aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2019-09-17 15:35:15 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2019-09-17 15:35:15 -0400
commit7f2444d38f6bbfa12bc15e2533d8f9daa85ca02b (patch)
tree6506ec79036890edfd9797b001391a350b5ac10f /kernel
parentc5f12fdb8bd873aa3ffdb79512e6bdac92b257b0 (diff)
parent77b4b5420422fc037d00b8f3f0e89b2262e4ae29 (diff)
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core timer updates from Thomas Gleixner: "Timers and timekeeping updates: - A large overhaul of the posix CPU timer code which is a preparation for moving the CPU timer expiry out into task work so it can be properly accounted on the task/process. An update to the bogus permission checks will come later during the merge window as feedback was not complete before heading of for travel. - Switch the timerqueue code to use cached rbtrees and get rid of the homebrewn caching of the leftmost node. - Consolidate hrtimer_init() + hrtimer_init_sleeper() calls into a single function - Implement the separation of hrtimers to be forced to expire in hard interrupt context even when PREEMPT_RT is enabled and mark the affected timers accordingly. - Implement a mechanism for hrtimers and the timer wheel to protect RT against priority inversion and live lock issues when a (hr)timer which should be canceled is currently executing the callback. Instead of infinitely spinning, the task which tries to cancel the timer blocks on a per cpu base expiry lock which is held and released by the (hr)timer expiry code. - Enable the Hyper-V TSC page based sched_clock for Hyper-V guests resulting in faster access to timekeeping functions. - Updates to various clocksource/clockevent drivers and their device tree bindings. - The usual small improvements all over the place" * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits) posix-cpu-timers: Fix permission check regression posix-cpu-timers: Always clear head pointer on dequeue hrtimer: Add a missing bracket and hide `migration_base' on !SMP posix-cpu-timers: Make expiry_active check actually work correctly posix-timers: Unbreak CONFIG_POSIX_TIMERS=n build tick: Mark sched_timer to expire in hard interrupt context hrtimer: Add kernel doc annotation for HRTIMER_MODE_HARD x86/hyperv: Hide pv_ops access for CONFIG_PARAVIRT=n posix-cpu-timers: Utilize timerqueue for storage posix-cpu-timers: Move state tracking to struct posix_cputimers posix-cpu-timers: Deduplicate rlimit handling posix-cpu-timers: Remove pointless comparisons posix-cpu-timers: Get rid of 64bit divisions posix-cpu-timers: Consolidate timer expiry further posix-cpu-timers: Get rid of zero checks rlimit: Rewrite non-sensical RLIMIT_CPU comment posix-cpu-timers: Respect INFINITY for hard RTTIME limit posix-cpu-timers: Switch thread group sampling to array posix-cpu-timers: Restructure expiry array posix-cpu-timers: Remove cputime_expires ...
Diffstat (limited to 'kernel')
-rw-r--r--kernel/events/core.c8
-rw-r--r--kernel/fork.c34
-rw-r--r--kernel/futex.c12
-rw-r--r--kernel/sched/core.c6
-rw-r--r--kernel/sched/deadline.c8
-rw-r--r--kernel/sched/rt.c13
-rw-r--r--kernel/sys.c16
-rw-r--r--kernel/time/alarmtimer.c16
-rw-r--r--kernel/time/hrtimer.c235
-rw-r--r--kernel/time/itimer.c12
-rw-r--r--kernel/time/posix-cpu-timers.c1010
-rw-r--r--kernel/time/posix-timers.c61
-rw-r--r--kernel/time/posix-timers.h1
-rw-r--r--kernel/time/tick-broadcast-hrtimer.c13
-rw-r--r--kernel/time/tick-sched.c17
-rw-r--r--kernel/time/timer.c105
-rw-r--r--kernel/watchdog.c4
17 files changed, 921 insertions, 650 deletions
diff --git a/kernel/events/core.c b/kernel/events/core.c
index 1c414b8866b4..4f08b17d6426 100644
--- a/kernel/events/core.c
+++ b/kernel/events/core.c
@@ -1103,7 +1103,7 @@ static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 1104
1105 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1107 timer->function = perf_mux_hrtimer_handler; 1107 timer->function = perf_mux_hrtimer_handler;
1108} 1108}
1109 1109
@@ -1121,7 +1121,7 @@ static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1121 if (!cpuctx->hrtimer_active) { 1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1; 1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1125 } 1125 }
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127 1127
@@ -9574,7 +9574,7 @@ static void perf_swevent_start_hrtimer(struct perf_event *event)
9574 period = max_t(u64, 10000, hwc->sample_period); 9574 period = max_t(u64, 10000, hwc->sample_period);
9575 } 9575 }
9576 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9576 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9577 HRTIMER_MODE_REL_PINNED); 9577 HRTIMER_MODE_REL_PINNED_HARD);
9578} 9578}
9579 9579
9580static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9580static void perf_swevent_cancel_hrtimer(struct perf_event *event)
@@ -9596,7 +9596,7 @@ static void perf_swevent_init_hrtimer(struct perf_event *event)
9596 if (!is_sampling_event(event)) 9596 if (!is_sampling_event(event))
9597 return; 9597 return;
9598 9598
9599 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9599 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9600 hwc->hrtimer.function = perf_swevent_hrtimer; 9600 hwc->hrtimer.function = perf_swevent_hrtimer;
9601 9601
9602 /* 9602 /*
diff --git a/kernel/fork.c b/kernel/fork.c
index 1d1cd06edbc1..53e780748fe3 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -1519,28 +1519,17 @@ void __cleanup_sighand(struct sighand_struct *sighand)
1519 } 1519 }
1520} 1520}
1521 1521
1522#ifdef CONFIG_POSIX_TIMERS
1523/* 1522/*
1524 * Initialize POSIX timer handling for a thread group. 1523 * Initialize POSIX timer handling for a thread group.
1525 */ 1524 */
1526static void posix_cpu_timers_init_group(struct signal_struct *sig) 1525static void posix_cpu_timers_init_group(struct signal_struct *sig)
1527{ 1526{
1527 struct posix_cputimers *pct = &sig->posix_cputimers;
1528 unsigned long cpu_limit; 1528 unsigned long cpu_limit;
1529 1529
1530 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1530 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1531 if (cpu_limit != RLIM_INFINITY) { 1531 posix_cputimers_group_init(pct, cpu_limit);
1532 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1533 sig->cputimer.running = true;
1534 }
1535
1536 /* The timer lists. */
1537 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1538 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1539 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1540} 1532}
1541#else
1542static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1543#endif
1544 1533
1545static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1534static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1546{ 1535{
@@ -1642,23 +1631,6 @@ static void rt_mutex_init_task(struct task_struct *p)
1642#endif 1631#endif
1643} 1632}
1644 1633
1645#ifdef CONFIG_POSIX_TIMERS
1646/*
1647 * Initialize POSIX timer handling for a single task.
1648 */
1649static void posix_cpu_timers_init(struct task_struct *tsk)
1650{
1651 tsk->cputime_expires.prof_exp = 0;
1652 tsk->cputime_expires.virt_exp = 0;
1653 tsk->cputime_expires.sched_exp = 0;
1654 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1655 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1656 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1657}
1658#else
1659static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1660#endif
1661
1662static inline void init_task_pid_links(struct task_struct *task) 1634static inline void init_task_pid_links(struct task_struct *task)
1663{ 1635{
1664 enum pid_type type; 1636 enum pid_type type;
@@ -1945,7 +1917,7 @@ static __latent_entropy struct task_struct *copy_process(
1945 task_io_accounting_init(&p->ioac); 1917 task_io_accounting_init(&p->ioac);
1946 acct_clear_integrals(p); 1918 acct_clear_integrals(p);
1947 1919
1948 posix_cpu_timers_init(p); 1920 posix_cputimers_init(&p->posix_cputimers);
1949 1921
1950 p->io_context = NULL; 1922 p->io_context = NULL;
1951 audit_set_context(p, NULL); 1923 audit_set_context(p, NULL);
diff --git a/kernel/futex.c b/kernel/futex.c
index 6d50728ef2e7..bd18f60e4c6c 100644
--- a/kernel/futex.c
+++ b/kernel/futex.c
@@ -487,11 +487,9 @@ futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
487 if (!time) 487 if (!time)
488 return NULL; 488 return NULL;
489 489
490 hrtimer_init_on_stack(&timeout->timer, (flags & FLAGS_CLOCKRT) ? 490 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
491 CLOCK_REALTIME : CLOCK_MONOTONIC, 491 CLOCK_REALTIME : CLOCK_MONOTONIC,
492 HRTIMER_MODE_ABS); 492 HRTIMER_MODE_ABS);
493 hrtimer_init_sleeper(timeout, current);
494
495 /* 493 /*
496 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is 494 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
497 * effectively the same as calling hrtimer_set_expires(). 495 * effectively the same as calling hrtimer_set_expires().
@@ -2613,7 +2611,7 @@ static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2613 2611
2614 /* Arm the timer */ 2612 /* Arm the timer */
2615 if (timeout) 2613 if (timeout)
2616 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); 2614 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2617 2615
2618 /* 2616 /*
2619 * If we have been removed from the hash list, then another task 2617 * If we have been removed from the hash list, then another task
@@ -2899,7 +2897,7 @@ retry_private:
2899 } 2897 }
2900 2898
2901 if (unlikely(to)) 2899 if (unlikely(to))
2902 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS); 2900 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2903 2901
2904 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter); 2902 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2905 2903
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 06961b997ed6..5e8387bdd09c 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -255,7 +255,7 @@ static void __hrtick_restart(struct rq *rq)
255{ 255{
256 struct hrtimer *timer = &rq->hrtick_timer; 256 struct hrtimer *timer = &rq->hrtick_timer;
257 257
258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
259} 259}
260 260
261/* 261/*
@@ -314,7 +314,7 @@ void hrtick_start(struct rq *rq, u64 delay)
314 */ 314 */
315 delay = max_t(u64, delay, 10000LL); 315 delay = max_t(u64, delay, 10000LL);
316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 HRTIMER_MODE_REL_PINNED); 317 HRTIMER_MODE_REL_PINNED_HARD);
318} 318}
319#endif /* CONFIG_SMP */ 319#endif /* CONFIG_SMP */
320 320
@@ -328,7 +328,7 @@ static void hrtick_rq_init(struct rq *rq)
328 rq->hrtick_csd.info = rq; 328 rq->hrtick_csd.info = rq;
329#endif 329#endif
330 330
331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
332 rq->hrtick_timer.function = hrtick; 332 rq->hrtick_timer.function = hrtick;
333} 333}
334#else /* CONFIG_SCHED_HRTICK */ 334#else /* CONFIG_SCHED_HRTICK */
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index 39dc9f74f289..2dc48720f189 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -287,7 +287,7 @@ static void task_non_contending(struct task_struct *p)
287 287
288 dl_se->dl_non_contending = 1; 288 dl_se->dl_non_contending = 1;
289 get_task_struct(p); 289 get_task_struct(p);
290 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL); 290 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
291} 291}
292 292
293static void task_contending(struct sched_dl_entity *dl_se, int flags) 293static void task_contending(struct sched_dl_entity *dl_se, int flags)
@@ -956,7 +956,7 @@ static int start_dl_timer(struct task_struct *p)
956 */ 956 */
957 if (!hrtimer_is_queued(timer)) { 957 if (!hrtimer_is_queued(timer)) {
958 get_task_struct(p); 958 get_task_struct(p);
959 hrtimer_start(timer, act, HRTIMER_MODE_ABS); 959 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
960 } 960 }
961 961
962 return 1; 962 return 1;
@@ -1086,7 +1086,7 @@ void init_dl_task_timer(struct sched_dl_entity *dl_se)
1086{ 1086{
1087 struct hrtimer *timer = &dl_se->dl_timer; 1087 struct hrtimer *timer = &dl_se->dl_timer;
1088 1088
1089 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1089 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1090 timer->function = dl_task_timer; 1090 timer->function = dl_task_timer;
1091} 1091}
1092 1092
@@ -1325,7 +1325,7 @@ void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1325{ 1325{
1326 struct hrtimer *timer = &dl_se->inactive_timer; 1326 struct hrtimer *timer = &dl_se->inactive_timer;
1327 1327
1328 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1328 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1329 timer->function = inactive_task_timer; 1329 timer->function = inactive_task_timer;
1330} 1330}
1331 1331
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index 858c4cc6f99b..ebaa4e619684 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -45,8 +45,8 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
45 45
46 raw_spin_lock_init(&rt_b->rt_runtime_lock); 46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47 47
48 hrtimer_init(&rt_b->rt_period_timer, 48 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
49 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 49 HRTIMER_MODE_REL_HARD);
50 rt_b->rt_period_timer.function = sched_rt_period_timer; 50 rt_b->rt_period_timer.function = sched_rt_period_timer;
51} 51}
52 52
@@ -67,7 +67,8 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
67 * to update the period. 67 * to update the period.
68 */ 68 */
69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); 70 hrtimer_start_expires(&rt_b->rt_period_timer,
71 HRTIMER_MODE_ABS_PINNED_HARD);
71 } 72 }
72 raw_spin_unlock(&rt_b->rt_runtime_lock); 73 raw_spin_unlock(&rt_b->rt_runtime_lock);
73} 74}
@@ -2289,8 +2290,10 @@ static void watchdog(struct rq *rq, struct task_struct *p)
2289 } 2290 }
2290 2291
2291 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2292 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2292 if (p->rt.timeout > next) 2293 if (p->rt.timeout > next) {
2293 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2294 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2295 p->se.sum_exec_runtime);
2296 }
2294 } 2297 }
2295} 2298}
2296#else 2299#else
diff --git a/kernel/sys.c b/kernel/sys.c
index d605fe5e58a5..a611d1d58c7d 100644
--- a/kernel/sys.c
+++ b/kernel/sys.c
@@ -1557,15 +1557,6 @@ int do_prlimit(struct task_struct *tsk, unsigned int resource,
1557 retval = -EPERM; 1557 retval = -EPERM;
1558 if (!retval) 1558 if (!retval)
1559 retval = security_task_setrlimit(tsk, resource, new_rlim); 1559 retval = security_task_setrlimit(tsk, resource, new_rlim);
1560 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1561 /*
1562 * The caller is asking for an immediate RLIMIT_CPU
1563 * expiry. But we use the zero value to mean "it was
1564 * never set". So let's cheat and make it one second
1565 * instead
1566 */
1567 new_rlim->rlim_cur = 1;
1568 }
1569 } 1560 }
1570 if (!retval) { 1561 if (!retval) {
1571 if (old_rlim) 1562 if (old_rlim)
@@ -1576,10 +1567,9 @@ int do_prlimit(struct task_struct *tsk, unsigned int resource,
1576 task_unlock(tsk->group_leader); 1567 task_unlock(tsk->group_leader);
1577 1568
1578 /* 1569 /*
1579 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1570 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1580 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1571 * infite. In case of RLIM_INFINITY the posix CPU timer code
1581 * very long-standing error, and fixing it now risks breakage of 1572 * ignores the rlimit.
1582 * applications, so we live with it
1583 */ 1573 */
1584 if (!retval && new_rlim && resource == RLIMIT_CPU && 1574 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1585 new_rlim->rlim_cur != RLIM_INFINITY && 1575 new_rlim->rlim_cur != RLIM_INFINITY &&
diff --git a/kernel/time/alarmtimer.c b/kernel/time/alarmtimer.c
index b7d75a9e8ccf..271ce6c12907 100644
--- a/kernel/time/alarmtimer.c
+++ b/kernel/time/alarmtimer.c
@@ -432,7 +432,7 @@ int alarm_cancel(struct alarm *alarm)
432 int ret = alarm_try_to_cancel(alarm); 432 int ret = alarm_try_to_cancel(alarm);
433 if (ret >= 0) 433 if (ret >= 0)
434 return ret; 434 return ret;
435 cpu_relax(); 435 hrtimer_cancel_wait_running(&alarm->timer);
436 } 436 }
437} 437}
438EXPORT_SYMBOL_GPL(alarm_cancel); 438EXPORT_SYMBOL_GPL(alarm_cancel);
@@ -606,6 +606,19 @@ static int alarm_timer_try_to_cancel(struct k_itimer *timr)
606} 606}
607 607
608/** 608/**
609 * alarm_timer_wait_running - Posix timer callback to wait for a timer
610 * @timr: Pointer to the posixtimer data struct
611 *
612 * Called from the core code when timer cancel detected that the callback
613 * is running. @timr is unlocked and rcu read lock is held to prevent it
614 * from being freed.
615 */
616static void alarm_timer_wait_running(struct k_itimer *timr)
617{
618 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
619}
620
621/**
609 * alarm_timer_arm - Posix timer callback to arm a timer 622 * alarm_timer_arm - Posix timer callback to arm a timer
610 * @timr: Pointer to the posixtimer data struct 623 * @timr: Pointer to the posixtimer data struct
611 * @expires: The new expiry time 624 * @expires: The new expiry time
@@ -834,6 +847,7 @@ const struct k_clock alarm_clock = {
834 .timer_forward = alarm_timer_forward, 847 .timer_forward = alarm_timer_forward,
835 .timer_remaining = alarm_timer_remaining, 848 .timer_remaining = alarm_timer_remaining,
836 .timer_try_to_cancel = alarm_timer_try_to_cancel, 849 .timer_try_to_cancel = alarm_timer_try_to_cancel,
850 .timer_wait_running = alarm_timer_wait_running,
837 .nsleep = alarm_timer_nsleep, 851 .nsleep = alarm_timer_nsleep,
838}; 852};
839#endif /* CONFIG_POSIX_TIMERS */ 853#endif /* CONFIG_POSIX_TIMERS */
diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
index 5ee77f1a8a92..0d4dc241c0fb 100644
--- a/kernel/time/hrtimer.c
+++ b/kernel/time/hrtimer.c
@@ -140,6 +140,11 @@ static struct hrtimer_cpu_base migration_cpu_base = {
140 140
141#define migration_base migration_cpu_base.clock_base[0] 141#define migration_base migration_cpu_base.clock_base[0]
142 142
143static inline bool is_migration_base(struct hrtimer_clock_base *base)
144{
145 return base == &migration_base;
146}
147
143/* 148/*
144 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 149 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
145 * means that all timers which are tied to this base via timer->base are 150 * means that all timers which are tied to this base via timer->base are
@@ -264,6 +269,11 @@ again:
264 269
265#else /* CONFIG_SMP */ 270#else /* CONFIG_SMP */
266 271
272static inline bool is_migration_base(struct hrtimer_clock_base *base)
273{
274 return false;
275}
276
267static inline struct hrtimer_clock_base * 277static inline struct hrtimer_clock_base *
268lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 278lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
269{ 279{
@@ -427,6 +437,17 @@ void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
427} 437}
428EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 438EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
429 439
440static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
441 clockid_t clock_id, enum hrtimer_mode mode);
442
443void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
444 clockid_t clock_id, enum hrtimer_mode mode)
445{
446 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
447 __hrtimer_init_sleeper(sl, clock_id, mode);
448}
449EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
450
430void destroy_hrtimer_on_stack(struct hrtimer *timer) 451void destroy_hrtimer_on_stack(struct hrtimer *timer)
431{ 452{
432 debug_object_free(timer, &hrtimer_debug_descr); 453 debug_object_free(timer, &hrtimer_debug_descr);
@@ -1096,9 +1117,13 @@ void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1096 1117
1097 /* 1118 /*
1098 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1119 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1099 * match. 1120 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1121 * expiry mode because unmarked timers are moved to softirq expiry.
1100 */ 1122 */
1101 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1123 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1124 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1125 else
1126 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1102 1127
1103 base = lock_hrtimer_base(timer, &flags); 1128 base = lock_hrtimer_base(timer, &flags);
1104 1129
@@ -1147,6 +1172,93 @@ int hrtimer_try_to_cancel(struct hrtimer *timer)
1147} 1172}
1148EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1173EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1149 1174
1175#ifdef CONFIG_PREEMPT_RT
1176static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1177{
1178 spin_lock_init(&base->softirq_expiry_lock);
1179}
1180
1181static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1182{
1183 spin_lock(&base->softirq_expiry_lock);
1184}
1185
1186static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1187{
1188 spin_unlock(&base->softirq_expiry_lock);
1189}
1190
1191/*
1192 * The counterpart to hrtimer_cancel_wait_running().
1193 *
1194 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1195 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1196 * allows the waiter to acquire the lock and make progress.
1197 */
1198static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1199 unsigned long flags)
1200{
1201 if (atomic_read(&cpu_base->timer_waiters)) {
1202 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1203 spin_unlock(&cpu_base->softirq_expiry_lock);
1204 spin_lock(&cpu_base->softirq_expiry_lock);
1205 raw_spin_lock_irq(&cpu_base->lock);
1206 }
1207}
1208
1209/*
1210 * This function is called on PREEMPT_RT kernels when the fast path
1211 * deletion of a timer failed because the timer callback function was
1212 * running.
1213 *
1214 * This prevents priority inversion: if the soft irq thread is preempted
1215 * in the middle of a timer callback, then calling del_timer_sync() can
1216 * lead to two issues:
1217 *
1218 * - If the caller is on a remote CPU then it has to spin wait for the timer
1219 * handler to complete. This can result in unbound priority inversion.
1220 *
1221 * - If the caller originates from the task which preempted the timer
1222 * handler on the same CPU, then spin waiting for the timer handler to
1223 * complete is never going to end.
1224 */
1225void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1226{
1227 /* Lockless read. Prevent the compiler from reloading it below */
1228 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1229
1230 /*
1231 * Just relax if the timer expires in hard interrupt context or if
1232 * it is currently on the migration base.
1233 */
1234 if (!timer->is_soft || is_migration_base(base)) {
1235 cpu_relax();
1236 return;
1237 }
1238
1239 /*
1240 * Mark the base as contended and grab the expiry lock, which is
1241 * held by the softirq across the timer callback. Drop the lock
1242 * immediately so the softirq can expire the next timer. In theory
1243 * the timer could already be running again, but that's more than
1244 * unlikely and just causes another wait loop.
1245 */
1246 atomic_inc(&base->cpu_base->timer_waiters);
1247 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1248 atomic_dec(&base->cpu_base->timer_waiters);
1249 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1250}
1251#else
1252static inline void
1253hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1254static inline void
1255hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1256static inline void
1257hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1258static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1259 unsigned long flags) { }
1260#endif
1261
1150/** 1262/**
1151 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1263 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1152 * @timer: the timer to be cancelled 1264 * @timer: the timer to be cancelled
@@ -1157,13 +1269,15 @@ EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1157 */ 1269 */
1158int hrtimer_cancel(struct hrtimer *timer) 1270int hrtimer_cancel(struct hrtimer *timer)
1159{ 1271{
1160 for (;;) { 1272 int ret;
1161 int ret = hrtimer_try_to_cancel(timer);
1162 1273
1163 if (ret >= 0) 1274 do {
1164 return ret; 1275 ret = hrtimer_try_to_cancel(timer);
1165 cpu_relax(); 1276
1166 } 1277 if (ret < 0)
1278 hrtimer_cancel_wait_running(timer);
1279 } while (ret < 0);
1280 return ret;
1167} 1281}
1168EXPORT_SYMBOL_GPL(hrtimer_cancel); 1282EXPORT_SYMBOL_GPL(hrtimer_cancel);
1169 1283
@@ -1260,8 +1374,17 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1260 enum hrtimer_mode mode) 1374 enum hrtimer_mode mode)
1261{ 1375{
1262 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1376 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1263 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1264 struct hrtimer_cpu_base *cpu_base; 1377 struct hrtimer_cpu_base *cpu_base;
1378 int base;
1379
1380 /*
1381 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1382 * marked for hard interrupt expiry mode are moved into soft
1383 * interrupt context for latency reasons and because the callbacks
1384 * can invoke functions which might sleep on RT, e.g. spin_lock().
1385 */
1386 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1387 softtimer = true;
1265 1388
1266 memset(timer, 0, sizeof(struct hrtimer)); 1389 memset(timer, 0, sizeof(struct hrtimer));
1267 1390
@@ -1275,8 +1398,10 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1275 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1398 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1276 clock_id = CLOCK_MONOTONIC; 1399 clock_id = CLOCK_MONOTONIC;
1277 1400
1401 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1278 base += hrtimer_clockid_to_base(clock_id); 1402 base += hrtimer_clockid_to_base(clock_id);
1279 timer->is_soft = softtimer; 1403 timer->is_soft = softtimer;
1404 timer->is_hard = !softtimer;
1280 timer->base = &cpu_base->clock_base[base]; 1405 timer->base = &cpu_base->clock_base[base];
1281 timerqueue_init(&timer->node); 1406 timerqueue_init(&timer->node);
1282} 1407}
@@ -1449,6 +1574,8 @@ static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1449 break; 1574 break;
1450 1575
1451 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1576 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1577 if (active_mask == HRTIMER_ACTIVE_SOFT)
1578 hrtimer_sync_wait_running(cpu_base, flags);
1452 } 1579 }
1453 } 1580 }
1454} 1581}
@@ -1459,6 +1586,7 @@ static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1459 unsigned long flags; 1586 unsigned long flags;
1460 ktime_t now; 1587 ktime_t now;
1461 1588
1589 hrtimer_cpu_base_lock_expiry(cpu_base);
1462 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1590 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1463 1591
1464 now = hrtimer_update_base(cpu_base); 1592 now = hrtimer_update_base(cpu_base);
@@ -1468,6 +1596,7 @@ static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1468 hrtimer_update_softirq_timer(cpu_base, true); 1596 hrtimer_update_softirq_timer(cpu_base, true);
1469 1597
1470 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1598 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1599 hrtimer_cpu_base_unlock_expiry(cpu_base);
1471} 1600}
1472 1601
1473#ifdef CONFIG_HIGH_RES_TIMERS 1602#ifdef CONFIG_HIGH_RES_TIMERS
@@ -1639,10 +1768,75 @@ static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1639 return HRTIMER_NORESTART; 1768 return HRTIMER_NORESTART;
1640} 1769}
1641 1770
1642void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1771/**
1772 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1773 * @sl: sleeper to be started
1774 * @mode: timer mode abs/rel
1775 *
1776 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1777 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1778 */
1779void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1780 enum hrtimer_mode mode)
1781{
1782 /*
1783 * Make the enqueue delivery mode check work on RT. If the sleeper
1784 * was initialized for hard interrupt delivery, force the mode bit.
1785 * This is a special case for hrtimer_sleepers because
1786 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1787 * fiddling with this decision is avoided at the call sites.
1788 */
1789 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1790 mode |= HRTIMER_MODE_HARD;
1791
1792 hrtimer_start_expires(&sl->timer, mode);
1793}
1794EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1795
1796static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1797 clockid_t clock_id, enum hrtimer_mode mode)
1643{ 1798{
1799 /*
1800 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1801 * marked for hard interrupt expiry mode are moved into soft
1802 * interrupt context either for latency reasons or because the
1803 * hrtimer callback takes regular spinlocks or invokes other
1804 * functions which are not suitable for hard interrupt context on
1805 * PREEMPT_RT.
1806 *
1807 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1808 * context, but there is a latency concern: Untrusted userspace can
1809 * spawn many threads which arm timers for the same expiry time on
1810 * the same CPU. That causes a latency spike due to the wakeup of
1811 * a gazillion threads.
1812 *
1813 * OTOH, priviledged real-time user space applications rely on the
1814 * low latency of hard interrupt wakeups. If the current task is in
1815 * a real-time scheduling class, mark the mode for hard interrupt
1816 * expiry.
1817 */
1818 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1819 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1820 mode |= HRTIMER_MODE_HARD;
1821 }
1822
1823 __hrtimer_init(&sl->timer, clock_id, mode);
1644 sl->timer.function = hrtimer_wakeup; 1824 sl->timer.function = hrtimer_wakeup;
1645 sl->task = task; 1825 sl->task = current;
1826}
1827
1828/**
1829 * hrtimer_init_sleeper - initialize sleeper to the given clock
1830 * @sl: sleeper to be initialized
1831 * @clock_id: the clock to be used
1832 * @mode: timer mode abs/rel
1833 */
1834void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1835 enum hrtimer_mode mode)
1836{
1837 debug_init(&sl->timer, clock_id, mode);
1838 __hrtimer_init_sleeper(sl, clock_id, mode);
1839
1646} 1840}
1647EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1841EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1648 1842
@@ -1669,11 +1863,9 @@ static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mod
1669{ 1863{
1670 struct restart_block *restart; 1864 struct restart_block *restart;
1671 1865
1672 hrtimer_init_sleeper(t, current);
1673
1674 do { 1866 do {
1675 set_current_state(TASK_INTERRUPTIBLE); 1867 set_current_state(TASK_INTERRUPTIBLE);
1676 hrtimer_start_expires(&t->timer, mode); 1868 hrtimer_sleeper_start_expires(t, mode);
1677 1869
1678 if (likely(t->task)) 1870 if (likely(t->task))
1679 freezable_schedule(); 1871 freezable_schedule();
@@ -1707,10 +1899,9 @@ static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1707 struct hrtimer_sleeper t; 1899 struct hrtimer_sleeper t;
1708 int ret; 1900 int ret;
1709 1901
1710 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1902 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1711 HRTIMER_MODE_ABS); 1903 HRTIMER_MODE_ABS);
1712 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1904 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1713
1714 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 1905 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1715 destroy_hrtimer_on_stack(&t.timer); 1906 destroy_hrtimer_on_stack(&t.timer);
1716 return ret; 1907 return ret;
@@ -1728,7 +1919,7 @@ long hrtimer_nanosleep(const struct timespec64 *rqtp,
1728 if (dl_task(current) || rt_task(current)) 1919 if (dl_task(current) || rt_task(current))
1729 slack = 0; 1920 slack = 0;
1730 1921
1731 hrtimer_init_on_stack(&t.timer, clockid, mode); 1922 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1732 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack); 1923 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1733 ret = do_nanosleep(&t, mode); 1924 ret = do_nanosleep(&t, mode);
1734 if (ret != -ERESTART_RESTARTBLOCK) 1925 if (ret != -ERESTART_RESTARTBLOCK)
@@ -1809,6 +2000,7 @@ int hrtimers_prepare_cpu(unsigned int cpu)
1809 cpu_base->softirq_next_timer = NULL; 2000 cpu_base->softirq_next_timer = NULL;
1810 cpu_base->expires_next = KTIME_MAX; 2001 cpu_base->expires_next = KTIME_MAX;
1811 cpu_base->softirq_expires_next = KTIME_MAX; 2002 cpu_base->softirq_expires_next = KTIME_MAX;
2003 hrtimer_cpu_base_init_expiry_lock(cpu_base);
1812 return 0; 2004 return 0;
1813} 2005}
1814 2006
@@ -1927,12 +2119,9 @@ schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1927 return -EINTR; 2119 return -EINTR;
1928 } 2120 }
1929 2121
1930 hrtimer_init_on_stack(&t.timer, clock_id, mode); 2122 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
1931 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 2123 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1932 2124 hrtimer_sleeper_start_expires(&t, mode);
1933 hrtimer_init_sleeper(&t, current);
1934
1935 hrtimer_start_expires(&t.timer, mode);
1936 2125
1937 if (likely(t.task)) 2126 if (likely(t.task))
1938 schedule(); 2127 schedule();
diff --git a/kernel/time/itimer.c b/kernel/time/itimer.c
index 02068b2d5862..77f1e5635cc1 100644
--- a/kernel/time/itimer.c
+++ b/kernel/time/itimer.c
@@ -55,15 +55,10 @@ static void get_cpu_itimer(struct task_struct *tsk, unsigned int clock_id,
55 val = it->expires; 55 val = it->expires;
56 interval = it->incr; 56 interval = it->incr;
57 if (val) { 57 if (val) {
58 struct task_cputime cputime; 58 u64 t, samples[CPUCLOCK_MAX];
59 u64 t;
60 59
61 thread_group_cputimer(tsk, &cputime); 60 thread_group_sample_cputime(tsk, samples);
62 if (clock_id == CPUCLOCK_PROF) 61 t = samples[clock_id];
63 t = cputime.utime + cputime.stime;
64 else
65 /* CPUCLOCK_VIRT */
66 t = cputime.utime;
67 62
68 if (val < t) 63 if (val < t)
69 /* about to fire */ 64 /* about to fire */
@@ -213,6 +208,7 @@ again:
213 /* We are sharing ->siglock with it_real_fn() */ 208 /* We are sharing ->siglock with it_real_fn() */
214 if (hrtimer_try_to_cancel(timer) < 0) { 209 if (hrtimer_try_to_cancel(timer) < 0) {
215 spin_unlock_irq(&tsk->sighand->siglock); 210 spin_unlock_irq(&tsk->sighand->siglock);
211 hrtimer_cancel_wait_running(timer);
216 goto again; 212 goto again;
217 } 213 }
218 expires = timeval_to_ktime(value->it_value); 214 expires = timeval_to_ktime(value->it_value);
diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
index 0a426f4e3125..92a431981b1c 100644
--- a/kernel/time/posix-cpu-timers.c
+++ b/kernel/time/posix-cpu-timers.c
@@ -20,11 +20,20 @@
20 20
21static void posix_cpu_timer_rearm(struct k_itimer *timer); 21static void posix_cpu_timer_rearm(struct k_itimer *timer);
22 22
23void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
24{
25 posix_cputimers_init(pct);
26 if (cpu_limit != RLIM_INFINITY) {
27 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
28 pct->timers_active = true;
29 }
30}
31
23/* 32/*
24 * Called after updating RLIMIT_CPU to run cpu timer and update 33 * Called after updating RLIMIT_CPU to run cpu timer and update
25 * tsk->signal->cputime_expires expiration cache if necessary. Needs 34 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
26 * siglock protection since other code may update expiration cache as 35 * necessary. Needs siglock protection since other code may update the
27 * well. 36 * expiration cache as well.
28 */ 37 */
29void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 38void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
30{ 39{
@@ -35,46 +44,97 @@ void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
35 spin_unlock_irq(&task->sighand->siglock); 44 spin_unlock_irq(&task->sighand->siglock);
36} 45}
37 46
38static int check_clock(const clockid_t which_clock) 47/*
48 * Functions for validating access to tasks.
49 */
50static struct task_struct *lookup_task(const pid_t pid, bool thread,
51 bool gettime)
39{ 52{
40 int error = 0;
41 struct task_struct *p; 53 struct task_struct *p;
42 const pid_t pid = CPUCLOCK_PID(which_clock);
43
44 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
45 return -EINVAL;
46 54
47 if (pid == 0) 55 /*
48 return 0; 56 * If the encoded PID is 0, then the timer is targeted at current
57 * or the process to which current belongs.
58 */
59 if (!pid)
60 return thread ? current : current->group_leader;
49 61
50 rcu_read_lock();
51 p = find_task_by_vpid(pid); 62 p = find_task_by_vpid(pid);
52 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? 63 if (!p)
53 same_thread_group(p, current) : has_group_leader_pid(p))) { 64 return p;
54 error = -EINVAL; 65
66 if (thread)
67 return same_thread_group(p, current) ? p : NULL;
68
69 if (gettime) {
70 /*
71 * For clock_gettime(PROCESS) the task does not need to be
72 * the actual group leader. tsk->sighand gives
73 * access to the group's clock.
74 *
75 * Timers need the group leader because they take a
76 * reference on it and store the task pointer until the
77 * timer is destroyed.
78 */
79 return (p == current || thread_group_leader(p)) ? p : NULL;
55 } 80 }
81
82 /*
83 * For processes require that p is group leader.
84 */
85 return has_group_leader_pid(p) ? p : NULL;
86}
87
88static struct task_struct *__get_task_for_clock(const clockid_t clock,
89 bool getref, bool gettime)
90{
91 const bool thread = !!CPUCLOCK_PERTHREAD(clock);
92 const pid_t pid = CPUCLOCK_PID(clock);
93 struct task_struct *p;
94
95 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
96 return NULL;
97
98 rcu_read_lock();
99 p = lookup_task(pid, thread, gettime);
100 if (p && getref)
101 get_task_struct(p);
56 rcu_read_unlock(); 102 rcu_read_unlock();
103 return p;
104}
57 105
58 return error; 106static inline struct task_struct *get_task_for_clock(const clockid_t clock)
107{
108 return __get_task_for_clock(clock, true, false);
109}
110
111static inline struct task_struct *get_task_for_clock_get(const clockid_t clock)
112{
113 return __get_task_for_clock(clock, true, true);
114}
115
116static inline int validate_clock_permissions(const clockid_t clock)
117{
118 return __get_task_for_clock(clock, false, false) ? 0 : -EINVAL;
59} 119}
60 120
61/* 121/*
62 * Update expiry time from increment, and increase overrun count, 122 * Update expiry time from increment, and increase overrun count,
63 * given the current clock sample. 123 * given the current clock sample.
64 */ 124 */
65static void bump_cpu_timer(struct k_itimer *timer, u64 now) 125static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
66{ 126{
127 u64 delta, incr, expires = timer->it.cpu.node.expires;
67 int i; 128 int i;
68 u64 delta, incr;
69 129
70 if (!timer->it_interval) 130 if (!timer->it_interval)
71 return; 131 return expires;
72 132
73 if (now < timer->it.cpu.expires) 133 if (now < expires)
74 return; 134 return expires;
75 135
76 incr = timer->it_interval; 136 incr = timer->it_interval;
77 delta = now + incr - timer->it.cpu.expires; 137 delta = now + incr - expires;
78 138
79 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 139 /* Don't use (incr*2 < delta), incr*2 might overflow. */
80 for (i = 0; incr < delta - incr; i++) 140 for (i = 0; incr < delta - incr; i++)
@@ -84,48 +144,26 @@ static void bump_cpu_timer(struct k_itimer *timer, u64 now)
84 if (delta < incr) 144 if (delta < incr)
85 continue; 145 continue;
86 146
87 timer->it.cpu.expires += incr; 147 timer->it.cpu.node.expires += incr;
88 timer->it_overrun += 1LL << i; 148 timer->it_overrun += 1LL << i;
89 delta -= incr; 149 delta -= incr;
90 } 150 }
151 return timer->it.cpu.node.expires;
91} 152}
92 153
93/** 154/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
94 * task_cputime_zero - Check a task_cputime struct for all zero fields. 155static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
95 *
96 * @cputime: The struct to compare.
97 *
98 * Checks @cputime to see if all fields are zero. Returns true if all fields
99 * are zero, false if any field is nonzero.
100 */
101static inline int task_cputime_zero(const struct task_cputime *cputime)
102{ 156{
103 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) 157 return !(~pct->bases[CPUCLOCK_PROF].nextevt |
104 return 1; 158 ~pct->bases[CPUCLOCK_VIRT].nextevt |
105 return 0; 159 ~pct->bases[CPUCLOCK_SCHED].nextevt);
106}
107
108static inline u64 prof_ticks(struct task_struct *p)
109{
110 u64 utime, stime;
111
112 task_cputime(p, &utime, &stime);
113
114 return utime + stime;
115}
116static inline u64 virt_ticks(struct task_struct *p)
117{
118 u64 utime, stime;
119
120 task_cputime(p, &utime, &stime);
121
122 return utime;
123} 160}
124 161
125static int 162static int
126posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 163posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
127{ 164{
128 int error = check_clock(which_clock); 165 int error = validate_clock_permissions(which_clock);
166
129 if (!error) { 167 if (!error) {
130 tp->tv_sec = 0; 168 tp->tv_sec = 0;
131 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 169 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
@@ -142,42 +180,66 @@ posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
142} 180}
143 181
144static int 182static int
145posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp) 183posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
146{ 184{
185 int error = validate_clock_permissions(clock);
186
147 /* 187 /*
148 * You can never reset a CPU clock, but we check for other errors 188 * You can never reset a CPU clock, but we check for other errors
149 * in the call before failing with EPERM. 189 * in the call before failing with EPERM.
150 */ 190 */
151 int error = check_clock(which_clock); 191 return error ? : -EPERM;
152 if (error == 0) {
153 error = -EPERM;
154 }
155 return error;
156} 192}
157 193
158
159/* 194/*
160 * Sample a per-thread clock for the given task. 195 * Sample a per-thread clock for the given task. clkid is validated.
161 */ 196 */
162static int cpu_clock_sample(const clockid_t which_clock, 197static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
163 struct task_struct *p, u64 *sample)
164{ 198{
165 switch (CPUCLOCK_WHICH(which_clock)) { 199 u64 utime, stime;
166 default: 200
167 return -EINVAL; 201 if (clkid == CPUCLOCK_SCHED)
202 return task_sched_runtime(p);
203
204 task_cputime(p, &utime, &stime);
205
206 switch (clkid) {
168 case CPUCLOCK_PROF: 207 case CPUCLOCK_PROF:
169 *sample = prof_ticks(p); 208 return utime + stime;
170 break;
171 case CPUCLOCK_VIRT: 209 case CPUCLOCK_VIRT:
172 *sample = virt_ticks(p); 210 return utime;
173 break; 211 default:
174 case CPUCLOCK_SCHED: 212 WARN_ON_ONCE(1);
175 *sample = task_sched_runtime(p);
176 break;
177 } 213 }
178 return 0; 214 return 0;
179} 215}
180 216
217static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
218{
219 samples[CPUCLOCK_PROF] = stime + utime;
220 samples[CPUCLOCK_VIRT] = utime;
221 samples[CPUCLOCK_SCHED] = rtime;
222}
223
224static void task_sample_cputime(struct task_struct *p, u64 *samples)
225{
226 u64 stime, utime;
227
228 task_cputime(p, &utime, &stime);
229 store_samples(samples, stime, utime, p->se.sum_exec_runtime);
230}
231
232static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
233 u64 *samples)
234{
235 u64 stime, utime, rtime;
236
237 utime = atomic64_read(&at->utime);
238 stime = atomic64_read(&at->stime);
239 rtime = atomic64_read(&at->sum_exec_runtime);
240 store_samples(samples, stime, utime, rtime);
241}
242
181/* 243/*
182 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 244 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
183 * to avoid race conditions with concurrent updates to cputime. 245 * to avoid race conditions with concurrent updates to cputime.
@@ -193,29 +255,56 @@ retry:
193 } 255 }
194} 256}
195 257
196static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) 258static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
259 struct task_cputime *sum)
197{ 260{
198 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 261 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
199 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 262 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
200 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 263 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
201} 264}
202 265
203/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ 266/**
204static inline void sample_cputime_atomic(struct task_cputime *times, 267 * thread_group_sample_cputime - Sample cputime for a given task
205 struct task_cputime_atomic *atomic_times) 268 * @tsk: Task for which cputime needs to be started
269 * @iimes: Storage for time samples
270 *
271 * Called from sys_getitimer() to calculate the expiry time of an active
272 * timer. That means group cputime accounting is already active. Called
273 * with task sighand lock held.
274 *
275 * Updates @times with an uptodate sample of the thread group cputimes.
276 */
277void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
206{ 278{
207 times->utime = atomic64_read(&atomic_times->utime); 279 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
208 times->stime = atomic64_read(&atomic_times->stime); 280 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
209 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); 281
282 WARN_ON_ONCE(!pct->timers_active);
283
284 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
210} 285}
211 286
212void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) 287/**
288 * thread_group_start_cputime - Start cputime and return a sample
289 * @tsk: Task for which cputime needs to be started
290 * @samples: Storage for time samples
291 *
292 * The thread group cputime accouting is avoided when there are no posix
293 * CPU timers armed. Before starting a timer it's required to check whether
294 * the time accounting is active. If not, a full update of the atomic
295 * accounting store needs to be done and the accounting enabled.
296 *
297 * Updates @times with an uptodate sample of the thread group cputimes.
298 */
299static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
213{ 300{
214 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 301 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
215 struct task_cputime sum; 302 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
216 303
217 /* Check if cputimer isn't running. This is accessed without locking. */ 304 /* Check if cputimer isn't running. This is accessed without locking. */
218 if (!READ_ONCE(cputimer->running)) { 305 if (!READ_ONCE(pct->timers_active)) {
306 struct task_cputime sum;
307
219 /* 308 /*
220 * The POSIX timer interface allows for absolute time expiry 309 * The POSIX timer interface allows for absolute time expiry
221 * values through the TIMER_ABSTIME flag, therefore we have 310 * values through the TIMER_ABSTIME flag, therefore we have
@@ -225,94 +314,69 @@ void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
225 update_gt_cputime(&cputimer->cputime_atomic, &sum); 314 update_gt_cputime(&cputimer->cputime_atomic, &sum);
226 315
227 /* 316 /*
228 * We're setting cputimer->running without a lock. Ensure 317 * We're setting timers_active without a lock. Ensure this
229 * this only gets written to in one operation. We set 318 * only gets written to in one operation. We set it after
230 * running after update_gt_cputime() as a small optimization, 319 * update_gt_cputime() as a small optimization, but
231 * but barriers are not required because update_gt_cputime() 320 * barriers are not required because update_gt_cputime()
232 * can handle concurrent updates. 321 * can handle concurrent updates.
233 */ 322 */
234 WRITE_ONCE(cputimer->running, true); 323 WRITE_ONCE(pct->timers_active, true);
235 } 324 }
236 sample_cputime_atomic(times, &cputimer->cputime_atomic); 325 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
237} 326}
238 327
239/* 328static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
240 * Sample a process (thread group) clock for the given group_leader task.
241 * Must be called with task sighand lock held for safe while_each_thread()
242 * traversal.
243 */
244static int cpu_clock_sample_group(const clockid_t which_clock,
245 struct task_struct *p,
246 u64 *sample)
247{ 329{
248 struct task_cputime cputime; 330 struct task_cputime ct;
249 331
250 switch (CPUCLOCK_WHICH(which_clock)) { 332 thread_group_cputime(tsk, &ct);
251 default: 333 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
252 return -EINVAL;
253 case CPUCLOCK_PROF:
254 thread_group_cputime(p, &cputime);
255 *sample = cputime.utime + cputime.stime;
256 break;
257 case CPUCLOCK_VIRT:
258 thread_group_cputime(p, &cputime);
259 *sample = cputime.utime;
260 break;
261 case CPUCLOCK_SCHED:
262 thread_group_cputime(p, &cputime);
263 *sample = cputime.sum_exec_runtime;
264 break;
265 }
266 return 0;
267} 334}
268 335
269static int posix_cpu_clock_get_task(struct task_struct *tsk, 336/*
270 const clockid_t which_clock, 337 * Sample a process (thread group) clock for the given task clkid. If the
271 struct timespec64 *tp) 338 * group's cputime accounting is already enabled, read the atomic
339 * store. Otherwise a full update is required. Task's sighand lock must be
340 * held to protect the task traversal on a full update. clkid is already
341 * validated.
342 */
343static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
344 bool start)
272{ 345{
273 int err = -EINVAL; 346 struct thread_group_cputimer *cputimer = &p->signal->cputimer;
274 u64 rtn; 347 struct posix_cputimers *pct = &p->signal->posix_cputimers;
348 u64 samples[CPUCLOCK_MAX];
275 349
276 if (CPUCLOCK_PERTHREAD(which_clock)) { 350 if (!READ_ONCE(pct->timers_active)) {
277 if (same_thread_group(tsk, current)) 351 if (start)
278 err = cpu_clock_sample(which_clock, tsk, &rtn); 352 thread_group_start_cputime(p, samples);
353 else
354 __thread_group_cputime(p, samples);
279 } else { 355 } else {
280 if (tsk == current || thread_group_leader(tsk)) 356 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
281 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
282 } 357 }
283 358
284 if (!err) 359 return samples[clkid];
285 *tp = ns_to_timespec64(rtn);
286
287 return err;
288} 360}
289 361
290 362static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
291static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
292{ 363{
293 const pid_t pid = CPUCLOCK_PID(which_clock); 364 const clockid_t clkid = CPUCLOCK_WHICH(clock);
294 int err = -EINVAL; 365 struct task_struct *tsk;
366 u64 t;
295 367
296 if (pid == 0) { 368 tsk = get_task_for_clock_get(clock);
297 /* 369 if (!tsk)
298 * Special case constant value for our own clocks. 370 return -EINVAL;
299 * We don't have to do any lookup to find ourselves.
300 */
301 err = posix_cpu_clock_get_task(current, which_clock, tp);
302 } else {
303 /*
304 * Find the given PID, and validate that the caller
305 * should be able to see it.
306 */
307 struct task_struct *p;
308 rcu_read_lock();
309 p = find_task_by_vpid(pid);
310 if (p)
311 err = posix_cpu_clock_get_task(p, which_clock, tp);
312 rcu_read_unlock();
313 }
314 371
315 return err; 372 if (CPUCLOCK_PERTHREAD(clock))
373 t = cpu_clock_sample(clkid, tsk);
374 else
375 t = cpu_clock_sample_group(clkid, tsk, false);
376 put_task_struct(tsk);
377
378 *tp = ns_to_timespec64(t);
379 return 0;
316} 380}
317 381
318/* 382/*
@@ -322,44 +386,15 @@ static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *t
322 */ 386 */
323static int posix_cpu_timer_create(struct k_itimer *new_timer) 387static int posix_cpu_timer_create(struct k_itimer *new_timer)
324{ 388{
325 int ret = 0; 389 struct task_struct *p = get_task_for_clock(new_timer->it_clock);
326 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
327 struct task_struct *p;
328 390
329 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) 391 if (!p)
330 return -EINVAL; 392 return -EINVAL;
331 393
332 new_timer->kclock = &clock_posix_cpu; 394 new_timer->kclock = &clock_posix_cpu;
333 395 timerqueue_init(&new_timer->it.cpu.node);
334 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
335
336 rcu_read_lock();
337 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
338 if (pid == 0) {
339 p = current;
340 } else {
341 p = find_task_by_vpid(pid);
342 if (p && !same_thread_group(p, current))
343 p = NULL;
344 }
345 } else {
346 if (pid == 0) {
347 p = current->group_leader;
348 } else {
349 p = find_task_by_vpid(pid);
350 if (p && !has_group_leader_pid(p))
351 p = NULL;
352 }
353 }
354 new_timer->it.cpu.task = p; 396 new_timer->it.cpu.task = p;
355 if (p) { 397 return 0;
356 get_task_struct(p);
357 } else {
358 ret = -EINVAL;
359 }
360 rcu_read_unlock();
361
362 return ret;
363} 398}
364 399
365/* 400/*
@@ -370,12 +405,14 @@ static int posix_cpu_timer_create(struct k_itimer *new_timer)
370 */ 405 */
371static int posix_cpu_timer_del(struct k_itimer *timer) 406static int posix_cpu_timer_del(struct k_itimer *timer)
372{ 407{
373 int ret = 0; 408 struct cpu_timer *ctmr = &timer->it.cpu;
374 unsigned long flags; 409 struct task_struct *p = ctmr->task;
375 struct sighand_struct *sighand; 410 struct sighand_struct *sighand;
376 struct task_struct *p = timer->it.cpu.task; 411 unsigned long flags;
412 int ret = 0;
377 413
378 WARN_ON_ONCE(p == NULL); 414 if (WARN_ON_ONCE(!p))
415 return -EINVAL;
379 416
380 /* 417 /*
381 * Protect against sighand release/switch in exit/exec and process/ 418 * Protect against sighand release/switch in exit/exec and process/
@@ -384,15 +421,15 @@ static int posix_cpu_timer_del(struct k_itimer *timer)
384 sighand = lock_task_sighand(p, &flags); 421 sighand = lock_task_sighand(p, &flags);
385 if (unlikely(sighand == NULL)) { 422 if (unlikely(sighand == NULL)) {
386 /* 423 /*
387 * We raced with the reaping of the task. 424 * This raced with the reaping of the task. The exit cleanup
388 * The deletion should have cleared us off the list. 425 * should have removed this timer from the timer queue.
389 */ 426 */
390 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); 427 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
391 } else { 428 } else {
392 if (timer->it.cpu.firing) 429 if (timer->it.cpu.firing)
393 ret = TIMER_RETRY; 430 ret = TIMER_RETRY;
394 else 431 else
395 list_del(&timer->it.cpu.entry); 432 cpu_timer_dequeue(ctmr);
396 433
397 unlock_task_sighand(p, &flags); 434 unlock_task_sighand(p, &flags);
398 } 435 }
@@ -403,25 +440,30 @@ static int posix_cpu_timer_del(struct k_itimer *timer)
403 return ret; 440 return ret;
404} 441}
405 442
406static void cleanup_timers_list(struct list_head *head) 443static void cleanup_timerqueue(struct timerqueue_head *head)
407{ 444{
408 struct cpu_timer_list *timer, *next; 445 struct timerqueue_node *node;
446 struct cpu_timer *ctmr;
409 447
410 list_for_each_entry_safe(timer, next, head, entry) 448 while ((node = timerqueue_getnext(head))) {
411 list_del_init(&timer->entry); 449 timerqueue_del(head, node);
450 ctmr = container_of(node, struct cpu_timer, node);
451 ctmr->head = NULL;
452 }
412} 453}
413 454
414/* 455/*
415 * Clean out CPU timers still ticking when a thread exited. The task 456 * Clean out CPU timers which are still armed when a thread exits. The
416 * pointer is cleared, and the expiry time is replaced with the residual 457 * timers are only removed from the list. No other updates are done. The
417 * time for later timer_gettime calls to return. 458 * corresponding posix timers are still accessible, but cannot be rearmed.
459 *
418 * This must be called with the siglock held. 460 * This must be called with the siglock held.
419 */ 461 */
420static void cleanup_timers(struct list_head *head) 462static void cleanup_timers(struct posix_cputimers *pct)
421{ 463{
422 cleanup_timers_list(head); 464 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
423 cleanup_timers_list(++head); 465 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
424 cleanup_timers_list(++head); 466 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
425} 467}
426 468
427/* 469/*
@@ -431,16 +473,11 @@ static void cleanup_timers(struct list_head *head)
431 */ 473 */
432void posix_cpu_timers_exit(struct task_struct *tsk) 474void posix_cpu_timers_exit(struct task_struct *tsk)
433{ 475{
434 cleanup_timers(tsk->cpu_timers); 476 cleanup_timers(&tsk->posix_cputimers);
435} 477}
436void posix_cpu_timers_exit_group(struct task_struct *tsk) 478void posix_cpu_timers_exit_group(struct task_struct *tsk)
437{ 479{
438 cleanup_timers(tsk->signal->cpu_timers); 480 cleanup_timers(&tsk->signal->posix_cputimers);
439}
440
441static inline int expires_gt(u64 expires, u64 new_exp)
442{
443 return expires == 0 || expires > new_exp;
444} 481}
445 482
446/* 483/*
@@ -449,58 +486,33 @@ static inline int expires_gt(u64 expires, u64 new_exp)
449 */ 486 */
450static void arm_timer(struct k_itimer *timer) 487static void arm_timer(struct k_itimer *timer)
451{ 488{
452 struct task_struct *p = timer->it.cpu.task; 489 int clkidx = CPUCLOCK_WHICH(timer->it_clock);
453 struct list_head *head, *listpos; 490 struct cpu_timer *ctmr = &timer->it.cpu;
454 struct task_cputime *cputime_expires; 491 u64 newexp = cpu_timer_getexpires(ctmr);
455 struct cpu_timer_list *const nt = &timer->it.cpu; 492 struct task_struct *p = ctmr->task;
456 struct cpu_timer_list *next; 493 struct posix_cputimer_base *base;
457 494
458 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 495 if (CPUCLOCK_PERTHREAD(timer->it_clock))
459 head = p->cpu_timers; 496 base = p->posix_cputimers.bases + clkidx;
460 cputime_expires = &p->cputime_expires; 497 else
461 } else { 498 base = p->signal->posix_cputimers.bases + clkidx;
462 head = p->signal->cpu_timers; 499
463 cputime_expires = &p->signal->cputime_expires; 500 if (!cpu_timer_enqueue(&base->tqhead, ctmr))
464 } 501 return;
465 head += CPUCLOCK_WHICH(timer->it_clock);
466
467 listpos = head;
468 list_for_each_entry(next, head, entry) {
469 if (nt->expires < next->expires)
470 break;
471 listpos = &next->entry;
472 }
473 list_add(&nt->entry, listpos);
474
475 if (listpos == head) {
476 u64 exp = nt->expires;
477 502
478 /* 503 /*
479 * We are the new earliest-expiring POSIX 1.b timer, hence 504 * We are the new earliest-expiring POSIX 1.b timer, hence
480 * need to update expiration cache. Take into account that 505 * need to update expiration cache. Take into account that
481 * for process timers we share expiration cache with itimers 506 * for process timers we share expiration cache with itimers
482 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 507 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
483 */ 508 */
509 if (newexp < base->nextevt)
510 base->nextevt = newexp;
484 511
485 switch (CPUCLOCK_WHICH(timer->it_clock)) { 512 if (CPUCLOCK_PERTHREAD(timer->it_clock))
486 case CPUCLOCK_PROF: 513 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
487 if (expires_gt(cputime_expires->prof_exp, exp)) 514 else
488 cputime_expires->prof_exp = exp; 515 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
489 break;
490 case CPUCLOCK_VIRT:
491 if (expires_gt(cputime_expires->virt_exp, exp))
492 cputime_expires->virt_exp = exp;
493 break;
494 case CPUCLOCK_SCHED:
495 if (expires_gt(cputime_expires->sched_exp, exp))
496 cputime_expires->sched_exp = exp;
497 break;
498 }
499 if (CPUCLOCK_PERTHREAD(timer->it_clock))
500 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
501 else
502 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
503 }
504} 516}
505 517
506/* 518/*
@@ -508,24 +520,26 @@ static void arm_timer(struct k_itimer *timer)
508 */ 520 */
509static void cpu_timer_fire(struct k_itimer *timer) 521static void cpu_timer_fire(struct k_itimer *timer)
510{ 522{
523 struct cpu_timer *ctmr = &timer->it.cpu;
524
511 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 525 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
512 /* 526 /*
513 * User don't want any signal. 527 * User don't want any signal.
514 */ 528 */
515 timer->it.cpu.expires = 0; 529 cpu_timer_setexpires(ctmr, 0);
516 } else if (unlikely(timer->sigq == NULL)) { 530 } else if (unlikely(timer->sigq == NULL)) {
517 /* 531 /*
518 * This a special case for clock_nanosleep, 532 * This a special case for clock_nanosleep,
519 * not a normal timer from sys_timer_create. 533 * not a normal timer from sys_timer_create.
520 */ 534 */
521 wake_up_process(timer->it_process); 535 wake_up_process(timer->it_process);
522 timer->it.cpu.expires = 0; 536 cpu_timer_setexpires(ctmr, 0);
523 } else if (!timer->it_interval) { 537 } else if (!timer->it_interval) {
524 /* 538 /*
525 * One-shot timer. Clear it as soon as it's fired. 539 * One-shot timer. Clear it as soon as it's fired.
526 */ 540 */
527 posix_timer_event(timer, 0); 541 posix_timer_event(timer, 0);
528 timer->it.cpu.expires = 0; 542 cpu_timer_setexpires(ctmr, 0);
529 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 543 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
530 /* 544 /*
531 * The signal did not get queued because the signal 545 * The signal did not get queued because the signal
@@ -539,33 +553,6 @@ static void cpu_timer_fire(struct k_itimer *timer)
539} 553}
540 554
541/* 555/*
542 * Sample a process (thread group) timer for the given group_leader task.
543 * Must be called with task sighand lock held for safe while_each_thread()
544 * traversal.
545 */
546static int cpu_timer_sample_group(const clockid_t which_clock,
547 struct task_struct *p, u64 *sample)
548{
549 struct task_cputime cputime;
550
551 thread_group_cputimer(p, &cputime);
552 switch (CPUCLOCK_WHICH(which_clock)) {
553 default:
554 return -EINVAL;
555 case CPUCLOCK_PROF:
556 *sample = cputime.utime + cputime.stime;
557 break;
558 case CPUCLOCK_VIRT:
559 *sample = cputime.utime;
560 break;
561 case CPUCLOCK_SCHED:
562 *sample = cputime.sum_exec_runtime;
563 break;
564 }
565 return 0;
566}
567
568/*
569 * Guts of sys_timer_settime for CPU timers. 556 * Guts of sys_timer_settime for CPU timers.
570 * This is called with the timer locked and interrupts disabled. 557 * This is called with the timer locked and interrupts disabled.
571 * If we return TIMER_RETRY, it's necessary to release the timer's lock 558 * If we return TIMER_RETRY, it's necessary to release the timer's lock
@@ -574,13 +561,16 @@ static int cpu_timer_sample_group(const clockid_t which_clock,
574static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 561static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
575 struct itimerspec64 *new, struct itimerspec64 *old) 562 struct itimerspec64 *new, struct itimerspec64 *old)
576{ 563{
577 unsigned long flags; 564 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
578 struct sighand_struct *sighand;
579 struct task_struct *p = timer->it.cpu.task;
580 u64 old_expires, new_expires, old_incr, val; 565 u64 old_expires, new_expires, old_incr, val;
581 int ret; 566 struct cpu_timer *ctmr = &timer->it.cpu;
567 struct task_struct *p = ctmr->task;
568 struct sighand_struct *sighand;
569 unsigned long flags;
570 int ret = 0;
582 571
583 WARN_ON_ONCE(p == NULL); 572 if (WARN_ON_ONCE(!p))
573 return -EINVAL;
584 574
585 /* 575 /*
586 * Use the to_ktime conversion because that clamps the maximum 576 * Use the to_ktime conversion because that clamps the maximum
@@ -597,22 +587,21 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
597 * If p has just been reaped, we can no 587 * If p has just been reaped, we can no
598 * longer get any information about it at all. 588 * longer get any information about it at all.
599 */ 589 */
600 if (unlikely(sighand == NULL)) { 590 if (unlikely(sighand == NULL))
601 return -ESRCH; 591 return -ESRCH;
602 }
603 592
604 /* 593 /*
605 * Disarm any old timer after extracting its expiry time. 594 * Disarm any old timer after extracting its expiry time.
606 */ 595 */
607
608 ret = 0;
609 old_incr = timer->it_interval; 596 old_incr = timer->it_interval;
610 old_expires = timer->it.cpu.expires; 597 old_expires = cpu_timer_getexpires(ctmr);
598
611 if (unlikely(timer->it.cpu.firing)) { 599 if (unlikely(timer->it.cpu.firing)) {
612 timer->it.cpu.firing = -1; 600 timer->it.cpu.firing = -1;
613 ret = TIMER_RETRY; 601 ret = TIMER_RETRY;
614 } else 602 } else {
615 list_del_init(&timer->it.cpu.entry); 603 cpu_timer_dequeue(ctmr);
604 }
616 605
617 /* 606 /*
618 * We need to sample the current value to convert the new 607 * We need to sample the current value to convert the new
@@ -622,11 +611,10 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
622 * times (in arm_timer). With an absolute time, we must 611 * times (in arm_timer). With an absolute time, we must
623 * check if it's already passed. In short, we need a sample. 612 * check if it's already passed. In short, we need a sample.
624 */ 613 */
625 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 614 if (CPUCLOCK_PERTHREAD(timer->it_clock))
626 cpu_clock_sample(timer->it_clock, p, &val); 615 val = cpu_clock_sample(clkid, p);
627 } else { 616 else
628 cpu_timer_sample_group(timer->it_clock, p, &val); 617 val = cpu_clock_sample_group(clkid, p, true);
629 }
630 618
631 if (old) { 619 if (old) {
632 if (old_expires == 0) { 620 if (old_expires == 0) {
@@ -634,18 +622,16 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
634 old->it_value.tv_nsec = 0; 622 old->it_value.tv_nsec = 0;
635 } else { 623 } else {
636 /* 624 /*
637 * Update the timer in case it has 625 * Update the timer in case it has overrun already.
638 * overrun already. If it has, 626 * If it has, we'll report it as having overrun and
639 * we'll report it as having overrun 627 * with the next reloaded timer already ticking,
640 * and with the next reloaded timer 628 * though we are swallowing that pending
641 * already ticking, though we are 629 * notification here to install the new setting.
642 * swallowing that pending
643 * notification here to install the
644 * new setting.
645 */ 630 */
646 bump_cpu_timer(timer, val); 631 u64 exp = bump_cpu_timer(timer, val);
647 if (val < timer->it.cpu.expires) { 632
648 old_expires = timer->it.cpu.expires - val; 633 if (val < exp) {
634 old_expires = exp - val;
649 old->it_value = ns_to_timespec64(old_expires); 635 old->it_value = ns_to_timespec64(old_expires);
650 } else { 636 } else {
651 old->it_value.tv_nsec = 1; 637 old->it_value.tv_nsec = 1;
@@ -674,7 +660,7 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
674 * For a timer with no notification action, we don't actually 660 * For a timer with no notification action, we don't actually
675 * arm the timer (we'll just fake it for timer_gettime). 661 * arm the timer (we'll just fake it for timer_gettime).
676 */ 662 */
677 timer->it.cpu.expires = new_expires; 663 cpu_timer_setexpires(ctmr, new_expires);
678 if (new_expires != 0 && val < new_expires) { 664 if (new_expires != 0 && val < new_expires) {
679 arm_timer(timer); 665 arm_timer(timer);
680 } 666 }
@@ -715,24 +701,27 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
715 701
716static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) 702static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
717{ 703{
718 u64 now; 704 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
719 struct task_struct *p = timer->it.cpu.task; 705 struct cpu_timer *ctmr = &timer->it.cpu;
706 u64 now, expires = cpu_timer_getexpires(ctmr);
707 struct task_struct *p = ctmr->task;
720 708
721 WARN_ON_ONCE(p == NULL); 709 if (WARN_ON_ONCE(!p))
710 return;
722 711
723 /* 712 /*
724 * Easy part: convert the reload time. 713 * Easy part: convert the reload time.
725 */ 714 */
726 itp->it_interval = ktime_to_timespec64(timer->it_interval); 715 itp->it_interval = ktime_to_timespec64(timer->it_interval);
727 716
728 if (!timer->it.cpu.expires) 717 if (!expires)
729 return; 718 return;
730 719
731 /* 720 /*
732 * Sample the clock to take the difference with the expiry time. 721 * Sample the clock to take the difference with the expiry time.
733 */ 722 */
734 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 723 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
735 cpu_clock_sample(timer->it_clock, p, &now); 724 now = cpu_clock_sample(clkid, p);
736 } else { 725 } else {
737 struct sighand_struct *sighand; 726 struct sighand_struct *sighand;
738 unsigned long flags; 727 unsigned long flags;
@@ -747,18 +736,18 @@ static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp
747 /* 736 /*
748 * The process has been reaped. 737 * The process has been reaped.
749 * We can't even collect a sample any more. 738 * We can't even collect a sample any more.
750 * Call the timer disarmed, nothing else to do. 739 * Disarm the timer, nothing else to do.
751 */ 740 */
752 timer->it.cpu.expires = 0; 741 cpu_timer_setexpires(ctmr, 0);
753 return; 742 return;
754 } else { 743 } else {
755 cpu_timer_sample_group(timer->it_clock, p, &now); 744 now = cpu_clock_sample_group(clkid, p, false);
756 unlock_task_sighand(p, &flags); 745 unlock_task_sighand(p, &flags);
757 } 746 }
758 } 747 }
759 748
760 if (now < timer->it.cpu.expires) { 749 if (now < expires) {
761 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now); 750 itp->it_value = ns_to_timespec64(expires - now);
762 } else { 751 } else {
763 /* 752 /*
764 * The timer should have expired already, but the firing 753 * The timer should have expired already, but the firing
@@ -769,26 +758,42 @@ static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp
769 } 758 }
770} 759}
771 760
772static unsigned long long 761#define MAX_COLLECTED 20
773check_timers_list(struct list_head *timers,
774 struct list_head *firing,
775 unsigned long long curr)
776{
777 int maxfire = 20;
778 762
779 while (!list_empty(timers)) { 763static u64 collect_timerqueue(struct timerqueue_head *head,
780 struct cpu_timer_list *t; 764 struct list_head *firing, u64 now)
765{
766 struct timerqueue_node *next;
767 int i = 0;
768
769 while ((next = timerqueue_getnext(head))) {
770 struct cpu_timer *ctmr;
771 u64 expires;
772
773 ctmr = container_of(next, struct cpu_timer, node);
774 expires = cpu_timer_getexpires(ctmr);
775 /* Limit the number of timers to expire at once */
776 if (++i == MAX_COLLECTED || now < expires)
777 return expires;
778
779 ctmr->firing = 1;
780 cpu_timer_dequeue(ctmr);
781 list_add_tail(&ctmr->elist, firing);
782 }
781 783
782 t = list_first_entry(timers, struct cpu_timer_list, entry); 784 return U64_MAX;
785}
783 786
784 if (!--maxfire || curr < t->expires) 787static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
785 return t->expires; 788 struct list_head *firing)
789{
790 struct posix_cputimer_base *base = pct->bases;
791 int i;
786 792
787 t->firing = 1; 793 for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
788 list_move_tail(&t->entry, firing); 794 base->nextevt = collect_timerqueue(&base->tqhead, firing,
795 samples[i]);
789 } 796 }
790
791 return 0;
792} 797}
793 798
794static inline void check_dl_overrun(struct task_struct *tsk) 799static inline void check_dl_overrun(struct task_struct *tsk)
@@ -799,6 +804,20 @@ static inline void check_dl_overrun(struct task_struct *tsk)
799 } 804 }
800} 805}
801 806
807static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
808{
809 if (time < limit)
810 return false;
811
812 if (print_fatal_signals) {
813 pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
814 rt ? "RT" : "CPU", hard ? "hard" : "soft",
815 current->comm, task_pid_nr(current));
816 }
817 __group_send_sig_info(signo, SEND_SIG_PRIV, current);
818 return true;
819}
820
802/* 821/*
803 * Check for any per-thread CPU timers that have fired and move them off 822 * Check for any per-thread CPU timers that have fired and move them off
804 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 823 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
@@ -807,76 +826,50 @@ static inline void check_dl_overrun(struct task_struct *tsk)
807static void check_thread_timers(struct task_struct *tsk, 826static void check_thread_timers(struct task_struct *tsk,
808 struct list_head *firing) 827 struct list_head *firing)
809{ 828{
810 struct list_head *timers = tsk->cpu_timers; 829 struct posix_cputimers *pct = &tsk->posix_cputimers;
811 struct task_cputime *tsk_expires = &tsk->cputime_expires; 830 u64 samples[CPUCLOCK_MAX];
812 u64 expires;
813 unsigned long soft; 831 unsigned long soft;
814 832
815 if (dl_task(tsk)) 833 if (dl_task(tsk))
816 check_dl_overrun(tsk); 834 check_dl_overrun(tsk);
817 835
818 /* 836 if (expiry_cache_is_inactive(pct))
819 * If cputime_expires is zero, then there are no active
820 * per thread CPU timers.
821 */
822 if (task_cputime_zero(&tsk->cputime_expires))
823 return; 837 return;
824 838
825 expires = check_timers_list(timers, firing, prof_ticks(tsk)); 839 task_sample_cputime(tsk, samples);
826 tsk_expires->prof_exp = expires; 840 collect_posix_cputimers(pct, samples, firing);
827
828 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
829 tsk_expires->virt_exp = expires;
830
831 tsk_expires->sched_exp = check_timers_list(++timers, firing,
832 tsk->se.sum_exec_runtime);
833 841
834 /* 842 /*
835 * Check for the special case thread timers. 843 * Check for the special case thread timers.
836 */ 844 */
837 soft = task_rlimit(tsk, RLIMIT_RTTIME); 845 soft = task_rlimit(tsk, RLIMIT_RTTIME);
838 if (soft != RLIM_INFINITY) { 846 if (soft != RLIM_INFINITY) {
847 /* Task RT timeout is accounted in jiffies. RTTIME is usec */
848 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
839 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME); 849 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
840 850
851 /* At the hard limit, send SIGKILL. No further action. */
841 if (hard != RLIM_INFINITY && 852 if (hard != RLIM_INFINITY &&
842 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { 853 check_rlimit(rttime, hard, SIGKILL, true, true))
843 /*
844 * At the hard limit, we just die.
845 * No need to calculate anything else now.
846 */
847 if (print_fatal_signals) {
848 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
849 tsk->comm, task_pid_nr(tsk));
850 }
851 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
852 return; 854 return;
853 } 855
854 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { 856 /* At the soft limit, send a SIGXCPU every second */
855 /* 857 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
856 * At the soft limit, send a SIGXCPU every second. 858 soft += USEC_PER_SEC;
857 */ 859 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
858 if (soft < hard) {
859 soft += USEC_PER_SEC;
860 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
861 soft;
862 }
863 if (print_fatal_signals) {
864 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
865 tsk->comm, task_pid_nr(tsk));
866 }
867 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
868 } 860 }
869 } 861 }
870 if (task_cputime_zero(tsk_expires)) 862
863 if (expiry_cache_is_inactive(pct))
871 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 864 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
872} 865}
873 866
874static inline void stop_process_timers(struct signal_struct *sig) 867static inline void stop_process_timers(struct signal_struct *sig)
875{ 868{
876 struct thread_group_cputimer *cputimer = &sig->cputimer; 869 struct posix_cputimers *pct = &sig->posix_cputimers;
877 870
878 /* Turn off cputimer->running. This is done without locking. */ 871 /* Turn off the active flag. This is done without locking. */
879 WRITE_ONCE(cputimer->running, false); 872 WRITE_ONCE(pct->timers_active, false);
880 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 873 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
881} 874}
882 875
@@ -898,7 +891,7 @@ static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
898 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 891 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
899 } 892 }
900 893
901 if (it->expires && (!*expires || it->expires < *expires)) 894 if (it->expires && it->expires < *expires)
902 *expires = it->expires; 895 *expires = it->expires;
903} 896}
904 897
@@ -911,87 +904,69 @@ static void check_process_timers(struct task_struct *tsk,
911 struct list_head *firing) 904 struct list_head *firing)
912{ 905{
913 struct signal_struct *const sig = tsk->signal; 906 struct signal_struct *const sig = tsk->signal;
914 u64 utime, ptime, virt_expires, prof_expires; 907 struct posix_cputimers *pct = &sig->posix_cputimers;
915 u64 sum_sched_runtime, sched_expires; 908 u64 samples[CPUCLOCK_MAX];
916 struct list_head *timers = sig->cpu_timers;
917 struct task_cputime cputime;
918 unsigned long soft; 909 unsigned long soft;
919 910
920 /* 911 /*
921 * If cputimer is not running, then there are no active 912 * If there are no active process wide timers (POSIX 1.b, itimers,
922 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). 913 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
914 * processing when there is already another task handling them.
923 */ 915 */
924 if (!READ_ONCE(tsk->signal->cputimer.running)) 916 if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
925 return; 917 return;
926 918
927 /* 919 /*
928 * Signify that a thread is checking for process timers. 920 * Signify that a thread is checking for process timers.
929 * Write access to this field is protected by the sighand lock. 921 * Write access to this field is protected by the sighand lock.
930 */ 922 */
931 sig->cputimer.checking_timer = true; 923 pct->expiry_active = true;
932 924
933 /* 925 /*
934 * Collect the current process totals. 926 * Collect the current process totals. Group accounting is active
927 * so the sample can be taken directly.
935 */ 928 */
936 thread_group_cputimer(tsk, &cputime); 929 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
937 utime = cputime.utime; 930 collect_posix_cputimers(pct, samples, firing);
938 ptime = utime + cputime.stime;
939 sum_sched_runtime = cputime.sum_exec_runtime;
940
941 prof_expires = check_timers_list(timers, firing, ptime);
942 virt_expires = check_timers_list(++timers, firing, utime);
943 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
944 931
945 /* 932 /*
946 * Check for the special case process timers. 933 * Check for the special case process timers.
947 */ 934 */
948 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, 935 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
949 SIGPROF); 936 &pct->bases[CPUCLOCK_PROF].nextevt,
950 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, 937 samples[CPUCLOCK_PROF], SIGPROF);
951 SIGVTALRM); 938 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
939 &pct->bases[CPUCLOCK_VIRT].nextevt,
940 samples[CPUCLOCK_VIRT], SIGVTALRM);
941
952 soft = task_rlimit(tsk, RLIMIT_CPU); 942 soft = task_rlimit(tsk, RLIMIT_CPU);
953 if (soft != RLIM_INFINITY) { 943 if (soft != RLIM_INFINITY) {
954 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC); 944 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
955 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU); 945 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
956 u64 x; 946 u64 ptime = samples[CPUCLOCK_PROF];
957 if (psecs >= hard) { 947 u64 softns = (u64)soft * NSEC_PER_SEC;
958 /* 948 u64 hardns = (u64)hard * NSEC_PER_SEC;
959 * At the hard limit, we just die. 949
960 * No need to calculate anything else now. 950 /* At the hard limit, send SIGKILL. No further action. */
961 */ 951 if (hard != RLIM_INFINITY &&
962 if (print_fatal_signals) { 952 check_rlimit(ptime, hardns, SIGKILL, false, true))
963 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
964 tsk->comm, task_pid_nr(tsk));
965 }
966 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
967 return; 953 return;
954
955 /* At the soft limit, send a SIGXCPU every second */
956 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
957 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
958 softns += NSEC_PER_SEC;
968 } 959 }
969 if (psecs >= soft) { 960
970 /* 961 /* Update the expiry cache */
971 * At the soft limit, send a SIGXCPU every second. 962 if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
972 */ 963 pct->bases[CPUCLOCK_PROF].nextevt = softns;
973 if (print_fatal_signals) {
974 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
975 tsk->comm, task_pid_nr(tsk));
976 }
977 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
978 if (soft < hard) {
979 soft++;
980 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
981 }
982 }
983 x = soft * NSEC_PER_SEC;
984 if (!prof_expires || x < prof_expires)
985 prof_expires = x;
986 } 964 }
987 965
988 sig->cputime_expires.prof_exp = prof_expires; 966 if (expiry_cache_is_inactive(pct))
989 sig->cputime_expires.virt_exp = virt_expires;
990 sig->cputime_expires.sched_exp = sched_expires;
991 if (task_cputime_zero(&sig->cputime_expires))
992 stop_process_timers(sig); 967 stop_process_timers(sig);
993 968
994 sig->cputimer.checking_timer = false; 969 pct->expiry_active = false;
995} 970}
996 971
997/* 972/*
@@ -1000,18 +975,21 @@ static void check_process_timers(struct task_struct *tsk,
1000 */ 975 */
1001static void posix_cpu_timer_rearm(struct k_itimer *timer) 976static void posix_cpu_timer_rearm(struct k_itimer *timer)
1002{ 977{
978 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
979 struct cpu_timer *ctmr = &timer->it.cpu;
980 struct task_struct *p = ctmr->task;
1003 struct sighand_struct *sighand; 981 struct sighand_struct *sighand;
1004 unsigned long flags; 982 unsigned long flags;
1005 struct task_struct *p = timer->it.cpu.task;
1006 u64 now; 983 u64 now;
1007 984
1008 WARN_ON_ONCE(p == NULL); 985 if (WARN_ON_ONCE(!p))
986 return;
1009 987
1010 /* 988 /*
1011 * Fetch the current sample and update the timer's expiry time. 989 * Fetch the current sample and update the timer's expiry time.
1012 */ 990 */
1013 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 991 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1014 cpu_clock_sample(timer->it_clock, p, &now); 992 now = cpu_clock_sample(clkid, p);
1015 bump_cpu_timer(timer, now); 993 bump_cpu_timer(timer, now);
1016 if (unlikely(p->exit_state)) 994 if (unlikely(p->exit_state))
1017 return; 995 return;
@@ -1031,13 +1009,13 @@ static void posix_cpu_timer_rearm(struct k_itimer *timer)
1031 * The process has been reaped. 1009 * The process has been reaped.
1032 * We can't even collect a sample any more. 1010 * We can't even collect a sample any more.
1033 */ 1011 */
1034 timer->it.cpu.expires = 0; 1012 cpu_timer_setexpires(ctmr, 0);
1035 return; 1013 return;
1036 } else if (unlikely(p->exit_state) && thread_group_empty(p)) { 1014 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1037 /* If the process is dying, no need to rearm */ 1015 /* If the process is dying, no need to rearm */
1038 goto unlock; 1016 goto unlock;
1039 } 1017 }
1040 cpu_timer_sample_group(timer->it_clock, p, &now); 1018 now = cpu_clock_sample_group(clkid, p, true);
1041 bump_cpu_timer(timer, now); 1019 bump_cpu_timer(timer, now);
1042 /* Leave the sighand locked for the call below. */ 1020 /* Leave the sighand locked for the call below. */
1043 } 1021 }
@@ -1051,26 +1029,24 @@ unlock:
1051} 1029}
1052 1030
1053/** 1031/**
1054 * task_cputime_expired - Compare two task_cputime entities. 1032 * task_cputimers_expired - Check whether posix CPU timers are expired
1055 * 1033 *
1056 * @sample: The task_cputime structure to be checked for expiration. 1034 * @samples: Array of current samples for the CPUCLOCK clocks
1057 * @expires: Expiration times, against which @sample will be checked. 1035 * @pct: Pointer to a posix_cputimers container
1058 * 1036 *
1059 * Checks @sample against @expires to see if any field of @sample has expired. 1037 * Returns true if any member of @samples is greater than the corresponding
1060 * Returns true if any field of the former is greater than the corresponding 1038 * member of @pct->bases[CLK].nextevt. False otherwise
1061 * field of the latter if the latter field is set. Otherwise returns false.
1062 */ 1039 */
1063static inline int task_cputime_expired(const struct task_cputime *sample, 1040static inline bool
1064 const struct task_cputime *expires) 1041task_cputimers_expired(const u64 *sample, struct posix_cputimers *pct)
1065{ 1042{
1066 if (expires->utime && sample->utime >= expires->utime) 1043 int i;
1067 return 1; 1044
1068 if (expires->stime && sample->utime + sample->stime >= expires->stime) 1045 for (i = 0; i < CPUCLOCK_MAX; i++) {
1069 return 1; 1046 if (sample[i] >= pct->bases[i].nextevt)
1070 if (expires->sum_exec_runtime != 0 && 1047 return true;
1071 sample->sum_exec_runtime >= expires->sum_exec_runtime) 1048 }
1072 return 1; 1049 return false;
1073 return 0;
1074} 1050}
1075 1051
1076/** 1052/**
@@ -1083,48 +1059,50 @@ static inline int task_cputime_expired(const struct task_cputime *sample,
1083 * timers and compare them with the corresponding expiration times. Return 1059 * timers and compare them with the corresponding expiration times. Return
1084 * true if a timer has expired, else return false. 1060 * true if a timer has expired, else return false.
1085 */ 1061 */
1086static inline int fastpath_timer_check(struct task_struct *tsk) 1062static inline bool fastpath_timer_check(struct task_struct *tsk)
1087{ 1063{
1064 struct posix_cputimers *pct = &tsk->posix_cputimers;
1088 struct signal_struct *sig; 1065 struct signal_struct *sig;
1089 1066
1090 if (!task_cputime_zero(&tsk->cputime_expires)) { 1067 if (!expiry_cache_is_inactive(pct)) {
1091 struct task_cputime task_sample; 1068 u64 samples[CPUCLOCK_MAX];
1092 1069
1093 task_cputime(tsk, &task_sample.utime, &task_sample.stime); 1070 task_sample_cputime(tsk, samples);
1094 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime; 1071 if (task_cputimers_expired(samples, pct))
1095 if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) 1072 return true;
1096 return 1;
1097 } 1073 }
1098 1074
1099 sig = tsk->signal; 1075 sig = tsk->signal;
1076 pct = &sig->posix_cputimers;
1100 /* 1077 /*
1101 * Check if thread group timers expired when the cputimer is 1078 * Check if thread group timers expired when timers are active and
1102 * running and no other thread in the group is already checking 1079 * no other thread in the group is already handling expiry for
1103 * for thread group cputimers. These fields are read without the 1080 * thread group cputimers. These fields are read without the
1104 * sighand lock. However, this is fine because this is meant to 1081 * sighand lock. However, this is fine because this is meant to be
1105 * be a fastpath heuristic to determine whether we should try to 1082 * a fastpath heuristic to determine whether we should try to
1106 * acquire the sighand lock to check/handle timers. 1083 * acquire the sighand lock to handle timer expiry.
1107 * 1084 *
1108 * In the worst case scenario, if 'running' or 'checking_timer' gets 1085 * In the worst case scenario, if concurrently timers_active is set
1109 * set but the current thread doesn't see the change yet, we'll wait 1086 * or expiry_active is cleared, but the current thread doesn't see
1110 * until the next thread in the group gets a scheduler interrupt to 1087 * the change yet, the timer checks are delayed until the next
1111 * handle the timer. This isn't an issue in practice because these 1088 * thread in the group gets a scheduler interrupt to handle the
1112 * types of delays with signals actually getting sent are expected. 1089 * timer. This isn't an issue in practice because these types of
1090 * delays with signals actually getting sent are expected.
1113 */ 1091 */
1114 if (READ_ONCE(sig->cputimer.running) && 1092 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1115 !READ_ONCE(sig->cputimer.checking_timer)) { 1093 u64 samples[CPUCLOCK_MAX];
1116 struct task_cputime group_sample;
1117 1094
1118 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); 1095 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1096 samples);
1119 1097
1120 if (task_cputime_expired(&group_sample, &sig->cputime_expires)) 1098 if (task_cputimers_expired(samples, pct))
1121 return 1; 1099 return true;
1122 } 1100 }
1123 1101
1124 if (dl_task(tsk) && tsk->dl.dl_overrun) 1102 if (dl_task(tsk) && tsk->dl.dl_overrun)
1125 return 1; 1103 return true;
1126 1104
1127 return 0; 1105 return false;
1128} 1106}
1129 1107
1130/* 1108/*
@@ -1132,11 +1110,12 @@ static inline int fastpath_timer_check(struct task_struct *tsk)
1132 * already updated our counts. We need to check if any timers fire now. 1110 * already updated our counts. We need to check if any timers fire now.
1133 * Interrupts are disabled. 1111 * Interrupts are disabled.
1134 */ 1112 */
1135void run_posix_cpu_timers(struct task_struct *tsk) 1113void run_posix_cpu_timers(void)
1136{ 1114{
1137 LIST_HEAD(firing); 1115 struct task_struct *tsk = current;
1138 struct k_itimer *timer, *next; 1116 struct k_itimer *timer, *next;
1139 unsigned long flags; 1117 unsigned long flags;
1118 LIST_HEAD(firing);
1140 1119
1141 lockdep_assert_irqs_disabled(); 1120 lockdep_assert_irqs_disabled();
1142 1121
@@ -1174,11 +1153,11 @@ void run_posix_cpu_timers(struct task_struct *tsk)
1174 * each timer's lock before clearing its firing flag, so no 1153 * each timer's lock before clearing its firing flag, so no
1175 * timer call will interfere. 1154 * timer call will interfere.
1176 */ 1155 */
1177 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { 1156 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1178 int cpu_firing; 1157 int cpu_firing;
1179 1158
1180 spin_lock(&timer->it_lock); 1159 spin_lock(&timer->it_lock);
1181 list_del_init(&timer->it.cpu.entry); 1160 list_del_init(&timer->it.cpu.elist);
1182 cpu_firing = timer->it.cpu.firing; 1161 cpu_firing = timer->it.cpu.firing;
1183 timer->it.cpu.firing = 0; 1162 timer->it.cpu.firing = 0;
1184 /* 1163 /*
@@ -1196,16 +1175,18 @@ void run_posix_cpu_timers(struct task_struct *tsk)
1196 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1175 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1197 * The tsk->sighand->siglock must be held by the caller. 1176 * The tsk->sighand->siglock must be held by the caller.
1198 */ 1177 */
1199void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1178void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1200 u64 *newval, u64 *oldval) 1179 u64 *newval, u64 *oldval)
1201{ 1180{
1202 u64 now; 1181 u64 now, *nextevt;
1203 int ret; 1182
1183 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1184 return;
1204 1185
1205 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); 1186 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1206 ret = cpu_timer_sample_group(clock_idx, tsk, &now); 1187 now = cpu_clock_sample_group(clkid, tsk, true);
1207 1188
1208 if (oldval && ret != -EINVAL) { 1189 if (oldval) {
1209 /* 1190 /*
1210 * We are setting itimer. The *oldval is absolute and we update 1191 * We are setting itimer. The *oldval is absolute and we update
1211 * it to be relative, *newval argument is relative and we update 1192 * it to be relative, *newval argument is relative and we update
@@ -1226,19 +1207,11 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1226 } 1207 }
1227 1208
1228 /* 1209 /*
1229 * Update expiration cache if we are the earliest timer, or eventually 1210 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1230 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. 1211 * expiry cache is also used by RLIMIT_CPU!.
1231 */ 1212 */
1232 switch (clock_idx) { 1213 if (*newval < *nextevt)
1233 case CPUCLOCK_PROF: 1214 *nextevt = *newval;
1234 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1235 tsk->signal->cputime_expires.prof_exp = *newval;
1236 break;
1237 case CPUCLOCK_VIRT:
1238 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1239 tsk->signal->cputime_expires.virt_exp = *newval;
1240 break;
1241 }
1242 1215
1243 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER); 1216 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1244} 1217}
@@ -1260,6 +1233,7 @@ static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1260 timer.it_overrun = -1; 1233 timer.it_overrun = -1;
1261 error = posix_cpu_timer_create(&timer); 1234 error = posix_cpu_timer_create(&timer);
1262 timer.it_process = current; 1235 timer.it_process = current;
1236
1263 if (!error) { 1237 if (!error) {
1264 static struct itimerspec64 zero_it; 1238 static struct itimerspec64 zero_it;
1265 struct restart_block *restart; 1239 struct restart_block *restart;
@@ -1275,7 +1249,7 @@ static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1275 } 1249 }
1276 1250
1277 while (!signal_pending(current)) { 1251 while (!signal_pending(current)) {
1278 if (timer.it.cpu.expires == 0) { 1252 if (!cpu_timer_getexpires(&timer.it.cpu)) {
1279 /* 1253 /*
1280 * Our timer fired and was reset, below 1254 * Our timer fired and was reset, below
1281 * deletion can not fail. 1255 * deletion can not fail.
@@ -1297,7 +1271,7 @@ static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1297 /* 1271 /*
1298 * We were interrupted by a signal. 1272 * We were interrupted by a signal.
1299 */ 1273 */
1300 expires = timer.it.cpu.expires; 1274 expires = cpu_timer_getexpires(&timer.it.cpu);
1301 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it); 1275 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1302 if (!error) { 1276 if (!error) {
1303 /* 1277 /*
diff --git a/kernel/time/posix-timers.c b/kernel/time/posix-timers.c
index d7f2d91acdac..0ec5b7a1d769 100644
--- a/kernel/time/posix-timers.c
+++ b/kernel/time/posix-timers.c
@@ -442,7 +442,7 @@ static struct k_itimer * alloc_posix_timer(void)
442 442
443static void k_itimer_rcu_free(struct rcu_head *head) 443static void k_itimer_rcu_free(struct rcu_head *head)
444{ 444{
445 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); 445 struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
446 446
447 kmem_cache_free(posix_timers_cache, tmr); 447 kmem_cache_free(posix_timers_cache, tmr);
448} 448}
@@ -459,7 +459,7 @@ static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
459 } 459 }
460 put_pid(tmr->it_pid); 460 put_pid(tmr->it_pid);
461 sigqueue_free(tmr->sigq); 461 sigqueue_free(tmr->sigq);
462 call_rcu(&tmr->it.rcu, k_itimer_rcu_free); 462 call_rcu(&tmr->rcu, k_itimer_rcu_free);
463} 463}
464 464
465static int common_timer_create(struct k_itimer *new_timer) 465static int common_timer_create(struct k_itimer *new_timer)
@@ -805,6 +805,35 @@ static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
805 return hrtimer_try_to_cancel(&timr->it.real.timer); 805 return hrtimer_try_to_cancel(&timr->it.real.timer);
806} 806}
807 807
808static void common_timer_wait_running(struct k_itimer *timer)
809{
810 hrtimer_cancel_wait_running(&timer->it.real.timer);
811}
812
813/*
814 * On PREEMPT_RT this prevent priority inversion against softirq kthread in
815 * case it gets preempted while executing a timer callback. See comments in
816 * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
817 * cpu_relax().
818 */
819static struct k_itimer *timer_wait_running(struct k_itimer *timer,
820 unsigned long *flags)
821{
822 const struct k_clock *kc = READ_ONCE(timer->kclock);
823 timer_t timer_id = READ_ONCE(timer->it_id);
824
825 /* Prevent kfree(timer) after dropping the lock */
826 rcu_read_lock();
827 unlock_timer(timer, *flags);
828
829 if (!WARN_ON_ONCE(!kc->timer_wait_running))
830 kc->timer_wait_running(timer);
831
832 rcu_read_unlock();
833 /* Relock the timer. It might be not longer hashed. */
834 return lock_timer(timer_id, flags);
835}
836
808/* Set a POSIX.1b interval timer. */ 837/* Set a POSIX.1b interval timer. */
809int common_timer_set(struct k_itimer *timr, int flags, 838int common_timer_set(struct k_itimer *timr, int flags,
810 struct itimerspec64 *new_setting, 839 struct itimerspec64 *new_setting,
@@ -844,13 +873,13 @@ int common_timer_set(struct k_itimer *timr, int flags,
844 return 0; 873 return 0;
845} 874}
846 875
847static int do_timer_settime(timer_t timer_id, int flags, 876static int do_timer_settime(timer_t timer_id, int tmr_flags,
848 struct itimerspec64 *new_spec64, 877 struct itimerspec64 *new_spec64,
849 struct itimerspec64 *old_spec64) 878 struct itimerspec64 *old_spec64)
850{ 879{
851 const struct k_clock *kc; 880 const struct k_clock *kc;
852 struct k_itimer *timr; 881 struct k_itimer *timr;
853 unsigned long flag; 882 unsigned long flags;
854 int error = 0; 883 int error = 0;
855 884
856 if (!timespec64_valid(&new_spec64->it_interval) || 885 if (!timespec64_valid(&new_spec64->it_interval) ||
@@ -859,8 +888,9 @@ static int do_timer_settime(timer_t timer_id, int flags,
859 888
860 if (old_spec64) 889 if (old_spec64)
861 memset(old_spec64, 0, sizeof(*old_spec64)); 890 memset(old_spec64, 0, sizeof(*old_spec64));
891
892 timr = lock_timer(timer_id, &flags);
862retry: 893retry:
863 timr = lock_timer(timer_id, &flag);
864 if (!timr) 894 if (!timr)
865 return -EINVAL; 895 return -EINVAL;
866 896
@@ -868,13 +898,16 @@ retry:
868 if (WARN_ON_ONCE(!kc || !kc->timer_set)) 898 if (WARN_ON_ONCE(!kc || !kc->timer_set))
869 error = -EINVAL; 899 error = -EINVAL;
870 else 900 else
871 error = kc->timer_set(timr, flags, new_spec64, old_spec64); 901 error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
872 902
873 unlock_timer(timr, flag);
874 if (error == TIMER_RETRY) { 903 if (error == TIMER_RETRY) {
875 old_spec64 = NULL; // We already got the old time... 904 // We already got the old time...
905 old_spec64 = NULL;
906 /* Unlocks and relocks the timer if it still exists */
907 timr = timer_wait_running(timr, &flags);
876 goto retry; 908 goto retry;
877 } 909 }
910 unlock_timer(timr, flags);
878 911
879 return error; 912 return error;
880} 913}
@@ -951,13 +984,15 @@ SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
951 struct k_itimer *timer; 984 struct k_itimer *timer;
952 unsigned long flags; 985 unsigned long flags;
953 986
954retry_delete:
955 timer = lock_timer(timer_id, &flags); 987 timer = lock_timer(timer_id, &flags);
988
989retry_delete:
956 if (!timer) 990 if (!timer)
957 return -EINVAL; 991 return -EINVAL;
958 992
959 if (timer_delete_hook(timer) == TIMER_RETRY) { 993 if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
960 unlock_timer(timer, flags); 994 /* Unlocks and relocks the timer if it still exists */
995 timer = timer_wait_running(timer, &flags);
961 goto retry_delete; 996 goto retry_delete;
962 } 997 }
963 998
@@ -1238,6 +1273,7 @@ static const struct k_clock clock_realtime = {
1238 .timer_forward = common_hrtimer_forward, 1273 .timer_forward = common_hrtimer_forward,
1239 .timer_remaining = common_hrtimer_remaining, 1274 .timer_remaining = common_hrtimer_remaining,
1240 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1275 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1276 .timer_wait_running = common_timer_wait_running,
1241 .timer_arm = common_hrtimer_arm, 1277 .timer_arm = common_hrtimer_arm,
1242}; 1278};
1243 1279
@@ -1253,6 +1289,7 @@ static const struct k_clock clock_monotonic = {
1253 .timer_forward = common_hrtimer_forward, 1289 .timer_forward = common_hrtimer_forward,
1254 .timer_remaining = common_hrtimer_remaining, 1290 .timer_remaining = common_hrtimer_remaining,
1255 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1291 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1292 .timer_wait_running = common_timer_wait_running,
1256 .timer_arm = common_hrtimer_arm, 1293 .timer_arm = common_hrtimer_arm,
1257}; 1294};
1258 1295
@@ -1283,6 +1320,7 @@ static const struct k_clock clock_tai = {
1283 .timer_forward = common_hrtimer_forward, 1320 .timer_forward = common_hrtimer_forward,
1284 .timer_remaining = common_hrtimer_remaining, 1321 .timer_remaining = common_hrtimer_remaining,
1285 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1322 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1323 .timer_wait_running = common_timer_wait_running,
1286 .timer_arm = common_hrtimer_arm, 1324 .timer_arm = common_hrtimer_arm,
1287}; 1325};
1288 1326
@@ -1298,6 +1336,7 @@ static const struct k_clock clock_boottime = {
1298 .timer_forward = common_hrtimer_forward, 1336 .timer_forward = common_hrtimer_forward,
1299 .timer_remaining = common_hrtimer_remaining, 1337 .timer_remaining = common_hrtimer_remaining,
1300 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1338 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1339 .timer_wait_running = common_timer_wait_running,
1301 .timer_arm = common_hrtimer_arm, 1340 .timer_arm = common_hrtimer_arm,
1302}; 1341};
1303 1342
diff --git a/kernel/time/posix-timers.h b/kernel/time/posix-timers.h
index de5daa6d975a..897c29e162b9 100644
--- a/kernel/time/posix-timers.h
+++ b/kernel/time/posix-timers.h
@@ -24,6 +24,7 @@ struct k_clock {
24 int (*timer_try_to_cancel)(struct k_itimer *timr); 24 int (*timer_try_to_cancel)(struct k_itimer *timr);
25 void (*timer_arm)(struct k_itimer *timr, ktime_t expires, 25 void (*timer_arm)(struct k_itimer *timr, ktime_t expires,
26 bool absolute, bool sigev_none); 26 bool absolute, bool sigev_none);
27 void (*timer_wait_running)(struct k_itimer *timr);
27}; 28};
28 29
29extern const struct k_clock clock_posix_cpu; 30extern const struct k_clock clock_posix_cpu;
diff --git a/kernel/time/tick-broadcast-hrtimer.c b/kernel/time/tick-broadcast-hrtimer.c
index 5be6154e2fd2..c1f5bb590b5e 100644
--- a/kernel/time/tick-broadcast-hrtimer.c
+++ b/kernel/time/tick-broadcast-hrtimer.c
@@ -59,11 +59,16 @@ static int bc_set_next(ktime_t expires, struct clock_event_device *bc)
59 * hrtimer_{start/cancel} functions call into tracing, 59 * hrtimer_{start/cancel} functions call into tracing,
60 * calls to these functions must be bound within RCU_NONIDLE. 60 * calls to these functions must be bound within RCU_NONIDLE.
61 */ 61 */
62 RCU_NONIDLE({ 62 RCU_NONIDLE(
63 {
63 bc_moved = hrtimer_try_to_cancel(&bctimer) >= 0; 64 bc_moved = hrtimer_try_to_cancel(&bctimer) >= 0;
64 if (bc_moved) 65 if (bc_moved) {
65 hrtimer_start(&bctimer, expires, 66 hrtimer_start(&bctimer, expires,
66 HRTIMER_MODE_ABS_PINNED);}); 67 HRTIMER_MODE_ABS_PINNED_HARD);
68 }
69 }
70 );
71
67 if (bc_moved) { 72 if (bc_moved) {
68 /* Bind the "device" to the cpu */ 73 /* Bind the "device" to the cpu */
69 bc->bound_on = smp_processor_id(); 74 bc->bound_on = smp_processor_id();
@@ -104,7 +109,7 @@ static enum hrtimer_restart bc_handler(struct hrtimer *t)
104 109
105void tick_setup_hrtimer_broadcast(void) 110void tick_setup_hrtimer_broadcast(void)
106{ 111{
107 hrtimer_init(&bctimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 112 hrtimer_init(&bctimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
108 bctimer.function = bc_handler; 113 bctimer.function = bc_handler;
109 clockevents_register_device(&ce_broadcast_hrtimer); 114 clockevents_register_device(&ce_broadcast_hrtimer);
110} 115}
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index be9707f68024..955851748dc3 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -634,10 +634,12 @@ static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
634 /* Forward the time to expire in the future */ 634 /* Forward the time to expire in the future */
635 hrtimer_forward(&ts->sched_timer, now, tick_period); 635 hrtimer_forward(&ts->sched_timer, now, tick_period);
636 636
637 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) 637 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
638 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 638 hrtimer_start_expires(&ts->sched_timer,
639 else 639 HRTIMER_MODE_ABS_PINNED_HARD);
640 } else {
640 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); 641 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
642 }
641 643
642 /* 644 /*
643 * Reset to make sure next tick stop doesn't get fooled by past 645 * Reset to make sure next tick stop doesn't get fooled by past
@@ -802,7 +804,8 @@ static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
802 } 804 }
803 805
804 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { 806 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
805 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED); 807 hrtimer_start(&ts->sched_timer, tick,
808 HRTIMER_MODE_ABS_PINNED_HARD);
806 } else { 809 } else {
807 hrtimer_set_expires(&ts->sched_timer, tick); 810 hrtimer_set_expires(&ts->sched_timer, tick);
808 tick_program_event(tick, 1); 811 tick_program_event(tick, 1);
@@ -1230,7 +1233,7 @@ static void tick_nohz_switch_to_nohz(void)
1230 * Recycle the hrtimer in ts, so we can share the 1233 * Recycle the hrtimer in ts, so we can share the
1231 * hrtimer_forward with the highres code. 1234 * hrtimer_forward with the highres code.
1232 */ 1235 */
1233 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1236 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1234 /* Get the next period */ 1237 /* Get the next period */
1235 next = tick_init_jiffy_update(); 1238 next = tick_init_jiffy_update();
1236 1239
@@ -1327,7 +1330,7 @@ void tick_setup_sched_timer(void)
1327 /* 1330 /*
1328 * Emulate tick processing via per-CPU hrtimers: 1331 * Emulate tick processing via per-CPU hrtimers:
1329 */ 1332 */
1330 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1333 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1331 ts->sched_timer.function = tick_sched_timer; 1334 ts->sched_timer.function = tick_sched_timer;
1332 1335
1333 /* Get the next period (per-CPU) */ 1336 /* Get the next period (per-CPU) */
@@ -1342,7 +1345,7 @@ void tick_setup_sched_timer(void)
1342 } 1345 }
1343 1346
1344 hrtimer_forward(&ts->sched_timer, now, tick_period); 1347 hrtimer_forward(&ts->sched_timer, now, tick_period);
1345 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); 1348 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1346 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); 1349 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1347} 1350}
1348#endif /* HIGH_RES_TIMERS */ 1351#endif /* HIGH_RES_TIMERS */
diff --git a/kernel/time/timer.c b/kernel/time/timer.c
index 343c7ba33b1c..0e315a2e77ae 100644
--- a/kernel/time/timer.c
+++ b/kernel/time/timer.c
@@ -196,6 +196,10 @@ EXPORT_SYMBOL(jiffies_64);
196struct timer_base { 196struct timer_base {
197 raw_spinlock_t lock; 197 raw_spinlock_t lock;
198 struct timer_list *running_timer; 198 struct timer_list *running_timer;
199#ifdef CONFIG_PREEMPT_RT
200 spinlock_t expiry_lock;
201 atomic_t timer_waiters;
202#endif
199 unsigned long clk; 203 unsigned long clk;
200 unsigned long next_expiry; 204 unsigned long next_expiry;
201 unsigned int cpu; 205 unsigned int cpu;
@@ -1227,7 +1231,78 @@ int try_to_del_timer_sync(struct timer_list *timer)
1227} 1231}
1228EXPORT_SYMBOL(try_to_del_timer_sync); 1232EXPORT_SYMBOL(try_to_del_timer_sync);
1229 1233
1230#ifdef CONFIG_SMP 1234#ifdef CONFIG_PREEMPT_RT
1235static __init void timer_base_init_expiry_lock(struct timer_base *base)
1236{
1237 spin_lock_init(&base->expiry_lock);
1238}
1239
1240static inline void timer_base_lock_expiry(struct timer_base *base)
1241{
1242 spin_lock(&base->expiry_lock);
1243}
1244
1245static inline void timer_base_unlock_expiry(struct timer_base *base)
1246{
1247 spin_unlock(&base->expiry_lock);
1248}
1249
1250/*
1251 * The counterpart to del_timer_wait_running().
1252 *
1253 * If there is a waiter for base->expiry_lock, then it was waiting for the
1254 * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1255 * the waiter to acquire the lock and make progress.
1256 */
1257static void timer_sync_wait_running(struct timer_base *base)
1258{
1259 if (atomic_read(&base->timer_waiters)) {
1260 spin_unlock(&base->expiry_lock);
1261 spin_lock(&base->expiry_lock);
1262 }
1263}
1264
1265/*
1266 * This function is called on PREEMPT_RT kernels when the fast path
1267 * deletion of a timer failed because the timer callback function was
1268 * running.
1269 *
1270 * This prevents priority inversion, if the softirq thread on a remote CPU
1271 * got preempted, and it prevents a life lock when the task which tries to
1272 * delete a timer preempted the softirq thread running the timer callback
1273 * function.
1274 */
1275static void del_timer_wait_running(struct timer_list *timer)
1276{
1277 u32 tf;
1278
1279 tf = READ_ONCE(timer->flags);
1280 if (!(tf & TIMER_MIGRATING)) {
1281 struct timer_base *base = get_timer_base(tf);
1282
1283 /*
1284 * Mark the base as contended and grab the expiry lock,
1285 * which is held by the softirq across the timer
1286 * callback. Drop the lock immediately so the softirq can
1287 * expire the next timer. In theory the timer could already
1288 * be running again, but that's more than unlikely and just
1289 * causes another wait loop.
1290 */
1291 atomic_inc(&base->timer_waiters);
1292 spin_lock_bh(&base->expiry_lock);
1293 atomic_dec(&base->timer_waiters);
1294 spin_unlock_bh(&base->expiry_lock);
1295 }
1296}
1297#else
1298static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1299static inline void timer_base_lock_expiry(struct timer_base *base) { }
1300static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1301static inline void timer_sync_wait_running(struct timer_base *base) { }
1302static inline void del_timer_wait_running(struct timer_list *timer) { }
1303#endif
1304
1305#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1231/** 1306/**
1232 * del_timer_sync - deactivate a timer and wait for the handler to finish. 1307 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1233 * @timer: the timer to be deactivated 1308 * @timer: the timer to be deactivated
@@ -1266,6 +1341,8 @@ EXPORT_SYMBOL(try_to_del_timer_sync);
1266 */ 1341 */
1267int del_timer_sync(struct timer_list *timer) 1342int del_timer_sync(struct timer_list *timer)
1268{ 1343{
1344 int ret;
1345
1269#ifdef CONFIG_LOCKDEP 1346#ifdef CONFIG_LOCKDEP
1270 unsigned long flags; 1347 unsigned long flags;
1271 1348
@@ -1283,12 +1360,17 @@ int del_timer_sync(struct timer_list *timer)
1283 * could lead to deadlock. 1360 * could lead to deadlock.
1284 */ 1361 */
1285 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); 1362 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1286 for (;;) { 1363
1287 int ret = try_to_del_timer_sync(timer); 1364 do {
1288 if (ret >= 0) 1365 ret = try_to_del_timer_sync(timer);
1289 return ret; 1366
1290 cpu_relax(); 1367 if (unlikely(ret < 0)) {
1291 } 1368 del_timer_wait_running(timer);
1369 cpu_relax();
1370 }
1371 } while (ret < 0);
1372
1373 return ret;
1292} 1374}
1293EXPORT_SYMBOL(del_timer_sync); 1375EXPORT_SYMBOL(del_timer_sync);
1294#endif 1376#endif
@@ -1360,10 +1442,13 @@ static void expire_timers(struct timer_base *base, struct hlist_head *head)
1360 if (timer->flags & TIMER_IRQSAFE) { 1442 if (timer->flags & TIMER_IRQSAFE) {
1361 raw_spin_unlock(&base->lock); 1443 raw_spin_unlock(&base->lock);
1362 call_timer_fn(timer, fn, baseclk); 1444 call_timer_fn(timer, fn, baseclk);
1445 base->running_timer = NULL;
1363 raw_spin_lock(&base->lock); 1446 raw_spin_lock(&base->lock);
1364 } else { 1447 } else {
1365 raw_spin_unlock_irq(&base->lock); 1448 raw_spin_unlock_irq(&base->lock);
1366 call_timer_fn(timer, fn, baseclk); 1449 call_timer_fn(timer, fn, baseclk);
1450 base->running_timer = NULL;
1451 timer_sync_wait_running(base);
1367 raw_spin_lock_irq(&base->lock); 1452 raw_spin_lock_irq(&base->lock);
1368 } 1453 }
1369 } 1454 }
@@ -1643,7 +1728,7 @@ void update_process_times(int user_tick)
1643#endif 1728#endif
1644 scheduler_tick(); 1729 scheduler_tick();
1645 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 1730 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1646 run_posix_cpu_timers(p); 1731 run_posix_cpu_timers();
1647} 1732}
1648 1733
1649/** 1734/**
@@ -1658,6 +1743,7 @@ static inline void __run_timers(struct timer_base *base)
1658 if (!time_after_eq(jiffies, base->clk)) 1743 if (!time_after_eq(jiffies, base->clk))
1659 return; 1744 return;
1660 1745
1746 timer_base_lock_expiry(base);
1661 raw_spin_lock_irq(&base->lock); 1747 raw_spin_lock_irq(&base->lock);
1662 1748
1663 /* 1749 /*
@@ -1684,8 +1770,8 @@ static inline void __run_timers(struct timer_base *base)
1684 while (levels--) 1770 while (levels--)
1685 expire_timers(base, heads + levels); 1771 expire_timers(base, heads + levels);
1686 } 1772 }
1687 base->running_timer = NULL;
1688 raw_spin_unlock_irq(&base->lock); 1773 raw_spin_unlock_irq(&base->lock);
1774 timer_base_unlock_expiry(base);
1689} 1775}
1690 1776
1691/* 1777/*
@@ -1930,6 +2016,7 @@ static void __init init_timer_cpu(int cpu)
1930 base->cpu = cpu; 2016 base->cpu = cpu;
1931 raw_spin_lock_init(&base->lock); 2017 raw_spin_lock_init(&base->lock);
1932 base->clk = jiffies; 2018 base->clk = jiffies;
2019 timer_base_init_expiry_lock(base);
1933 } 2020 }
1934} 2021}
1935 2022
diff --git a/kernel/watchdog.c b/kernel/watchdog.c
index 7f9e7b9306fe..f41334ef0971 100644
--- a/kernel/watchdog.c
+++ b/kernel/watchdog.c
@@ -490,10 +490,10 @@ static void watchdog_enable(unsigned int cpu)
490 * Start the timer first to prevent the NMI watchdog triggering 490 * Start the timer first to prevent the NMI watchdog triggering
491 * before the timer has a chance to fire. 491 * before the timer has a chance to fire.
492 */ 492 */
493 hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 493 hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
494 hrtimer->function = watchdog_timer_fn; 494 hrtimer->function = watchdog_timer_fn;
495 hrtimer_start(hrtimer, ns_to_ktime(sample_period), 495 hrtimer_start(hrtimer, ns_to_ktime(sample_period),
496 HRTIMER_MODE_REL_PINNED); 496 HRTIMER_MODE_REL_PINNED_HARD);
497 497
498 /* Initialize timestamp */ 498 /* Initialize timestamp */
499 __touch_watchdog(); 499 __touch_watchdog();