/*
* drivers/video/tegra/dc/dsi.c
*
* Copyright (c) 2011, NVIDIA Corporation.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/fb.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <mach/clk.h>
#include <mach/dc.h>
#include <mach/fb.h>
#include <mach/csi.h>
#include <linux/nvhost.h>
#include "dc_reg.h"
#include "dc_priv.h"
#include "dsi_regs.h"
#include "dsi.h"
#define DSI_USE_SYNC_POINTS 1
#define S_TO_MS(x) (1000 * (x))
#define DSI_MODULE_NOT_INIT 0x0
#define DSI_MODULE_INIT 0x1
#define DSI_LPHS_NOT_INIT 0x0
#define DSI_LPHS_IN_LP_MODE 0x1
#define DSI_LPHS_IN_HS_MODE 0x2
#define DSI_VIDEO_TYPE_NOT_INIT 0x0
#define DSI_VIDEO_TYPE_VIDEO_MODE 0x1
#define DSI_VIDEO_TYPE_CMD_MODE 0x2
#define DSI_DRIVEN_MODE_NOT_INIT 0x0
#define DSI_DRIVEN_MODE_DC 0x1
#define DSI_DRIVEN_MODE_HOST 0x2
#define DSI_PHYCLK_OUT_DIS 0x0
#define DSI_PHYCLK_OUT_EN 0x1
#define DSI_PHYCLK_NOT_INIT 0x0
#define DSI_PHYCLK_CONTINUOUS 0x1
#define DSI_PHYCLK_TX_ONLY 0x2
#define DSI_CLK_BURST_NOT_INIT 0x0
#define DSI_CLK_BURST_NONE_BURST 0x1
#define DSI_CLK_BURST_BURST_MODE 0x2
#define DSI_DC_STREAM_DISABLE 0x0
#define DSI_DC_STREAM_ENABLE 0x1
#define DSI_LP_OP_NOT_INIT 0x0
#define DSI_LP_OP_WRITE 0x1
#define DSI_LP_OP_READ 0x2
static bool enable_read_debug;
module_param(enable_read_debug, bool, 0644);
MODULE_PARM_DESC(enable_read_debug,
"Enable to print read fifo and return packet type");
struct dsi_status {
unsigned init:2;
unsigned lphs:2;
unsigned vtype:2;
unsigned driven:2;
unsigned clk_out:2;
unsigned clk_mode:2;
unsigned clk_burst:2;
unsigned lp_op:2;
unsigned dc_stream:1;
};
/* source of video data */
enum {
TEGRA_DSI_DRIVEN_BY_DC,
TEGRA_DSI_DRIVEN_BY_HOST,
};
struct tegra_dc_dsi_data {
struct tegra_dc *dc;
void __iomem *base;
struct resource *base_res;
struct clk *dc_clk;
struct clk *dsi_clk;
bool clk_ref;
struct mutex lock;
/* data from board info */
struct tegra_dsi_out info;
struct dsi_status status;
struct dsi_phy_timing_inclk phy_timing;
u8 driven_mode;
u8 controller_index;
u8 pixel_scaler_mul;
u8 pixel_scaler_div;
u32 default_shift_clk_div;
u32 default_pixel_clk_khz;
u32 default_hs_clk_khz;
u32 shift_clk_div;
u32 target_hs_clk_khz;
u32 target_lp_clk_khz;
u32 syncpt_id;
u32 syncpt_val;
u16 current_bit_clk_ns;
u32 current_dsi_clk_khz;
u32 dsi_control_val;
bool ulpm;
bool enabled;
};
const u32 dsi_pkt_seq_reg[NUMOF_PKT_SEQ] = {
DSI_PKT_SEQ_0_LO,
DSI_PKT_SEQ_0_HI,
DSI_PKT_SEQ_1_LO,
DSI_PKT_SEQ_1_HI,
DSI_PKT_SEQ_2_LO,
DSI_PKT_SEQ_2_HI,
DSI_PKT_SEQ_3_LO,
DSI_PKT_SEQ_3_HI,
DSI_PKT_SEQ_4_LO,
DSI_PKT_SEQ_4_HI,
DSI_PKT_SEQ_5_LO,
DSI_PKT_SEQ_5_HI,
};
const u32 dsi_pkt_seq_video_non_burst_syne[NUMOF_PKT_SEQ] = {
PKT_ID0(CMD_VS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(0) | PKT_LP,
0,
PKT_ID0(CMD_VE) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(0) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(0) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_BLNK) | PKT_LEN1(1) |
PKT_ID2(CMD_HE) | PKT_LEN2(0),
PKT_ID3(CMD_BLNK) | PKT_LEN3(2) | PKT_ID4(CMD_RGB) | PKT_LEN4(3) |
PKT_ID5(CMD_BLNK) | PKT_LEN5(4),
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(0) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_BLNK) | PKT_LEN1(1) |
PKT_ID2(CMD_HE) | PKT_LEN2(0),
PKT_ID3(CMD_BLNK) | PKT_LEN3(2) | PKT_ID4(CMD_RGB) | PKT_LEN4(3) |
PKT_ID5(CMD_BLNK) | PKT_LEN5(4),
};
const u32 dsi_pkt_seq_video_non_burst[NUMOF_PKT_SEQ] = {
PKT_ID0(CMD_VS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(0) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(0) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(0) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_BLNK) | PKT_LEN1(2) |
PKT_ID2(CMD_RGB) | PKT_LEN2(3),
PKT_ID3(CMD_BLNK) | PKT_LEN3(4),
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(0) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_BLNK) | PKT_LEN1(2) |
PKT_ID2(CMD_RGB) | PKT_LEN2(3),
PKT_ID3(CMD_BLNK) | PKT_LEN3(4),
};
static const u32 dsi_pkt_seq_video_burst[NUMOF_PKT_SEQ] = {
PKT_ID0(CMD_VS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(7) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(7) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(7) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_BLNK) | PKT_LEN1(2)|
PKT_ID2(CMD_RGB) | PKT_LEN2(3) | PKT_LP,
PKT_ID0(CMD_EOT) | PKT_LEN0(7),
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(7) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_BLNK) | PKT_LEN1(2)|
PKT_ID2(CMD_RGB) | PKT_LEN2(3) | PKT_LP,
PKT_ID0(CMD_EOT) | PKT_LEN0(7),
};
static const u32 dsi_pkt_seq_video_burst_no_eot[NUMOF_PKT_SEQ] = {
PKT_ID0(CMD_VS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(0) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(0) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(0) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_BLNK) | PKT_LEN1(2)|
PKT_ID2(CMD_RGB) | PKT_LEN2(3) | PKT_LP,
PKT_ID0(CMD_EOT) | PKT_LEN0(0),
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_EOT) | PKT_LEN1(0) | PKT_LP,
0,
PKT_ID0(CMD_HS) | PKT_LEN0(0) | PKT_ID1(CMD_BLNK) | PKT_LEN1(2)|
PKT_ID2(CMD_RGB) | PKT_LEN2(3) | PKT_LP,
PKT_ID0(CMD_EOT) | PKT_LEN0(0),
};
/* TODO: verify with hw about this format */
const u32 dsi_pkt_seq_cmd_mode[NUMOF_PKT_SEQ] = {
0,
0,
0,
0,
0,
0,
PKT_ID0(CMD_LONGW) | PKT_LEN0(3) | PKT_ID1(CMD_EOT) | PKT_LEN1(7),
0,
0,
0,
PKT_ID0(CMD_LONGW) | PKT_LEN0(3) | PKT_ID1(CMD_EOT) | PKT_LEN1(7),
0,
};
const u32 init_reg[] = {
DSI_INT_ENABLE,
DSI_INT_STATUS,
DSI_INT_MASK,
DSI_INIT_SEQ_DATA_0,
DSI_INIT_SEQ_DATA_1,
DSI_INIT_SEQ_DATA_2,
DSI_INIT_SEQ_DATA_3,
DSI_INIT_SEQ_DATA_4,
DSI_INIT_SEQ_DATA_5,
DSI_INIT_SEQ_DATA_6,
DSI_INIT_SEQ_DATA_7,
DSI_DCS_CMDS,
DSI_PKT_SEQ_0_LO,
DSI_PKT_SEQ_1_LO,
DSI_PKT_SEQ_2_LO,
DSI_PKT_SEQ_3_LO,
DSI_PKT_SEQ_4_LO,
DSI_PKT_SEQ_5_LO,
DSI_PKT_SEQ_0_HI,
DSI_PKT_SEQ_1_HI,
DSI_PKT_SEQ_2_HI,
DSI_PKT_SEQ_3_HI,
DSI_PKT_SEQ_4_HI,
DSI_PKT_SEQ_5_HI,
DSI_CONTROL,
DSI_HOST_DSI_CONTROL,
DSI_PAD_CONTROL,
DSI_PAD_CONTROL_CD,
DSI_SOL_DELAY,
DSI_MAX_THRESHOLD,
DSI_TRIGGER,
DSI_TX_CRC,
DSI_INIT_SEQ_CONTROL,
DSI_PKT_LEN_0_1,
DSI_PKT_LEN_2_3,
DSI_PKT_LEN_4_5,
DSI_PKT_LEN_6_7,
};
inline unsigned long tegra_dsi_readl(struct tegra_dc_dsi_data *dsi, u32 reg)
{
BUG_ON(!nvhost_module_powered(nvhost_get_host(dsi->dc->ndev)->dev));
return readl(dsi->base + reg * 4);
}
EXPORT_SYMBOL(tegra_dsi_readl);
inline void tegra_dsi_writel(struct tegra_dc_dsi_data *dsi, u32 val, u32 reg)
{
BUG_ON(!nvhost_module_powered(nvhost_get_host(dsi->dc->ndev)->dev));
writel(val, dsi->base + reg * 4);
}
EXPORT_SYMBOL(tegra_dsi_writel);
static int tegra_dsi_syncpt(struct tegra_dc_dsi_data *dsi)
{
u32 val;
int ret;
ret = 0;
dsi->syncpt_val = nvhost_syncpt_read(
&nvhost_get_host(dsi->dc->ndev)->syncpt,
dsi->syncpt_id);
val = DSI_INCR_SYNCPT_COND(OP_DONE) |
DSI_INCR_SYNCPT_INDX(dsi->syncpt_id);
tegra_dsi_writel(dsi, val, DSI_INCR_SYNCPT);
/* TODO: Use interrupt rather than polling */
ret = nvhost_syncpt_wait(&nvhost_get_host(dsi->dc->ndev)->syncpt,
dsi->syncpt_id, dsi->syncpt_val + 1);
if (ret < 0) {
dev_err(&dsi->dc->ndev->dev, "DSI sync point failure\n");
goto fail;
}
(dsi->syncpt_val)++;
return 0;
fail:
return ret;
}
static u32 tegra_dsi_get_hs_clk_rate(struct tegra_dc_dsi_data *dsi)
{
u32 dsi_clock_rate_khz;
switch (dsi->info.video_burst_mode) {
case TEGRA_DSI_VIDEO_BURST_MODE_LOW_SPEED:
case TEGRA_DSI_VIDEO_BURST_MODE_MEDIUM_SPEED:
case TEGRA_DSI_VIDEO_BURST_MODE_FAST_SPEED:
case TEGRA_DSI_VIDEO_BURST_MODE_FASTEST_SPEED:
/* Calculate DSI HS clock rate for DSI burst mode */
dsi_clock_rate_khz = dsi->default_pixel_clk_khz *
dsi->shift_clk_div;
break;
case TEGRA_DSI_VIDEO_NONE_BURST_MODE:
case TEGRA_DSI_VIDEO_NONE_BURST_MODE_WITH_SYNC_END:
case TEGRA_DSI_VIDEO_BURST_MODE_LOWEST_SPEED:
default:
/* Clock rate is default DSI clock rate for non-burst mode */
dsi_clock_rate_khz = dsi->default_hs_clk_khz;
break;
}
return dsi_clock_rate_khz;
}
static u32 tegra_dsi_get_lp_clk_rate(struct tegra_dc_dsi_data *dsi, u8 lp_op)
{
u32 dsi_clock_rate_khz;
if (dsi->info.enable_hs_clock_on_lp_cmd_mode)
if (dsi->info.hs_clk_in_lp_cmd_mode_freq_khz)
dsi_clock_rate_khz =
dsi->info.hs_clk_in_lp_cmd_mode_freq_khz;
else
dsi_clock_rate_khz = tegra_dsi_get_hs_clk_rate(dsi);
else
if (lp_op == DSI_LP_OP_READ)
dsi_clock_rate_khz =
dsi->info.lp_read_cmd_mode_freq_khz;
else
dsi_clock_rate_khz =
dsi->info.lp_cmd_mode_freq_khz;
return dsi_clock_rate_khz;
}
static u32 tegra_dsi_get_shift_clk_div(struct tegra_dc_dsi_data *dsi)
{
u32 shift_clk_div;
u32 max_shift_clk_div;
u32 burst_width;
u32 burst_width_max;
/* Get the real value of default shift_clk_div. default_shift_clk_div
* holds the real value of shift_clk_div.
*/
shift_clk_div = dsi->default_shift_clk_div;
/* Calculate shift_clk_div which can matche the video_burst_mode. */
if (dsi->info.video_burst_mode >=
TEGRA_DSI_VIDEO_BURST_MODE_LOWEST_SPEED) {
/* The max_shift_clk_div is multiplied by 10 to save the
* fraction
*/
if (dsi->info.max_panel_freq_khz >= dsi->default_hs_clk_khz)
max_shift_clk_div = dsi->info.max_panel_freq_khz
* shift_clk_div * 10 / dsi->default_hs_clk_khz;
else
max_shift_clk_div = shift_clk_div * 10;
burst_width = dsi->info.video_burst_mode
- TEGRA_DSI_VIDEO_BURST_MODE_LOWEST_SPEED;
burst_width_max = TEGRA_DSI_VIDEO_BURST_MODE_FASTEST_SPEED
- TEGRA_DSI_VIDEO_BURST_MODE_LOWEST_SPEED;
shift_clk_div = (max_shift_clk_div - shift_clk_div * 10) *
burst_width / (burst_width_max * 10) + shift_clk_div;
}
return shift_clk_div;
}
static void tegra_dsi_init_sw(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
u32 h_width_pixels;
u32 v_width_lines;
u32 pixel_clk_hz;
u32 byte_clk_hz;
u32 plld_clk_mhz;
switch (dsi->info.pixel_format) {
case TEGRA_DSI_PIXEL_FORMAT_16BIT_P:
/* 2 bytes per pixel */
dsi->pixel_scaler_mul = 2;
dsi->pixel_scaler_div = 1;
break;
case TEGRA_DSI_PIXEL_FORMAT_18BIT_P:
/* 2.25 bytes per pixel */
dsi->pixel_scaler_mul = 9;
dsi->pixel_scaler_div = 4;
break;
case TEGRA_DSI_PIXEL_FORMAT_18BIT_NP:
case TEGRA_DSI_PIXEL_FORMAT_24BIT_P:
/* 3 bytes per pixel */
dsi->pixel_scaler_mul = 3;
dsi->pixel_scaler_div = 1;
break;
default:
break;
}
dsi->controller_index = dc->ndev->id;
dsi->ulpm = false;
dsi->enabled = false;
dsi->clk_ref = false;
dsi->dsi_control_val =
DSI_CONTROL_VIRTUAL_CHANNEL(dsi->info.virtual_channel) |
DSI_CONTROL_NUM_DATA_LANES(dsi->info.n_data_lanes - 1) |
DSI_CONTROL_VID_SOURCE(dsi->controller_index) |
DSI_CONTROL_DATA_FORMAT(dsi->info.pixel_format);
/* Below we are going to calculate dsi and dc clock rate.
* Calcuate the horizontal and vertical width.
*/
h_width_pixels = dc->mode.h_back_porch + dc->mode.h_front_porch +
dc->mode.h_sync_width + dc->mode.h_active;
v_width_lines = dc->mode.v_back_porch + dc->mode.v_front_porch +
dc->mode.v_sync_width + dc->mode.v_active;
/* Calculate minimum required pixel rate. */
pixel_clk_hz = h_width_pixels * v_width_lines * dsi->info.refresh_rate;
if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE) {
if (dsi->info.rated_refresh_rate >= dsi->info.refresh_rate)
dev_info(&dc->ndev->dev, "DSI: measured refresh rate "
"should be larger than rated refresh rate.\n");
dc->mode.rated_pclk = h_width_pixels * v_width_lines *
dsi->info.rated_refresh_rate;
}
/* Calculate minimum byte rate on DSI interface. */
byte_clk_hz = (pixel_clk_hz * dsi->pixel_scaler_mul) /
(dsi->pixel_scaler_div * dsi->info.n_data_lanes);
/* Round up to multiple of mega hz. */
plld_clk_mhz = DIV_ROUND_UP((byte_clk_hz * NUMOF_BIT_PER_BYTE),
1000000);
/* Calculate default real shift_clk_div. */
dsi->default_shift_clk_div = (NUMOF_BIT_PER_BYTE / 2) *
dsi->pixel_scaler_mul / (dsi->pixel_scaler_div *
dsi->info.n_data_lanes);
/* Calculate default DSI hs clock. DSI interface is double data rate.
* Data is transferred on both rising and falling edge of clk, div by 2
* to get the actual clock rate.
*/
dsi->default_hs_clk_khz = plld_clk_mhz * 1000 / 2;
dsi->default_pixel_clk_khz = plld_clk_mhz * 1000 / 2
/ dsi->default_shift_clk_div;
/* Get the actual shift_clk_div and clock rates. */
dsi->shift_clk_div = tegra_dsi_get_shift_clk_div(dsi);
dsi->target_lp_clk_khz =
tegra_dsi_get_lp_clk_rate(dsi, DSI_LP_OP_WRITE);
dsi->target_hs_clk_khz = tegra_dsi_get_hs_clk_rate(dsi);
dev_info(&dc->ndev->dev, "DSI: HS clock rate is %d\n",
dsi->target_hs_clk_khz);
dsi->controller_index = dc->ndev->id;
#if DSI_USE_SYNC_POINTS
dsi->syncpt_id = NVSYNCPT_DSI;
#endif
/*
* Force video clock to be continuous mode if
* enable_hs_clock_on_lp_cmd_mode is set
*/
if (dsi->info.enable_hs_clock_on_lp_cmd_mode) {
if (dsi->info.video_clock_mode !=
TEGRA_DSI_VIDEO_CLOCK_CONTINUOUS)
dev_warn(&dc->ndev->dev,
"Force clock continuous mode\n");
dsi->info.video_clock_mode = TEGRA_DSI_VIDEO_CLOCK_CONTINUOUS;
}
}
#define SELECT_T_PHY(platform_t_phy_ns, default_phy, clk_ns, hw_inc) ( \
(platform_t_phy_ns) ? ( \
((DSI_CONVERT_T_PHY_NS_TO_T_PHY(platform_t_phy_ns, clk_ns, hw_inc)) < 0 ? 0 : \
(DSI_CONVERT_T_PHY_NS_TO_T_PHY(platform_t_phy_ns, clk_ns, hw_inc)))) : \
((default_phy) < 0 ? 0 : (default_phy)))
static void tegra_dsi_get_clk_phy_timing(struct tegra_dc_dsi_data *dsi,
struct dsi_phy_timing_inclk *phy_timing_clk, u32 clk_ns)
{
phy_timing_clk->t_tlpx = SELECT_T_PHY(
dsi->info.phy_timing.t_tlpx_ns,
T_TLPX_DEFAULT(clk_ns), clk_ns, T_TLPX_HW_INC);
phy_timing_clk->t_clktrail = SELECT_T_PHY(
dsi->info.phy_timing.t_clktrail_ns,
T_CLKTRAIL_DEFAULT(clk_ns), clk_ns, T_CLKTRAIL_HW_INC);
phy_timing_clk->t_clkpost = SELECT_T_PHY(
dsi->info.phy_timing.t_clkpost_ns,
T_CLKPOST_DEFAULT(clk_ns), clk_ns, T_CLKPOST_HW_INC);
phy_timing_clk->t_clkzero = SELECT_T_PHY(
dsi->info.phy_timing.t_clkzero_ns,
T_CLKZERO_DEFAULT(clk_ns), clk_ns, T_CLKZERO_HW_INC);
phy_timing_clk->t_clkprepare = SELECT_T_PHY(
dsi->info.phy_timing.t_clkprepare_ns,
T_CLKPREPARE_DEFAULT(clk_ns), clk_ns, T_CLKPREPARE_HW_INC);
phy_timing_clk->t_clkpre = SELECT_T_PHY(
dsi->info.phy_timing.t_clkpre_ns,
T_CLKPRE_DEFAULT, clk_ns, T_CLKPRE_HW_INC);
}
static void tegra_dsi_get_hs_phy_timing(struct tegra_dc_dsi_data *dsi,
struct dsi_phy_timing_inclk *phy_timing_clk, u32 clk_ns)
{
phy_timing_clk->t_tlpx = SELECT_T_PHY(
dsi->info.phy_timing.t_tlpx_ns,
T_TLPX_DEFAULT(clk_ns), clk_ns, T_TLPX_HW_INC);
phy_timing_clk->t_hsdexit = SELECT_T_PHY(
dsi->info.phy_timing.t_hsdexit_ns,
T_HSEXIT_DEFAULT(clk_ns), clk_ns, T_HSEXIT_HW_INC);
phy_timing_clk->t_hstrail = SELECT_T_PHY(
dsi->info.phy_timing.t_hstrail_ns,
T_HSTRAIL_DEFAULT(clk_ns), clk_ns, T_HSTRAIL_HW_INC);
phy_timing_clk->t_datzero = SELECT_T_PHY(
dsi->info.phy_timing.t_datzero_ns,
T_DATZERO_DEFAULT(clk_ns), clk_ns, T_DATZERO_HW_INC);
phy_timing_clk->t_hsprepare = SELECT_T_PHY(
dsi->info.phy_timing.t_hsprepare_ns,
T_HSPREPARE_DEFAULT(clk_ns), clk_ns, T_HSPREPARE_HW_INC);
}
static void tegra_dsi_get_escape_phy_timing(struct tegra_dc_dsi_data *dsi,
struct dsi_phy_timing_inclk *phy_timing_clk, u32 clk_ns)
{
phy_timing_clk->t_tlpx = SELECT_T_PHY(
dsi->info.phy_timing.t_tlpx_ns,
T_TLPX_DEFAULT(clk_ns), clk_ns, T_TLPX_HW_INC);
}
static void tegra_dsi_get_bta_phy_timing(struct tegra_dc_dsi_data *dsi,
struct dsi_phy_timing_inclk *phy_timing_clk, u32 clk_ns)
{
phy_timing_clk->t_tlpx = SELECT_T_PHY(
dsi->info.phy_timing.t_tlpx_ns,
T_TLPX_DEFAULT(clk_ns), clk_ns, T_TLPX_HW_INC);
phy_timing_clk->t_taget = SELECT_T_PHY(
dsi->info.phy_timing.t_taget_ns,
T_TAGET_DEFAULT(clk_ns), clk_ns, T_TAGET_HW_INC);
phy_timing_clk->t_tasure = SELECT_T_PHY(
dsi->info.phy_timing.t_tasure_ns,
T_TASURE_DEFAULT(clk_ns), clk_ns, T_TASURE_HW_INC);
phy_timing_clk->t_tago = SELECT_T_PHY(
dsi->info.phy_timing.t_tago_ns,
T_TAGO_DEFAULT(clk_ns), clk_ns, T_TAGO_HW_INC);
}
static void tegra_dsi_get_ulps_phy_timing(struct tegra_dc_dsi_data *dsi,
struct dsi_phy_timing_inclk *phy_timing_clk, u32 clk_ns)
{
phy_timing_clk->t_tlpx = SELECT_T_PHY(
dsi->info.phy_timing.t_tlpx_ns,
T_TLPX_DEFAULT(clk_ns), clk_ns, T_TLPX_HW_INC);
phy_timing_clk->t_wakeup = SELECT_T_PHY(
dsi->info.phy_timing.t_wakeup_ns,
T_WAKEUP_DEFAULT, clk_ns, T_WAKEUP_HW_INC);
}
#undef SELECT_T_PHY
static void tegra_dsi_get_phy_timing(struct tegra_dc_dsi_data *dsi,
struct dsi_phy_timing_inclk *phy_timing_clk,
u32 clk_ns, u8 lphs)
{
if (lphs == DSI_LPHS_IN_HS_MODE) {
tegra_dsi_get_clk_phy_timing(dsi, phy_timing_clk, clk_ns);
tegra_dsi_get_hs_phy_timing(dsi, phy_timing_clk, clk_ns);
} else {
/* default is LP mode */
tegra_dsi_get_escape_phy_timing(dsi, phy_timing_clk, clk_ns);
tegra_dsi_get_bta_phy_timing(dsi, phy_timing_clk, clk_ns);
tegra_dsi_get_ulps_phy_timing(dsi, phy_timing_clk, clk_ns);
if (dsi->info.enable_hs_clock_on_lp_cmd_mode)
tegra_dsi_get_clk_phy_timing
(dsi, phy_timing_clk, clk_ns);
}
}
static int tegra_dsi_mipi_phy_timing_range(struct tegra_dc_dsi_data *dsi,
struct dsi_phy_timing_inclk *phy_timing,
u32 clk_ns, u8 lphs)
{
#define CHECK_RANGE(val, min, max) ( \
((min) == NOT_DEFINED ? 0 : (val) < (min)) || \
((max) == NOT_DEFINED ? 0 : (val) > (max)) ? -EINVAL : 0)
int err = 0;
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_tlpx, clk_ns, T_TLPX_HW_INC),
MIPI_T_TLPX_NS_MIN, MIPI_T_TLPX_NS_MAX);
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: Tlpx mipi range violated\n");
goto fail;
}
if (lphs == DSI_LPHS_IN_HS_MODE) {
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_hsdexit, clk_ns, T_HSEXIT_HW_INC),
MIPI_T_HSEXIT_NS_MIN, MIPI_T_HSEXIT_NS_MAX);
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: HsExit mipi range violated\n");
goto fail;
}
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_hstrail, clk_ns, T_HSTRAIL_HW_INC),
MIPI_T_HSTRAIL_NS_MIN(clk_ns), MIPI_T_HSTRAIL_NS_MAX);
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: HsTrail mipi range violated\n");
goto fail;
}
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_datzero, clk_ns, T_DATZERO_HW_INC),
MIPI_T_HSZERO_NS_MIN, MIPI_T_HSZERO_NS_MAX);
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: HsZero mipi range violated\n");
goto fail;
}
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_hsprepare, clk_ns, T_HSPREPARE_HW_INC),
MIPI_T_HSPREPARE_NS_MIN(clk_ns),
MIPI_T_HSPREPARE_NS_MAX(clk_ns));
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: HsPrepare mipi range violated\n");
goto fail;
}
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_hsprepare, clk_ns, T_HSPREPARE_HW_INC) +
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_datzero, clk_ns, T_DATZERO_HW_INC),
MIPI_T_HSPREPARE_ADD_HSZERO_NS_MIN(clk_ns),
MIPI_T_HSPREPARE_ADD_HSZERO_NS_MAX);
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: HsPrepare + HsZero mipi range violated\n");
goto fail;
}
} else {
/* default is LP mode */
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_wakeup, clk_ns, T_WAKEUP_HW_INC),
MIPI_T_WAKEUP_NS_MIN, MIPI_T_WAKEUP_NS_MAX);
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: WakeUp mipi range violated\n");
goto fail;
}
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_tasure, clk_ns, T_TASURE_HW_INC),
MIPI_T_TASURE_NS_MIN(DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_tlpx, clk_ns, T_TLPX_HW_INC)),
MIPI_T_TASURE_NS_MAX(DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_tlpx, clk_ns, T_TLPX_HW_INC)));
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: TaSure mipi range violated\n");
goto fail;
}
}
if (lphs == DSI_LPHS_IN_HS_MODE ||
dsi->info.enable_hs_clock_on_lp_cmd_mode) {
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_clktrail, clk_ns, T_CLKTRAIL_HW_INC),
MIPI_T_CLKTRAIL_NS_MIN, MIPI_T_CLKTRAIL_NS_MAX);
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: ClkTrail mipi range violated\n");
goto fail;
}
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_clkpost, clk_ns, T_CLKPOST_HW_INC),
MIPI_T_CLKPOST_NS_MIN(clk_ns), MIPI_T_CLKPOST_NS_MAX);
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: ClkPost mipi range violated\n");
goto fail;
}
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_clkzero, clk_ns, T_CLKZERO_HW_INC),
MIPI_T_CLKZERO_NS_MIN, MIPI_T_CLKZERO_NS_MAX);
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: ClkZero mipi range violated\n");
goto fail;
}
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_clkprepare, clk_ns, T_CLKPREPARE_HW_INC),
MIPI_T_CLKPREPARE_NS_MIN, MIPI_T_CLKPREPARE_NS_MAX);
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: ClkPrepare mipi range violated\n");
goto fail;
}
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_clkpre, clk_ns, T_CLKPRE_HW_INC),
MIPI_T_CLKPRE_NS_MIN, MIPI_T_CLKPRE_NS_MAX);
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: ClkPre mipi range violated\n");
goto fail;
}
err = CHECK_RANGE(
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_clkprepare, clk_ns, T_CLKPREPARE_HW_INC) +
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_clkzero, clk_ns, T_CLKZERO_HW_INC),
MIPI_T_CLKPREPARE_ADD_CLKZERO_NS_MIN,
MIPI_T_CLKPREPARE_ADD_CLKZERO_NS_MAX);
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev,
"dsi: ClkPrepare + ClkZero mipi range violated\n");
goto fail;
}
}
fail:
#undef CHECK_RANGE
return err;
}
static int tegra_dsi_hs_phy_len(struct tegra_dc_dsi_data *dsi,
struct dsi_phy_timing_inclk *phy_timing,
u32 clk_ns, u8 lphs)
{
u32 hs_t_phy_ns;
u32 clk_t_phy_ns;
u32 t_phy_ns;
u32 h_blank_ns;
struct tegra_dc_mode *modes;
u32 t_pix_ns;
int err = 0;
if (!(lphs == DSI_LPHS_IN_HS_MODE))
goto fail;
modes = dsi->dc->out->modes;
t_pix_ns = clk_ns * BITS_PER_BYTE *
dsi->pixel_scaler_mul / dsi->pixel_scaler_div;
hs_t_phy_ns =
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_tlpx, clk_ns, T_TLPX_HW_INC) +
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_hsprepare, clk_ns, T_HSPREPARE_HW_INC) +
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_datzero, clk_ns, T_DATZERO_HW_INC) +
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_hstrail, clk_ns, T_HSTRAIL_HW_INC) +
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_hsdexit, clk_ns, T_HSEXIT_HW_INC);
clk_t_phy_ns =
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_clkpost, clk_ns, T_CLKPOST_HW_INC) +
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_clktrail, clk_ns, T_CLKTRAIL_HW_INC) +
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_hsdexit, clk_ns, T_HSEXIT_HW_INC) +
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_tlpx, clk_ns, T_TLPX_HW_INC) +
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_clkprepare, clk_ns, T_CLKPREPARE_HW_INC) +
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_clkzero, clk_ns, T_CLKZERO_HW_INC) +
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_clkpre, clk_ns, T_CLKPRE_HW_INC);
h_blank_ns = t_pix_ns * (modes->h_sync_width + modes->h_back_porch +
modes->h_front_porch);
/* Extra tlpx and byte cycle required by dsi HW */
t_phy_ns = dsi->info.n_data_lanes * (hs_t_phy_ns + clk_t_phy_ns +
DSI_CONVERT_T_PHY_TO_T_PHY_NS(
phy_timing->t_tlpx, clk_ns, T_TLPX_HW_INC) +
clk_ns * BITS_PER_BYTE);
if (h_blank_ns < t_phy_ns) {
err = -EINVAL;
dev_err(&dsi->dc->ndev->dev,
"dsi: Hblank is smaller than HS trans phy timing\n");
goto fail;
}
return 0;
fail:
return err;
}
static int tegra_dsi_constraint_phy_timing(struct tegra_dc_dsi_data *dsi,
struct dsi_phy_timing_inclk *phy_timing,
u32 clk_ns, u8 lphs)
{
int err = 0;
err = tegra_dsi_mipi_phy_timing_range(dsi, phy_timing, clk_ns, lphs);
if (err < 0) {
dev_warn(&dsi->dc->ndev->dev, "dsi: mipi range violated\n");
goto fail;
}
err = tegra_dsi_hs_phy_len(dsi, phy_timing, clk_ns, lphs);
if (err < 0) {
dev_err(&dsi->dc->ndev->dev, "dsi: Hblank too short\n");
goto fail;
}
/* TODO: add more contraints */
fail:
return err;
}
static void tegra_dsi_set_phy_timing(struct tegra_dc_dsi_data *dsi, u8 lphs)
{
u32 val;
struct dsi_phy_timing_inclk phy_timing = dsi->phy_timing;
tegra_dsi_get_phy_timing
(dsi, &phy_timing, dsi->current_bit_clk_ns, lphs);
tegra_dsi_constraint_phy_timing(dsi, &phy_timing,
dsi->current_bit_clk_ns, lphs);
val = DSI_PHY_TIMING_0_THSDEXIT(phy_timing.t_hsdexit) |
DSI_PHY_TIMING_0_THSTRAIL(phy_timing.t_hstrail) |
DSI_PHY_TIMING_0_TDATZERO(phy_timing.t_datzero) |
DSI_PHY_TIMING_0_THSPREPR(phy_timing.t_hsprepare);
tegra_dsi_writel(dsi, val, DSI_PHY_TIMING_0);
val = DSI_PHY_TIMING_1_TCLKTRAIL(phy_timing.t_clktrail) |
DSI_PHY_TIMING_1_TCLKPOST(phy_timing.t_clkpost) |
DSI_PHY_TIMING_1_TCLKZERO(phy_timing.t_clkzero) |
DSI_PHY_TIMING_1_TTLPX(phy_timing.t_tlpx);
tegra_dsi_writel(dsi, val, DSI_PHY_TIMING_1);
val = DSI_PHY_TIMING_2_TCLKPREPARE(phy_timing.t_clkprepare) |
DSI_PHY_TIMING_2_TCLKPRE(phy_timing.t_clkpre) |
DSI_PHY_TIMING_2_TWAKEUP(phy_timing.t_wakeup);
tegra_dsi_writel(dsi, val, DSI_PHY_TIMING_2);
val = DSI_BTA_TIMING_TTAGET(phy_timing.t_taget) |
DSI_BTA_TIMING_TTASURE(phy_timing.t_tasure) |
DSI_BTA_TIMING_TTAGO(phy_timing.t_tago);
tegra_dsi_writel(dsi, val, DSI_BTA_TIMING);
dsi->phy_timing = phy_timing;
}
static u32 tegra_dsi_sol_delay_burst(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
u32 dsi_to_pixel_clk_ratio;
u32 temp;
u32 temp1;
u32 mipi_clk_adj_kHz;
u32 sol_delay;
struct tegra_dc_mode *dc_modes = &dc->mode;
/* Get Fdsi/Fpixel ration (note: Fdsi is in bit format) */
dsi_to_pixel_clk_ratio = (dsi->current_dsi_clk_khz * 2 +
dsi->default_pixel_clk_khz - 1) / dsi->default_pixel_clk_khz;
/* Convert Fdsi to byte format */
dsi_to_pixel_clk_ratio *= 1000/8;
/* Multiplying by 1000 so that we don't loose the fraction part */
temp = dc_modes->h_active * 1000;
temp1 = dc_modes->h_active + dc_modes->h_back_porch +
dc_modes->h_sync_width;
sol_delay = temp1 * dsi_to_pixel_clk_ratio -
temp * dsi->pixel_scaler_mul /
(dsi->pixel_scaler_div * dsi->info.n_data_lanes);
/* Do rounding on sol delay */
sol_delay = (sol_delay + 1000 - 1)/1000;
/* TODO:
* 1. find out the correct sol fifo depth to use
* 2. verify with hw about the clamping function
*/
if (sol_delay > (480 * 4)) {
sol_delay = (480 * 4);
mipi_clk_adj_kHz = sol_delay +
(dc_modes->h_active * dsi->pixel_scaler_mul) /
(dsi->info.n_data_lanes * dsi->pixel_scaler_div);
mipi_clk_adj_kHz *= (dsi->default_pixel_clk_khz / temp1);
mipi_clk_adj_kHz *= 4;
}
dsi->target_hs_clk_khz = mipi_clk_adj_kHz;
return sol_delay;
}
static void tegra_dsi_set_sol_delay(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
u32 sol_delay;
if (dsi->info.video_burst_mode == TEGRA_DSI_VIDEO_NONE_BURST_MODE ||
dsi->info.video_burst_mode ==
TEGRA_DSI_VIDEO_NONE_BURST_MODE_WITH_SYNC_END) {
#define VIDEO_FIFO_LATENCY_PIXEL_CLK 8
sol_delay = VIDEO_FIFO_LATENCY_PIXEL_CLK *
dsi->pixel_scaler_mul / dsi->pixel_scaler_div;
#undef VIDEO_FIFO_LATENCY_PIXEL_CLK
dsi->status.clk_burst = DSI_CLK_BURST_NONE_BURST;
} else {
sol_delay = tegra_dsi_sol_delay_burst(dc, dsi);
dsi->status.clk_burst = DSI_CLK_BURST_BURST_MODE;
}
tegra_dsi_writel(dsi, DSI_SOL_DELAY_SOL_DELAY(sol_delay),
DSI_SOL_DELAY);
}
static void tegra_dsi_set_timeout(struct tegra_dc_dsi_data *dsi)
{
u32 val;
u32 bytes_per_frame;
u32 timeout = 0;
/* TODO: verify the following equation */
bytes_per_frame = dsi->current_dsi_clk_khz * 1000 * 2 /
(dsi->info.refresh_rate * 8);
timeout = bytes_per_frame / DSI_CYCLE_COUNTER_VALUE;
timeout = (timeout + DSI_HTX_TO_MARGIN) & 0xffff;
val = DSI_TIMEOUT_0_LRXH_TO(DSI_LRXH_TO_VALUE) |
DSI_TIMEOUT_0_HTX_TO(timeout);
tegra_dsi_writel(dsi, val, DSI_TIMEOUT_0);
if (dsi->info.panel_reset_timeout_msec)
timeout = (dsi->info.panel_reset_timeout_msec * 1000*1000)
/ dsi->current_bit_clk_ns;
else
timeout = DSI_PR_TO_VALUE;
val = DSI_TIMEOUT_1_PR_TO(timeout) |
DSI_TIMEOUT_1_TA_TO(DSI_TA_TO_VALUE);
tegra_dsi_writel(dsi, val, DSI_TIMEOUT_1);
val = DSI_TO_TALLY_P_RESET_STATUS(IN_RESET) |
DSI_TO_TALLY_TA_TALLY(DSI_TA_TALLY_VALUE)|
DSI_TO_TALLY_LRXH_TALLY(DSI_LRXH_TALLY_VALUE)|
DSI_TO_TALLY_HTX_TALLY(DSI_HTX_TALLY_VALUE);
tegra_dsi_writel(dsi, val, DSI_TO_TALLY);
}
static void tegra_dsi_setup_video_mode_pkt_length(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
u32 val;
u32 hact_pkt_len;
u32 hsa_pkt_len;
u32 hbp_pkt_len;
u32 hfp_pkt_len;
hact_pkt_len = dc->mode.h_active * dsi->pixel_scaler_mul /
dsi->pixel_scaler_div;
hsa_pkt_len = dc->mode.h_sync_width * dsi->pixel_scaler_mul /
dsi->pixel_scaler_div;
hbp_pkt_len = dc->mode.h_back_porch * dsi->pixel_scaler_mul /
dsi->pixel_scaler_div;
hfp_pkt_len = dc->mode.h_front_porch * dsi->pixel_scaler_mul /
dsi->pixel_scaler_div;
if (dsi->info.video_burst_mode !=
TEGRA_DSI_VIDEO_NONE_BURST_MODE_WITH_SYNC_END)
hbp_pkt_len += hsa_pkt_len;
hsa_pkt_len -= DSI_HSYNC_BLNK_PKT_OVERHEAD;
hbp_pkt_len -= DSI_HBACK_PORCH_PKT_OVERHEAD;
hfp_pkt_len -= DSI_HFRONT_PORCH_PKT_OVERHEAD;
val = DSI_PKT_LEN_0_1_LENGTH_0(0) |
DSI_PKT_LEN_0_1_LENGTH_1(hsa_pkt_len);
tegra_dsi_writel(dsi, val, DSI_PKT_LEN_0_1);
val = DSI_PKT_LEN_2_3_LENGTH_2(hbp_pkt_len) |
DSI_PKT_LEN_2_3_LENGTH_3(hact_pkt_len);
tegra_dsi_writel(dsi, val, DSI_PKT_LEN_2_3);
val = DSI_PKT_LEN_4_5_LENGTH_4(hfp_pkt_len) |
DSI_PKT_LEN_4_5_LENGTH_5(0);
tegra_dsi_writel(dsi, val, DSI_PKT_LEN_4_5);
val = DSI_PKT_LEN_6_7_LENGTH_6(0) | DSI_PKT_LEN_6_7_LENGTH_7(0);
tegra_dsi_writel(dsi, val, DSI_PKT_LEN_6_7);
}
static void tegra_dsi_setup_cmd_mode_pkt_length(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
unsigned long val;
unsigned long act_bytes;
act_bytes = dc->mode.h_active * dsi->pixel_scaler_mul /
dsi->pixel_scaler_div + 1;
val = DSI_PKT_LEN_0_1_LENGTH_0(0) | DSI_PKT_LEN_0_1_LENGTH_1(0);
tegra_dsi_writel(dsi, val, DSI_PKT_LEN_0_1);
val = DSI_PKT_LEN_2_3_LENGTH_2(0) | DSI_PKT_LEN_2_3_LENGTH_3(act_bytes);
tegra_dsi_writel(dsi, val, DSI_PKT_LEN_2_3);
val = DSI_PKT_LEN_4_5_LENGTH_4(0) | DSI_PKT_LEN_4_5_LENGTH_5(act_bytes);
tegra_dsi_writel(dsi, val, DSI_PKT_LEN_4_5);
val = DSI_PKT_LEN_6_7_LENGTH_6(0) | DSI_PKT_LEN_6_7_LENGTH_7(0x0f0f);
tegra_dsi_writel(dsi, val, DSI_PKT_LEN_6_7);
}
static void tegra_dsi_set_pkt_length(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
if (dsi->driven_mode == TEGRA_DSI_DRIVEN_BY_HOST)
return;
if (dsi->info.video_data_type == TEGRA_DSI_VIDEO_TYPE_VIDEO_MODE)
tegra_dsi_setup_video_mode_pkt_length(dc, dsi);
else
tegra_dsi_setup_cmd_mode_pkt_length(dc, dsi);
}
static void tegra_dsi_set_pkt_seq(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
const u32 *pkt_seq;
u32 rgb_info;
u32 pkt_seq_3_5_rgb_lo;
u32 pkt_seq_3_5_rgb_hi;
u32 val;
u32 reg;
u8 i;
if (dsi->driven_mode == TEGRA_DSI_DRIVEN_BY_HOST)
return;
switch (dsi->info.pixel_format) {
case TEGRA_DSI_PIXEL_FORMAT_16BIT_P:
rgb_info = CMD_RGB_16BPP;
break;
case TEGRA_DSI_PIXEL_FORMAT_18BIT_P:
rgb_info = CMD_RGB_18BPP;
break;
case TEGRA_DSI_PIXEL_FORMAT_18BIT_NP:
rgb_info = CMD_RGB_18BPPNP;
break;
case TEGRA_DSI_PIXEL_FORMAT_24BIT_P:
default:
rgb_info = CMD_RGB_24BPP;
break;
}
pkt_seq_3_5_rgb_lo = 0;
pkt_seq_3_5_rgb_hi = 0;
if (dsi->info.video_data_type == TEGRA_DSI_VIDEO_TYPE_COMMAND_MODE)
pkt_seq = dsi_pkt_seq_cmd_mode;
else {
switch (dsi->info.video_burst_mode) {
case TEGRA_DSI_VIDEO_BURST_MODE_LOWEST_SPEED:
case TEGRA_DSI_VIDEO_BURST_MODE_LOW_SPEED:
case TEGRA_DSI_VIDEO_BURST_MODE_MEDIUM_SPEED:
case TEGRA_DSI_VIDEO_BURST_MODE_FAST_SPEED:
case TEGRA_DSI_VIDEO_BURST_MODE_FASTEST_SPEED:
pkt_seq_3_5_rgb_lo =
DSI_PKT_SEQ_3_LO_PKT_32_ID(rgb_info);
if (!dsi->info.no_pkt_seq_eot)
pkt_seq = dsi_pkt_seq_video_burst;
else
pkt_seq = dsi_pkt_seq_video_burst_no_eot;
break;
case TEGRA_DSI_VIDEO_NONE_BURST_MODE_WITH_SYNC_END:
pkt_seq_3_5_rgb_hi =
DSI_PKT_SEQ_3_HI_PKT_34_ID(rgb_info);
pkt_seq = dsi_pkt_seq_video_non_burst_syne;
break;
case TEGRA_DSI_VIDEO_NONE_BURST_MODE:
default:
pkt_seq_3_5_rgb_lo =
DSI_PKT_SEQ_3_LO_PKT_32_ID(rgb_info);
pkt_seq = dsi_pkt_seq_video_non_burst;
break;
}
}
for (i = 0; i < NUMOF_PKT_SEQ; i++) {
val = pkt_seq[i];
reg = dsi_pkt_seq_reg[i];
if ((reg == DSI_PKT_SEQ_3_LO) || (reg == DSI_PKT_SEQ_5_LO))
val |= pkt_seq_3_5_rgb_lo;
if ((reg == DSI_PKT_SEQ_3_HI) || (reg == DSI_PKT_SEQ_5_HI))
val |= pkt_seq_3_5_rgb_hi;
tegra_dsi_writel(dsi, val, reg);
}
}
static void tegra_dsi_reset_underflow_overflow
(struct tegra_dc_dsi_data *dsi)
{
u32 val;
val = tegra_dsi_readl(dsi, DSI_STATUS);
val &= (DSI_STATUS_LB_OVERFLOW(0x1) | DSI_STATUS_LB_UNDERFLOW(0x1));
if (val) {
if (val & DSI_STATUS_LB_OVERFLOW(0x1))
dev_warn(&dsi->dc->ndev->dev,
"dsi: video fifo overflow. Resetting flag\n");
if (val & DSI_STATUS_LB_UNDERFLOW(0x1))
dev_warn(&dsi->dc->ndev->dev,
"dsi: video fifo underflow. Resetting flag\n");
val = tegra_dsi_readl(dsi, DSI_HOST_DSI_CONTROL);
val |= DSI_HOST_CONTROL_FIFO_STAT_RESET(0x1);
tegra_dsi_writel(dsi, val, DSI_HOST_DSI_CONTROL);
udelay(5);
}
}
static void tegra_dsi_stop_dc_stream(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
tegra_dc_writel(dc, DISP_CTRL_MODE_STOP, DC_CMD_DISPLAY_COMMAND);
tegra_dc_writel(dc, 0, DC_DISP_DISP_WIN_OPTIONS);
tegra_dc_writel(dc, GENERAL_UPDATE, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ , DC_CMD_STATE_CONTROL);
dsi->status.dc_stream = DSI_DC_STREAM_DISABLE;
}
static void tegra_dsi_stop_dc_stream_at_frame_end(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
int val;
long timeout;
u32 frame_period = DIV_ROUND_UP(S_TO_MS(1), dsi->info.refresh_rate);
/* stop dc */
tegra_dsi_stop_dc_stream(dc, dsi);
/* enable frame end interrupt */
val = tegra_dc_readl(dc, DC_CMD_INT_MASK);
val |= FRAME_END_INT;
tegra_dc_writel(dc, val, DC_CMD_INT_MASK);
/* wait for frame_end completion.
* timeout is 2 frame duration to accomodate for
* internal delay.
*/
timeout = wait_for_completion_interruptible_timeout(
&dc->frame_end_complete,
msecs_to_jiffies(2 * frame_period));
/* disable frame end interrupt */
val = tegra_dc_readl(dc, DC_CMD_INT_MASK);
val &= ~FRAME_END_INT;
tegra_dc_writel(dc, val, DC_CMD_INT_MASK);
if (timeout == 0)
dev_warn(&dc->ndev->dev,
"DC doesn't stop at end of frame.\n");
tegra_dsi_reset_underflow_overflow(dsi);
}
static void tegra_dsi_start_dc_stream(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
u32 val;
tegra_dc_writel(dc, DSI_ENABLE, DC_DISP_DISP_WIN_OPTIONS);
/* TODO: clean up */
tegra_dc_writel(dc, PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
PW4_ENABLE | PM0_ENABLE | PM1_ENABLE,
DC_CMD_DISPLAY_POWER_CONTROL);
/* Configure one-shot mode or continuous mode */
if (dc->out->flags & TEGRA_DC_OUT_ONE_SHOT_MODE) {
/* disable LSPI/LCD_DE output */
val = PIN_OUTPUT_LSPI_OUTPUT_DIS;
tegra_dc_writel(dc, val, DC_COM_PIN_OUTPUT_ENABLE3);
/* enable MSF & set MSF polarity */
val = MSF_ENABLE | MSF_LSPI;
if (!dsi->info.te_polarity_low)
val |= MSF_POLARITY_HIGH;
else
val |= MSF_POLARITY_LOW;
tegra_dc_writel(dc, val, DC_CMD_DISPLAY_COMMAND_OPTION0);
/* set non-continuous mode */
tegra_dc_writel(dc, DISP_CTRL_MODE_NC_DISPLAY,
DC_CMD_DISPLAY_COMMAND);
tegra_dc_writel(dc, GENERAL_UPDATE, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ | NC_HOST_TRIG,
DC_CMD_STATE_CONTROL);
} else {
/* set continuous mode */
tegra_dc_writel(dc, DISP_CTRL_MODE_C_DISPLAY,
DC_CMD_DISPLAY_COMMAND);
tegra_dc_writel(dc, GENERAL_UPDATE, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
}
dsi->status.dc_stream = DSI_DC_STREAM_ENABLE;
}
static void tegra_dsi_set_dc_clk(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
u32 shift_clk_div_register;
u32 val;
/* Get the corresponding register value of shift_clk_div. */
shift_clk_div_register = dsi->shift_clk_div * 2 - 2;
#ifndef CONFIG_TEGRA_SILICON_PLATFORM
shift_clk_div_register = 1;
#endif
/* TODO: find out if PCD3 option is required */
val = PIXEL_CLK_DIVIDER_PCD1 |
SHIFT_CLK_DIVIDER(shift_clk_div_register);
tegra_dc_writel(dc, val, DC_DISP_DISP_CLOCK_CONTROL);
}
static void tegra_dsi_set_dsi_clk(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi, u32 clk)
{
u32 rm;
/* Round up to MHz */
rm = clk % 1000;
if (rm != 0)
clk -= rm;
/* Set up pixel clock */
dc->shift_clk_div = dsi->shift_clk_div;
dc->mode.pclk = (clk * 1000) / dsi->shift_clk_div;
/* TODO: Define one shot work delay in board file. */
/* Since for one-shot mode, refresh rate is usually set larger than
* expected refresh rate, it needs at least 3 frame period. Less
* delay one shot work is, more powering saving we have. */
dc->one_shot_delay_ms = 4 *
DIV_ROUND_UP(S_TO_MS(1), dsi->info.refresh_rate);
/* Enable DSI clock */
tegra_dc_setup_clk(dc, dsi->dsi_clk);
if (!dsi->clk_ref) {
dsi->clk_ref = true;
clk_enable(dsi->dsi_clk);
tegra_periph_reset_deassert(dsi->dsi_clk);
}
dsi->current_dsi_clk_khz = clk_get_rate(dsi->dsi_clk) / 1000;
dsi->current_bit_clk_ns = 1000*1000 / (dsi->current_dsi_clk_khz * 2);
}
static void tegra_dsi_hs_clk_out_enable(struct tegra_dc_dsi_data *dsi)
{
u32 val;
val = tegra_dsi_readl(dsi, DSI_CONTROL);
val &= ~DSI_CONTROL_HS_CLK_CTRL(1);
if (dsi->info.video_clock_mode == TEGRA_DSI_VIDEO_CLOCK_CONTINUOUS) {
val |= DSI_CONTROL_HS_CLK_CTRL(CONTINUOUS);
dsi->status.clk_mode = DSI_PHYCLK_CONTINUOUS;
} else {
val |= DSI_CONTROL_HS_CLK_CTRL(TX_ONLY);
dsi->status.clk_mode = DSI_PHYCLK_TX_ONLY;
}
tegra_dsi_writel(dsi, val, DSI_CONTROL);
val = tegra_dsi_readl(dsi, DSI_HOST_DSI_CONTROL);
val &= ~DSI_HOST_DSI_CONTROL_HIGH_SPEED_TRANS(1);
val |= DSI_HOST_DSI_CONTROL_HIGH_SPEED_TRANS(TEGRA_DSI_HIGH);
tegra_dsi_writel(dsi, val, DSI_HOST_DSI_CONTROL);
dsi->status.clk_out = DSI_PHYCLK_OUT_EN;
}
static void tegra_dsi_hs_clk_out_enable_in_lp(struct tegra_dc_dsi_data *dsi)
{
u32 val;
tegra_dsi_hs_clk_out_enable(dsi);
val = tegra_dsi_readl(dsi, DSI_HOST_DSI_CONTROL);
val &= ~DSI_HOST_DSI_CONTROL_HIGH_SPEED_TRANS(1);
val |= DSI_HOST_DSI_CONTROL_HIGH_SPEED_TRANS(TEGRA_DSI_LOW);
tegra_dsi_writel(dsi, val, DSI_HOST_DSI_CONTROL);
}
static void tegra_dsi_hs_clk_out_disable(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
u32 val;
if (dsi->status.dc_stream == DSI_DC_STREAM_ENABLE)
tegra_dsi_stop_dc_stream_at_frame_end(dc, dsi);
tegra_dsi_writel(dsi, TEGRA_DSI_DISABLE, DSI_POWER_CONTROL);
/* stabilization delay */
udelay(300);
val = tegra_dsi_readl(dsi, DSI_HOST_DSI_CONTROL);
val &= ~DSI_HOST_DSI_CONTROL_HIGH_SPEED_TRANS(1);
val |= DSI_HOST_DSI_CONTROL_HIGH_SPEED_TRANS(TEGRA_DSI_LOW);
tegra_dsi_writel(dsi, val, DSI_HOST_DSI_CONTROL);
tegra_dsi_writel(dsi, TEGRA_DSI_ENABLE, DSI_POWER_CONTROL);
/* stabilization delay */
udelay(300);
dsi->status.clk_mode = DSI_PHYCLK_NOT_INIT;
dsi->status.clk_out = DSI_PHYCLK_OUT_DIS;
}
static void tegra_dsi_set_control_reg_lp(struct tegra_dc_dsi_data *dsi)
{
u32 dsi_control;
u32 host_dsi_control;
u32 max_threshold;
dsi_control = dsi->dsi_control_val | DSI_CTRL_HOST_DRIVEN;
host_dsi_control = HOST_DSI_CTRL_COMMON |
HOST_DSI_CTRL_HOST_DRIVEN |
DSI_HOST_DSI_CONTROL_HIGH_SPEED_TRANS(TEGRA_DSI_LOW);
max_threshold = DSI_MAX_THRESHOLD_MAX_THRESHOLD(DSI_HOST_FIFO_DEPTH);
tegra_dsi_writel(dsi, max_threshold, DSI_MAX_THRESHOLD);
tegra_dsi_writel(dsi, dsi_control, DSI_CONTROL);
tegra_dsi_writel(dsi, host_dsi_control, DSI_HOST_DSI_CONTROL);
dsi->status.driven = DSI_DRIVEN_MODE_HOST;
dsi->status.clk_burst = DSI_CLK_BURST_NOT_INIT;
dsi->status.vtype = DSI_VIDEO_TYPE_NOT_INIT;
}
static void tegra_dsi_set_control_reg_hs(struct tegra_dc_dsi_data *dsi)
{
u32 dsi_control;
u32 host_dsi_control;
u32 max_threshold;
u32 dcs_cmd;
dsi_control = dsi->dsi_control_val;
host_dsi_control = HOST_DSI_CTRL_COMMON;
max_threshold = 0;
dcs_cmd = 0;
if (dsi->driven_mode == TEGRA_DSI_DRIVEN_BY_HOST) {
dsi_control |= DSI_CTRL_HOST_DRIVEN;
host_dsi_control |= HOST_DSI_CTRL_HOST_DRIVEN;
max_threshold =
DSI_MAX_THRESHOLD_MAX_THRESHOLD(DSI_HOST_FIFO_DEPTH);
dsi->status.driven = DSI_DRIVEN_MODE_HOST;
} else {
dsi_control |= DSI_CTRL_DC_DRIVEN;
host_dsi_control |= HOST_DSI_CTRL_DC_DRIVEN;
max_threshold =
DSI_MAX_THRESHOLD_MAX_THRESHOLD(DSI_VIDEO_FIFO_DEPTH);
dsi->status.driven = DSI_DRIVEN_MODE_DC;
}
if (dsi->info.video_data_type == TEGRA_DSI_VIDEO_TYPE_COMMAND_MODE) {
dsi_control |= DSI_CTRL_CMD_MODE;
dcs_cmd = DSI_DCS_CMDS_LT5_DCS_CMD(DSI_WRITE_MEMORY_START)|
DSI_DCS_CMDS_LT3_DCS_CMD(DSI_WRITE_MEMORY_CONTINUE);
dsi->status.vtype = DSI_VIDEO_TYPE_CMD_MODE;
} else {
dsi_control |= DSI_CTRL_VIDEO_MODE;
dsi->status.vtype = DSI_VIDEO_TYPE_VIDEO_MODE;
}
tegra_dsi_writel(dsi, max_threshold, DSI_MAX_THRESHOLD);
tegra_dsi_writel(dsi, dcs_cmd, DSI_DCS_CMDS);
tegra_dsi_writel(dsi, dsi_control, DSI_CONTROL);
tegra_dsi_writel(dsi, host_dsi_control, DSI_HOST_DSI_CONTROL);
}
static void tegra_dsi_pad_calibration(struct tegra_dc_dsi_data *dsi)
{
u32 val;
val = DSI_PAD_CONTROL_PAD_LPUPADJ(0x1) |
DSI_PAD_CONTROL_PAD_LPDNADJ(0x1) |
DSI_PAD_CONTROL_PAD_PREEMP_EN(0x1) |
DSI_PAD_CONTROL_PAD_SLEWDNADJ(0x6) |
DSI_PAD_CONTROL_PAD_SLEWUPADJ(0x6);
if (!dsi->ulpm) {
val |= DSI_PAD_CONTROL_PAD_PDIO(0) |
DSI_PAD_CONTROL_PAD_PDIO_CLK(0) |
DSI_PAD_CONTROL_PAD_PULLDN_ENAB(TEGRA_DSI_DISABLE);
} else {
val |= DSI_PAD_CONTROL_PAD_PDIO(0x3) |
DSI_PAD_CONTROL_PAD_PDIO_CLK(0x1) |
DSI_PAD_CONTROL_PAD_PULLDN_ENAB(TEGRA_DSI_ENABLE);
}
tegra_dsi_writel(dsi, val, DSI_PAD_CONTROL);
val = MIPI_CAL_TERMOSA(0x4);
tegra_vi_csi_writel(val, CSI_CILA_MIPI_CAL_CONFIG_0);
val = MIPI_CAL_TERMOSB(0x4);
tegra_vi_csi_writel(val, CSI_CILB_MIPI_CAL_CONFIG_0);
val = MIPI_CAL_HSPUOSD(0x3) | MIPI_CAL_HSPDOSD(0x4);
tegra_vi_csi_writel(val, CSI_DSI_MIPI_CAL_CONFIG);
val = PAD_DRIV_DN_REF(0x5) | PAD_DRIV_UP_REF(0x7);
tegra_vi_csi_writel(val, CSI_MIPIBIAS_PAD_CONFIG);
val = PAD_CIL_PDVREG(0x0);
tegra_vi_csi_writel(val, CSI_CIL_PAD_CONFIG);
}
static int tegra_dsi_init_hw(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
u32 i;
tegra_dsi_writel(dsi,
DSI_POWER_CONTROL_LEG_DSI_ENABLE(TEGRA_DSI_DISABLE),
DSI_POWER_CONTROL);
/* stabilization delay */
udelay(300);
tegra_dsi_set_dsi_clk(dc, dsi, dsi->target_lp_clk_khz);
if (dsi->info.dsi_instance) {
/* TODO:Set the misc register*/
}
/* TODO: only need to change the timing for bta */
tegra_dsi_set_phy_timing(dsi, DSI_LPHS_IN_LP_MODE);
if (dsi->status.dc_stream == DSI_DC_STREAM_ENABLE)
tegra_dsi_stop_dc_stream_at_frame_end(dc, dsi);
/* Initializing DSI registers */
for (i = 0; i < ARRAY_SIZE(init_reg); i++)
tegra_dsi_writel(dsi, 0, init_reg[i]);
tegra_dsi_writel(dsi, dsi->dsi_control_val, DSI_CONTROL);
tegra_dsi_pad_calibration(dsi);
tegra_dsi_writel(dsi,
DSI_POWER_CONTROL_LEG_DSI_ENABLE(TEGRA_DSI_ENABLE),
DSI_POWER_CONTROL);
/* stabilization delay */
udelay(300);
dsi->status.init = DSI_MODULE_INIT;
dsi->status.lphs = DSI_LPHS_NOT_INIT;
dsi->status.vtype = DSI_VIDEO_TYPE_NOT_INIT;
dsi->status.driven = DSI_DRIVEN_MODE_NOT_INIT;
dsi->status.clk_out = DSI_PHYCLK_OUT_DIS;
dsi->status.clk_mode = DSI_PHYCLK_NOT_INIT;
dsi->status.clk_burst = DSI_CLK_BURST_NOT_INIT;
dsi->status.dc_stream = DSI_DC_STREAM_DISABLE;
dsi->status.lp_op = DSI_LP_OP_NOT_INIT;
return 0;
}
static int tegra_dsi_set_to_lp_mode(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi, u8 lp_op)
{
int err;
if (dsi->status.init != DSI_MODULE_INIT) {
err = -EPERM;
goto fail;
}
if (dsi->status.lphs == DSI_LPHS_IN_LP_MODE &&
dsi->status.lp_op == lp_op)
goto success;
if (dsi->status.dc_stream == DSI_DC_STREAM_ENABLE)
tegra_dsi_stop_dc_stream_at_frame_end(dc, dsi);
/* disable/enable hs clk according to enable_hs_clock_on_lp_cmd_mode */
if ((dsi->status.clk_out == DSI_PHYCLK_OUT_EN) &&
(!dsi->info.enable_hs_clock_on_lp_cmd_mode))
tegra_dsi_hs_clk_out_disable(dc, dsi);
dsi->target_lp_clk_khz = tegra_dsi_get_lp_clk_rate(dsi, lp_op);
if (dsi->current_dsi_clk_khz != dsi->target_lp_clk_khz) {
tegra_dsi_set_dsi_clk(dc, dsi, dsi->target_lp_clk_khz);
tegra_dsi_set_timeout(dsi);
}
tegra_dsi_set_phy_timing(dsi, DSI_LPHS_IN_LP_MODE);
tegra_dsi_set_control_reg_lp(dsi);
if ((dsi->status.clk_out == DSI_PHYCLK_OUT_DIS) &&
(dsi->info.enable_hs_clock_on_lp_cmd_mode))
tegra_dsi_hs_clk_out_enable_in_lp(dsi);
dsi->status.lphs = DSI_LPHS_IN_LP_MODE;
dsi->status.lp_op = lp_op;
success:
err = 0;
fail:
return err;
}
static int tegra_dsi_set_to_hs_mode(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
int err;
if (dsi->status.init != DSI_MODULE_INIT) {
err = -EPERM;
goto fail;
}
if (dsi->status.lphs == DSI_LPHS_IN_HS_MODE)
goto success;
if (dsi->status.dc_stream == DSI_DC_STREAM_ENABLE)
tegra_dsi_stop_dc_stream_at_frame_end(dc, dsi);
if ((dsi->status.clk_out == DSI_PHYCLK_OUT_EN) &&
(!dsi->info.enable_hs_clock_on_lp_cmd_mode))
tegra_dsi_hs_clk_out_disable(dc, dsi);
if (dsi->current_dsi_clk_khz != dsi->target_hs_clk_khz) {
tegra_dsi_set_dsi_clk(dc, dsi, dsi->target_hs_clk_khz);
tegra_dsi_set_timeout(dsi);
}
tegra_dsi_set_phy_timing(dsi, DSI_LPHS_IN_HS_MODE);
if (dsi->driven_mode == TEGRA_DSI_DRIVEN_BY_DC) {
tegra_dsi_set_pkt_seq(dc, dsi);
tegra_dsi_set_pkt_length(dc, dsi);
tegra_dsi_set_sol_delay(dc, dsi);
tegra_dsi_set_dc_clk(dc, dsi);
}
tegra_dsi_set_control_reg_hs(dsi);
if (dsi->status.clk_out == DSI_PHYCLK_OUT_DIS ||
dsi->info.enable_hs_clock_on_lp_cmd_mode)
tegra_dsi_hs_clk_out_enable(dsi);
dsi->status.lphs = DSI_LPHS_IN_HS_MODE;
success:
dsi->status.lp_op = DSI_LP_OP_NOT_INIT;
err = 0;
fail:
return err;
}
static bool tegra_dsi_write_busy(struct tegra_dc_dsi_data *dsi)
{
u32 timeout = 0;
bool retVal = true;
while (timeout <= DSI_MAX_COMMAND_DELAY_USEC) {
if (!(DSI_TRIGGER_HOST_TRIGGER(0x1) &
tegra_dsi_readl(dsi, DSI_TRIGGER))) {
retVal = false;
break;
}
udelay(DSI_COMMAND_DELAY_STEPS_USEC);
timeout += DSI_COMMAND_DELAY_STEPS_USEC;
}
return retVal;
}
static bool tegra_dsi_read_busy(struct tegra_dc_dsi_data *dsi)
{
u32 timeout = 0;
bool retVal = true;
while (timeout < DSI_STATUS_POLLING_DURATION_USEC) {
if (!(DSI_HOST_DSI_CONTROL_IMM_BTA(0x1) &
tegra_dsi_readl(dsi, DSI_HOST_DSI_CONTROL))) {
retVal = false;
break;
}
udelay(DSI_STATUS_POLLING_DELAY_USEC);
timeout += DSI_STATUS_POLLING_DELAY_USEC;
}
return retVal;
}
static bool tegra_dsi_host_busy(struct tegra_dc_dsi_data *dsi)
{
int err = 0;
if (tegra_dsi_write_busy(dsi)) {
err = -EBUSY;
dev_err(&dsi->dc->ndev->dev,
"DSI trigger bit already set\n");
goto fail;
}
if (tegra_dsi_read_busy(dsi)) {
err = -EBUSY;
dev_err(&dsi->dc->ndev->dev,
"DSI immediate bta bit already set\n");
goto fail;
}
fail:
return (err < 0 ? true : false);
}
static void tegra_dsi_soft_reset(struct tegra_dc_dsi_data *dsi)
{
u32 trigger;
u32 status;
tegra_dsi_writel(dsi,
DSI_POWER_CONTROL_LEG_DSI_ENABLE(TEGRA_DSI_DISABLE),
DSI_POWER_CONTROL);
/* stabilization delay */
udelay(300);
tegra_dsi_writel(dsi,
DSI_POWER_CONTROL_LEG_DSI_ENABLE(TEGRA_DSI_ENABLE),
DSI_POWER_CONTROL);
/* stabilization delay */
udelay(300);
/* dsi HW does not clear host trigger bit automatically
* on dsi interface disable if host fifo is empty
*/
trigger = tegra_dsi_readl(dsi, DSI_TRIGGER);
status = tegra_dsi_readl(dsi, DSI_STATUS);
if (trigger & DSI_TRIGGER_HOST_TRIGGER(0x1) &&
status & DSI_STATUS_IDLE(0x1)) {
trigger &= ~(DSI_TRIGGER_HOST_TRIGGER(0x1));
tegra_dsi_writel(dsi, trigger, DSI_TRIGGER);
}
}
static void tegra_dsi_reset_read_count(struct tegra_dc_dsi_data *dsi)
{
u32 val;
val = tegra_dsi_readl(dsi, DSI_STATUS);
val &= DSI_STATUS_RD_FIFO_COUNT(0x1f);
if (val) {
dev_warn(&dsi->dc->ndev->dev,
"DSI read count not zero, resetting\n");
tegra_dsi_soft_reset(dsi);
}
}
static struct dsi_status *tegra_dsi_save_state_switch_to_host_cmd_mode(
struct tegra_dc_dsi_data *dsi,
struct tegra_dc *dc,
u8 lp_op)
{
struct dsi_status *init_status;
int err;
init_status = kzalloc(sizeof(*init_status), GFP_KERNEL);
if (!init_status)
return ERR_PTR(-ENOMEM);
*init_status = dsi->status;
if (dsi->status.lphs == DSI_LPHS_IN_HS_MODE) {
if (dsi->status.driven == DSI_DRIVEN_MODE_DC) {
if (dsi->status.dc_stream == DSI_DC_STREAM_ENABLE)
tegra_dsi_stop_dc_stream_at_frame_end(dc, dsi);
dsi->driven_mode = TEGRA_DSI_DRIVEN_BY_HOST;
if (dsi->info.hs_cmd_mode_supported) {
err = tegra_dsi_set_to_hs_mode(dc, dsi);
if (err < 0) {
dev_err(&dc->ndev->dev,
"Switch to HS host mode failed\n");
goto fail;
}
}
}
if (!dsi->info.hs_cmd_mode_supported) {
err =
tegra_dsi_set_to_lp_mode(dc, dsi, lp_op);
if (err < 0) {
dev_err(&dc->ndev->dev,
"DSI failed to go to LP mode\n");
goto fail;
}
}
} else if (dsi->status.lphs == DSI_LPHS_IN_LP_MODE) {
if (dsi->status.lp_op != lp_op) {
err = tegra_dsi_set_to_lp_mode(dc, dsi, lp_op);
if (err < 0) {
dev_err(&dc->ndev->dev,
"DSI failed to go to LP mode\n");
goto fail;
}
}
}
return init_status;
fail:
kfree(init_status);
return ERR_PTR(err);
}
static struct dsi_status *tegra_dsi_prepare_host_transmission(
struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi,
u8 lp_op)
{
int err = 0;
struct dsi_status *init_status;
if (dsi->status.init != DSI_MODULE_INIT ||
dsi->ulpm) {
err = -EPERM;
goto fail;
}
if (tegra_dsi_host_busy(dsi)) {
tegra_dsi_soft_reset(dsi);
if (tegra_dsi_host_busy(dsi)) {
err = -EBUSY;
dev_err(&dc->ndev->dev, "DSI host busy\n");
goto fail;
}
}
if (lp_op == DSI_LP_OP_READ)
tegra_dsi_reset_read_count(dsi);
if (dsi->status.lphs == DSI_LPHS_NOT_INIT) {
err = tegra_dsi_set_to_lp_mode(dc, dsi, lp_op);
if (err < 0) {
dev_err(&dc->ndev->dev, "Failed to config LP write\n");
goto fail;
}
}
init_status = tegra_dsi_save_state_switch_to_host_cmd_mode
(dsi, dc, lp_op);
if (IS_ERR_OR_NULL(init_status)) {
err = PTR_ERR(init_status);
dev_err(&dc->ndev->dev, "DSI state saving failed\n");
goto fail;
}
return init_status;
fail:
return ERR_PTR(err);
}
static int tegra_dsi_restore_state(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi,
struct dsi_status *init_status)
{
bool switch_back_to_dc_mode = false;
bool switch_back_to_hs_mode = false;
bool restart_dc_stream;
int err = 0;
switch_back_to_dc_mode = (dsi->status.driven ==
DSI_DRIVEN_MODE_HOST &&
init_status->driven ==
DSI_DRIVEN_MODE_DC);
switch_back_to_hs_mode = (dsi->status.lphs ==
DSI_LPHS_IN_LP_MODE &&
init_status->lphs ==
DSI_LPHS_IN_HS_MODE);
restart_dc_stream = (dsi->status.dc_stream ==
DSI_DC_STREAM_DISABLE &&
init_status->dc_stream ==
DSI_DC_STREAM_ENABLE);
if (dsi->status.lphs == DSI_LPHS_IN_LP_MODE &&
init_status->lphs == DSI_LPHS_IN_LP_MODE) {
if (dsi->status.lp_op != init_status->lp_op) {
err =
tegra_dsi_set_to_lp_mode(dc, dsi, init_status->lp_op);
if (err < 0) {
dev_err(&dc->ndev->dev,
"Failed to config LP mode\n");
goto fail;
}
}
goto success;
}
if (switch_back_to_dc_mode)
dsi->driven_mode = TEGRA_DSI_DRIVEN_BY_DC;
if (switch_back_to_dc_mode || switch_back_to_hs_mode) {
err = tegra_dsi_set_to_hs_mode(dc, dsi);
if (err < 0) {
dev_err(&dc->ndev->dev, "Failed to config HS mode\n");
goto fail;
}
}
if (restart_dc_stream)
tegra_dsi_start_dc_stream(dc, dsi);
success:
fail:
kfree(init_status);
return err;
}
static int tegra_dsi_host_trigger(struct tegra_dc_dsi_data *dsi)
{
int status = 0;
if (tegra_dsi_readl(dsi, DSI_TRIGGER)) {
status = -EBUSY;
goto fail;
}
tegra_dsi_writel(dsi,
DSI_TRIGGER_HOST_TRIGGER(TEGRA_DSI_ENABLE), DSI_TRIGGER);
#if DSI_USE_SYNC_POINTS
status = tegra_dsi_syncpt(dsi);
if (status < 0) {
dev_err(&dsi->dc->ndev->dev,
"DSI syncpt for host trigger failed\n");
goto fail;
}
#else
if (tegra_dsi_write_busy(dsi)) {
status = -EBUSY;
dev_err(&dsi->dc->ndev->dev,
"Timeout waiting on write completion\n");
}
#endif
fail:
return status;
}
static int _tegra_dsi_write_data(struct tegra_dc_dsi_data *dsi,
u8 *pdata, u8 data_id, u16 data_len)
{
u8 virtual_channel;
u8 *pval;
u32 val;
int err;
err = 0;
virtual_channel = dsi->info.virtual_channel <<
DSI_VIR_CHANNEL_BIT_POSITION;
/* always use hw for ecc */
val = (virtual_channel | data_id) << 0 |
data_len << 8;
tegra_dsi_writel(dsi, val, DSI_WR_DATA);
/* if pdata != NULL, pkt type is long pkt */
if (pdata != NULL) {
while (data_len) {
if (data_len >= 4) {
val = ((u32 *) pdata)[0];
data_len -= 4;
pdata += 4;
} else {
val = 0;
pval = (u8 *) &val;
do
*pval++ = *pdata++;
while (--data_len);
}
tegra_dsi_writel(dsi, val, DSI_WR_DATA);
}
}
err = tegra_dsi_host_trigger(dsi);
if (err < 0)
dev_err(&dsi->dc->ndev->dev, "DSI host trigger failed\n");
return err;
}
int tegra_dsi_write_data(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi,
u8 *pdata, u8 data_id, u16 data_len)
{
int err = 0;
struct dsi_status *init_status;
tegra_dc_io_start(dc);
init_status = tegra_dsi_prepare_host_transmission(
dc, dsi, DSI_LP_OP_WRITE);
if (IS_ERR_OR_NULL(init_status)) {
err = PTR_ERR(init_status);
dev_err(&dc->ndev->dev, "DSI host config failed\n");
goto fail;
}
err = _tegra_dsi_write_data(dsi, pdata, data_id, data_len);
fail:
err = tegra_dsi_restore_state(dc, dsi, init_status);
if (err < 0)
dev_err(&dc->ndev->dev, "Failed to restore prev state\n");
tegra_dc_io_end(dc);
return err;
}
EXPORT_SYMBOL(tegra_dsi_write_data);
static int tegra_dsi_send_panel_cmd(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi,
struct tegra_dsi_cmd *cmd,
u32 n_cmd)
{
u32 i;
int err;
err = 0;
for (i = 0; i < n_cmd; i++) {
struct tegra_dsi_cmd *cur_cmd;
cur_cmd = &cmd[i];
if (cur_cmd->cmd_type == TEGRA_DSI_DELAY_MS)
mdelay(cur_cmd->sp_len_dly.delay_ms);
else {
err = tegra_dsi_write_data(dc, dsi,
cur_cmd->pdata,
cur_cmd->data_id,
cur_cmd->sp_len_dly.data_len);
if (err < 0)
break;
}
}
return err;
}
static u8 get_8bit_ecc(u32 header)
{
char ecc_parity[24] = {
0x07, 0x0b, 0x0d, 0x0e, 0x13, 0x15, 0x16, 0x19,
0x1a, 0x1c, 0x23, 0x25, 0x26, 0x29, 0x2a, 0x2c,
0x31, 0x32, 0x34, 0x38, 0x1f, 0x2f, 0x37, 0x3b
};
u8 ecc_byte;
int i;
ecc_byte = 0;
for (i = 0; i < 24; i++)
ecc_byte ^= ((header >> i) & 1) ? ecc_parity[i] : 0x00;
return ecc_byte;
}
/* This function is written to send DCS short write (1 parameter) only.
* This means the cmd will contain only 1 byte of index and 1 byte of value.
* The data type ID is fixed at 0x15 and the ECC is calculated based on the
* data in pdata.
* The command will be sent by hardware every frame.
* pdata should contain both the index + value for each cmd.
* data_len will be the total number of bytes in pdata.
*/
int tegra_dsi_send_panel_short_cmd(struct tegra_dc *dc, u8 *pdata, u8 data_len)
{
u8 ecc8bits = 0, data_len_orig = 0;
u32 val = 0, pkthdr = 0;
int err = 0, count = 0;
struct tegra_dc_dsi_data *dsi = tegra_dc_get_outdata(dc);
data_len_orig = data_len;
if (pdata != NULL) {
while (data_len) {
if (data_len >= 2) {
pkthdr = (CMD_SHORTW |
(((u16 *)pdata)[0]) << 8 | 0x00 << 24);
ecc8bits = get_8bit_ecc(pkthdr);
val = (pkthdr | (ecc8bits << 24));
data_len -= 2;
pdata += 2;
count++;
}
switch (count) {
case 1:
tegra_dsi_writel(dsi, val, DSI_INIT_SEQ_DATA_0);
break;
case 2:
tegra_dsi_writel(dsi, val, DSI_INIT_SEQ_DATA_1);
break;
case 3:
tegra_dsi_writel(dsi, val, DSI_INIT_SEQ_DATA_2);
break;
case 4:
tegra_dsi_writel(dsi, val, DSI_INIT_SEQ_DATA_3);
break;
case 5:
tegra_dsi_writel(dsi, val, DSI_INIT_SEQ_DATA_4);
break;
case 6:
tegra_dsi_writel(dsi, val, DSI_INIT_SEQ_DATA_5);
break;
case 7:
tegra_dsi_writel(dsi, val, DSI_INIT_SEQ_DATA_6);
break;
case 8:
tegra_dsi_writel(dsi, val, DSI_INIT_SEQ_DATA_7);
break;
default:
err = 1;
break;
}
}
}
val = DSI_INIT_SEQ_CONTROL_DSI_FRAME_INIT_BYTE_COUNT(data_len_orig * 2)
| DSI_INIT_SEQ_CONTROL_DSI_SEND_INIT_SEQUENCE(1);
tegra_dsi_writel(dsi, val, DSI_INIT_SEQ_CONTROL);
return err;
}
EXPORT_SYMBOL(tegra_dsi_send_panel_short_cmd);
static int tegra_dsi_bta(struct tegra_dc_dsi_data *dsi)
{
u32 val;
u32 poll_time;
int err;
poll_time = 0;
err = 0;
val = tegra_dsi_readl(dsi, DSI_HOST_DSI_CONTROL);
val |= DSI_HOST_DSI_CONTROL_IMM_BTA(TEGRA_DSI_ENABLE);
tegra_dsi_writel(dsi, val, DSI_HOST_DSI_CONTROL);
#if DSI_USE_SYNC_POINTS
/* FIXME: Workaround for nvhost_syncpt_read */
dsi->syncpt_val = nvhost_syncpt_update_min(
&nvhost_get_host(dsi->dc->ndev)->syncpt,
dsi->syncpt_id);
val = DSI_INCR_SYNCPT_COND(OP_DONE) |
DSI_INCR_SYNCPT_INDX(dsi->syncpt_id);
tegra_dsi_writel(dsi, val, DSI_INCR_SYNCPT);
/* TODO: Use interrupt rather than polling */
err = nvhost_syncpt_wait(&nvhost_get_host(dsi->dc->ndev)->syncpt,
dsi->syncpt_id, dsi->syncpt_val + 1);
if (err < 0)
dev_err(&dsi->dc->ndev->dev,
"DSI sync point failure\n");
else
(dsi->syncpt_val)++;
#else
if (tegra_dsi_read_busy(dsi)) {
err = -EBUSY;
dev_err(&dsi->dc->ndev->dev,
"Timeout wating on read completion\n");
}
#endif
return err;
}
static int tegra_dsi_parse_read_response(struct tegra_dc *dc,
u32 rd_fifo_cnt, u8 *read_fifo)
{
int err;
u32 payload_size;
payload_size = 0;
err = 0;
switch (read_fifo[0]) {
case DSI_ESCAPE_CMD:
dev_info(&dc->ndev->dev, "escape cmd[0x%x]\n", read_fifo[0]);
break;
case DSI_ACK_NO_ERR:
dev_info(&dc->ndev->dev,
"Panel ack, no err[0x%x]\n", read_fifo[0]);
return err;
default:
dev_info(&dc->ndev->dev, "Invalid read response\n");
break;
}
switch (read_fifo[4] & 0xff) {
case GEN_LONG_RD_RES:
/* Fall through */
case DCS_LONG_RD_RES:
payload_size = (read_fifo[5] |
(read_fifo[6] << 8)) & 0xFFFF;
dev_info(&dc->ndev->dev, "Long read response Packet\n"
"payload_size[0x%x]\n", payload_size);
break;
case GEN_1_BYTE_SHORT_RD_RES:
/* Fall through */
case DCS_1_BYTE_SHORT_RD_RES:
payload_size = 1;
dev_info(&dc->ndev->dev, "Short read response Packet\n"
"payload_size[0x%x]\n", payload_size);
break;
case GEN_2_BYTE_SHORT_RD_RES:
/* Fall through */
case DCS_2_BYTE_SHORT_RD_RES:
payload_size = 2;
dev_info(&dc->ndev->dev, "Short read response Packet\n"
"payload_size[0x%x]\n", payload_size);
break;
case ACK_ERR_RES:
payload_size = 2;
dev_info(&dc->ndev->dev, "Acknowledge error report response\n"
"Packet payload_size[0x%x]\n", payload_size);
break;
default:
dev_info(&dc->ndev->dev, "Invalid response packet\n");
err = -EINVAL;
break;
}
return err;
}
static int tegra_dsi_read_fifo(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi,
u8 *read_fifo)
{
u32 val;
u32 i;
u32 poll_time = 0;
u32 rd_fifo_cnt;
int err = 0;
u8 *read_fifo_cp = read_fifo;
while (poll_time < DSI_DELAY_FOR_READ_FIFO) {
mdelay(1);
val = tegra_dsi_readl(dsi, DSI_STATUS);
rd_fifo_cnt = val & DSI_STATUS_RD_FIFO_COUNT(0x1f);
if (rd_fifo_cnt << 2 > DSI_READ_FIFO_DEPTH)
dev_err(&dc->ndev->dev,
"DSI RD_FIFO_CNT is greater than RD_FIFO_DEPTH\n");
break;
poll_time++;
}
if (rd_fifo_cnt == 0) {
dev_info(&dc->ndev->dev,
"DSI RD_FIFO_CNT is zero\n");
err = -EINVAL;
goto fail;
}
if (val & (DSI_STATUS_LB_UNDERFLOW(0x1) |
DSI_STATUS_LB_OVERFLOW(0x1))) {
dev_warn(&dc->ndev->dev,
"DSI overflow/underflow error\n");
}
/* Read data from FIFO */
for (i = 0; i < rd_fifo_cnt; i++) {
val = tegra_dsi_readl(dsi, DSI_RD_DATA);
if (enable_read_debug)
dev_info(&dc->ndev->dev,
"Read data[%d]: 0x%x\n", i, val);
memcpy(read_fifo, &val, 4);
read_fifo += 4;
}
/* Make sure all the data is read from the FIFO */
val = tegra_dsi_readl(dsi, DSI_STATUS);
val &= DSI_STATUS_RD_FIFO_COUNT(0x1f);
if (val)
dev_err(&dc->ndev->dev, "DSI FIFO_RD_CNT not zero"
" even after reading FIFO_RD_CNT words from read fifo\n");
if (enable_read_debug) {
err =
tegra_dsi_parse_read_response(dc, rd_fifo_cnt, read_fifo_cp);
if (err < 0)
dev_warn(&dc->ndev->dev, "Unexpected read data\n");
}
fail:
return err;
}
int tegra_dsi_read_data(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi,
u32 max_ret_payload_size,
u32 panel_reg_addr, u8 *read_data)
{
int err = 0;
struct dsi_status *init_status;
tegra_dc_io_start(dc);
init_status = tegra_dsi_prepare_host_transmission(
dc, dsi, DSI_LP_OP_WRITE);
if (IS_ERR_OR_NULL(init_status)) {
err = PTR_ERR(init_status);
dev_err(&dc->ndev->dev, "DSI host config failed\n");
goto fail;
}
/* Set max return payload size in words */
err = _tegra_dsi_write_data(dsi, NULL,
dsi_command_max_return_pkt_size,
max_ret_payload_size);
if (err < 0) {
dev_err(&dc->ndev->dev,
"DSI write failed\n");
goto fail;
}
/* DCS to read given panel register */
err = _tegra_dsi_write_data(dsi, NULL,
dsi_command_dcs_read_with_no_params,
panel_reg_addr);
if (err < 0) {
dev_err(&dc->ndev->dev,
"DSI write failed\n");
goto fail;
}
tegra_dsi_reset_read_count(dsi);
if (dsi->status.lp_op == DSI_LP_OP_WRITE) {
err = tegra_dsi_set_to_lp_mode(dc, dsi, DSI_LP_OP_READ);
if (err < 0) {
dev_err(&dc->ndev->dev,
"DSI failed to go to LP read mode\n");
goto fail;
}
}
err = tegra_dsi_bta(dsi);
if (err < 0) {
dev_err(&dc->ndev->dev,
"DSI IMM BTA timeout\n");
goto fail;
}
err = tegra_dsi_read_fifo(dc, dsi, read_data);
if (err < 0) {
dev_err(&dc->ndev->dev, "DSI read fifo failure\n");
goto fail;
}
fail:
err = tegra_dsi_restore_state(dc, dsi, init_status);
if (err < 0)
dev_err(&dc->ndev->dev, "Failed to restore prev state\n");
tegra_dc_io_end(dc);
return err;
}
EXPORT_SYMBOL(tegra_dsi_read_data);
int tegra_dsi_panel_sanity_check(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
int err = 0;
u8 read_fifo[DSI_READ_FIFO_DEPTH];
struct dsi_status *init_status;
static struct tegra_dsi_cmd dsi_nop_cmd =
DSI_CMD_SHORT(0x05, 0x0, 0x0);
tegra_dc_io_start(dc);
init_status = tegra_dsi_prepare_host_transmission(
dc, dsi, DSI_LP_OP_WRITE);
if (IS_ERR_OR_NULL(init_status)) {
err = PTR_ERR(init_status);
dev_err(&dc->ndev->dev, "DSI host config failed\n");
goto fail;
}
err = _tegra_dsi_write_data(dsi, NULL, dsi_nop_cmd.data_id, 0x0);
if (err < 0) {
dev_err(&dc->ndev->dev, "DSI nop write failed\n");
goto fail;
}
tegra_dsi_reset_read_count(dsi);
if (dsi->status.lp_op == DSI_LP_OP_WRITE) {
err = tegra_dsi_set_to_lp_mode(dc, dsi, DSI_LP_OP_READ);
if (err < 0) {
dev_err(&dc->ndev->dev,
"DSI failed to go to LP read mode\n");
goto fail;
}
}
err = tegra_dsi_bta(dsi);
if (err < 0) {
dev_err(&dc->ndev->dev, "DSI BTA failed\n");
goto fail;
}
err = tegra_dsi_read_fifo(dc, dsi, read_fifo);
if (err < 0) {
dev_err(&dc->ndev->dev, "DSI read fifo failure\n");
goto fail;
}
if (read_fifo[0] != DSI_ACK_NO_ERR) {
dev_warn(&dc->ndev->dev,
"Ack no error trigger message not received\n");
err = -EAGAIN;
}
fail:
err = tegra_dsi_restore_state(dc, dsi, init_status);
if (err < 0)
dev_err(&dc->ndev->dev, "Failed to restore prev state\n");
tegra_dc_io_end(dc);
return err;
}
EXPORT_SYMBOL(tegra_dsi_panel_sanity_check);
static int tegra_dsi_enter_ulpm(struct tegra_dc_dsi_data *dsi)
{
u32 val;
int ret;
ret = 0;
val = tegra_dsi_readl(dsi, DSI_HOST_DSI_CONTROL);
val &= ~DSI_HOST_DSI_CONTROL_ULTRA_LOW_POWER(3);
val |= DSI_HOST_DSI_CONTROL_ULTRA_LOW_POWER(ENTER_ULPM);
tegra_dsi_writel(dsi, val, DSI_HOST_DSI_CONTROL);
#if DSI_USE_SYNC_POINTS
ret = tegra_dsi_syncpt(dsi);
if (ret < 0) {
dev_err(&dsi->dc->ndev->dev,
"DSI syncpt for ulpm enter failed\n");
goto fail;
}
#else
/* TODO: Find exact delay required */
mdelay(10);
#endif
dsi->ulpm = true;
fail:
return ret;
}
static int tegra_dsi_exit_ulpm(struct tegra_dc_dsi_data *dsi)
{
u32 val;
int ret;
ret = 0;
val = tegra_dsi_readl(dsi, DSI_HOST_DSI_CONTROL);
val &= ~DSI_HOST_DSI_CONTROL_ULTRA_LOW_POWER(3);
val |= DSI_HOST_DSI_CONTROL_ULTRA_LOW_POWER(EXIT_ULPM);
tegra_dsi_writel(dsi, val, DSI_HOST_DSI_CONTROL);
#if DSI_USE_SYNC_POINTS
ret = tegra_dsi_syncpt(dsi);
if (ret < 0) {
dev_err(&dsi->dc->ndev->dev,
"DSI syncpt for ulpm exit failed\n");
goto fail;
}
#else
/* TODO: Find exact delay required */
mdelay(10);
#endif
dsi->ulpm = false;
val = tegra_dsi_readl(dsi, DSI_HOST_DSI_CONTROL);
val &= ~DSI_HOST_DSI_CONTROL_ULTRA_LOW_POWER(0x3);
val |= DSI_HOST_DSI_CONTROL_ULTRA_LOW_POWER(NORMAL);
tegra_dsi_writel(dsi, val, DSI_HOST_DSI_CONTROL);
fail:
return ret;
}
static void tegra_dc_dsi_enable(struct tegra_dc *dc)
{
struct tegra_dc_dsi_data *dsi = tegra_dc_get_outdata(dc);
int err;
u32 val;
tegra_dc_io_start(dc);
mutex_lock(&dsi->lock);
/* Stop DC stream before configuring DSI registers
* to avoid visible glitches on panel during transition
* from bootloader to kernel driver
*/
tegra_dsi_stop_dc_stream(dc, dsi);
if (dsi->enabled) {
if (dsi->ulpm) {
if (tegra_dsi_exit_ulpm(dsi) < 0) {
dev_err(&dc->ndev->dev,
"DSI failed to exit ulpm\n");
goto fail;
}
}
if (dsi->info.panel_reset) {
err = tegra_dsi_send_panel_cmd(dc, dsi,
dsi->info.dsi_init_cmd,
dsi->info.n_init_cmd);
if (err < 0) {
dev_err(&dc->ndev->dev,
"dsi: error sending dsi init cmd\n");
goto fail;
}
} else if (dsi->info.dsi_late_resume_cmd) {
err = tegra_dsi_send_panel_cmd(dc, dsi,
dsi->info.dsi_late_resume_cmd,
dsi->info.n_late_resume_cmd);
if (err < 0) {
dev_err(&dc->ndev->dev,
"dsi: error sending late resume cmd\n");
goto fail;
}
}
} else {
err = tegra_dsi_init_hw(dc, dsi);
if (err < 0) {
dev_err(&dc->ndev->dev,
"dsi: not able to init dsi hardware\n");
goto fail;
}
if (dsi->ulpm) {
if (tegra_dsi_enter_ulpm(dsi) < 0) {
dev_err(&dc->ndev->dev,
"DSI failed to enter ulpm\n");
goto fail;
}
val = tegra_dsi_readl(dsi, DSI_PAD_CONTROL);
/* erase bits we're about to set */
val &= ~(DSI_PAD_CONTROL_PAD_PDIO(0x3) |
DSI_PAD_CONTROL_PAD_PDIO_CLK(0x1) |
DSI_PAD_CONTROL_PAD_PULLDN_ENAB(0x1));
val |= (DSI_PAD_CONTROL_PAD_PDIO(0) |
DSI_PAD_CONTROL_PAD_PDIO_CLK(0) |
DSI_PAD_CONTROL_PAD_PULLDN_ENAB
(TEGRA_DSI_DISABLE));
tegra_dsi_writel(dsi, val, DSI_PAD_CONTROL);
if (tegra_dsi_exit_ulpm(dsi) < 0) {
dev_err(&dc->ndev->dev,
"DSI failed to exit ulpm\n");
goto fail;
}
}
err = tegra_dsi_set_to_lp_mode(dc, dsi, DSI_LP_OP_WRITE);
if (err < 0) {
dev_err(&dc->ndev->dev,
"dsi: not able to set to lp mode\n");
goto fail;
}
err = tegra_dsi_send_panel_cmd(dc, dsi, dsi->info.dsi_init_cmd,
dsi->info.n_init_cmd);
if (err < 0) {
dev_err(&dc->ndev->dev,
"dsi: error while sending dsi init cmd\n");
goto fail;
}
err = tegra_dsi_set_to_hs_mode(dc, dsi);
if (err < 0) {
dev_err(&dc->ndev->dev,
"dsi: not able to set to hs mode\n");
goto fail;
}
dsi->enabled = true;
}
if (dsi->status.driven == DSI_DRIVEN_MODE_DC)
tegra_dsi_start_dc_stream(dc, dsi);
fail:
mutex_unlock(&dsi->lock);
tegra_dc_io_end(dc);
}
static void _tegra_dc_dsi_init(struct tegra_dc *dc)
{
struct tegra_dc_dsi_data *dsi = tegra_dc_get_outdata(dc);
tegra_dsi_init_sw(dc, dsi);
/* TODO: Configure the CSI pad configuration */
}
static int tegra_dc_dsi_cp_p_cmd(struct tegra_dsi_cmd *src,
struct tegra_dsi_cmd *dst, u16 n_cmd)
{
u16 i;
u16 len;
memcpy(dst, src, sizeof(*dst) * n_cmd);
for (i = 0; i < n_cmd; i++)
if (src[i].pdata) {
len = sizeof(*src[i].pdata) *
src[i].sp_len_dly.data_len;
dst[i].pdata = kzalloc(len, GFP_KERNEL);
if (!dst[i].pdata)
goto free_cmd_pdata;
memcpy(dst[i].pdata, src[i].pdata, len);
}
return 0;
free_cmd_pdata:
for (--i; i >= 0; i--)
if (dst[i].pdata)
kfree(dst[i].pdata);
return -ENOMEM;
}
static int tegra_dc_dsi_cp_info(struct tegra_dc_dsi_data *dsi,
struct tegra_dsi_out *p_dsi)
{
struct tegra_dsi_cmd *p_init_cmd;
struct tegra_dsi_cmd *p_early_suspend_cmd;
struct tegra_dsi_cmd *p_late_resume_cmd;
struct tegra_dsi_cmd *p_suspend_cmd;
int err;
if (p_dsi->n_data_lanes > MAX_DSI_DATA_LANES)
return -EINVAL;
p_init_cmd = kzalloc(sizeof(*p_init_cmd) *
p_dsi->n_init_cmd, GFP_KERNEL);
if (!p_init_cmd)
return -ENOMEM;
if (p_dsi->dsi_early_suspend_cmd) {
p_early_suspend_cmd = kzalloc(sizeof(*p_early_suspend_cmd) *
p_dsi->n_early_suspend_cmd,
GFP_KERNEL);
if (!p_early_suspend_cmd) {
err = -ENOMEM;
goto err_free_init_cmd;
}
}
if (p_dsi->dsi_late_resume_cmd) {
p_late_resume_cmd = kzalloc(sizeof(*p_late_resume_cmd) *
p_dsi->n_late_resume_cmd,
GFP_KERNEL);
if (!p_late_resume_cmd) {
err = -ENOMEM;
goto err_free_p_early_suspend_cmd;
}
}
p_suspend_cmd = kzalloc(sizeof(*p_suspend_cmd) * p_dsi->n_suspend_cmd,
GFP_KERNEL);
if (!p_suspend_cmd) {
err = -ENOMEM;
goto err_free_p_late_resume_cmd;
}
memcpy(&dsi->info, p_dsi, sizeof(dsi->info));
/* Copy panel init cmd */
err = tegra_dc_dsi_cp_p_cmd(p_dsi->dsi_init_cmd,
p_init_cmd, p_dsi->n_init_cmd);
if (err < 0)
goto err_free;
dsi->info.dsi_init_cmd = p_init_cmd;
/* Copy panel early suspend cmd */
if (p_dsi->dsi_early_suspend_cmd) {
err = tegra_dc_dsi_cp_p_cmd(p_dsi->dsi_early_suspend_cmd,
p_early_suspend_cmd,
p_dsi->n_early_suspend_cmd);
if (err < 0)
goto err_free;
dsi->info.dsi_early_suspend_cmd = p_early_suspend_cmd;
}
/* Copy panel late resume cmd */
if (p_dsi->dsi_late_resume_cmd) {
err = tegra_dc_dsi_cp_p_cmd(p_dsi->dsi_late_resume_cmd,
p_late_resume_cmd,
p_dsi->n_late_resume_cmd);
if (err < 0)
goto err_free;
dsi->info.dsi_late_resume_cmd = p_late_resume_cmd;
}
/* Copy panel suspend cmd */
err = tegra_dc_dsi_cp_p_cmd(p_dsi->dsi_suspend_cmd, p_suspend_cmd,
p_dsi->n_suspend_cmd);
if (err < 0)
goto err_free;
dsi->info.dsi_suspend_cmd = p_suspend_cmd;
if (!dsi->info.panel_reset_timeout_msec)
dsi->info.panel_reset_timeout_msec =
DEFAULT_PANEL_RESET_TIMEOUT;
if (!dsi->info.panel_buffer_size_byte)
dsi->info.panel_buffer_size_byte = DEFAULT_PANEL_BUFFER_BYTE;
if (!dsi->info.max_panel_freq_khz) {
dsi->info.max_panel_freq_khz = DEFAULT_MAX_DSI_PHY_CLK_KHZ;
if (dsi->info.video_burst_mode >
TEGRA_DSI_VIDEO_NONE_BURST_MODE_WITH_SYNC_END){
dev_err(&dsi->dc->ndev->dev, "DSI: max_panel_freq_khz"
"is not set for DSI burst mode.\n");
dsi->info.video_burst_mode =
TEGRA_DSI_VIDEO_BURST_MODE_LOWEST_SPEED;
}
}
if (!dsi->info.lp_cmd_mode_freq_khz)
dsi->info.lp_cmd_mode_freq_khz = DEFAULT_LP_CMD_MODE_CLK_KHZ;
if (!dsi->info.chip_id || !dsi->info.chip_rev)
dev_warn(&dsi->dc->ndev->dev,
"DSI: Failed to get chip info\n");
if (!dsi->info.lp_read_cmd_mode_freq_khz)
dsi->info.lp_read_cmd_mode_freq_khz =
dsi->info.lp_cmd_mode_freq_khz;
/* host mode is for testing only */
dsi->driven_mode = TEGRA_DSI_DRIVEN_BY_DC;
return 0;
err_free:
kfree(p_suspend_cmd);
err_free_p_late_resume_cmd:
kfree(p_late_resume_cmd);
err_free_p_early_suspend_cmd:
kfree(p_early_suspend_cmd);
err_free_init_cmd:
kfree(p_init_cmd);
return err;
}
static int tegra_dc_dsi_init(struct tegra_dc *dc)
{
struct tegra_dc_dsi_data *dsi;
struct resource *res;
struct resource *base_res;
void __iomem *base;
struct clk *dc_clk = NULL;
struct clk *dsi_clk = NULL;
struct tegra_dsi_out *dsi_pdata;
int err;
err = 0;
dsi = kzalloc(sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
res = nvhost_get_resource_byname(dc->ndev, IORESOURCE_MEM,
"dsi_regs");
if (!res) {
dev_err(&dc->ndev->dev, "dsi: no mem resource\n");
err = -ENOENT;
goto err_free_dsi;
}
base_res = request_mem_region(res->start, resource_size(res),
dc->ndev->name);
if (!base_res) {
dev_err(&dc->ndev->dev, "dsi: request_mem_region failed\n");
err = -EBUSY;
goto err_free_dsi;
}
base = ioremap(res->start, resource_size(res));
if (!base) {
dev_err(&dc->ndev->dev, "dsi: registers can't be mapped\n");
err = -EBUSY;
goto err_release_regs;
}
dsi_pdata = dc->pdata->default_out->dsi;
if (!dsi_pdata) {
dev_err(&dc->ndev->dev, "dsi: dsi data not available\n");
goto err_release_regs;
}
if (dsi_pdata->dsi_instance)
dsi_clk = clk_get(&dc->ndev->dev, "dsib");
else
dsi_clk = clk_get(&dc->ndev->dev, "dsia");
if (IS_ERR_OR_NULL(dsi_clk)) {
dev_err(&dc->ndev->dev, "dsi: can't get clock\n");
err = -EBUSY;
goto err_release_regs;
}
dc_clk = clk_get_sys(dev_name(&dc->ndev->dev), NULL);
if (IS_ERR_OR_NULL(dc_clk)) {
dev_err(&dc->ndev->dev, "dsi: dc clock %s unavailable\n",
dev_name(&dc->ndev->dev));
err = -EBUSY;
goto err_clk_put;
}
mutex_init(&dsi->lock);
dsi->dc = dc;
dsi->base = base;
dsi->base_res = base_res;
dsi->dc_clk = dc_clk;
dsi->dsi_clk = dsi_clk;
err = tegra_dc_dsi_cp_info(dsi, dsi_pdata);
if (err < 0)
goto err_dsi_data;
tegra_dc_set_outdata(dc, dsi);
_tegra_dc_dsi_init(dc);
return 0;
err_dsi_data:
err_clk_put:
clk_put(dsi_clk);
err_release_regs:
release_resource(base_res);
err_free_dsi:
kfree(dsi);
return err;
}
static void tegra_dc_dsi_destroy(struct tegra_dc *dc)
{
struct tegra_dc_dsi_data *dsi = tegra_dc_get_outdata(dc);
u16 i;
u32 val;
mutex_lock(&dsi->lock);
/* free up the pdata */
for (i = 0; i < dsi->info.n_init_cmd; i++) {
if (dsi->info.dsi_init_cmd[i].pdata)
kfree(dsi->info.dsi_init_cmd[i].pdata);
}
kfree(dsi->info.dsi_init_cmd);
/* Disable dc stream */
if (dsi->status.dc_stream == DSI_DC_STREAM_ENABLE)
tegra_dsi_stop_dc_stream_at_frame_end(dc, dsi);
/* Disable dsi phy clock */
if (dsi->status.clk_out == DSI_PHYCLK_OUT_EN)
tegra_dsi_hs_clk_out_disable(dc, dsi);
val = DSI_POWER_CONTROL_LEG_DSI_ENABLE(TEGRA_DSI_DISABLE);
tegra_dsi_writel(dsi, val, DSI_POWER_CONTROL);
iounmap(dsi->base);
release_resource(dsi->base_res);
clk_put(dsi->dc_clk);
clk_put(dsi->dsi_clk);
mutex_unlock(&dsi->lock);
mutex_destroy(&dsi->lock);
kfree(dsi);
}
static int tegra_dsi_deep_sleep(struct tegra_dc *dc,
struct tegra_dc_dsi_data *dsi)
{
int err = 0;
int val;
struct clk *parent_clk = NULL;
struct clk *base_clk = NULL;
if (!dsi->enabled) {
err = -EPERM;
goto fail;
}
err = tegra_dsi_set_to_lp_mode(dc, dsi, DSI_LP_OP_WRITE);
if (err < 0) {
dev_err(&dc->ndev->dev,
"DSI failed to go to LP mode\n");
goto fail;
}
/* Suspend panel */
err = tegra_dsi_send_panel_cmd(dc, dsi,
dsi->info.dsi_suspend_cmd,
dsi->info.n_suspend_cmd);
if (err < 0) {
dev_err(&dc->ndev->dev,
"dsi: Error sending suspend cmd\n");
goto fail;
}
if (!dsi->ulpm) {
err = tegra_dsi_enter_ulpm(dsi);
if (err < 0) {
dev_err(&dc->ndev->dev,
"DSI failed to enter ulpm\n");
goto fail;
}
}
/*
* Suspend pad
* It is ok to overwrite previous value of DSI_PAD_CONTROL reg
* because it will be restored properly in resume sequence
*/
val = DSI_PAD_CONTROL_PAD_PDIO(0x3) |
DSI_PAD_CONTROL_PAD_PDIO_CLK(0x1) |
DSI_PAD_CONTROL_PAD_PULLDN_ENAB(TEGRA_DSI_ENABLE);
tegra_dsi_writel(dsi, val, DSI_PAD_CONTROL);
/* Suspend core-logic */
val = DSI_POWER_CONTROL_LEG_DSI_ENABLE(TEGRA_DSI_DISABLE);
tegra_dsi_writel(dsi, val, DSI_POWER_CONTROL);
/* Disable dsi fast and slow clock */
parent_clk = clk_get_parent(dsi->dsi_clk);
base_clk = clk_get_parent(parent_clk);
if (dsi->info.dsi_instance)
tegra_clk_cfg_ex(base_clk,
TEGRA_CLK_PLLD_CSI_OUT_ENB,
0);
else
tegra_clk_cfg_ex(base_clk,
TEGRA_CLK_PLLD_DSI_OUT_ENB,
0);
/* Disable dsi source clock */
clk_disable(dsi->dsi_clk);
dsi->clk_ref = false;
dsi->enabled = false;
return 0;
fail:
return err;
}
static void tegra_dc_dsi_disable(struct tegra_dc *dc)
{
int err;
struct tegra_dc_dsi_data *dsi = tegra_dc_get_outdata(dc);
tegra_dc_io_start(dc);
mutex_lock(&dsi->lock);
if (dsi->status.dc_stream == DSI_DC_STREAM_ENABLE)
tegra_dsi_stop_dc_stream_at_frame_end(dc, dsi);
if (dsi->info.power_saving_suspend) {
if (tegra_dsi_deep_sleep(dc, dsi) < 0) {
dev_err(&dc->ndev->dev,
"DSI failed to enter deep sleep\n");
goto fail;
}
} else {
if (dsi->info.dsi_early_suspend_cmd) {
err = tegra_dsi_send_panel_cmd(dc, dsi,
dsi->info.dsi_early_suspend_cmd,
dsi->info.n_early_suspend_cmd);
if (err < 0) {
dev_err(&dc->ndev->dev,
"dsi: Error sending early suspend cmd\n");
goto fail;
}
}
if (!dsi->ulpm) {
if (tegra_dsi_enter_ulpm(dsi) < 0) {
dev_err(&dc->ndev->dev,
"DSI failed to enter ulpm\n");
goto fail;
}
}
}
fail:
mutex_unlock(&dsi->lock);
tegra_dc_io_end(dc);
}
#ifdef CONFIG_PM
static void tegra_dc_dsi_suspend(struct tegra_dc *dc)
{
struct tegra_dc_dsi_data *dsi;
dsi = tegra_dc_get_outdata(dc);
if (!dsi->enabled)
return;
tegra_dc_io_start(dc);
mutex_lock(&dsi->lock);
if (!dsi->info.power_saving_suspend) {
if (dsi->ulpm) {
if (tegra_dsi_exit_ulpm(dsi) < 0) {
dev_err(&dc->ndev->dev,
"DSI failed to exit ulpm");
goto fail;
}
}
if (tegra_dsi_deep_sleep(dc, dsi) < 0) {
dev_err(&dc->ndev->dev,
"DSI failed to enter deep sleep\n");
goto fail;
}
}
fail:
mutex_unlock(&dsi->lock);
tegra_dc_io_end(dc);
}
static void tegra_dc_dsi_resume(struct tegra_dc *dc)
{
/* Not required since tegra_dc_dsi_enable
* will reconfigure the controller from scratch
*/
}
#endif
struct tegra_dc_out_ops tegra_dc_dsi_ops = {
.init = tegra_dc_dsi_init,
.destroy = tegra_dc_dsi_destroy,
.enable = tegra_dc_dsi_enable,
.disable = tegra_dc_dsi_disable,
#ifdef CONFIG_PM
.suspend = tegra_dc_dsi_suspend,
.resume = tegra_dc_dsi_resume,
#endif
};