
123 | } | ||
124 | |||
125 | if ((regValue & REG_UMI_BCH_CTRL_STATUS_CORR_ERR) == 0) { | ||
126 | /* no errors */ | ||
127 | return 0; | ||
128 | } | ||
129 | |||
130 | /* | ||
131 | * Fix errored bits by doing the following: | ||
132 | * 1. Read the number of errors in the control and status register | ||
133 | * 2. Read the error location registers that corresponds to the number | ||
134 | * of errors reported | ||
135 | * 3. Invert the bit in the data | ||
136 | */ | ||
137 | numErrors = (regValue & REG_UMI_BCH_CTRL_STATUS_NB_CORR_ERROR) >> 20; | ||
138 | |||
139 | for (idx = 0; idx < numErrors; idx++) { | ||
140 | errorLocation = | ||
141 | REG_UMI_BCH_ERR_LOC_ADDR(idx) & REG_UMI_BCH_ERR_LOC_MASK; | ||
142 | |||
143 | /* Flip bit */ | ||
144 | nand_bcm_umi_bch_ecc_flip_bit(datap, errorLocation); | ||
145 | } | ||
146 | /* Errors corrected */ | ||
147 | return numErrors; | ||
148 | } | ||
149 | #endif | ||
diff --git a/drivers/mtd/nand/nand_bcm_umi.h b/drivers/mtd/nand/nand_bcm_umi.h new file mode 100644 index 00000000000..198b304d6f7 --- /dev/null +++ b/drivers/mtd/nand/nand_bcm_umi.h | |||
@@ -0,0 +1,337 @@ | |||
1 | /***************************************************************************** | ||
2 | * Copyright 2003 - 2009 Broadcom Corporation. All rights reserved. | ||
3 | * | ||
4 | * Unless you and Broadcom execute a separate written software license | ||
5 | * agreement governing use of this software, this software is licensed to you | ||
6 | * under the terms of the GNU General Public License version 2, available at | ||
7 | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). | ||
8 | * | ||
9 | * Notwithstanding the above, under no circumstances may you combine this | ||
10 | * software in any way with any other Broadcom software provided under a | ||
11 | * license other than the GPL, without Broadcom's express prior written | ||
12 | * consent. | ||
13 | *****************************************************************************/ | ||
14 | #ifndef NAND_BCM_UMI_H | ||
15 | #define NAND_BCM_UMI_H | ||
16 | |||
17 | /* ---- Include Files ---------------------------------------------------- */ | ||
18 | #include <mach/reg_umi.h> | ||
19 | #include <mach/reg_nand.h> | ||
20 | #include <cfg_global.h> | ||
21 | |||
22 | /* ---- Constants and Types ---------------------------------------------- */ | ||
23 | #if (CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING) | ||
24 | #define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0) | ||
25 | #else | ||
26 | #define NAND_ECC_BCH 0 | ||
27 | #endif | ||
28 | |||
29 | #define CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES 13 | ||
30 | |||
31 | #if NAND_ECC_BCH | ||
32 | #ifdef BOOT0_BUILD | ||
33 | #define NAND_ECC_NUM_BYTES 13 | ||
34 | #else | ||
35 | #define NAND_ECC_NUM_BYTES CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES | ||
36 | #endif | ||
37 | #else | ||
38 | #define NAND_ECC_NUM_BYTES 3 | ||
39 | #endif | ||
40 | |||
41 | #define NAND_DATA_ACCESS_SIZE 512 | ||
42 | |||
43 | /* ---- Variable Externs ------------------------------------------ */ | ||
44 | /* ---- Function Prototypes --------------------------------------- */ | ||
45 | int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData, | ||
46 | int numEccBytes); | ||
47 | |||
48 | /* Check in device is ready */ | ||
49 | static inline int nand_bcm_umi_dev_ready(void) | ||
50 | { | ||
51 | return REG_UMI_NAND_RCSR & REG_UMI_NAND_RCSR_RDY; | ||
52 | } | ||
53 | |||
54 | /* Wait until device is ready */ | ||
55 | static inline void nand_bcm_umi_wait_till_ready(void) | ||
56 | { | ||
57 | while (nand_bcm_umi_dev_ready() == 0) | ||
58 | ; | ||
59 | } | ||
60 | |||
61 | /* Enable Hamming ECC */ | ||
62 | static inline void nand_bcm_umi_hamming_enable_hwecc(void) | ||
63 | { | ||
64 | /* disable and reset ECC, 512 byte page */ | ||
65 | REG_UMI_NAND_ECC_CSR &= ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE | | ||
66 | REG_UMI_NAND_ECC_CSR_256BYTE); | ||
67 | /* enable ECC */ | ||
68 | REG_UMI_NAND_ECC_CSR |= REG_UMI_NAND_ECC_CSR_ECC_ENABLE; | ||
69 | } | ||
70 | |||
71 | #if NAND_ECC_BCH | ||
72 | /* BCH ECC specifics */ | ||
73 | #define ECC_BITS_PER_CORRECTABLE_BIT 13 | ||
74 | |||
75 | /* Enable BCH Read ECC */ | ||
76 | static inline void nand_bcm_umi_bch_enable_read_hwecc(void) | ||
77 | { | ||
78 | /* disable and reset ECC */ | ||
79 | REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID; | ||
80 | /* Turn on ECC */ | ||
81 | REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN; | ||
82 | } | ||
83 | |||
84 | /* Enable BCH Write ECC */ | ||
85 | static inline void nand_bcm_umi_bch_enable_write_hwecc(void) | ||
86 | { | ||
87 | /* disable and reset ECC */ | ||
88 | REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID; | ||
89 | /* Turn on ECC */ | ||
90 | REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN; | ||
91 | } | ||
92 | |||
93 | /* Config number of BCH ECC bytes */ | ||
94 | static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes) | ||
95 | { | ||
96 | uint32_t nValue; | ||
97 | uint32_t tValue; | ||
98 | uint32_t kValue; | ||
99 | uint32_t numBits = numEccBytes * 8; | ||
100 | |||
101 | /* disable and reset ECC */ | ||
102 | REG_UMI_BCH_CTRL_STATUS = | ||
103 | REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID | | ||
104 | REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID; | ||
105 | |||
106 | /* Every correctible bit requires 13 ECC bits */ | ||
107 | tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT); | ||
108 | |||
109 | /* Total data in number of bits for generating and computing BCH ECC */ | ||
110 | nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8; | ||
111 | |||
112 | /* K parameter is used internally. K = N - (T * 13) */ | ||
113 | kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT); | ||
114 | |||
115 | /* Write the settings */ | ||
116 | REG_UMI_BCH_N = nValue; | ||
117 | REG_UMI_BCH_T = tValue; | ||
118 | REG_UMI_BCH_K = kValue; | ||
119 | } | ||
120 | |||
121 | /* Pause during ECC read calculation to skip bytes in OOB */ | ||
122 | static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void) | ||
123 | { | ||
124 | REG_UMI_BCH_CTRL_STATUS = | ||
125 | REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN | | ||
126 | REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC; | ||
127 | } | ||
128 | |||
129 | /* Resume during ECC read calculation after skipping bytes in OOB */ | ||
130 | static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void) | ||
131 | { | ||
132 | REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN; | ||
133 | } | ||
134 | |||
135 | /* Poll read ECC calc to check when hardware completes */ | ||
136 | static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void) | ||
137 | { | ||
138 | uint32_t regVal; | ||
139 | |||
140 | do { | ||
141 | /* wait for ECC to be valid */ | ||
142 | regVal = REG_UMI_BCH_CTRL_STATUS; | ||
143 | } while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0); | ||
144 | |||
145 | return regVal; | ||
146 | } | ||
147 | |||
148 | /* Poll write ECC calc to check when hardware completes */ | ||
149 | static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void) | ||
150 | { | ||
151 | /* wait for ECC to be valid */ | ||
152 | while ((REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID) | ||
153 | == 0) | ||
154 | ; | ||
155 | } | ||
156 | |||
157 | /* Read the OOB and ECC, for kernel write OOB to a buffer */ | ||
158 | #if defined(__KERNEL__) && !defined(STANDALONE) | ||
159 | static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize, | ||
160 | uint8_t *eccCalc, int numEccBytes, uint8_t *oobp) | ||
161 | #else | ||
162 | static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize, | ||
163 | uint8_t *eccCalc, int numEccBytes) | ||
164 | #endif | ||
165 | { | ||
166 | int eccPos = 0; | ||
167 | int numToRead = 16; /* There are 16 bytes per sector in the OOB */ | ||
168 | |||
169 | /* ECC is already paused when this function is called */ | ||
170 | if (pageSize != NAND_DATA_ACCESS_SIZE) { | ||
171 | /* skip BI */ | ||
172 | #if defined(__KERNEL__) && !defined(STANDALONE) | ||
173 | *oobp++ = REG_NAND_DATA8; | ||
174 | #else | ||
175 | REG_NAND_DATA8; | ||
176 | #endif | ||
177 | numToRead--; | ||
178 | } | ||
179 | |||
180 | while (numToRead > numEccBytes) { | ||
181 | /* skip free oob region */ | ||
182 | #if defined(__KERNEL__) && !defined(STANDALONE) | ||
183 | *oobp++ = REG_NAND_DATA8; | ||
184 | #else | ||
185 | REG_NAND_DATA8; | ||
186 | #endif | ||
187 | numToRead--; | ||
188 | } | ||
189 | |||
190 | if (pageSize == NAND_DATA_ACCESS_SIZE) { | ||
191 | /* read ECC bytes before BI */ | ||
192 | nand_bcm_umi_bch_resume_read_ecc_calc(); | ||
193 | |||
194 | while (numToRead > 11) { | ||
195 | #if defined(__KERNEL__) && !defined(STANDALONE) | ||
196 | *oobp = REG_NAND_DATA8; | ||
197 | eccCalc[eccPos++] = *oobp; | ||
198 | oobp++; | ||
199 | #else | ||
200 | eccCalc[eccPos++] = REG_NAND_DATA8; | ||
201 | #endif | ||
202 | numToRead--; | ||
203 | } | ||
204 | |||
205 | nand_bcm_umi_bch_pause_read_ecc_calc(); | ||
206 | |||
207 | if (numToRead == 11) { | ||
208 | /* read BI */ | ||
209 | #if defined(__KERNEL__) && !defined(STANDALONE) | ||
210 | *oobp++ = REG_NAND_DATA8; | ||
211 | #else | ||
212 | REG_NAND_DATA8; | ||
213 | #endif | ||
214 | numToRead--; | ||
215 | } | ||
216 | |||
217 | } | ||
218 | /* read ECC bytes */ | ||
219 | nand_bcm_umi_bch_resume_read_ecc_calc(); | ||
220 | while (numToRead) { | ||
221 | #if defined(__KERNEL__) && !defined(STANDALONE) | ||
222 | *oobp = REG_NAND_DATA8; | ||
223 | eccCalc[eccPos++] = *oobp; | ||
224 | oobp++; | ||
225 | #else | ||
226 | eccCalc[eccPos++] = REG_NAND_DATA8; | ||
227 | #endif | ||
228 | numToRead--; | ||
229 | } | ||
230 | } | ||
231 | |||
232 | /* Helper function to write ECC */ | ||
233 | static inline void NAND_BCM_UMI_ECC_WRITE(int numEccBytes, int eccBytePos, | ||
234 | uint8_t *oobp, uint8_t eccVal) | ||
235 | { | ||
236 | if (eccBytePos <= numEccBytes) | ||
237 | *oobp = eccVal; | ||
238 | } | ||
239 | |||
240 | /* Write OOB with ECC */ | ||
241 | static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize, | ||
242 | uint8_t *oobp, int numEccBytes) | ||
243 | { | ||
244 | uint32_t eccVal = 0xffffffff; | ||
245 | |||
246 | /* wait for write ECC to be valid */ | ||
247 | nand_bcm_umi_bch_poll_write_ecc_calc(); | ||
248 | |||
249 | /* | ||
250 | ** Get the hardware ecc from the 32-bit result registers. | ||
251 | ** Read after 512 byte accesses. Format B3B2B1B0 | ||
252 | ** where B3 = ecc3, etc. | ||
253 | */ | ||
254 | |||
255 | if (pageSize == NAND_DATA_ACCESS_SIZE) { | ||
256 | /* Now fill in the ECC bytes */ | ||
257 | if (numEccBytes >= 13) | ||
258 | eccVal = REG_UMI_BCH_WR_ECC_3; | ||
259 | |||
260 | /* Usually we skip CM in oob[0,1] */ | ||
261 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0], | ||
262 | (eccVal >> 16) & 0xff); | ||
263 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[1], | ||
264 | (eccVal >> 8) & 0xff); | ||
265 | |||
266 | /* Write ECC in oob[2,3,4] */ | ||
267 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[2], | ||
268 | eccVal & 0xff); /* ECC 12 */ | ||
269 | |||
270 | if (numEccBytes >= 9) | ||
271 | eccVal = REG_UMI_BCH_WR_ECC_2; | ||
272 | |||
273 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3], | ||
274 | (eccVal >> 24) & 0xff); /* ECC11 */ | ||
275 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[4], | ||
276 | (eccVal >> 16) & 0xff); /* ECC10 */ | ||
277 | |||
278 | /* Always Skip BI in oob[5] */ | ||
279 | } else { | ||
280 | /* Always Skip BI in oob[0] */ | ||
281 | |||
282 | /* Now fill in the ECC bytes */ | ||
283 | if (numEccBytes >= 13) | ||
284 | eccVal = REG_UMI_BCH_WR_ECC_3; | ||
285 | |||
286 | /* Usually skip CM in oob[1,2] */ | ||
287 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1], | ||
288 | (eccVal >> 16) & 0xff); | ||
289 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[2], | ||
290 | (eccVal >> 8) & 0xff); | ||
291 | |||
292 | /* Write ECC in oob[3-15] */ | ||
293 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[3], | ||
294 | eccVal & 0xff); /* ECC12 */ | ||
295 | |||
296 | if (numEccBytes >= 9) | ||
297 | eccVal = REG_UMI_BCH_WR_ECC_2; | ||
298 | |||
299 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4], | ||
300 | (eccVal >> 24) & 0xff); /* ECC11 */ | ||
301 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[5], | ||
302 | (eccVal >> 16) & 0xff); /* ECC10 */ | ||
303 | } | ||
304 | |||
305 | /* Fill in the remainder of ECC locations */ | ||
306 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 10, &oobp[6], | ||
307 | (eccVal >> 8) & 0xff); /* ECC9 */ | ||
308 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 9, &oobp[7], | ||
309 | eccVal & 0xff); /* ECC8 */ | ||
310 | |||
311 | if (numEccBytes >= 5) | ||
312 | eccVal = REG_UMI_BCH_WR_ECC_1; | ||
313 | |||
314 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8], | ||
315 | (eccVal >> 24) & 0xff); /* ECC7 */ | ||
316 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 7, &oobp[9], | ||
317 | (eccVal >> 16) & 0xff); /* ECC6 */ | ||
318 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 6, &oobp[10], | ||
319 | (eccVal >> 8) & 0xff); /* ECC5 */ | ||
320 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 5, &oobp[11], | ||
321 | eccVal & 0xff); /* ECC4 */ | ||
322 | |||
323 | if (numEccBytes >= 1) | ||
324 | eccVal = REG_UMI_BCH_WR_ECC_0; | ||
325 | |||
326 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12], | ||
327 | (eccVal >> 24) & 0xff); /* ECC3 */ | ||
328 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 3, &oobp[13], | ||
329 | (eccVal >> 16) & 0xff); /* ECC2 */ | ||
330 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 2, &oobp[14], | ||
331 | (eccVal >> 8) & 0xff); /* ECC1 */ | ||
332 | NAND_BCM_UMI_ECC_WRITE(numEccBytes, 1, &oobp[15], | ||
333 | eccVal & 0xff); /* ECC0 */ | ||
334 | } | ||
335 | #endif | ||
336 | |||
337 | #endif /* NAND_BCM_UMI_H */ | ||
diff --git a/drivers/mtd/nand/nomadik_nand.c b/drivers/mtd/nand/nomadik_nand.c new file mode 100644 index 00000000000..b6a5c86ab31 --- /dev/null +++ b/drivers/mtd/nand/nomadik_nand.c | |||
@@ -0,0 +1,246 @@ | |||
1 | /* | ||
2 | * drivers/mtd/nand/nomadik_nand.c | ||
3 | * | ||
4 | * Overview: | ||
5 | * Driver for on-board NAND flash on Nomadik Platforms | ||
6 | * | ||
7 | * Copyright © 2007 STMicroelectronics Pvt. Ltd. | ||
8 | * Author: Sachin Verma <sachin.verma@st.com> | ||
9 | * | ||
10 | * Copyright © 2009 Alessandro Rubini | ||
11 | * | ||
12 | * This program is free software; you can redistribute it and/or modify | ||
13 | * it under the terms of the GNU General Public License as published by | ||
14 | * the Free Software Foundation; either version 2 of the License, or | ||
15 | * (at your option) any later version. | ||
16 | * | ||
17 | * This program is distributed in the hope that it will be useful, | ||
18 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
20 | * GNU General Public License for more details. | ||
21 | * | ||
22 | */ | ||
23 | |||
24 | #include <linux/init.h> | ||
25 | #include <linux/module.h> | ||
26 | #include <linux/types.h> | ||
27 | #include <linux/mtd/mtd.h> | ||
28 | #include <linux/mtd/nand.h> | ||
29 | #include <linux/mtd/nand_ecc.h> | ||
30 | #include <linux/platform_device.h> | ||
31 | #include <linux/mtd/partitions.h> | ||
32 | #include <linux/io.h> | ||
33 | #include <linux/slab.h> | ||
34 | #include <mach/nand.h> | ||
35 | #include <mach/fsmc.h> | ||
36 | |||
37 | #include <mtd/mtd-abi.h> | ||
38 | |||
39 | struct nomadik_nand_host { | ||
40 | struct mtd_info mtd; | ||
41 | struct nand_chip nand; | ||
42 | void __iomem *data_va; | ||
43 | void __iomem *cmd_va; | ||
44 | void __iomem *addr_va; | ||
45 | struct nand_bbt_descr *bbt_desc; | ||
46 | }; | ||
47 | |||
48 | static struct nand_ecclayout nomadik_ecc_layout = { | ||
49 | .eccbytes = 3 * 4, | ||
50 | .eccpos = { /* each subpage has 16 bytes: pos 2,3,4 hosts ECC */ | ||
51 | 0x02, 0x03, 0x04, | ||
52 | 0x12, 0x13, 0x14, | ||
53 | 0x22, 0x23, 0x24, | ||
54 | 0x32, 0x33, 0x34}, | ||
55 | /* let's keep bytes 5,6,7 for us, just in case we change ECC algo */ | ||
56 | .oobfree = { {0x08, 0x08}, {0x18, 0x08}, {0x28, 0x08}, {0x38, 0x08} }, | ||
57 | }; | ||
58 | |||
59 | static void nomadik_ecc_control(struct mtd_info *mtd, int mode) | ||
60 | { | ||
61 | /* No need to enable hw ecc, it's on by default */ | ||
62 | } | ||
63 | |||
64 | static void nomadik_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) | ||
65 | { | ||
66 | struct nand_chip *nand = mtd->priv; | ||
67 | struct nomadik_nand_host *host = nand->priv; | ||
68 | |||
69 | if (cmd == NAND_CMD_NONE) | ||
70 | return; | ||
71 | |||
72 | if (ctrl & NAND_CLE) | ||
73 | writeb(cmd, host->cmd_va); | ||
74 | else | ||
75 | writeb(cmd, host->addr_va); | ||
76 | } | ||
77 | |||
78 | static int nomadik_nand_probe(struct platform_device *pdev) | ||
79 | { | ||
80 | struct nomadik_nand_platform_data *pdata = pdev->dev.platform_data; | ||
81 | struct nomadik_nand_host *host; | ||
82 | struct mtd_info *mtd; | ||
83 | struct nand_chip *nand; | ||
84 | struct resource *res; | ||
85 | int ret = 0; | ||
86 | |||
87 | /* Allocate memory for the device structure (and zero it) */ | ||
88 | host = kzalloc(sizeof(struct nomadik_nand_host), GFP_KERNEL); | ||
89 | if (!host) { | ||
90 | dev_err(&pdev->dev, "Failed to allocate device structure.\n"); | ||
91 | return -ENOMEM; | ||
92 | } | ||
93 | |||
94 | /* Call the client's init function, if any */ | ||
95 | if (pdata->init) | ||
96 | ret = pdata->init(); | ||
97 | if (ret < 0) { | ||
98 | dev_err(&pdev->dev, "Init function failed\n"); | ||
99 | goto err; | ||
100 | } | ||
101 | |||
102 | /* ioremap three regions */ | ||
103 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); | ||
104 | if (!res) { | ||
105 | ret = -EIO; | ||
106 | goto err_unmap; | ||
107 | } | ||
108 | host->addr_va = ioremap(res->start, resource_size(res)); | ||
109 | |||
110 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); | ||
111 | if (!res) { | ||
112 | ret = -EIO; | ||
113 | goto err_unmap; | ||
114 | } | ||
115 | host->data_va = ioremap(res->start, resource_size(res)); | ||
116 | |||
117 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); | ||
118 | if (!res) { | ||
119 | ret = -EIO; | ||
120 | goto err_unmap; | ||
121 | } | ||
122 | host->cmd_va = ioremap(res->start, resource_size(res)); | ||
123 | |||
124 | if (!host->addr_va || !host->data_va || !host->cmd_va) { | ||
125 | ret = -ENOMEM; | ||
126 | goto err_unmap; | ||
127 | } | ||
128 | |||
129 | /* Link all private pointers */ | ||
130 | mtd = &host->mtd; | ||
131 | nand = &host->nand; | ||
132 | mtd->priv = nand; | ||
133 | nand->priv = host; | ||
134 | |||
135 | host->mtd.owner = THIS_MODULE; | ||
136 | nand->IO_ADDR_R = host->data_va; | ||
137 | nand->IO_ADDR_W = host->data_va; | ||
138 | nand->cmd_ctrl = nomadik_cmd_ctrl; | ||
139 | |||
140 | /* | ||
141 | * This stanza declares ECC_HW but uses soft routines. It's because | ||
142 | * HW claims to make the calculation but not the correction. However, | ||
143 | * I haven't managed to get the desired data out of it until now. | ||
144 | */ | ||
145 | nand->ecc.mode = NAND_ECC_SOFT; | ||
146 | nand->ecc.layout = &nomadik_ecc_layout; | ||
147 | nand->ecc.hwctl = nomadik_ecc_control; | ||
148 | nand->ecc.size = 512; | ||
149 | nand->ecc.bytes = 3; | ||
150 | |||
151 | nand->options = pdata->options; | ||
152 | |||
153 | /* | ||
154 | * Scan to find existence of the device | ||
155 | */ | ||
156 | if (nand_scan(&host->mtd, 1)) { | ||
157 | ret = -ENXIO; | ||
158 | goto err_unmap; | ||
159 | } | ||
160 | |||
161 | mtd_device_register(&host->mtd, pdata->parts, pdata->nparts); | ||
162 | |||
163 | platform_set_drvdata(pdev, host); | ||
164 | return 0; | ||
165 | |||
166 | err_unmap: | ||
167 | if (host->cmd_va) | ||
168 | iounmap(host->cmd_va); | ||
169 | if (host->data_va) | ||
170 | iounmap(host->data_va); | ||
171 | if (host->addr_va) | ||
172 | iounmap(host->addr_va); | ||
173 | err: | ||
174 | kfree(host); | ||
175 | return ret; | ||
176 | } | ||
177 | |||
178 | /* | ||
179 | * Clean up routine | ||
180 | */ | ||
181 | static int nomadik_nand_remove(struct platform_device *pdev) | ||
182 | { | ||
183 | struct nomadik_nand_host *host = platform_get_drvdata(pdev); | ||
184 | struct nomadik_nand_platform_data *pdata = pdev->dev.platform_data; | ||
185 | |||
186 | if (pdata->exit) | ||
187 | pdata->exit(); | ||
188 | |||
189 | if (host) { | ||
190 | iounmap(host->cmd_va); | ||
191 | iounmap(host->data_va); | ||
192 | iounmap(host->addr_va); | ||
193 | kfree(host); | ||
194 | } | ||
195 | return 0; | ||
196 | } | ||
197 | |||
198 | static int nomadik_nand_suspend(struct device *dev) | ||
199 | { | ||
200 | struct nomadik_nand_host *host = dev_get_drvdata(dev); | ||
201 | int ret = 0; | ||
202 | if (host) | ||
203 | ret = host->mtd.suspend(&host->mtd); | ||
204 | return ret; | ||
205 | } | ||
206 | |||
207 | static int nomadik_nand_resume(struct device *dev) | ||
208 | { | ||
209 | struct nomadik_nand_host *host = dev_get_drvdata(dev); | ||
210 | if (host) | ||
211 | host->mtd.resume(&host->mtd); | ||
212 | return 0; | ||
213 | } | ||
214 | |||
215 | static const struct dev_pm_ops nomadik_nand_pm_ops = { | ||
216 | .suspend = nomadik_nand_suspend, | ||
217 | .resume = nomadik_nand_resume, | ||
218 | }; | ||
219 | |||
220 | static struct platform_driver nomadik_nand_driver = { | ||
221 | .probe = nomadik_nand_probe, | ||
222 | .remove = nomadik_nand_remove, | ||
223 | .driver = { | ||
224 | .owner = THIS_MODULE, | ||
225 | .name = "nomadik_nand", | ||
226 | .pm = &nomadik_nand_pm_ops, | ||
227 | }, | ||
228 | }; | ||
229 | |||
230 | static int __init nand_nomadik_init(void) | ||
231 | { | ||
232 | pr_info("Nomadik NAND driver\n"); | ||
233 | return platform_driver_register(&nomadik_nand_driver); | ||
234 | } | ||
235 | |||
236 | static void __exit nand_nomadik_exit(void) | ||
237 | { | ||
238 | platform_driver_unregister(&nomadik_nand_driver); | ||
239 | } | ||
240 | |||
241 | module_init(nand_nomadik_init); | ||
242 | module_exit(nand_nomadik_exit); | ||
243 | |||
244 | MODULE_LICENSE("GPL"); | ||
245 | MODULE_AUTHOR("ST Microelectronics (sachin.verma@st.com)"); | ||
246 | MODULE_DESCRIPTION("NAND driver for Nomadik Platform"); | ||
diff --git a/drivers/mtd/nand/spia.c b/drivers/mtd/nand/spia.c new file mode 100644 index 00000000000..bef76cd7c24 --- /dev/null +++ b/drivers/mtd/nand/spia.c | |||
@@ -0,0 +1,176 @@ | |||
1 | /* | ||
2 | * drivers/mtd/nand/spia.c | ||
3 | * | ||
4 | * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) | ||
5 | * | ||
6 | * | ||
7 | * 10-29-2001 TG change to support hardwarespecific access | ||
8 | * to controllines (due to change in nand.c) | ||
9 | * page_cache added | ||
10 | * | ||
11 | * This program is free software; you can redistribute it and/or modify | ||
12 | * it under the terms of the GNU General Public License version 2 as | ||
13 | * published by the Free Software Foundation. | ||
14 | * | ||
15 | * Overview: | ||
16 | * This is a device driver for the NAND flash device found on the | ||
17 | * SPIA board which utilizes the Toshiba TC58V64AFT part. This is | ||
18 | * a 64Mibit (8MiB x 8 bits) NAND flash device. | ||
19 | */ | ||
20 | |||
21 | #include <linux/kernel.h> | ||
22 | #include <linux/init.h> | ||
23 | #include <linux/slab.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/mtd/mtd.h> | ||
26 | #include <linux/mtd/nand.h> | ||
27 | #include <linux/mtd/partitions.h> | ||
28 | #include <asm/io.h> | ||
29 | |||
30 | /* | ||
31 | * MTD structure for SPIA board | ||
32 | */ | ||
33 | static struct mtd_info *spia_mtd = NULL; | ||
34 | |||
35 | /* | ||
36 | * Values specific to the SPIA board (used with EP7212 processor) | ||
37 | */ | ||
38 | #define SPIA_IO_BASE 0xd0000000 /* Start of EP7212 IO address space */ | ||
39 | #define SPIA_FIO_BASE 0xf0000000 /* Address where flash is mapped */ | ||
40 | #define SPIA_PEDR 0x0080 /* | ||
41 | * IO offset to Port E data register | ||
42 | * where the CLE, ALE and NCE pins | ||
43 | * are wired to. | ||
44 | */ | ||
45 | #define SPIA_PEDDR 0x00c0 /* | ||
46 | * IO offset to Port E data direction | ||
47 | * register so we can control the IO | ||
48 | * lines. | ||
49 | */ | ||
50 | |||
51 | /* | ||
52 | * Module stuff | ||
53 | */ | ||
54 | |||
55 | static int spia_io_base = SPIA_IO_BASE; | ||
56 | static int spia_fio_base = SPIA_FIO_BASE; | ||
57 | static int spia_pedr = SPIA_PEDR; | ||
58 | static int spia_peddr = SPIA_PEDDR; | ||
59 | |||
60 | module_param(spia_io_base, int, 0); | ||
61 | module_param(spia_fio_base, int, 0); | ||
62 | module_param(spia_pedr, int, 0); | ||
63 | module_param(spia_peddr, int, 0); | ||
64 | |||
65 | /* | ||
66 | * Define partitions for flash device | ||
67 | */ | ||
68 | static const struct mtd_partition partition_info[] = { | ||
69 | { | ||
70 | .name = "SPIA flash partition 1", | ||
71 | .offset = 0, | ||
72 | .size = 2 * 1024 * 1024}, | ||
73 | { | ||
74 | .name = "SPIA flash partition 2", | ||
75 | .offset = 2 * 1024 * 1024, | ||
76 | .size = 6 * 1024 * 1024} | ||
77 | }; | ||
78 | |||
79 | #define NUM_PARTITIONS 2 | ||
80 | |||
81 | /* | ||
82 | * hardware specific access to control-lines | ||
83 | * | ||
84 | * ctrl: | ||
85 | * NAND_CNE: bit 0 -> bit 2 | ||
86 | * NAND_CLE: bit 1 -> bit 0 | ||
87 | * NAND_ALE: bit 2 -> bit 1 | ||
88 | */ | ||
89 | static void spia_hwcontrol(struct mtd_info *mtd, int cmd) | ||
90 | { | ||
91 | struct nand_chip *chip = mtd->priv; | ||
92 | |||
93 | if (ctrl & NAND_CTRL_CHANGE) { | ||
94 | void __iomem *addr = spia_io_base + spia_pedr; | ||
95 | unsigned char bits; | ||
96 | |||
97 | bits = (ctrl & NAND_CNE) << 2; | ||
98 | bits |= (ctrl & NAND_CLE | NAND_ALE) >> 1; | ||
99 | writeb((readb(addr) & ~0x7) | bits, addr); | ||
100 | } | ||
101 | |||
102 | if (cmd != NAND_CMD_NONE) | ||
103 | writeb(cmd, chip->IO_ADDR_W); | ||
104 | } | ||
105 | |||
106 | /* | ||
107 | * Main initialization routine | ||
108 | */ | ||
109 | static int __init spia_init(void) | ||
110 | { | ||
111 | struct nand_chip *this; | ||
112 | |||
113 | /* Allocate memory for MTD device structure and private data */ | ||
114 | spia_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); | ||
115 | if (!spia_mtd) { | ||
116 | printk("Unable to allocate SPIA NAND MTD device structure.\n"); | ||
117 | return -ENOMEM; | ||
118 | } | ||
119 | |||
120 | /* Get pointer to private data */ | ||
121 | this = (struct nand_chip *)(&spia_mtd[1]); | ||
122 | |||
123 | /* Initialize structures */ | ||
124 | memset(spia_mtd, 0, sizeof(struct mtd_info)); | ||
125 | memset(this, 0, sizeof(struct nand_chip)); | ||
126 | |||
127 | /* Link the private data with the MTD structure */ | ||
128 | spia_mtd->priv = this; | ||
129 | spia_mtd->owner = THIS_MODULE; | ||
130 | |||
131 | /* | ||
132 | * Set GPIO Port E control register so that the pins are configured | ||
133 | * to be outputs for controlling the NAND flash. | ||
134 | */ | ||
135 | (*(volatile unsigned char *)(spia_io_base + spia_peddr)) = 0x07; | ||
136 | |||
137 | /* Set address of NAND IO lines */ | ||
138 | this->IO_ADDR_R = (void __iomem *)spia_fio_base; | ||
139 | this->IO_ADDR_W = (void __iomem *)spia_fio_base; | ||
140 | /* Set address of hardware control function */ | ||
141 | this->cmd_ctrl = spia_hwcontrol; | ||
142 | /* 15 us command delay time */ | ||
143 | this->chip_delay = 15; | ||
144 | |||
145 | /* Scan to find existence of the device */ | ||
146 | if (nand_scan(spia_mtd, 1)) { | ||
147 | kfree(spia_mtd); | ||
148 | return -ENXIO; | ||
149 | } | ||
150 | |||
151 | /* Register the partitions */ | ||
152 | mtd_device_register(spia_mtd, partition_info, NUM_PARTITIONS); | ||
153 | |||
154 | /* Return happy */ | ||
155 | return 0; | ||
156 | } | ||
157 | |||
158 | module_init(spia_init); | ||
159 | |||
160 | /* | ||
161 | * Clean up routine | ||
162 | */ | ||
163 | static void __exit spia_cleanup(void) | ||
164 | { | ||
165 | /* Release resources, unregister device */ | ||
166 | nand_release(spia_mtd); | ||
167 | |||
168 | /* Free the MTD device structure */ | ||
169 | kfree(spia_mtd); | ||
170 | } | ||
171 | |||
172 | module_exit(spia_cleanup); | ||
173 | |||
174 | MODULE_LICENSE("GPL"); | ||
175 | MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com"); | ||
176 | MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on SPIA board"); | ||
diff --git a/drivers/mtd/ubi/scan.c b/drivers/mtd/ubi/scan.c new file mode 100644 index 00000000000..a3a198f9b98 --- /dev/null +++ b/drivers/mtd/ubi/scan.c | |||
@@ -0,0 +1,1605 @@ | |||
1 | /* | ||
2 | * Copyright (c) International Business Machines Corp., 2006 | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | ||
12 | * the GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
17 | * | ||
18 | * Author: Artem Bityutskiy (Битюцкий Артём) | ||
19 | */ | ||
20 | |||
21 | /* | ||
22 | * UBI scanning sub-system. | ||
23 | * | ||
24 | * This sub-system is responsible for scanning the flash media, checking UBI | ||
25 | * headers and providing complete information about the UBI flash image. | ||
26 | * | ||
27 | * The scanning information is represented by a &struct ubi_scan_info' object. | ||
28 | * Information about found volumes is represented by &struct ubi_scan_volume | ||
29 | * objects which are kept in volume RB-tree with root at the @volumes field. | ||
30 | * The RB-tree is indexed by the volume ID. | ||
31 | * | ||
32 | * Scanned logical eraseblocks are represented by &struct ubi_scan_leb objects. | ||
33 | * These objects are kept in per-volume RB-trees with the root at the | ||
34 | * corresponding &struct ubi_scan_volume object. To put it differently, we keep | ||
35 | * an RB-tree of per-volume objects and each of these objects is the root of | ||
36 | * RB-tree of per-eraseblock objects. | ||
37 | * | ||
38 | * Corrupted physical eraseblocks are put to the @corr list, free physical | ||
39 | * eraseblocks are put to the @free list and the physical eraseblock to be | ||
40 | * erased are put to the @erase list. | ||
41 | * | ||
42 | * About corruptions | ||
43 | * ~~~~~~~~~~~~~~~~~ | ||
44 | * | ||
45 | * UBI protects EC and VID headers with CRC-32 checksums, so it can detect | ||
46 | * whether the headers are corrupted or not. Sometimes UBI also protects the | ||
47 | * data with CRC-32, e.g., when it executes the atomic LEB change operation, or | ||
48 | * when it moves the contents of a PEB for wear-leveling purposes. | ||
49 | * | ||
50 | * UBI tries to distinguish between 2 types of corruptions. | ||
51 | * | ||
52 | * 1. Corruptions caused by power cuts. These are expected corruptions and UBI | ||
53 | * tries to handle them gracefully, without printing too many warnings and | ||
54 | * error messages. The idea is that we do not lose important data in these case | ||
55 | * - we may lose only the data which was being written to the media just before | ||
56 | * the power cut happened, and the upper layers (e.g., UBIFS) are supposed to | ||
57 | * handle such data losses (e.g., by using the FS journal). | ||
58 | * | ||
59 | * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like | ||
60 | * the reason is a power cut, UBI puts this PEB to the @erase list, and all | ||
61 | * PEBs in the @erase list are scheduled for erasure later. | ||
62 | * | ||
63 | * 2. Unexpected corruptions which are not caused by power cuts. During | ||
64 | * scanning, such PEBs are put to the @corr list and UBI preserves them. | ||
65 | * Obviously, this lessens the amount of available PEBs, and if at some point | ||
66 | * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs | ||
67 | * about such PEBs every time the MTD device is attached. | ||
68 | * | ||
69 | * However, it is difficult to reliably distinguish between these types of | ||
70 | * corruptions and UBI's strategy is as follows. UBI assumes corruption type 2 | ||
71 | * if the VID header is corrupted and the data area does not contain all 0xFFs, | ||
72 | * and there were no bit-flips or integrity errors while reading the data area. | ||
73 | * Otherwise UBI assumes corruption type 1. So the decision criteria are as | ||
74 | * follows. | ||
75 | * o If the data area contains only 0xFFs, there is no data, and it is safe | ||
76 | * to just erase this PEB - this is corruption type 1. | ||
77 | * o If the data area has bit-flips or data integrity errors (ECC errors on | ||
78 | * NAND), it is probably a PEB which was being erased when power cut | ||
79 | * happened, so this is corruption type 1. However, this is just a guess, | ||
80 | * which might be wrong. | ||
81 | * o Otherwise this it corruption type 2. | ||
82 | */ | ||
83 | |||
84 | #include <linux/err.h> | ||
85 | #include <linux/slab.h> | ||
86 | #include <linux/crc32.h> | ||
87 | #include <linux/math64.h> | ||
88 | #include <linux/random.h> | ||
89 | #include "ubi.h" | ||
90 | |||
91 | #ifdef CONFIG_MTD_UBI_DEBUG | ||
92 | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); | ||
93 | #else | ||
94 | #define paranoid_check_si(ubi, si) 0 | ||
95 | #endif | ||
96 | |||
97 | /* Temporary variables used during scanning */ | ||
98 | static struct ubi_ec_hdr *ech; | ||
99 | static struct ubi_vid_hdr *vidh; | ||
100 | |||
101 | /** | ||
102 | * add_to_list - add physical eraseblock to a list. | ||
103 | * @si: scanning information | ||
104 | * @pnum: physical eraseblock number to add | ||
105 | * @ec: erase counter of the physical eraseblock | ||
106 | * @to_head: if not zero, add to the head of the list | ||
107 | * @list: the list to add to | ||
108 | * | ||
109 | * This function adds physical eraseblock @pnum to free, erase, or alien lists. | ||
110 | * If @to_head is not zero, PEB will be added to the head of the list, which | ||
111 | * basically means it will be processed first later. E.g., we add corrupted | ||
112 | * PEBs (corrupted due to power cuts) to the head of the erase list to make | ||
113 | * sure we erase them first and get rid of corruptions ASAP. This function | ||
114 | * returns zero in case of success and a negative error code in case of | ||
115 | * failure. | ||
116 | */ | ||
117 | static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, int to_head, | ||
118 | struct list_head *list) | ||
119 | { | ||
120 | struct ubi_scan_leb *seb; | ||
121 | |||
122 | if (list == &si->free) { | ||
123 | dbg_bld("add to free: PEB %d, EC %d", pnum, ec); | ||
124 | } else if (list == &si->erase) { | ||
125 | dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); | ||
126 | } else if (list == &si->alien) { | ||
127 | dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); | ||
128 | si->alien_peb_count += 1; | ||
129 | } else | ||
130 | BUG(); | ||
131 | |||
132 | seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL); | ||
133 | if (!seb) | ||
134 | return -ENOMEM; | ||
135 | |||
136 | seb->pnum = pnum; | ||
137 | seb->ec = ec; | ||
138 | if (to_head) | ||
139 | list_add(&seb->u.list, list); | ||
140 | else | ||
141 | list_add_tail(&seb->u.list, list); | ||
142 | return 0; | ||
143 | } | ||
144 | |||
145 | /** | ||
146 | * add_corrupted - add a corrupted physical eraseblock. | ||
147 | * @si: scanning information | ||
148 | * @pnum: physical eraseblock number to add | ||
149 | * @ec: erase counter of the physical eraseblock | ||
150 | * | ||
151 | * This function adds corrupted physical eraseblock @pnum to the 'corr' list. | ||
152 | * The corruption was presumably not caused by a power cut. Returns zero in | ||
153 | * case of success and a negative error code in case of failure. | ||
154 | */ | ||
155 | static int add_corrupted(struct ubi_scan_info *si, int pnum, int ec) | ||
156 | { | ||
157 | struct ubi_scan_leb *seb; | ||
158 | |||
159 | dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); | ||
160 | |||
161 | seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL); | ||
162 | if (!seb) | ||
163 | return -ENOMEM; | ||
164 | |||
165 | si->corr_peb_count += 1; | ||
166 | seb->pnum = pnum; | ||
167 | seb->ec = ec; | ||
168 | list_add(&seb->u.list, &si->corr); | ||
169 | return 0; | ||
170 | } | ||
171 | |||
172 | /** | ||
173 | * validate_vid_hdr - check volume identifier header. | ||
174 | * @vid_hdr: the volume identifier header to check | ||
175 | * @sv: information about the volume this logical eraseblock belongs to | ||
176 | * @pnum: physical eraseblock number the VID header came from | ||
177 | * | ||
178 | * This function checks that data stored in @vid_hdr is consistent. Returns | ||
179 | * non-zero if an inconsistency was found and zero if not. | ||
180 | * | ||
181 | * Note, UBI does sanity check of everything it reads from the flash media. | ||
182 | * Most of the checks are done in the I/O sub-system. Here we check that the | ||
183 | * information in the VID header is consistent to the information in other VID | ||
184 | * headers of the same volume. | ||
185 | */ | ||
186 | static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, | ||
187 | const struct ubi_scan_volume *sv, int pnum) | ||
188 | { | ||
189 | int vol_type = vid_hdr->vol_type; | ||
190 | int vol_id = be32_to_cpu(vid_hdr->vol_id); | ||
191 | int used_ebs = be32_to_cpu(vid_hdr->used_ebs); | ||
192 | int data_pad = be32_to_cpu(vid_hdr->data_pad); | ||
193 | |||
194 | if (sv->leb_count != 0) { | ||
195 | int sv_vol_type; | ||
196 | |||
197 | /* | ||
198 | * This is not the first logical eraseblock belonging to this | ||
199 | * volume. Ensure that the data in its VID header is consistent | ||
200 | * to the data in previous logical eraseblock headers. | ||
201 | */ | ||
202 | |||
203 | if (vol_id != sv->vol_id) { | ||
204 | dbg_err("inconsistent vol_id"); | ||
205 | goto bad; | ||
206 | } | ||
207 | |||
208 | if (sv->vol_type == UBI_STATIC_VOLUME) | ||
209 | sv_vol_type = UBI_VID_STATIC; | ||
210 | else | ||
211 | sv_vol_type = UBI_VID_DYNAMIC; | ||
212 | |||
213 | if (vol_type != sv_vol_type) { | ||
214 | dbg_err("inconsistent vol_type"); | ||
215 | goto bad; | ||
216 | } | ||
217 | |||
218 | if (used_ebs != sv->used_ebs) { | ||
219 | dbg_err("inconsistent used_ebs"); | ||
220 | goto bad; | ||
221 | } | ||
222 | |||
223 | if (data_pad != sv->data_pad) { | ||
224 | dbg_err("inconsistent data_pad"); | ||
225 | goto bad; | ||
226 | } | ||
227 | } | ||
228 | |||
229 | return 0; | ||
230 | |||
231 | bad: | ||
232 | ubi_err("inconsistent VID header at PEB %d", pnum); | ||
233 | ubi_dbg_dump_vid_hdr(vid_hdr); | ||
234 | ubi_dbg_dump_sv(sv); | ||
235 | return -EINVAL; | ||
236 | } | ||
237 | |||
238 | /** | ||
239 | * add_volume - add volume to the scanning information. | ||
240 | * @si: scanning information | ||
241 | * @vol_id: ID of the volume to add | ||
242 | * @pnum: physical eraseblock number | ||
243 | * @vid_hdr: volume identifier header | ||
244 | * | ||
245 | * If the volume corresponding to the @vid_hdr logical eraseblock is already | ||
246 | * present in the scanning information, this function does nothing. Otherwise | ||
247 | * it adds corresponding volume to the scanning information. Returns a pointer | ||
248 | * to the scanning volume object in case of success and a negative error code | ||
249 | * in case of failure. | ||
250 | */ | ||
251 | static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, | ||
252 | int pnum, | ||
253 | const struct ubi_vid_hdr *vid_hdr) | ||
254 | { | ||
255 | struct ubi_scan_volume *sv; | ||
256 | struct rb_node **p = &si->volumes.rb_node, *parent = NULL; | ||
257 | |||
258 | ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); | ||
259 | |||
260 | /* Walk the volume RB-tree to look if this volume is already present */ | ||
261 | while (*p) { | ||
262 | parent = *p; | ||
263 | sv = rb_entry(parent, struct ubi_scan_volume, rb); | ||
264 | |||
265 | if (vol_id == sv->vol_id) | ||
266 | return sv; | ||
267 | |||
268 | if (vol_id > sv->vol_id) | ||
269 | p = &(*p)->rb_left; | ||
270 | else | ||
271 | p = &(*p)->rb_right; | ||
272 | } | ||
273 | |||
274 | /* The volume is absent - add it */ | ||
275 | sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); | ||
276 | if (!sv) | ||
277 | return ERR_PTR(-ENOMEM); | ||
278 | |||
279 | sv->highest_lnum = sv->leb_count = 0; | ||
280 | sv->vol_id = vol_id; | ||
281 | sv->root = RB_ROOT; | ||
282 | sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); | ||
283 | sv->data_pad = be32_to_cpu(vid_hdr->data_pad); | ||
284 | sv->compat = vid_hdr->compat; | ||
285 | sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME | ||
286 | : UBI_STATIC_VOLUME; | ||
287 | if (vol_id > si->highest_vol_id) | ||
288 | si->highest_vol_id = vol_id; | ||
289 | |||
290 | rb_link_node(&sv->rb, parent, p); | ||
291 | rb_insert_color(&sv->rb, &si->volumes); | ||
292 | si->vols_found += 1; | ||
293 | dbg_bld("added volume %d", vol_id); | ||
294 | return sv; | ||
295 | } | ||
296 | |||
297 | /** | ||
298 | * compare_lebs - find out which logical eraseblock is newer. | ||
299 | * @ubi: UBI device description object | ||
300 | * @seb: first logical eraseblock to compare | ||
301 | * @pnum: physical eraseblock number of the second logical eraseblock to | ||
302 | * compare | ||
303 | * @vid_hdr: volume identifier header of the second logical eraseblock | ||
304 | * | ||
305 | * This function compares 2 copies of a LEB and informs which one is newer. In | ||
306 | * case of success this function returns a positive value, in case of failure, a | ||
307 | * negative error code is returned. The success return codes use the following | ||
308 | * bits: | ||
309 | * o bit 0 is cleared: the first PEB (described by @seb) is newer than the | ||
310 | * second PEB (described by @pnum and @vid_hdr); | ||
311 | * o bit 0 is set: the second PEB is newer; | ||
312 | * o bit 1 is cleared: no bit-flips were detected in the newer LEB; | ||
313 | * o bit 1 is set: bit-flips were detected in the newer LEB; | ||
314 | * o bit 2 is cleared: the older LEB is not corrupted; | ||
315 | * o bit 2 is set: the older LEB is corrupted. | ||
316 | */ | ||
317 | static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, | ||
318 | int pnum, const struct ubi_vid_hdr *vid_hdr) | ||
319 | { | ||
320 | void *buf; | ||
321 | int len, err, second_is_newer, bitflips = 0, corrupted = 0; | ||
322 | uint32_t data_crc, crc; | ||
323 | struct ubi_vid_hdr *vh = NULL; | ||
324 | unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); | ||
325 | |||
326 | if (sqnum2 == seb->sqnum) { | ||
327 | /* | ||
328 | * This must be a really ancient UBI image which has been | ||
329 | * created before sequence numbers support has been added. At | ||
330 | * that times we used 32-bit LEB versions stored in logical | ||
331 | * eraseblocks. That was before UBI got into mainline. We do not | ||
332 | * support these images anymore. Well, those images still work, | ||
333 | * but only if no unclean reboots happened. | ||
334 | */ | ||
335 | ubi_err("unsupported on-flash UBI format\n"); | ||
336 | return -EINVAL; | ||
337 | } | ||
338 | |||
339 | /* Obviously the LEB with lower sequence counter is older */ | ||
340 | second_is_newer = !!(sqnum2 > seb->sqnum); | ||
341 | |||
342 | /* | ||
343 | * Now we know which copy is newer. If the copy flag of the PEB with | ||
344 | * newer version is not set, then we just return, otherwise we have to | ||
345 | * check data CRC. For the second PEB we already have the VID header, | ||
346 | * for the first one - we'll need to re-read it from flash. | ||
347 | * | ||
348 | * Note: this may be optimized so that we wouldn't read twice. | ||
349 | */ | ||
350 | |||
351 | if (second_is_newer) { | ||
352 | if (!vid_hdr->copy_flag) { | ||
353 | /* It is not a copy, so it is newer */ | ||
354 | dbg_bld("second PEB %d is newer, copy_flag is unset", | ||
355 | pnum); | ||
356 | return 1; | ||
357 | } | ||
358 | } else { | ||
359 | if (!seb->copy_flag) { | ||
360 | /* It is not a copy, so it is newer */ | ||
361 | dbg_bld("first PEB %d is newer, copy_flag is unset", | ||
362 | pnum); | ||
363 | return bitflips << 1; | ||
364 | } | ||
365 | |||
366 | vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); | ||
367 | if (!vh) | ||
368 | return -ENOMEM; | ||
369 | |||
370 | pnum = seb->pnum; | ||
371 | err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); | ||
372 | if (err) { | ||
373 | if (err == UBI_IO_BITFLIPS) | ||
374 | bitflips = 1; | ||
375 | else { | ||
376 | dbg_err("VID of PEB %d header is bad, but it " | ||
377 | "was OK earlier, err %d", pnum, err); | ||
378 | if (err > 0) | ||
379 | err = -EIO; | ||
380 | |||
381 | goto out_free_vidh; | ||
382 | } | ||
383 | } | ||
384 | |||
385 | vid_hdr = vh; | ||
386 | } | ||
387 | |||
388 | /* Read the data of the copy and check the CRC */ | ||
389 | |||
390 | len = be32_to_cpu(vid_hdr->data_size); | ||
391 | buf = vmalloc(len); | ||
392 | if (!buf) { | ||
393 | err = -ENOMEM; | ||
394 | goto out_free_vidh; | ||
395 | } | ||
396 | |||
397 | err = ubi_io_read_data(ubi, buf, pnum, 0, len); | ||
398 | if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) | ||
399 | goto out_free_buf; | ||
400 | |||
401 | data_crc = be32_to_cpu(vid_hdr->data_crc); | ||
402 | crc = crc32(UBI_CRC32_INIT, buf, len); | ||
403 | if (crc != data_crc) { | ||
404 | dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", | ||
405 | pnum, crc, data_crc); | ||
406 | corrupted = 1; | ||
407 | bitflips = 0; | ||
408 | second_is_newer = !second_is_newer; | ||
409 | } else { | ||
410 | dbg_bld("PEB %d CRC is OK", pnum); | ||
411 | bitflips = !!err; | ||
412 | } | ||
413 | |||
414 | vfree(buf); | ||
415 | ubi_free_vid_hdr(ubi, vh); | ||
416 | |||
417 | if (second_is_newer) | ||
418 | dbg_bld("second PEB %d is newer, copy_flag is set", pnum); | ||
419 | else | ||
420 | dbg_bld("first PEB %d is newer, copy_flag is set", pnum); | ||
421 | |||
422 | return second_is_newer | (bitflips << 1) | (corrupted << 2); | ||
423 | |||
424 | out_free_buf: | ||
425 | vfree(buf); | ||
426 | out_free_vidh: | ||
427 | ubi_free_vid_hdr(ubi, vh); | ||
428 | return err; | ||
429 | } | ||
430 | |||
431 | /** | ||
432 | * ubi_scan_add_used - add physical eraseblock to the scanning information. | ||
433 | * @ubi: UBI device description object | ||
434 | * @si: scanning information | ||
435 | * @pnum: the physical eraseblock number | ||
436 | * @ec: erase counter | ||
437 | * @vid_hdr: the volume identifier header | ||
438 | * @bitflips: if bit-flips were detected when this physical eraseblock was read | ||
439 | * | ||
440 | * This function adds information about a used physical eraseblock to the | ||
441 | * 'used' tree of the corresponding volume. The function is rather complex | ||
442 | * because it has to handle cases when this is not the first physical | ||
443 | * eraseblock belonging to the same logical eraseblock, and the newer one has | ||
444 | * to be picked, while the older one has to be dropped. This function returns | ||
445 | * zero in case of success and a negative error code in case of failure. | ||
446 | */ | ||
447 | int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, | ||
448 | int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, | ||
449 | int bitflips) | ||
450 | { | ||
451 | int err, vol_id, lnum; | ||
452 | unsigned long long sqnum; | ||
453 | struct ubi_scan_volume *sv; | ||
454 | struct ubi_scan_leb *seb; | ||
455 | struct rb_node **p, *parent = NULL; | ||
456 | |||
457 | vol_id = be32_to_cpu(vid_hdr->vol_id); | ||
458 | lnum = be32_to_cpu(vid_hdr->lnum); | ||
459 | sqnum = be64_to_cpu(vid_hdr->sqnum); | ||
460 | |||
461 | dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", | ||
462 | pnum, vol_id, lnum, ec, sqnum, bitflips); | ||
463 | |||
464 | sv = add_volume(si, vol_id, pnum, vid_hdr); | ||
465 | if (IS_ERR(sv)) | ||
466 | return PTR_ERR(sv); | ||
467 | |||
468 | if (si->max_sqnum < sqnum) | ||
469 | si->max_sqnum = sqnum; | ||
470 | |||
471 | /* | ||
472 | * Walk the RB-tree of logical eraseblocks of volume @vol_id to look | ||
473 | * if this is the first instance of this logical eraseblock or not. | ||
474 | */ | ||
475 | p = &sv->root.rb_node; | ||
476 | while (*p) { | ||
477 | int cmp_res; | ||
478 | |||
479 | parent = *p; | ||
480 | seb = rb_entry(parent, struct ubi_scan_leb, u.rb); | ||
481 | if (lnum != seb->lnum) { | ||
482 | if (lnum < seb->lnum) | ||
483 | p = &(*p)->rb_left; | ||
484 | else | ||
485 | p = &(*p)->rb_right; | ||
486 | continue; | ||
487 | } | ||
488 | |||
489 | /* | ||
490 | * There is already a physical eraseblock describing the same | ||
491 | * logical eraseblock present. | ||
492 | */ | ||
493 | |||
494 | dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " | ||
495 | "EC %d", seb->pnum, seb->sqnum, seb->ec); | ||
496 | |||
497 | /* | ||
498 | * Make sure that the logical eraseblocks have different | ||
499 | * sequence numbers. Otherwise the image is bad. | ||
500 | * | ||
501 | * However, if the sequence number is zero, we assume it must | ||
502 | * be an ancient UBI image from the era when UBI did not have | ||
503 | * sequence numbers. We still can attach these images, unless | ||
504 | * there is a need to distinguish between old and new | ||
505 | * eraseblocks, in which case we'll refuse the image in | ||
506 | * 'compare_lebs()'. In other words, we attach old clean | ||
507 | * images, but refuse attaching old images with duplicated | ||
508 | * logical eraseblocks because there was an unclean reboot. | ||
509 | */ | ||
510 | if (seb->sqnum == sqnum && sqnum != 0) { | ||
511 | ubi_err("two LEBs with same sequence number %llu", | ||
512 | sqnum); | ||
513 | ubi_dbg_dump_seb(seb, 0); | ||
514 | ubi_dbg_dump_vid_hdr(vid_hdr); | ||
515 | return -EINVAL; | ||
516 | } | ||
517 | |||
518 | /* | ||
519 | * Now we have to drop the older one and preserve the newer | ||
520 | * one. | ||
521 | */ | ||
522 | cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); | ||
523 | if (cmp_res < 0) | ||
524 | return cmp_res; | ||
525 | |||
526 | if (cmp_res & 1) { | ||
527 | /* | ||
528 | * This logical eraseblock is newer than the one | ||
529 | * found earlier. | ||
530 | */ | ||
531 | err = validate_vid_hdr(vid_hdr, sv, pnum); | ||
532 | if (err) | ||
533 | return err; | ||
534 | |||
535 | err = add_to_list(si, seb->pnum, seb->ec, cmp_res & 4, | ||
536 | &si->erase); | ||
537 | if (err) | ||
538 | return err; | ||
539 | |||
540 | seb->ec = ec; | ||
541 | seb->pnum = pnum; | ||
542 | seb->scrub = ((cmp_res & 2) || bitflips); | ||
543 | seb->copy_flag = vid_hdr->copy_flag; | ||
544 | seb->sqnum = sqnum; | ||
545 | |||
546 | if (sv->highest_lnum == lnum) | ||
547 | sv->last_data_size = | ||
548 | be32_to_cpu(vid_hdr->data_size); | ||
549 | |||
550 | return 0; | ||
551 | } else { | ||
552 | /* | ||
553 | * This logical eraseblock is older than the one found | ||
554 | * previously. | ||
555 | */ | ||
556 | return add_to_list(si, pnum, ec, cmp_res & 4, | ||
557 | &si->erase); | ||
558 | } | ||
559 | } | ||
560 | |||
561 | /* | ||
562 | * We've met this logical eraseblock for the first time, add it to the | ||
563 | * scanning information. | ||
564 | */ | ||
565 | |||
566 | err = validate_vid_hdr(vid_hdr, sv, pnum); | ||
567 | if (err) | ||
568 | return err; | ||
569 | |||
570 | seb = kmem_cache_alloc(si->scan_leb_slab, GFP_KERNEL); | ||
571 | if (!seb) | ||
572 | return -ENOMEM; | ||
573 | |||
574 | seb->ec = ec; | ||
575 | seb->pnum = pnum; | ||
576 | seb->lnum = lnum; | ||
577 | seb->scrub = bitflips; | ||
578 | seb->copy_flag = vid_hdr->copy_flag; | ||
579 | seb->sqnum = sqnum; | ||
580 | |||
581 | if (sv->highest_lnum <= lnum) { | ||
582 | sv->highest_lnum = lnum; | ||
583 | sv->last_data_size = be32_to_cpu(vid_hdr->data_size); | ||
584 | } | ||
585 | |||
586 | sv->leb_count += 1; | ||
587 | rb_link_node(&seb->u.rb, parent, p); | ||
588 | rb_insert_color(&seb->u.rb, &sv->root); | ||
589 | return 0; | ||
590 | } | ||
591 | |||
592 | /** | ||
593 | * ubi_scan_find_sv - find volume in the scanning information. | ||
594 | * @si: scanning information | ||
595 | * @vol_id: the requested volume ID | ||
596 | * | ||
597 | * This function returns a pointer to the volume description or %NULL if there | ||
598 | * are no data about this volume in the scanning information. | ||
599 | */ | ||
600 | struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, | ||
601 | int vol_id) | ||
602 | { | ||
603 | struct ubi_scan_volume *sv; | ||
604 | struct rb_node *p = si->volumes.rb_node; | ||
605 | |||
606 | while (p) { | ||
607 | sv = rb_entry(p, struct ubi_scan_volume, rb); | ||
608 | |||
609 | if (vol_id == sv->vol_id) | ||
610 | return sv; | ||
611 | |||
612 | if (vol_id > sv->vol_id) | ||
613 | p = p->rb_left; | ||
614 | else | ||
615 | p = p->rb_right; | ||
616 | } | ||
617 | |||
618 | return NULL; | ||
619 | } | ||
620 | |||
621 | /** | ||
622 | * ubi_scan_find_seb - find LEB in the volume scanning information. | ||
623 | * @sv: a pointer to the volume scanning information | ||
624 | * @lnum: the requested logical eraseblock | ||
625 | * | ||
626 | * This function returns a pointer to the scanning logical eraseblock or %NULL | ||
627 | * if there are no data about it in the scanning volume information. | ||
628 | */ | ||
629 | struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, | ||
630 | int lnum) | ||
631 | { | ||
632 | struct ubi_scan_leb *seb; | ||
633 | struct rb_node *p = sv->root.rb_node; | ||
634 | |||
635 | while (p) { | ||
636 | seb = rb_entry(p, struct ubi_scan_leb, u.rb); | ||
637 | |||
638 | if (lnum == seb->lnum) | ||
639 | return seb; | ||
640 | |||
641 | if (lnum > seb->lnum) | ||
642 | p = p->rb_left; | ||
643 | else | ||
644 | p = p->rb_right; | ||
645 | } | ||
646 | |||
647 | return NULL; | ||
648 | } | ||
649 | |||
650 | /** | ||
651 | * ubi_scan_rm_volume - delete scanning information about a volume. | ||
652 | * @si: scanning information | ||
653 | * @sv: the volume scanning information to delete | ||
654 | */ | ||
655 | void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) | ||
656 | { | ||
657 | struct rb_node *rb; | ||
658 | struct ubi_scan_leb *seb; | ||
659 | |||
660 | dbg_bld("remove scanning information about volume %d", sv->vol_id); | ||
661 | |||
662 | while ((rb = rb_first(&sv->root))) { | ||
663 | seb = rb_entry(rb, struct ubi_scan_leb, u.rb); | ||
664 | rb_erase(&seb->u.rb, &sv->root); | ||
665 | list_add_tail(&seb->u.list, &si->erase); | ||
666 | } | ||
667 | |||
668 | rb_erase(&sv->rb, &si->volumes); | ||
669 | kfree(sv); | ||
670 | si->vols_found -= 1; | ||
671 | } | ||
672 | |||
673 | /** | ||
674 | * ubi_scan_erase_peb - erase a physical eraseblock. | ||
675 | * @ubi: UBI device description object | ||
676 | * @si: scanning information | ||
677 | * @pnum: physical eraseblock number to erase; | ||
678 | * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) | ||
679 | * | ||
680 | * This function erases physical eraseblock 'pnum', and writes the erase | ||
681 | * counter header to it. This function should only be used on UBI device | ||
682 | * initialization stages, when the EBA sub-system had not been yet initialized. | ||
683 | * This function returns zero in case of success and a negative error code in | ||
684 | * case of failure. | ||
685 | */ | ||
686 | int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, | ||
687 | int pnum, int ec) | ||
688 | { | ||
689 | int err; | ||
690 | struct ubi_ec_hdr *ec_hdr; | ||
691 | |||
692 | if ((long long)ec >= UBI_MAX_ERASECOUNTER) { | ||
693 | /* | ||
694 | * Erase counter overflow. Upgrade UBI and use 64-bit | ||
695 | * erase counters internally. | ||
696 | */ | ||
697 | ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); | ||
698 | return -EINVAL; | ||
699 | } | ||
700 | |||
701 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | ||
702 | if (!ec_hdr) | ||
703 | return -ENOMEM; | ||
704 | |||
705 | ec_hdr->ec = cpu_to_be64(ec); | ||
706 | |||
707 | err = ubi_io_sync_erase(ubi, pnum, 0); | ||
708 | if (err < 0) | ||
709 | goto out_free; | ||
710 | |||
711 | err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); | ||
712 | |||
713 | out_free: | ||
714 | kfree(ec_hdr); | ||
715 | return err; | ||
716 | } | ||
717 | |||
718 | /** | ||
719 | * ubi_scan_get_free_peb - get a free physical eraseblock. | ||
720 | * @ubi: UBI device description object | ||
721 | * @si: scanning information | ||
722 | * | ||
723 | * This function returns a free physical eraseblock. It is supposed to be | ||
724 | * called on the UBI initialization stages when the wear-leveling sub-system is | ||
725 | * not initialized yet. This function picks a physical eraseblocks from one of | ||
726 | * the lists, writes the EC header if it is needed, and removes it from the | ||
727 | * list. | ||
728 | * | ||
729 | * This function returns scanning physical eraseblock information in case of | ||
730 | * success and an error code in case of failure. | ||
731 | */ | ||
732 | struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, | ||
733 | struct ubi_scan_info *si) | ||
734 | { | ||
735 | int err = 0; | ||
736 | struct ubi_scan_leb *seb, *tmp_seb; | ||
737 | |||
738 | if (!list_empty(&si->free)) { | ||
739 | seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); | ||
740 | list_del(&seb->u.list); | ||
741 | dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); | ||
742 | return seb; | ||
743 | } | ||
744 | |||
745 | /* | ||
746 | * We try to erase the first physical eraseblock from the erase list | ||
747 | * and pick it if we succeed, or try to erase the next one if not. And | ||
748 | * so forth. We don't want to take care about bad eraseblocks here - | ||
749 | * they'll be handled later. | ||
750 | */ | ||
751 | list_for_each_entry_safe(seb, tmp_seb, &si->erase, u.list) { | ||
752 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
753 | seb->ec = si->mean_ec; | ||
754 | |||
755 | err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); | ||
756 | if (err) | ||
757 | continue; | ||
758 | |||
759 | seb->ec += 1; | ||
760 | list_del(&seb->u.list); | ||
761 | dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); | ||
762 | return seb; | ||
763 | } | ||
764 | |||
765 | ubi_err("no free eraseblocks"); | ||
766 | return ERR_PTR(-ENOSPC); | ||
767 | } | ||
768 | |||
769 | /** | ||
770 | * check_corruption - check the data area of PEB. | ||
771 | * @ubi: UBI device description object | ||
772 | * @vid_hrd: the (corrupted) VID header of this PEB | ||
773 | * @pnum: the physical eraseblock number to check | ||
774 | * | ||
775 | * This is a helper function which is used to distinguish between VID header | ||
776 | * corruptions caused by power cuts and other reasons. If the PEB contains only | ||
777 | * 0xFF bytes in the data area, the VID header is most probably corrupted | ||
778 | * because of a power cut (%0 is returned in this case). Otherwise, it was | ||
779 | * probably corrupted for some other reasons (%1 is returned in this case). A | ||
780 | * negative error code is returned if a read error occurred. | ||
781 | * | ||
782 | * If the corruption reason was a power cut, UBI can safely erase this PEB. | ||
783 | * Otherwise, it should preserve it to avoid possibly destroying important | ||
784 | * information. | ||
785 | */ | ||
786 | static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, | ||
787 | int pnum) | ||
788 | { | ||
789 | int err; | ||
790 | |||
791 | mutex_lock(&ubi->buf_mutex); | ||
792 | memset(ubi->peb_buf1, 0x00, ubi->leb_size); | ||
793 | |||
794 | err = ubi_io_read(ubi, ubi->peb_buf1, pnum, ubi->leb_start, | ||
795 | ubi->leb_size); | ||
796 | if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { | ||
797 | /* | ||
798 | * Bit-flips or integrity errors while reading the data area. | ||
799 | * It is difficult to say for sure what type of corruption is | ||
800 | * this, but presumably a power cut happened while this PEB was | ||
801 | * erased, so it became unstable and corrupted, and should be | ||
802 | * erased. | ||
803 | */ | ||
804 | err = 0; | ||
805 | goto out_unlock; | ||
806 | } | ||
807 | |||
808 | if (err) | ||
809 | goto out_unlock; | ||
810 | |||
811 | if (ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->leb_size)) | ||
812 | goto out_unlock; | ||
813 | |||
814 | ubi_err("PEB %d contains corrupted VID header, and the data does not " | ||
815 | "contain all 0xFF, this may be a non-UBI PEB or a severe VID " | ||
816 | "header corruption which requires manual inspection", pnum); | ||
817 | ubi_dbg_dump_vid_hdr(vid_hdr); | ||
818 | dbg_msg("hexdump of PEB %d offset %d, length %d", | ||
819 | pnum, ubi->leb_start, ubi->leb_size); | ||
820 | ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, | ||
821 | ubi->peb_buf1, ubi->leb_size, 1); | ||
822 | err = 1; | ||
823 | |||
824 | out_unlock: | ||
825 | mutex_unlock(&ubi->buf_mutex); | ||
826 | return err; | ||
827 | } | ||
828 | |||
829 | /** | ||
830 | * process_eb - read, check UBI headers, and add them to scanning information. | ||
831 | * @ubi: UBI device description object | ||
832 | * @si: scanning information | ||
833 | * @pnum: the physical eraseblock number | ||
834 | * | ||
835 | * This function returns a zero if the physical eraseblock was successfully | ||
836 | * handled and a negative error code in case of failure. | ||
837 | */ | ||
838 | static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, | ||
839 | int pnum) | ||
840 | { | ||
841 | long long uninitialized_var(ec); | ||
842 | int err, bitflips = 0, vol_id, ec_err = 0; | ||
843 | |||
844 | dbg_bld("scan PEB %d", pnum); | ||
845 | |||
846 | /* Skip bad physical eraseblocks */ | ||
847 | err = ubi_io_is_bad(ubi, pnum); | ||
848 | if (err < 0) | ||
849 | return err; | ||
850 | else if (err) { | ||
851 | /* | ||
852 | * FIXME: this is actually duty of the I/O sub-system to | ||
853 | * initialize this, but MTD does not provide enough | ||
854 | * information. | ||
855 | */ | ||
856 | si->bad_peb_count += 1; | ||
857 | return 0; | ||
858 | } | ||
859 | |||
860 | err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); | ||
861 | if (err < 0) | ||
862 | return err; | ||
863 | switch (err) { | ||
864 | case 0: | ||
865 | break; | ||
866 | case UBI_IO_BITFLIPS: | ||
867 | bitflips = 1; | ||
868 | break; | ||
869 | case UBI_IO_FF: | ||
870 | si->empty_peb_count += 1; | ||
871 | return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 0, | ||
872 | &si->erase); | ||
873 | case UBI_IO_FF_BITFLIPS: | ||
874 | si->empty_peb_count += 1; | ||
875 | return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, 1, | ||
876 | &si->erase); | ||
877 | case UBI_IO_BAD_HDR_EBADMSG: | ||
878 | case UBI_IO_BAD_HDR: | ||
879 | /* | ||
880 | * We have to also look at the VID header, possibly it is not | ||
881 | * corrupted. Set %bitflips flag in order to make this PEB be | ||
882 | * moved and EC be re-created. | ||
883 | */ | ||
884 | ec_err = err; | ||
885 | ec = UBI_SCAN_UNKNOWN_EC; | ||
886 | bitflips = 1; | ||
887 | break; | ||
888 | default: | ||
889 | ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err); | ||
890 | return -EINVAL; | ||
891 | } | ||
892 | |||
893 | if (!ec_err) { | ||
894 | int image_seq; | ||
895 | |||
896 | /* Make sure UBI version is OK */ | ||
897 | if (ech->version != UBI_VERSION) { | ||
898 | ubi_err("this UBI version is %d, image version is %d", | ||
899 | UBI_VERSION, (int)ech->version); | ||
900 | return -EINVAL; | ||
901 | } | ||
902 | |||
903 | ec = be64_to_cpu(ech->ec); | ||
904 | if (ec > UBI_MAX_ERASECOUNTER) { | ||
905 | /* | ||
906 | * Erase counter overflow. The EC headers have 64 bits | ||
907 | * reserved, but we anyway make use of only 31 bit | ||
908 | * values, as this seems to be enough for any existing | ||
909 | * flash. Upgrade UBI and use 64-bit erase counters | ||
910 | * internally. | ||
911 | */ | ||
912 | ubi_err("erase counter overflow, max is %d", | ||
913 | UBI_MAX_ERASECOUNTER); | ||
914 | ubi_dbg_dump_ec_hdr(ech); | ||
915 | return -EINVAL; | ||
916 | } | ||
917 | |||
918 | /* | ||
919 | * Make sure that all PEBs have the same image sequence number. | ||
920 | * This allows us to detect situations when users flash UBI | ||
921 | * images incorrectly, so that the flash has the new UBI image | ||
922 | * and leftovers from the old one. This feature was added | ||
923 | * relatively recently, and the sequence number was always | ||
924 | * zero, because old UBI implementations always set it to zero. | ||
925 | * For this reasons, we do not panic if some PEBs have zero | ||
926 | * sequence number, while other PEBs have non-zero sequence | ||
927 | * number. | ||
928 | */ | ||
929 | image_seq = be32_to_cpu(ech->image_seq); | ||
930 | if (!ubi->image_seq && image_seq) | ||
931 | ubi->image_seq = image_seq; | ||
932 | if (ubi->image_seq && image_seq && | ||
933 | ubi->image_seq != image_seq) { | ||
934 | ubi_err("bad image sequence number %d in PEB %d, " | ||
935 | "expected %d", image_seq, pnum, ubi->image_seq); | ||
936 | ubi_dbg_dump_ec_hdr(ech); | ||
937 | return -EINVAL; | ||
938 | } | ||
939 | } | ||
940 | |||
941 | /* OK, we've done with the EC header, let's look at the VID header */ | ||
942 | |||
943 | err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); | ||
944 | if (err < 0) | ||
945 | return err; | ||
946 | switch (err) { | ||
947 | case 0: | ||
948 | break; | ||
949 | case UBI_IO_BITFLIPS: | ||
950 | bitflips = 1; | ||
951 | break; | ||
952 | case UBI_IO_BAD_HDR_EBADMSG: | ||
953 | if (ec_err == UBI_IO_BAD_HDR_EBADMSG) | ||
954 | /* | ||
955 | * Both EC and VID headers are corrupted and were read | ||
956 | * with data integrity error, probably this is a bad | ||
957 | * PEB, bit it is not marked as bad yet. This may also | ||
958 | * be a result of power cut during erasure. | ||
959 | */ | ||
960 | si->maybe_bad_peb_count += 1; | ||
961 | case UBI_IO_BAD_HDR: | ||
962 | if (ec_err) | ||
963 | /* | ||
964 | * Both headers are corrupted. There is a possibility | ||
965 | * that this a valid UBI PEB which has corresponding | ||
966 | * LEB, but the headers are corrupted. However, it is | ||
967 | * impossible to distinguish it from a PEB which just | ||
968 | * contains garbage because of a power cut during erase | ||
969 | * operation. So we just schedule this PEB for erasure. | ||
970 | * | ||
971 | * Besides, in case of NOR flash, we deliberately | ||
972 | * corrupt both headers because NOR flash erasure is | ||
973 | * slow and can start from the end. | ||
974 | */ | ||
975 | err = 0; | ||
976 | else | ||
977 | /* | ||
978 | * The EC was OK, but the VID header is corrupted. We | ||
979 | * have to check what is in the data area. | ||
980 | */ | ||
981 | err = check_corruption(ubi, vidh, pnum); | ||
982 | |||
983 | if (err < 0) | ||
984 | return err; | ||
985 | else if (!err) | ||
986 | /* This corruption is caused by a power cut */ | ||
987 | err = add_to_list(si, pnum, ec, 1, &si->erase); | ||
988 | else | ||
989 | /* This is an unexpected corruption */ | ||
990 | err = add_corrupted(si, pnum, ec); | ||
991 | if (err) | ||
992 | return err; | ||
993 | goto adjust_mean_ec; | ||
994 | case UBI_IO_FF_BITFLIPS: | ||
995 | err = add_to_list(si, pnum, ec, 1, &si->erase); | ||
996 | if (err) | ||
997 | return err; | ||
998 | goto adjust_mean_ec; | ||
999 | case UBI_IO_FF: | ||
1000 | if (ec_err) | ||
1001 | err = add_to_list(si, pnum, ec, 1, &si->erase); | ||
1002 | else | ||
1003 | err = add_to_list(si, pnum, ec, 0, &si->free); | ||
1004 | if (err) | ||
1005 | return err; | ||
1006 | goto adjust_mean_ec; | ||
1007 | default: | ||
1008 | ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d", | ||
1009 | err); | ||
1010 | return -EINVAL; | ||
1011 | } | ||
1012 | |||
1013 | vol_id = be32_to_cpu(vidh->vol_id); | ||
1014 | if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { | ||
1015 | int lnum = be32_to_cpu(vidh->lnum); | ||
1016 | |||
1017 | /* Unsupported internal volume */ | ||
1018 | switch (vidh->compat) { | ||
1019 | case UBI_COMPAT_DELETE: | ||
1020 | ubi_msg("\"delete\" compatible internal volume %d:%d" | ||
1021 | " found, will remove it", vol_id, lnum); | ||
1022 | err = add_to_list(si, pnum, ec, 1, &si->erase); | ||
1023 | if (err) | ||
1024 | return err; | ||
1025 | return 0; | ||
1026 | |||
1027 | case UBI_COMPAT_RO: | ||
1028 | ubi_msg("read-only compatible internal volume %d:%d" | ||
1029 | " found, switch to read-only mode", | ||
1030 | vol_id, lnum); | ||
1031 | ubi->ro_mode = 1; | ||
1032 | break; | ||
1033 | |||
1034 | case UBI_COMPAT_PRESERVE: | ||
1035 | ubi_msg("\"preserve\" compatible internal volume %d:%d" | ||
1036 | " found", vol_id, lnum); | ||
1037 | err = add_to_list(si, pnum, ec, 0, &si->alien); | ||
1038 | if (err) | ||
1039 | return err; | ||
1040 | return 0; | ||
1041 | |||
1042 | case UBI_COMPAT_REJECT: | ||
1043 | ubi_err("incompatible internal volume %d:%d found", | ||
1044 | vol_id, lnum); | ||
1045 | return -EINVAL; | ||
1046 | } | ||
1047 | } | ||
1048 | |||
1049 | if (ec_err) | ||
1050 | ubi_warn("valid VID header but corrupted EC header at PEB %d", | ||
1051 | pnum); | ||
1052 | err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); | ||
1053 | if (err) | ||
1054 | return err; | ||
1055 | |||
1056 | adjust_mean_ec: | ||
1057 | if (!ec_err) { | ||
1058 | si->ec_sum += ec; | ||
1059 | si->ec_count += 1; | ||
1060 | if (ec > si->max_ec) | ||
1061 | si->max_ec = ec; | ||
1062 | if (ec < si->min_ec) | ||
1063 | si->min_ec = ec; | ||
1064 | } | ||
1065 | |||
1066 | return 0; | ||
1067 | } | ||
1068 | |||
1069 | /** | ||
1070 | * check_what_we_have - check what PEB were found by scanning. | ||
1071 | * @ubi: UBI device description object | ||
1072 | * @si: scanning information | ||
1073 | * | ||
1074 | * This is a helper function which takes a look what PEBs were found by | ||
1075 | * scanning, and decides whether the flash is empty and should be formatted and | ||
1076 | * whether there are too many corrupted PEBs and we should not attach this | ||
1077 | * MTD device. Returns zero if we should proceed with attaching the MTD device, | ||
1078 | * and %-EINVAL if we should not. | ||
1079 | */ | ||
1080 | static int check_what_we_have(struct ubi_device *ubi, struct ubi_scan_info *si) | ||
1081 | { | ||
1082 | struct ubi_scan_leb *seb; | ||
1083 | int max_corr, peb_count; | ||
1084 | |||
1085 | peb_count = ubi->peb_count - si->bad_peb_count - si->alien_peb_count; | ||
1086 | max_corr = peb_count / 20 ?: 8; | ||
1087 | |||
1088 | /* | ||
1089 | * Few corrupted PEBs is not a problem and may be just a result of | ||
1090 | * unclean reboots. However, many of them may indicate some problems | ||
1091 | * with the flash HW or driver. | ||
1092 | */ | ||
1093 | if (si->corr_peb_count) { | ||
1094 | ubi_err("%d PEBs are corrupted and preserved", | ||
1095 | si->corr_peb_count); | ||
1096 | printk(KERN_ERR "Corrupted PEBs are:"); | ||
1097 | list_for_each_entry(seb, &si->corr, u.list) | ||
1098 | printk(KERN_CONT " %d", seb->pnum); | ||
1099 | printk(KERN_CONT "\n"); | ||
1100 | |||
1101 | /* | ||
1102 | * If too many PEBs are corrupted, we refuse attaching, | ||
1103 | * otherwise, only print a warning. | ||
1104 | */ | ||
1105 | if (si->corr_peb_count >= max_corr) { | ||
1106 | ubi_err("too many corrupted PEBs, refusing"); | ||
1107 | return -EINVAL; | ||
1108 | } | ||
1109 | } | ||
1110 | |||
1111 | if (si->empty_peb_count + si->maybe_bad_peb_count == peb_count) { | ||
1112 | /* | ||
1113 | * All PEBs are empty, or almost all - a couple PEBs look like | ||
1114 | * they may be bad PEBs which were not marked as bad yet. | ||
1115 | * | ||
1116 | * This piece of code basically tries to distinguish between | ||
1117 | * the following situations: | ||
1118 | * | ||
1119 | * 1. Flash is empty, but there are few bad PEBs, which are not | ||
1120 | * marked as bad so far, and which were read with error. We | ||
1121 | * want to go ahead and format this flash. While formatting, | ||
1122 | * the faulty PEBs will probably be marked as bad. | ||
1123 | * | ||
1124 | * 2. Flash contains non-UBI data and we do not want to format | ||
1125 | * it and destroy possibly important information. | ||
1126 | */ | ||
1127 | if (si->maybe_bad_peb_count <= 2) { | ||
1128 | si->is_empty = 1; | ||
1129 | ubi_msg("empty MTD device detected"); | ||
1130 | get_random_bytes(&ubi->image_seq, | ||
1131 | sizeof(ubi->image_seq)); | ||
1132 | } else { | ||
1133 | ubi_err("MTD device is not UBI-formatted and possibly " | ||
1134 | "contains non-UBI data - refusing it"); | ||
1135 | return -EINVAL; | ||
1136 | } | ||
1137 | |||
1138 | } | ||
1139 | |||
1140 | return 0; | ||
1141 | } | ||
1142 | |||
1143 | /** | ||
1144 | * ubi_scan - scan an MTD device. | ||
1145 | * @ubi: UBI device description object | ||
1146 | * | ||
1147 | * This function does full scanning of an MTD device and returns complete | ||
1148 | * information about it. In case of failure, an error code is returned. | ||
1149 | */ | ||
1150 | struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) | ||
1151 | { | ||
1152 | int err, pnum; | ||
1153 | struct rb_node *rb1, *rb2; | ||
1154 | struct ubi_scan_volume *sv; | ||
1155 | struct ubi_scan_leb *seb; | ||
1156 | struct ubi_scan_info *si; | ||
1157 | |||
1158 | si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); | ||
1159 | if (!si) | ||
1160 | return ERR_PTR(-ENOMEM); | ||
1161 | |||
1162 | INIT_LIST_HEAD(&si->corr); | ||
1163 | INIT_LIST_HEAD(&si->free); | ||
1164 | INIT_LIST_HEAD(&si->erase); | ||
1165 | INIT_LIST_HEAD(&si->alien); | ||
1166 | si->volumes = RB_ROOT; | ||
1167 | |||
1168 | err = -ENOMEM; | ||
1169 | si->scan_leb_slab = kmem_cache_create("ubi_scan_leb_slab", | ||
1170 | sizeof(struct ubi_scan_leb), | ||
1171 | 0, 0, NULL); | ||
1172 | if (!si->scan_leb_slab) | ||
1173 | goto out_si; | ||
1174 | |||
1175 | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | ||
1176 | if (!ech) | ||
1177 | goto out_slab; | ||
1178 | |||
1179 | vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); | ||
1180 | if (!vidh) | ||
1181 | goto out_ech; | ||
1182 | |||
1183 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { | ||
1184 | cond_resched(); | ||
1185 | |||
1186 | dbg_gen("process PEB %d", pnum); | ||
1187 | err = process_eb(ubi, si, pnum); | ||
1188 | if (err < 0) | ||
1189 | goto out_vidh; | ||
1190 | } | ||
1191 | |||
1192 | dbg_msg("scanning is finished"); | ||
1193 | |||
1194 | /* Calculate mean erase counter */ | ||
1195 | if (si->ec_count) | ||
1196 | si->mean_ec = div_u64(si->ec_sum, si->ec_count); | ||
1197 | |||
1198 | err = check_what_we_have(ubi, si); | ||
1199 | if (err) | ||
1200 | goto out_vidh; | ||
1201 | |||
1202 | /* | ||
1203 | * In case of unknown erase counter we use the mean erase counter | ||
1204 | * value. | ||
1205 | */ | ||
1206 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | ||
1207 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) | ||
1208 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
1209 | seb->ec = si->mean_ec; | ||
1210 | } | ||
1211 | |||
1212 | list_for_each_entry(seb, &si->free, u.list) { | ||
1213 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
1214 | seb->ec = si->mean_ec; | ||
1215 | } | ||
1216 | |||
1217 | list_for_each_entry(seb, &si->corr, u.list) | ||
1218 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
1219 | seb->ec = si->mean_ec; | ||
1220 | |||
1221 | list_for_each_entry(seb, &si->erase, u.list) | ||
1222 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | ||
1223 | seb->ec = si->mean_ec; | ||
1224 | |||
1225 | err = paranoid_check_si(ubi, si); | ||
1226 | if (err) | ||
1227 | goto out_vidh; | ||
1228 | |||
1229 | ubi_free_vid_hdr(ubi, vidh); | ||
1230 | kfree(ech); | ||
1231 | |||
1232 | return si; | ||
1233 | |||
1234 | out_vidh: | ||
1235 | ubi_free_vid_hdr(ubi, vidh); | ||
1236 | out_ech: | ||
1237 | kfree(ech); | ||
1238 | out_slab: | ||
1239 | kmem_cache_destroy(si->scan_leb_slab); | ||
1240 | out_si: | ||
1241 | ubi_scan_destroy_si(si); | ||
1242 | return ERR_PTR(err); | ||
1243 | } | ||
1244 | |||
1245 | /** | ||
1246 | * destroy_sv - free the scanning volume information | ||
1247 | * @sv: scanning volume information | ||
1248 | * @si: scanning information | ||
1249 | * | ||
1250 | * This function destroys the volume RB-tree (@sv->root) and the scanning | ||
1251 | * volume information. | ||
1252 | */ | ||
1253 | static void destroy_sv(struct ubi_scan_info *si, struct ubi_scan_volume *sv) | ||
1254 | { | ||
1255 | struct ubi_scan_leb *seb; | ||
1256 | struct rb_node *this = sv->root.rb_node; | ||
1257 | |||
1258 | while (this) { | ||
1259 | if (this->rb_left) | ||
1260 | this = this->rb_left; | ||
1261 | else if (this->rb_right) | ||
1262 | this = this->rb_right; | ||
1263 | else { | ||
1264 | seb = rb_entry(this, struct ubi_scan_leb, u.rb); | ||
1265 | this = rb_parent(this); | ||
1266 | if (this) { | ||
1267 | if (this->rb_left == &seb->u.rb) | ||
1268 | this->rb_left = NULL; | ||
1269 | else | ||
1270 | this->rb_right = NULL; | ||
1271 | } | ||
1272 | |||
1273 | kmem_cache_free(si->scan_leb_slab, seb); | ||
1274 | } | ||
1275 | } | ||
1276 | kfree(sv); | ||
1277 | } | ||
1278 | |||
1279 | /** | ||
1280 | * ubi_scan_destroy_si - destroy scanning information. | ||
1281 | * @si: scanning information | ||
1282 | */ | ||
1283 | void ubi_scan_destroy_si(struct ubi_scan_info *si) | ||
1284 | { | ||
1285 | struct ubi_scan_leb *seb, *seb_tmp; | ||
1286 | struct ubi_scan_volume *sv; | ||
1287 | struct rb_node *rb; | ||
1288 | |||
1289 | list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { | ||
1290 | list_del(&seb->u.list); | ||
1291 | kmem_cache_free(si->scan_leb_slab, seb); | ||
1292 | } | ||
1293 | list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { | ||
1294 | list_del(&seb->u.list); | ||
1295 | kmem_cache_free(si->scan_leb_slab, seb); | ||
1296 | } | ||
1297 | list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { | ||
1298 | list_del(&seb->u.list); | ||
1299 | kmem_cache_free(si->scan_leb_slab, seb); | ||
1300 | } | ||
1301 | list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { | ||
1302 | list_del(&seb->u.list); | ||
1303 | kmem_cache_free(si->scan_leb_slab, seb); | ||
1304 | } | ||
1305 | |||
1306 | /* Destroy the volume RB-tree */ | ||
1307 | rb = si->volumes.rb_node; | ||
1308 | while (rb) { | ||
1309 | if (rb->rb_left) | ||
1310 | rb = rb->rb_left; | ||
1311 | else if (rb->rb_right) | ||
1312 | rb = rb->rb_right; | ||
1313 | else { | ||
1314 | sv = rb_entry(rb, struct ubi_scan_volume, rb); | ||
1315 | |||
1316 | rb = rb_parent(rb); | ||
1317 | if (rb) { | ||
1318 | if (rb->rb_left == &sv->rb) | ||
1319 | rb->rb_left = NULL; | ||
1320 | else | ||
1321 | rb->rb_right = NULL; | ||
1322 | } | ||
1323 | |||
1324 | destroy_sv(si, sv); | ||
1325 | } | ||
1326 | } | ||
1327 | |||
1328 | kmem_cache_destroy(si->scan_leb_slab); | ||
1329 | kfree(si); | ||
1330 | } | ||
1331 | |||
1332 | #ifdef CONFIG_MTD_UBI_DEBUG | ||
1333 | |||
1334 | /** | ||
1335 | * paranoid_check_si - check the scanning information. | ||
1336 | * @ubi: UBI device description object | ||
1337 | * @si: scanning information | ||
1338 | * | ||
1339 | * This function returns zero if the scanning information is all right, and a | ||
1340 | * negative error code if not or if an error occurred. | ||
1341 | */ | ||
1342 | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) | ||
1343 | { | ||
1344 | int pnum, err, vols_found = 0; | ||
1345 | struct rb_node *rb1, *rb2; | ||
1346 | struct ubi_scan_volume *sv; | ||
1347 | struct ubi_scan_leb *seb, *last_seb; | ||
1348 | uint8_t *buf; | ||
1349 | |||
1350 | if (!ubi->dbg->chk_gen) | ||
1351 | return 0; | ||
1352 | |||
1353 | /* | ||
1354 | * At first, check that scanning information is OK. | ||
1355 | */ | ||
1356 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | ||
1357 | int leb_count = 0; | ||
1358 | |||
1359 | cond_resched(); | ||
1360 | |||
1361 | vols_found += 1; | ||
1362 | |||
1363 | if (si->is_empty) { | ||
1364 | ubi_err("bad is_empty flag"); | ||
1365 | goto bad_sv; | ||
1366 | } | ||
1367 | |||
1368 | if (sv->vol_id < 0 || sv->highest_lnum < 0 || | ||
1369 | sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || | ||
1370 | sv->data_pad < 0 || sv->last_data_size < 0) { | ||
1371 | ubi_err("negative values"); | ||
1372 | goto bad_sv; | ||
1373 | } | ||
1374 | |||
1375 | if (sv->vol_id >= UBI_MAX_VOLUMES && | ||
1376 | sv->vol_id < UBI_INTERNAL_VOL_START) { | ||
1377 | ubi_err("bad vol_id"); | ||
1378 | goto bad_sv; | ||
1379 | } | ||
1380 | |||
1381 | if (sv->vol_id > si->highest_vol_id) { | ||
1382 | ubi_err("highest_vol_id is %d, but vol_id %d is there", | ||
1383 | si->highest_vol_id, sv->vol_id); | ||
1384 | goto out; | ||
1385 | } | ||
1386 | |||
1387 | if (sv->vol_type != UBI_DYNAMIC_VOLUME && | ||
1388 | sv->vol_type != UBI_STATIC_VOLUME) { | ||
1389 | ubi_err("bad vol_type"); | ||
1390 | goto bad_sv; | ||
1391 | } | ||
1392 | |||
1393 | if (sv->data_pad > ubi->leb_size / 2) { | ||
1394 | ubi_err("bad data_pad"); | ||
1395 | goto bad_sv; | ||
1396 | } | ||
1397 | |||
1398 | last_seb = NULL; | ||
1399 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | ||
1400 | cond_resched(); | ||
1401 | |||
1402 | last_seb = seb; | ||
1403 | leb_count += 1; | ||
1404 | |||
1405 | if (seb->pnum < 0 || seb->ec < 0) { | ||
1406 | ubi_err("negative values"); | ||
1407 | goto bad_seb; | ||
1408 | } | ||
1409 | |||
1410 | if (seb->ec < si->min_ec) { | ||
1411 | ubi_err("bad si->min_ec (%d), %d found", | ||
1412 | si->min_ec, seb->ec); | ||
1413 | goto bad_seb; | ||
1414 | } | ||
1415 | |||
1416 | if (seb->ec > si->max_ec) { | ||
1417 | ubi_err("bad si->max_ec (%d), %d found", | ||
1418 | si->max_ec, seb->ec); | ||
1419 | goto bad_seb; | ||
1420 | } | ||
1421 | |||
1422 | if (seb->pnum >= ubi->peb_count) { | ||
1423 | ubi_err("too high PEB number %d, total PEBs %d", | ||
1424 | seb->pnum, ubi->peb_count); | ||
1425 | goto bad_seb; | ||
1426 | } | ||
1427 | |||
1428 | if (sv->vol_type == UBI_STATIC_VOLUME) { | ||
1429 | if (seb->lnum >= sv->used_ebs) { | ||
1430 | ubi_err("bad lnum or used_ebs"); | ||
1431 | goto bad_seb; | ||
1432 | } | ||
1433 | } else { | ||
1434 | if (sv->used_ebs != 0) { | ||
1435 | ubi_err("non-zero used_ebs"); | ||
1436 | goto bad_seb; | ||
1437 | } | ||
1438 | } | ||
1439 | |||
1440 | if (seb->lnum > sv->highest_lnum) { | ||
1441 | ubi_err("incorrect highest_lnum or lnum"); | ||
1442 | goto bad_seb; | ||
1443 | } | ||
1444 | } | ||
1445 | |||
1446 | if (sv->leb_count != leb_count) { | ||
1447 | ubi_err("bad leb_count, %d objects in the tree", | ||
1448 | leb_count); | ||
1449 | goto bad_sv; | ||
1450 | } | ||
1451 | |||
1452 | if (!last_seb) | ||
1453 | continue; | ||
1454 | |||
1455 | seb = last_seb; | ||
1456 | |||
1457 | if (seb->lnum != sv->highest_lnum) { | ||
1458 | ubi_err("bad highest_lnum"); | ||
1459 | goto bad_seb; | ||
1460 | } | ||
1461 | } | ||
1462 | |||
1463 | if (vols_found != si->vols_found) { | ||
1464 | ubi_err("bad si->vols_found %d, should be %d", | ||
1465 | si->vols_found, vols_found); | ||
1466 | goto out; | ||
1467 | } | ||
1468 | |||
1469 | /* Check that scanning information is correct */ | ||
1470 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | ||
1471 | last_seb = NULL; | ||
1472 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | ||
1473 | int vol_type; | ||
1474 | |||
1475 | cond_resched(); | ||
1476 | |||
1477 | last_seb = seb; | ||
1478 | |||
1479 | err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); | ||
1480 | if (err && err != UBI_IO_BITFLIPS) { | ||
1481 | ubi_err("VID header is not OK (%d)", err); | ||
1482 | if (err > 0) | ||
1483 | err = -EIO; | ||
1484 | return err; | ||
1485 | } | ||
1486 | |||
1487 | vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? | ||
1488 | UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; | ||
1489 | if (sv->vol_type != vol_type) { | ||
1490 | ubi_err("bad vol_type"); | ||
1491 | goto bad_vid_hdr; | ||
1492 | } | ||
1493 | |||
1494 | if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { | ||
1495 | ubi_err("bad sqnum %llu", seb->sqnum); | ||
1496 | goto bad_vid_hdr; | ||
1497 | } | ||
1498 | |||
1499 | if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { | ||
1500 | ubi_err("bad vol_id %d", sv->vol_id); | ||
1501 | goto bad_vid_hdr; | ||
1502 | } | ||
1503 | |||
1504 | if (sv->compat != vidh->compat) { | ||
1505 | ubi_err("bad compat %d", vidh->compat); | ||
1506 | goto bad_vid_hdr; | ||
1507 | } | ||
1508 | |||
1509 | if (seb->lnum != be32_to_cpu(vidh->lnum)) { | ||
1510 | ubi_err("bad lnum %d", seb->lnum); | ||
1511 | goto bad_vid_hdr; | ||
1512 | } | ||
1513 | |||
1514 | if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { | ||
1515 | ubi_err("bad used_ebs %d", sv->used_ebs); | ||
1516 | goto bad_vid_hdr; | ||
1517 | } | ||
1518 | |||
1519 | if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { | ||
1520 | ubi_err("bad data_pad %d", sv->data_pad); | ||
1521 | goto bad_vid_hdr; | ||
1522 | } | ||
1523 | } | ||
1524 | |||
1525 | if (!last_seb) | ||
1526 | continue; | ||
1527 | |||
1528 | if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { | ||
1529 | ubi_err("bad highest_lnum %d", sv->highest_lnum); | ||
1530 | goto bad_vid_hdr; | ||
1531 | } | ||
1532 | |||
1533 | if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { | ||
1534 | ubi_err("bad last_data_size %d", sv->last_data_size); | ||
1535 | goto bad_vid_hdr; | ||
1536 | } | ||
1537 | } | ||
1538 | |||
1539 | /* | ||
1540 | * Make sure that all the physical eraseblocks are in one of the lists | ||
1541 | * or trees. | ||
1542 | */ | ||
1543 | buf = kzalloc(ubi->peb_count, GFP_KERNEL); | ||
1544 | if (!buf) | ||
1545 | return -ENOMEM; | ||
1546 | |||
1547 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { | ||
1548 | err = ubi_io_is_bad(ubi, pnum); | ||
1549 | if (err < 0) { | ||
1550 | kfree(buf); | ||
1551 | return err; | ||
1552 | } else if (err) | ||
1553 | buf[pnum] = 1; | ||
1554 | } | ||
1555 | |||
1556 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) | ||
1557 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) | ||
1558 | buf[seb->pnum] = 1; | ||
1559 | |||
1560 | list_for_each_entry(seb, &si->free, u.list) | ||
1561 | buf[seb->pnum] = 1; | ||
1562 | |||
1563 | list_for_each_entry(seb, &si->corr, u.list) | ||
1564 | buf[seb->pnum] = 1; | ||
1565 | |||
1566 | list_for_each_entry(seb, &si->erase, u.list) | ||
1567 | buf[seb->pnum] = 1; | ||
1568 | |||
1569 | list_for_each_entry(seb, &si->alien, u.list) | ||
1570 | buf[seb->pnum] = 1; | ||
1571 | |||
1572 | err = 0; | ||
1573 | for (pnum = 0; pnum < ubi->peb_count; pnum++) | ||
1574 | if (!buf[pnum]) { | ||
1575 | ubi_err("PEB %d is not referred", pnum); | ||
1576 | err = 1; | ||
1577 | } | ||
1578 | |||
1579 | kfree(buf); | ||
1580 | if (err) | ||
1581 | goto out; | ||
1582 | return 0; | ||
1583 | |||
1584 | bad_seb: | ||
1585 | ubi_err("bad scanning information about LEB %d", seb->lnum); | ||
1586 | ubi_dbg_dump_seb(seb, 0); | ||
1587 | ubi_dbg_dump_sv(sv); | ||
1588 | goto out; | ||
1589 | |||
1590 | bad_sv: | ||
1591 | ubi_err("bad scanning information about volume %d", sv->vol_id); | ||
1592 | ubi_dbg_dump_sv(sv); | ||
1593 | goto out; | ||
1594 | |||
1595 | bad_vid_hdr: | ||
1596 | ubi_err("bad scanning information about volume %d", sv->vol_id); | ||
1597 | ubi_dbg_dump_sv(sv); | ||
1598 | ubi_dbg_dump_vid_hdr(vidh); | ||
1599 | |||
1600 | out: | ||
1601 | ubi_dbg_dump_stack(); | ||
1602 | return -EINVAL; | ||
1603 | } | ||
1604 | |||
1605 | #endif /* CONFIG_MTD_UBI_DEBUG */ | ||
diff --git a/drivers/mtd/ubi/scan.h b/drivers/mtd/ubi/scan.h new file mode 100644 index 00000000000..d48aef15ab5 --- /dev/null +++ b/drivers/mtd/ubi/scan.h | |||
@@ -0,0 +1,174 @@ | |||
1 | /* | ||
2 | * Copyright (c) International Business Machines Corp., 2006 | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | ||
12 | * the GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
17 | * | ||
18 | * Author: Artem Bityutskiy (Битюцкий Артём) | ||
19 | */ | ||
20 | |||
21 | #ifndef __UBI_SCAN_H__ | ||
22 | #define __UBI_SCAN_H__ | ||
23 | |||
24 | /* The erase counter value for this physical eraseblock is unknown */ | ||
25 | #define UBI_SCAN_UNKNOWN_EC (-1) | ||
26 | |||
27 | /** | ||
28 | * struct ubi_scan_leb - scanning information about a physical eraseblock. | ||
29 | * @ec: erase counter (%UBI_SCAN_UNKNOWN_EC if it is unknown) | ||
30 | * @pnum: physical eraseblock number | ||
31 | * @lnum: logical eraseblock number | ||
32 | * @scrub: if this physical eraseblock needs scrubbing | ||
33 | * @copy_flag: this LEB is a copy (@copy_flag is set in VID header of this LEB) | ||
34 | * @sqnum: sequence number | ||
35 | * @u: unions RB-tree or @list links | ||
36 | * @u.rb: link in the per-volume RB-tree of &struct ubi_scan_leb objects | ||
37 | * @u.list: link in one of the eraseblock lists | ||
38 | * | ||
39 | * One object of this type is allocated for each physical eraseblock during | ||
40 | * scanning. | ||
41 | */ | ||
42 | struct ubi_scan_leb { | ||
43 | int ec; | ||
44 | int pnum; | ||
45 | int lnum; | ||
46 | unsigned int scrub:1; | ||
47 | unsigned int copy_flag:1; | ||
48 | unsigned long long sqnum; | ||
49 | union { | ||
50 | struct rb_node rb; | ||
51 | struct list_head list; | ||
52 | } u; | ||
53 | }; | ||
54 | |||
55 | /** | ||
56 | * struct ubi_scan_volume - scanning information about a volume. | ||
57 | * @vol_id: volume ID | ||
58 | * @highest_lnum: highest logical eraseblock number in this volume | ||
59 | * @leb_count: number of logical eraseblocks in this volume | ||
60 | * @vol_type: volume type | ||
61 | * @used_ebs: number of used logical eraseblocks in this volume (only for | ||
62 | * static volumes) | ||
63 | * @last_data_size: amount of data in the last logical eraseblock of this | ||
64 | * volume (always equivalent to the usable logical eraseblock | ||
65 | * size in case of dynamic volumes) | ||
66 | * @data_pad: how many bytes at the end of logical eraseblocks of this volume | ||
67 | * are not used (due to volume alignment) | ||
68 | * @compat: compatibility flags of this volume | ||
69 | * @rb: link in the volume RB-tree | ||
70 | * @root: root of the RB-tree containing all the eraseblock belonging to this | ||
71 | * volume (&struct ubi_scan_leb objects) | ||
72 | * | ||
73 | * One object of this type is allocated for each volume during scanning. | ||
74 | */ | ||
75 | struct ubi_scan_volume { | ||
76 | int vol_id; | ||
77 | int highest_lnum; | ||
78 | int leb_count; | ||
79 | int vol_type; | ||
80 | int used_ebs; | ||
81 | int last_data_size; | ||
82 | int data_pad; | ||
83 | int compat; | ||
84 | struct rb_node rb; | ||
85 | struct rb_root root; | ||
86 | }; | ||
87 | |||
88 | /** | ||
89 | * struct ubi_scan_info - UBI scanning information. | ||
90 | * @volumes: root of the volume RB-tree | ||
91 | * @corr: list of corrupted physical eraseblocks | ||
92 | * @free: list of free physical eraseblocks | ||
93 | * @erase: list of physical eraseblocks which have to be erased | ||
94 | * @alien: list of physical eraseblocks which should not be used by UBI (e.g., | ||
95 | * those belonging to "preserve"-compatible internal volumes) | ||
96 | * @corr_peb_count: count of PEBs in the @corr list | ||
97 | * @empty_peb_count: count of PEBs which are presumably empty (contain only | ||
98 | * 0xFF bytes) | ||
99 | * @alien_peb_count: count of PEBs in the @alien list | ||
100 | * @bad_peb_count: count of bad physical eraseblocks | ||
101 | * @maybe_bad_peb_count: count of bad physical eraseblocks which are not marked | ||
102 | * as bad yet, but which look like bad | ||
103 | * @vols_found: number of volumes found during scanning | ||
104 | * @highest_vol_id: highest volume ID | ||
105 | * @is_empty: flag indicating whether the MTD device is empty or not | ||
106 | * @min_ec: lowest erase counter value | ||
107 | * @max_ec: highest erase counter value | ||
108 | * @max_sqnum: highest sequence number value | ||
109 | * @mean_ec: mean erase counter value | ||
110 | * @ec_sum: a temporary variable used when calculating @mean_ec | ||
111 | * @ec_count: a temporary variable used when calculating @mean_ec | ||
112 | * @scan_leb_slab: slab cache for &struct ubi_scan_leb objects | ||
113 | * | ||
114 | * This data structure contains the result of scanning and may be used by other | ||
115 | * UBI sub-systems to build final UBI data structures, further error-recovery | ||
116 | * and so on. | ||
117 | */ | ||
118 | struct ubi_scan_info { | ||
119 | struct rb_root volumes; | ||
120 | struct list_head corr; | ||
121 | struct list_head free; | ||
122 | struct list_head erase; | ||
123 | struct list_head alien; | ||
124 | int corr_peb_count; | ||
125 | int empty_peb_count; | ||
126 | int alien_peb_count; | ||
127 | int bad_peb_count; | ||
128 | int maybe_bad_peb_count; | ||
129 | int vols_found; | ||
130 | int highest_vol_id; | ||
131 | int is_empty; | ||
132 | int min_ec; | ||
133 | int max_ec; | ||
134 | unsigned long long max_sqnum; | ||
135 | int mean_ec; | ||
136 | uint64_t ec_sum; | ||
137 | int ec_count; | ||
138 | struct kmem_cache *scan_leb_slab; | ||
139 | }; | ||
140 | |||
141 | struct ubi_device; | ||
142 | struct ubi_vid_hdr; | ||
143 | |||
144 | /* | ||
145 | * ubi_scan_move_to_list - move a PEB from the volume tree to a list. | ||
146 | * | ||
147 | * @sv: volume scanning information | ||
148 | * @seb: scanning eraseblock information | ||
149 | * @list: the list to move to | ||
150 | */ | ||
151 | static inline void ubi_scan_move_to_list(struct ubi_scan_volume *sv, | ||
152 | struct ubi_scan_leb *seb, | ||
153 | struct list_head *list) | ||
154 | { | ||
155 | rb_erase(&seb->u.rb, &sv->root); | ||
156 | list_add_tail(&seb->u.list, list); | ||
157 | } | ||
158 | |||
159 | int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, | ||
160 | int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, | ||
161 | int bitflips); | ||
162 | struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, | ||
163 | int vol_id); | ||
164 | struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, | ||
165 | int lnum); | ||
166 | void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv); | ||
167 | struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, | ||
168 | struct ubi_scan_info *si); | ||
169 | int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, | ||
170 | int pnum, int ec); | ||
171 | struct ubi_scan_info *ubi_scan(struct ubi_device *ubi); | ||
172 | void ubi_scan_destroy_si(struct ubi_scan_info *si); | ||
173 | |||
174 | #endif /* !__UBI_SCAN_H__ */ | ||