aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/time/posix-cpu-timers.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/time/posix-cpu-timers.c')
-rw-r--r--kernel/time/posix-cpu-timers.c1010
1 files changed, 492 insertions, 518 deletions
diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
index 0a426f4e3125..92a431981b1c 100644
--- a/kernel/time/posix-cpu-timers.c
+++ b/kernel/time/posix-cpu-timers.c
@@ -20,11 +20,20 @@
20 20
21static void posix_cpu_timer_rearm(struct k_itimer *timer); 21static void posix_cpu_timer_rearm(struct k_itimer *timer);
22 22
23void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
24{
25 posix_cputimers_init(pct);
26 if (cpu_limit != RLIM_INFINITY) {
27 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
28 pct->timers_active = true;
29 }
30}
31
23/* 32/*
24 * Called after updating RLIMIT_CPU to run cpu timer and update 33 * Called after updating RLIMIT_CPU to run cpu timer and update
25 * tsk->signal->cputime_expires expiration cache if necessary. Needs 34 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
26 * siglock protection since other code may update expiration cache as 35 * necessary. Needs siglock protection since other code may update the
27 * well. 36 * expiration cache as well.
28 */ 37 */
29void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 38void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
30{ 39{
@@ -35,46 +44,97 @@ void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
35 spin_unlock_irq(&task->sighand->siglock); 44 spin_unlock_irq(&task->sighand->siglock);
36} 45}
37 46
38static int check_clock(const clockid_t which_clock) 47/*
48 * Functions for validating access to tasks.
49 */
50static struct task_struct *lookup_task(const pid_t pid, bool thread,
51 bool gettime)
39{ 52{
40 int error = 0;
41 struct task_struct *p; 53 struct task_struct *p;
42 const pid_t pid = CPUCLOCK_PID(which_clock);
43
44 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
45 return -EINVAL;
46 54
47 if (pid == 0) 55 /*
48 return 0; 56 * If the encoded PID is 0, then the timer is targeted at current
57 * or the process to which current belongs.
58 */
59 if (!pid)
60 return thread ? current : current->group_leader;
49 61
50 rcu_read_lock();
51 p = find_task_by_vpid(pid); 62 p = find_task_by_vpid(pid);
52 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? 63 if (!p)
53 same_thread_group(p, current) : has_group_leader_pid(p))) { 64 return p;
54 error = -EINVAL; 65
66 if (thread)
67 return same_thread_group(p, current) ? p : NULL;
68
69 if (gettime) {
70 /*
71 * For clock_gettime(PROCESS) the task does not need to be
72 * the actual group leader. tsk->sighand gives
73 * access to the group's clock.
74 *
75 * Timers need the group leader because they take a
76 * reference on it and store the task pointer until the
77 * timer is destroyed.
78 */
79 return (p == current || thread_group_leader(p)) ? p : NULL;
55 } 80 }
81
82 /*
83 * For processes require that p is group leader.
84 */
85 return has_group_leader_pid(p) ? p : NULL;
86}
87
88static struct task_struct *__get_task_for_clock(const clockid_t clock,
89 bool getref, bool gettime)
90{
91 const bool thread = !!CPUCLOCK_PERTHREAD(clock);
92 const pid_t pid = CPUCLOCK_PID(clock);
93 struct task_struct *p;
94
95 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
96 return NULL;
97
98 rcu_read_lock();
99 p = lookup_task(pid, thread, gettime);
100 if (p && getref)
101 get_task_struct(p);
56 rcu_read_unlock(); 102 rcu_read_unlock();
103 return p;
104}
57 105
58 return error; 106static inline struct task_struct *get_task_for_clock(const clockid_t clock)
107{
108 return __get_task_for_clock(clock, true, false);
109}
110
111static inline struct task_struct *get_task_for_clock_get(const clockid_t clock)
112{
113 return __get_task_for_clock(clock, true, true);
114}
115
116static inline int validate_clock_permissions(const clockid_t clock)
117{
118 return __get_task_for_clock(clock, false, false) ? 0 : -EINVAL;
59} 119}
60 120
61/* 121/*
62 * Update expiry time from increment, and increase overrun count, 122 * Update expiry time from increment, and increase overrun count,
63 * given the current clock sample. 123 * given the current clock sample.
64 */ 124 */
65static void bump_cpu_timer(struct k_itimer *timer, u64 now) 125static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
66{ 126{
127 u64 delta, incr, expires = timer->it.cpu.node.expires;
67 int i; 128 int i;
68 u64 delta, incr;
69 129
70 if (!timer->it_interval) 130 if (!timer->it_interval)
71 return; 131 return expires;
72 132
73 if (now < timer->it.cpu.expires) 133 if (now < expires)
74 return; 134 return expires;
75 135
76 incr = timer->it_interval; 136 incr = timer->it_interval;
77 delta = now + incr - timer->it.cpu.expires; 137 delta = now + incr - expires;
78 138
79 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 139 /* Don't use (incr*2 < delta), incr*2 might overflow. */
80 for (i = 0; incr < delta - incr; i++) 140 for (i = 0; incr < delta - incr; i++)
@@ -84,48 +144,26 @@ static void bump_cpu_timer(struct k_itimer *timer, u64 now)
84 if (delta < incr) 144 if (delta < incr)
85 continue; 145 continue;
86 146
87 timer->it.cpu.expires += incr; 147 timer->it.cpu.node.expires += incr;
88 timer->it_overrun += 1LL << i; 148 timer->it_overrun += 1LL << i;
89 delta -= incr; 149 delta -= incr;
90 } 150 }
151 return timer->it.cpu.node.expires;
91} 152}
92 153
93/** 154/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
94 * task_cputime_zero - Check a task_cputime struct for all zero fields. 155static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
95 *
96 * @cputime: The struct to compare.
97 *
98 * Checks @cputime to see if all fields are zero. Returns true if all fields
99 * are zero, false if any field is nonzero.
100 */
101static inline int task_cputime_zero(const struct task_cputime *cputime)
102{ 156{
103 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) 157 return !(~pct->bases[CPUCLOCK_PROF].nextevt |
104 return 1; 158 ~pct->bases[CPUCLOCK_VIRT].nextevt |
105 return 0; 159 ~pct->bases[CPUCLOCK_SCHED].nextevt);
106}
107
108static inline u64 prof_ticks(struct task_struct *p)
109{
110 u64 utime, stime;
111
112 task_cputime(p, &utime, &stime);
113
114 return utime + stime;
115}
116static inline u64 virt_ticks(struct task_struct *p)
117{
118 u64 utime, stime;
119
120 task_cputime(p, &utime, &stime);
121
122 return utime;
123} 160}
124 161
125static int 162static int
126posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 163posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
127{ 164{
128 int error = check_clock(which_clock); 165 int error = validate_clock_permissions(which_clock);
166
129 if (!error) { 167 if (!error) {
130 tp->tv_sec = 0; 168 tp->tv_sec = 0;
131 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 169 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
@@ -142,42 +180,66 @@ posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
142} 180}
143 181
144static int 182static int
145posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp) 183posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
146{ 184{
185 int error = validate_clock_permissions(clock);
186
147 /* 187 /*
148 * You can never reset a CPU clock, but we check for other errors 188 * You can never reset a CPU clock, but we check for other errors
149 * in the call before failing with EPERM. 189 * in the call before failing with EPERM.
150 */ 190 */
151 int error = check_clock(which_clock); 191 return error ? : -EPERM;
152 if (error == 0) {
153 error = -EPERM;
154 }
155 return error;
156} 192}
157 193
158
159/* 194/*
160 * Sample a per-thread clock for the given task. 195 * Sample a per-thread clock for the given task. clkid is validated.
161 */ 196 */
162static int cpu_clock_sample(const clockid_t which_clock, 197static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
163 struct task_struct *p, u64 *sample)
164{ 198{
165 switch (CPUCLOCK_WHICH(which_clock)) { 199 u64 utime, stime;
166 default: 200
167 return -EINVAL; 201 if (clkid == CPUCLOCK_SCHED)
202 return task_sched_runtime(p);
203
204 task_cputime(p, &utime, &stime);
205
206 switch (clkid) {
168 case CPUCLOCK_PROF: 207 case CPUCLOCK_PROF:
169 *sample = prof_ticks(p); 208 return utime + stime;
170 break;
171 case CPUCLOCK_VIRT: 209 case CPUCLOCK_VIRT:
172 *sample = virt_ticks(p); 210 return utime;
173 break; 211 default:
174 case CPUCLOCK_SCHED: 212 WARN_ON_ONCE(1);
175 *sample = task_sched_runtime(p);
176 break;
177 } 213 }
178 return 0; 214 return 0;
179} 215}
180 216
217static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
218{
219 samples[CPUCLOCK_PROF] = stime + utime;
220 samples[CPUCLOCK_VIRT] = utime;
221 samples[CPUCLOCK_SCHED] = rtime;
222}
223
224static void task_sample_cputime(struct task_struct *p, u64 *samples)
225{
226 u64 stime, utime;
227
228 task_cputime(p, &utime, &stime);
229 store_samples(samples, stime, utime, p->se.sum_exec_runtime);
230}
231
232static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
233 u64 *samples)
234{
235 u64 stime, utime, rtime;
236
237 utime = atomic64_read(&at->utime);
238 stime = atomic64_read(&at->stime);
239 rtime = atomic64_read(&at->sum_exec_runtime);
240 store_samples(samples, stime, utime, rtime);
241}
242
181/* 243/*
182 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 244 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
183 * to avoid race conditions with concurrent updates to cputime. 245 * to avoid race conditions with concurrent updates to cputime.
@@ -193,29 +255,56 @@ retry:
193 } 255 }
194} 256}
195 257
196static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) 258static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
259 struct task_cputime *sum)
197{ 260{
198 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 261 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
199 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 262 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
200 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 263 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
201} 264}
202 265
203/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ 266/**
204static inline void sample_cputime_atomic(struct task_cputime *times, 267 * thread_group_sample_cputime - Sample cputime for a given task
205 struct task_cputime_atomic *atomic_times) 268 * @tsk: Task for which cputime needs to be started
269 * @iimes: Storage for time samples
270 *
271 * Called from sys_getitimer() to calculate the expiry time of an active
272 * timer. That means group cputime accounting is already active. Called
273 * with task sighand lock held.
274 *
275 * Updates @times with an uptodate sample of the thread group cputimes.
276 */
277void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
206{ 278{
207 times->utime = atomic64_read(&atomic_times->utime); 279 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
208 times->stime = atomic64_read(&atomic_times->stime); 280 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
209 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); 281
282 WARN_ON_ONCE(!pct->timers_active);
283
284 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
210} 285}
211 286
212void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) 287/**
288 * thread_group_start_cputime - Start cputime and return a sample
289 * @tsk: Task for which cputime needs to be started
290 * @samples: Storage for time samples
291 *
292 * The thread group cputime accouting is avoided when there are no posix
293 * CPU timers armed. Before starting a timer it's required to check whether
294 * the time accounting is active. If not, a full update of the atomic
295 * accounting store needs to be done and the accounting enabled.
296 *
297 * Updates @times with an uptodate sample of the thread group cputimes.
298 */
299static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
213{ 300{
214 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 301 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
215 struct task_cputime sum; 302 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
216 303
217 /* Check if cputimer isn't running. This is accessed without locking. */ 304 /* Check if cputimer isn't running. This is accessed without locking. */
218 if (!READ_ONCE(cputimer->running)) { 305 if (!READ_ONCE(pct->timers_active)) {
306 struct task_cputime sum;
307
219 /* 308 /*
220 * The POSIX timer interface allows for absolute time expiry 309 * The POSIX timer interface allows for absolute time expiry
221 * values through the TIMER_ABSTIME flag, therefore we have 310 * values through the TIMER_ABSTIME flag, therefore we have
@@ -225,94 +314,69 @@ void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
225 update_gt_cputime(&cputimer->cputime_atomic, &sum); 314 update_gt_cputime(&cputimer->cputime_atomic, &sum);
226 315
227 /* 316 /*
228 * We're setting cputimer->running without a lock. Ensure 317 * We're setting timers_active without a lock. Ensure this
229 * this only gets written to in one operation. We set 318 * only gets written to in one operation. We set it after
230 * running after update_gt_cputime() as a small optimization, 319 * update_gt_cputime() as a small optimization, but
231 * but barriers are not required because update_gt_cputime() 320 * barriers are not required because update_gt_cputime()
232 * can handle concurrent updates. 321 * can handle concurrent updates.
233 */ 322 */
234 WRITE_ONCE(cputimer->running, true); 323 WRITE_ONCE(pct->timers_active, true);
235 } 324 }
236 sample_cputime_atomic(times, &cputimer->cputime_atomic); 325 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
237} 326}
238 327
239/* 328static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
240 * Sample a process (thread group) clock for the given group_leader task.
241 * Must be called with task sighand lock held for safe while_each_thread()
242 * traversal.
243 */
244static int cpu_clock_sample_group(const clockid_t which_clock,
245 struct task_struct *p,
246 u64 *sample)
247{ 329{
248 struct task_cputime cputime; 330 struct task_cputime ct;
249 331
250 switch (CPUCLOCK_WHICH(which_clock)) { 332 thread_group_cputime(tsk, &ct);
251 default: 333 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
252 return -EINVAL;
253 case CPUCLOCK_PROF:
254 thread_group_cputime(p, &cputime);
255 *sample = cputime.utime + cputime.stime;
256 break;
257 case CPUCLOCK_VIRT:
258 thread_group_cputime(p, &cputime);
259 *sample = cputime.utime;
260 break;
261 case CPUCLOCK_SCHED:
262 thread_group_cputime(p, &cputime);
263 *sample = cputime.sum_exec_runtime;
264 break;
265 }
266 return 0;
267} 334}
268 335
269static int posix_cpu_clock_get_task(struct task_struct *tsk, 336/*
270 const clockid_t which_clock, 337 * Sample a process (thread group) clock for the given task clkid. If the
271 struct timespec64 *tp) 338 * group's cputime accounting is already enabled, read the atomic
339 * store. Otherwise a full update is required. Task's sighand lock must be
340 * held to protect the task traversal on a full update. clkid is already
341 * validated.
342 */
343static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
344 bool start)
272{ 345{
273 int err = -EINVAL; 346 struct thread_group_cputimer *cputimer = &p->signal->cputimer;
274 u64 rtn; 347 struct posix_cputimers *pct = &p->signal->posix_cputimers;
348 u64 samples[CPUCLOCK_MAX];
275 349
276 if (CPUCLOCK_PERTHREAD(which_clock)) { 350 if (!READ_ONCE(pct->timers_active)) {
277 if (same_thread_group(tsk, current)) 351 if (start)
278 err = cpu_clock_sample(which_clock, tsk, &rtn); 352 thread_group_start_cputime(p, samples);
353 else
354 __thread_group_cputime(p, samples);
279 } else { 355 } else {
280 if (tsk == current || thread_group_leader(tsk)) 356 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
281 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
282 } 357 }
283 358
284 if (!err) 359 return samples[clkid];
285 *tp = ns_to_timespec64(rtn);
286
287 return err;
288} 360}
289 361
290 362static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
291static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
292{ 363{
293 const pid_t pid = CPUCLOCK_PID(which_clock); 364 const clockid_t clkid = CPUCLOCK_WHICH(clock);
294 int err = -EINVAL; 365 struct task_struct *tsk;
366 u64 t;
295 367
296 if (pid == 0) { 368 tsk = get_task_for_clock_get(clock);
297 /* 369 if (!tsk)
298 * Special case constant value for our own clocks. 370 return -EINVAL;
299 * We don't have to do any lookup to find ourselves.
300 */
301 err = posix_cpu_clock_get_task(current, which_clock, tp);
302 } else {
303 /*
304 * Find the given PID, and validate that the caller
305 * should be able to see it.
306 */
307 struct task_struct *p;
308 rcu_read_lock();
309 p = find_task_by_vpid(pid);
310 if (p)
311 err = posix_cpu_clock_get_task(p, which_clock, tp);
312 rcu_read_unlock();
313 }
314 371
315 return err; 372 if (CPUCLOCK_PERTHREAD(clock))
373 t = cpu_clock_sample(clkid, tsk);
374 else
375 t = cpu_clock_sample_group(clkid, tsk, false);
376 put_task_struct(tsk);
377
378 *tp = ns_to_timespec64(t);
379 return 0;
316} 380}
317 381
318/* 382/*
@@ -322,44 +386,15 @@ static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *t
322 */ 386 */
323static int posix_cpu_timer_create(struct k_itimer *new_timer) 387static int posix_cpu_timer_create(struct k_itimer *new_timer)
324{ 388{
325 int ret = 0; 389 struct task_struct *p = get_task_for_clock(new_timer->it_clock);
326 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
327 struct task_struct *p;
328 390
329 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) 391 if (!p)
330 return -EINVAL; 392 return -EINVAL;
331 393
332 new_timer->kclock = &clock_posix_cpu; 394 new_timer->kclock = &clock_posix_cpu;
333 395 timerqueue_init(&new_timer->it.cpu.node);
334 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
335
336 rcu_read_lock();
337 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
338 if (pid == 0) {
339 p = current;
340 } else {
341 p = find_task_by_vpid(pid);
342 if (p && !same_thread_group(p, current))
343 p = NULL;
344 }
345 } else {
346 if (pid == 0) {
347 p = current->group_leader;
348 } else {
349 p = find_task_by_vpid(pid);
350 if (p && !has_group_leader_pid(p))
351 p = NULL;
352 }
353 }
354 new_timer->it.cpu.task = p; 396 new_timer->it.cpu.task = p;
355 if (p) { 397 return 0;
356 get_task_struct(p);
357 } else {
358 ret = -EINVAL;
359 }
360 rcu_read_unlock();
361
362 return ret;
363} 398}
364 399
365/* 400/*
@@ -370,12 +405,14 @@ static int posix_cpu_timer_create(struct k_itimer *new_timer)
370 */ 405 */
371static int posix_cpu_timer_del(struct k_itimer *timer) 406static int posix_cpu_timer_del(struct k_itimer *timer)
372{ 407{
373 int ret = 0; 408 struct cpu_timer *ctmr = &timer->it.cpu;
374 unsigned long flags; 409 struct task_struct *p = ctmr->task;
375 struct sighand_struct *sighand; 410 struct sighand_struct *sighand;
376 struct task_struct *p = timer->it.cpu.task; 411 unsigned long flags;
412 int ret = 0;
377 413
378 WARN_ON_ONCE(p == NULL); 414 if (WARN_ON_ONCE(!p))
415 return -EINVAL;
379 416
380 /* 417 /*
381 * Protect against sighand release/switch in exit/exec and process/ 418 * Protect against sighand release/switch in exit/exec and process/
@@ -384,15 +421,15 @@ static int posix_cpu_timer_del(struct k_itimer *timer)
384 sighand = lock_task_sighand(p, &flags); 421 sighand = lock_task_sighand(p, &flags);
385 if (unlikely(sighand == NULL)) { 422 if (unlikely(sighand == NULL)) {
386 /* 423 /*
387 * We raced with the reaping of the task. 424 * This raced with the reaping of the task. The exit cleanup
388 * The deletion should have cleared us off the list. 425 * should have removed this timer from the timer queue.
389 */ 426 */
390 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); 427 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
391 } else { 428 } else {
392 if (timer->it.cpu.firing) 429 if (timer->it.cpu.firing)
393 ret = TIMER_RETRY; 430 ret = TIMER_RETRY;
394 else 431 else
395 list_del(&timer->it.cpu.entry); 432 cpu_timer_dequeue(ctmr);
396 433
397 unlock_task_sighand(p, &flags); 434 unlock_task_sighand(p, &flags);
398 } 435 }
@@ -403,25 +440,30 @@ static int posix_cpu_timer_del(struct k_itimer *timer)
403 return ret; 440 return ret;
404} 441}
405 442
406static void cleanup_timers_list(struct list_head *head) 443static void cleanup_timerqueue(struct timerqueue_head *head)
407{ 444{
408 struct cpu_timer_list *timer, *next; 445 struct timerqueue_node *node;
446 struct cpu_timer *ctmr;
409 447
410 list_for_each_entry_safe(timer, next, head, entry) 448 while ((node = timerqueue_getnext(head))) {
411 list_del_init(&timer->entry); 449 timerqueue_del(head, node);
450 ctmr = container_of(node, struct cpu_timer, node);
451 ctmr->head = NULL;
452 }
412} 453}
413 454
414/* 455/*
415 * Clean out CPU timers still ticking when a thread exited. The task 456 * Clean out CPU timers which are still armed when a thread exits. The
416 * pointer is cleared, and the expiry time is replaced with the residual 457 * timers are only removed from the list. No other updates are done. The
417 * time for later timer_gettime calls to return. 458 * corresponding posix timers are still accessible, but cannot be rearmed.
459 *
418 * This must be called with the siglock held. 460 * This must be called with the siglock held.
419 */ 461 */
420static void cleanup_timers(struct list_head *head) 462static void cleanup_timers(struct posix_cputimers *pct)
421{ 463{
422 cleanup_timers_list(head); 464 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
423 cleanup_timers_list(++head); 465 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
424 cleanup_timers_list(++head); 466 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
425} 467}
426 468
427/* 469/*
@@ -431,16 +473,11 @@ static void cleanup_timers(struct list_head *head)
431 */ 473 */
432void posix_cpu_timers_exit(struct task_struct *tsk) 474void posix_cpu_timers_exit(struct task_struct *tsk)
433{ 475{
434 cleanup_timers(tsk->cpu_timers); 476 cleanup_timers(&tsk->posix_cputimers);
435} 477}
436void posix_cpu_timers_exit_group(struct task_struct *tsk) 478void posix_cpu_timers_exit_group(struct task_struct *tsk)
437{ 479{
438 cleanup_timers(tsk->signal->cpu_timers); 480 cleanup_timers(&tsk->signal->posix_cputimers);
439}
440
441static inline int expires_gt(u64 expires, u64 new_exp)
442{
443 return expires == 0 || expires > new_exp;
444} 481}
445 482
446/* 483/*
@@ -449,58 +486,33 @@ static inline int expires_gt(u64 expires, u64 new_exp)
449 */ 486 */
450static void arm_timer(struct k_itimer *timer) 487static void arm_timer(struct k_itimer *timer)
451{ 488{
452 struct task_struct *p = timer->it.cpu.task; 489 int clkidx = CPUCLOCK_WHICH(timer->it_clock);
453 struct list_head *head, *listpos; 490 struct cpu_timer *ctmr = &timer->it.cpu;
454 struct task_cputime *cputime_expires; 491 u64 newexp = cpu_timer_getexpires(ctmr);
455 struct cpu_timer_list *const nt = &timer->it.cpu; 492 struct task_struct *p = ctmr->task;
456 struct cpu_timer_list *next; 493 struct posix_cputimer_base *base;
457 494
458 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 495 if (CPUCLOCK_PERTHREAD(timer->it_clock))
459 head = p->cpu_timers; 496 base = p->posix_cputimers.bases + clkidx;
460 cputime_expires = &p->cputime_expires; 497 else
461 } else { 498 base = p->signal->posix_cputimers.bases + clkidx;
462 head = p->signal->cpu_timers; 499
463 cputime_expires = &p->signal->cputime_expires; 500 if (!cpu_timer_enqueue(&base->tqhead, ctmr))
464 } 501 return;
465 head += CPUCLOCK_WHICH(timer->it_clock);
466
467 listpos = head;
468 list_for_each_entry(next, head, entry) {
469 if (nt->expires < next->expires)
470 break;
471 listpos = &next->entry;
472 }
473 list_add(&nt->entry, listpos);
474
475 if (listpos == head) {
476 u64 exp = nt->expires;
477 502
478 /* 503 /*
479 * We are the new earliest-expiring POSIX 1.b timer, hence 504 * We are the new earliest-expiring POSIX 1.b timer, hence
480 * need to update expiration cache. Take into account that 505 * need to update expiration cache. Take into account that
481 * for process timers we share expiration cache with itimers 506 * for process timers we share expiration cache with itimers
482 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 507 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
483 */ 508 */
509 if (newexp < base->nextevt)
510 base->nextevt = newexp;
484 511
485 switch (CPUCLOCK_WHICH(timer->it_clock)) { 512 if (CPUCLOCK_PERTHREAD(timer->it_clock))
486 case CPUCLOCK_PROF: 513 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
487 if (expires_gt(cputime_expires->prof_exp, exp)) 514 else
488 cputime_expires->prof_exp = exp; 515 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
489 break;
490 case CPUCLOCK_VIRT:
491 if (expires_gt(cputime_expires->virt_exp, exp))
492 cputime_expires->virt_exp = exp;
493 break;
494 case CPUCLOCK_SCHED:
495 if (expires_gt(cputime_expires->sched_exp, exp))
496 cputime_expires->sched_exp = exp;
497 break;
498 }
499 if (CPUCLOCK_PERTHREAD(timer->it_clock))
500 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
501 else
502 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
503 }
504} 516}
505 517
506/* 518/*
@@ -508,24 +520,26 @@ static void arm_timer(struct k_itimer *timer)
508 */ 520 */
509static void cpu_timer_fire(struct k_itimer *timer) 521static void cpu_timer_fire(struct k_itimer *timer)
510{ 522{
523 struct cpu_timer *ctmr = &timer->it.cpu;
524
511 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 525 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
512 /* 526 /*
513 * User don't want any signal. 527 * User don't want any signal.
514 */ 528 */
515 timer->it.cpu.expires = 0; 529 cpu_timer_setexpires(ctmr, 0);
516 } else if (unlikely(timer->sigq == NULL)) { 530 } else if (unlikely(timer->sigq == NULL)) {
517 /* 531 /*
518 * This a special case for clock_nanosleep, 532 * This a special case for clock_nanosleep,
519 * not a normal timer from sys_timer_create. 533 * not a normal timer from sys_timer_create.
520 */ 534 */
521 wake_up_process(timer->it_process); 535 wake_up_process(timer->it_process);
522 timer->it.cpu.expires = 0; 536 cpu_timer_setexpires(ctmr, 0);
523 } else if (!timer->it_interval) { 537 } else if (!timer->it_interval) {
524 /* 538 /*
525 * One-shot timer. Clear it as soon as it's fired. 539 * One-shot timer. Clear it as soon as it's fired.
526 */ 540 */
527 posix_timer_event(timer, 0); 541 posix_timer_event(timer, 0);
528 timer->it.cpu.expires = 0; 542 cpu_timer_setexpires(ctmr, 0);
529 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 543 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
530 /* 544 /*
531 * The signal did not get queued because the signal 545 * The signal did not get queued because the signal
@@ -539,33 +553,6 @@ static void cpu_timer_fire(struct k_itimer *timer)
539} 553}
540 554
541/* 555/*
542 * Sample a process (thread group) timer for the given group_leader task.
543 * Must be called with task sighand lock held for safe while_each_thread()
544 * traversal.
545 */
546static int cpu_timer_sample_group(const clockid_t which_clock,
547 struct task_struct *p, u64 *sample)
548{
549 struct task_cputime cputime;
550
551 thread_group_cputimer(p, &cputime);
552 switch (CPUCLOCK_WHICH(which_clock)) {
553 default:
554 return -EINVAL;
555 case CPUCLOCK_PROF:
556 *sample = cputime.utime + cputime.stime;
557 break;
558 case CPUCLOCK_VIRT:
559 *sample = cputime.utime;
560 break;
561 case CPUCLOCK_SCHED:
562 *sample = cputime.sum_exec_runtime;
563 break;
564 }
565 return 0;
566}
567
568/*
569 * Guts of sys_timer_settime for CPU timers. 556 * Guts of sys_timer_settime for CPU timers.
570 * This is called with the timer locked and interrupts disabled. 557 * This is called with the timer locked and interrupts disabled.
571 * If we return TIMER_RETRY, it's necessary to release the timer's lock 558 * If we return TIMER_RETRY, it's necessary to release the timer's lock
@@ -574,13 +561,16 @@ static int cpu_timer_sample_group(const clockid_t which_clock,
574static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 561static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
575 struct itimerspec64 *new, struct itimerspec64 *old) 562 struct itimerspec64 *new, struct itimerspec64 *old)
576{ 563{
577 unsigned long flags; 564 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
578 struct sighand_struct *sighand;
579 struct task_struct *p = timer->it.cpu.task;
580 u64 old_expires, new_expires, old_incr, val; 565 u64 old_expires, new_expires, old_incr, val;
581 int ret; 566 struct cpu_timer *ctmr = &timer->it.cpu;
567 struct task_struct *p = ctmr->task;
568 struct sighand_struct *sighand;
569 unsigned long flags;
570 int ret = 0;
582 571
583 WARN_ON_ONCE(p == NULL); 572 if (WARN_ON_ONCE(!p))
573 return -EINVAL;
584 574
585 /* 575 /*
586 * Use the to_ktime conversion because that clamps the maximum 576 * Use the to_ktime conversion because that clamps the maximum
@@ -597,22 +587,21 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
597 * If p has just been reaped, we can no 587 * If p has just been reaped, we can no
598 * longer get any information about it at all. 588 * longer get any information about it at all.
599 */ 589 */
600 if (unlikely(sighand == NULL)) { 590 if (unlikely(sighand == NULL))
601 return -ESRCH; 591 return -ESRCH;
602 }
603 592
604 /* 593 /*
605 * Disarm any old timer after extracting its expiry time. 594 * Disarm any old timer after extracting its expiry time.
606 */ 595 */
607
608 ret = 0;
609 old_incr = timer->it_interval; 596 old_incr = timer->it_interval;
610 old_expires = timer->it.cpu.expires; 597 old_expires = cpu_timer_getexpires(ctmr);
598
611 if (unlikely(timer->it.cpu.firing)) { 599 if (unlikely(timer->it.cpu.firing)) {
612 timer->it.cpu.firing = -1; 600 timer->it.cpu.firing = -1;
613 ret = TIMER_RETRY; 601 ret = TIMER_RETRY;
614 } else 602 } else {
615 list_del_init(&timer->it.cpu.entry); 603 cpu_timer_dequeue(ctmr);
604 }
616 605
617 /* 606 /*
618 * We need to sample the current value to convert the new 607 * We need to sample the current value to convert the new
@@ -622,11 +611,10 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
622 * times (in arm_timer). With an absolute time, we must 611 * times (in arm_timer). With an absolute time, we must
623 * check if it's already passed. In short, we need a sample. 612 * check if it's already passed. In short, we need a sample.
624 */ 613 */
625 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 614 if (CPUCLOCK_PERTHREAD(timer->it_clock))
626 cpu_clock_sample(timer->it_clock, p, &val); 615 val = cpu_clock_sample(clkid, p);
627 } else { 616 else
628 cpu_timer_sample_group(timer->it_clock, p, &val); 617 val = cpu_clock_sample_group(clkid, p, true);
629 }
630 618
631 if (old) { 619 if (old) {
632 if (old_expires == 0) { 620 if (old_expires == 0) {
@@ -634,18 +622,16 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
634 old->it_value.tv_nsec = 0; 622 old->it_value.tv_nsec = 0;
635 } else { 623 } else {
636 /* 624 /*
637 * Update the timer in case it has 625 * Update the timer in case it has overrun already.
638 * overrun already. If it has, 626 * If it has, we'll report it as having overrun and
639 * we'll report it as having overrun 627 * with the next reloaded timer already ticking,
640 * and with the next reloaded timer 628 * though we are swallowing that pending
641 * already ticking, though we are 629 * notification here to install the new setting.
642 * swallowing that pending
643 * notification here to install the
644 * new setting.
645 */ 630 */
646 bump_cpu_timer(timer, val); 631 u64 exp = bump_cpu_timer(timer, val);
647 if (val < timer->it.cpu.expires) { 632
648 old_expires = timer->it.cpu.expires - val; 633 if (val < exp) {
634 old_expires = exp - val;
649 old->it_value = ns_to_timespec64(old_expires); 635 old->it_value = ns_to_timespec64(old_expires);
650 } else { 636 } else {
651 old->it_value.tv_nsec = 1; 637 old->it_value.tv_nsec = 1;
@@ -674,7 +660,7 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
674 * For a timer with no notification action, we don't actually 660 * For a timer with no notification action, we don't actually
675 * arm the timer (we'll just fake it for timer_gettime). 661 * arm the timer (we'll just fake it for timer_gettime).
676 */ 662 */
677 timer->it.cpu.expires = new_expires; 663 cpu_timer_setexpires(ctmr, new_expires);
678 if (new_expires != 0 && val < new_expires) { 664 if (new_expires != 0 && val < new_expires) {
679 arm_timer(timer); 665 arm_timer(timer);
680 } 666 }
@@ -715,24 +701,27 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
715 701
716static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) 702static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
717{ 703{
718 u64 now; 704 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
719 struct task_struct *p = timer->it.cpu.task; 705 struct cpu_timer *ctmr = &timer->it.cpu;
706 u64 now, expires = cpu_timer_getexpires(ctmr);
707 struct task_struct *p = ctmr->task;
720 708
721 WARN_ON_ONCE(p == NULL); 709 if (WARN_ON_ONCE(!p))
710 return;
722 711
723 /* 712 /*
724 * Easy part: convert the reload time. 713 * Easy part: convert the reload time.
725 */ 714 */
726 itp->it_interval = ktime_to_timespec64(timer->it_interval); 715 itp->it_interval = ktime_to_timespec64(timer->it_interval);
727 716
728 if (!timer->it.cpu.expires) 717 if (!expires)
729 return; 718 return;
730 719
731 /* 720 /*
732 * Sample the clock to take the difference with the expiry time. 721 * Sample the clock to take the difference with the expiry time.
733 */ 722 */
734 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 723 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
735 cpu_clock_sample(timer->it_clock, p, &now); 724 now = cpu_clock_sample(clkid, p);
736 } else { 725 } else {
737 struct sighand_struct *sighand; 726 struct sighand_struct *sighand;
738 unsigned long flags; 727 unsigned long flags;
@@ -747,18 +736,18 @@ static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp
747 /* 736 /*
748 * The process has been reaped. 737 * The process has been reaped.
749 * We can't even collect a sample any more. 738 * We can't even collect a sample any more.
750 * Call the timer disarmed, nothing else to do. 739 * Disarm the timer, nothing else to do.
751 */ 740 */
752 timer->it.cpu.expires = 0; 741 cpu_timer_setexpires(ctmr, 0);
753 return; 742 return;
754 } else { 743 } else {
755 cpu_timer_sample_group(timer->it_clock, p, &now); 744 now = cpu_clock_sample_group(clkid, p, false);
756 unlock_task_sighand(p, &flags); 745 unlock_task_sighand(p, &flags);
757 } 746 }
758 } 747 }
759 748
760 if (now < timer->it.cpu.expires) { 749 if (now < expires) {
761 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now); 750 itp->it_value = ns_to_timespec64(expires - now);
762 } else { 751 } else {
763 /* 752 /*
764 * The timer should have expired already, but the firing 753 * The timer should have expired already, but the firing
@@ -769,26 +758,42 @@ static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp
769 } 758 }
770} 759}
771 760
772static unsigned long long 761#define MAX_COLLECTED 20
773check_timers_list(struct list_head *timers,
774 struct list_head *firing,
775 unsigned long long curr)
776{
777 int maxfire = 20;
778 762
779 while (!list_empty(timers)) { 763static u64 collect_timerqueue(struct timerqueue_head *head,
780 struct cpu_timer_list *t; 764 struct list_head *firing, u64 now)
765{
766 struct timerqueue_node *next;
767 int i = 0;
768
769 while ((next = timerqueue_getnext(head))) {
770 struct cpu_timer *ctmr;
771 u64 expires;
772
773 ctmr = container_of(next, struct cpu_timer, node);
774 expires = cpu_timer_getexpires(ctmr);
775 /* Limit the number of timers to expire at once */
776 if (++i == MAX_COLLECTED || now < expires)
777 return expires;
778
779 ctmr->firing = 1;
780 cpu_timer_dequeue(ctmr);
781 list_add_tail(&ctmr->elist, firing);
782 }
781 783
782 t = list_first_entry(timers, struct cpu_timer_list, entry); 784 return U64_MAX;
785}
783 786
784 if (!--maxfire || curr < t->expires) 787static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
785 return t->expires; 788 struct list_head *firing)
789{
790 struct posix_cputimer_base *base = pct->bases;
791 int i;
786 792
787 t->firing = 1; 793 for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
788 list_move_tail(&t->entry, firing); 794 base->nextevt = collect_timerqueue(&base->tqhead, firing,
795 samples[i]);
789 } 796 }
790
791 return 0;
792} 797}
793 798
794static inline void check_dl_overrun(struct task_struct *tsk) 799static inline void check_dl_overrun(struct task_struct *tsk)
@@ -799,6 +804,20 @@ static inline void check_dl_overrun(struct task_struct *tsk)
799 } 804 }
800} 805}
801 806
807static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
808{
809 if (time < limit)
810 return false;
811
812 if (print_fatal_signals) {
813 pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
814 rt ? "RT" : "CPU", hard ? "hard" : "soft",
815 current->comm, task_pid_nr(current));
816 }
817 __group_send_sig_info(signo, SEND_SIG_PRIV, current);
818 return true;
819}
820
802/* 821/*
803 * Check for any per-thread CPU timers that have fired and move them off 822 * Check for any per-thread CPU timers that have fired and move them off
804 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 823 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
@@ -807,76 +826,50 @@ static inline void check_dl_overrun(struct task_struct *tsk)
807static void check_thread_timers(struct task_struct *tsk, 826static void check_thread_timers(struct task_struct *tsk,
808 struct list_head *firing) 827 struct list_head *firing)
809{ 828{
810 struct list_head *timers = tsk->cpu_timers; 829 struct posix_cputimers *pct = &tsk->posix_cputimers;
811 struct task_cputime *tsk_expires = &tsk->cputime_expires; 830 u64 samples[CPUCLOCK_MAX];
812 u64 expires;
813 unsigned long soft; 831 unsigned long soft;
814 832
815 if (dl_task(tsk)) 833 if (dl_task(tsk))
816 check_dl_overrun(tsk); 834 check_dl_overrun(tsk);
817 835
818 /* 836 if (expiry_cache_is_inactive(pct))
819 * If cputime_expires is zero, then there are no active
820 * per thread CPU timers.
821 */
822 if (task_cputime_zero(&tsk->cputime_expires))
823 return; 837 return;
824 838
825 expires = check_timers_list(timers, firing, prof_ticks(tsk)); 839 task_sample_cputime(tsk, samples);
826 tsk_expires->prof_exp = expires; 840 collect_posix_cputimers(pct, samples, firing);
827
828 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
829 tsk_expires->virt_exp = expires;
830
831 tsk_expires->sched_exp = check_timers_list(++timers, firing,
832 tsk->se.sum_exec_runtime);
833 841
834 /* 842 /*
835 * Check for the special case thread timers. 843 * Check for the special case thread timers.
836 */ 844 */
837 soft = task_rlimit(tsk, RLIMIT_RTTIME); 845 soft = task_rlimit(tsk, RLIMIT_RTTIME);
838 if (soft != RLIM_INFINITY) { 846 if (soft != RLIM_INFINITY) {
847 /* Task RT timeout is accounted in jiffies. RTTIME is usec */
848 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
839 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME); 849 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
840 850
851 /* At the hard limit, send SIGKILL. No further action. */
841 if (hard != RLIM_INFINITY && 852 if (hard != RLIM_INFINITY &&
842 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { 853 check_rlimit(rttime, hard, SIGKILL, true, true))
843 /*
844 * At the hard limit, we just die.
845 * No need to calculate anything else now.
846 */
847 if (print_fatal_signals) {
848 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
849 tsk->comm, task_pid_nr(tsk));
850 }
851 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
852 return; 854 return;
853 } 855
854 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { 856 /* At the soft limit, send a SIGXCPU every second */
855 /* 857 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
856 * At the soft limit, send a SIGXCPU every second. 858 soft += USEC_PER_SEC;
857 */ 859 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
858 if (soft < hard) {
859 soft += USEC_PER_SEC;
860 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
861 soft;
862 }
863 if (print_fatal_signals) {
864 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
865 tsk->comm, task_pid_nr(tsk));
866 }
867 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
868 } 860 }
869 } 861 }
870 if (task_cputime_zero(tsk_expires)) 862
863 if (expiry_cache_is_inactive(pct))
871 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 864 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
872} 865}
873 866
874static inline void stop_process_timers(struct signal_struct *sig) 867static inline void stop_process_timers(struct signal_struct *sig)
875{ 868{
876 struct thread_group_cputimer *cputimer = &sig->cputimer; 869 struct posix_cputimers *pct = &sig->posix_cputimers;
877 870
878 /* Turn off cputimer->running. This is done without locking. */ 871 /* Turn off the active flag. This is done without locking. */
879 WRITE_ONCE(cputimer->running, false); 872 WRITE_ONCE(pct->timers_active, false);
880 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 873 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
881} 874}
882 875
@@ -898,7 +891,7 @@ static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
898 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 891 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
899 } 892 }
900 893
901 if (it->expires && (!*expires || it->expires < *expires)) 894 if (it->expires && it->expires < *expires)
902 *expires = it->expires; 895 *expires = it->expires;
903} 896}
904 897
@@ -911,87 +904,69 @@ static void check_process_timers(struct task_struct *tsk,
911 struct list_head *firing) 904 struct list_head *firing)
912{ 905{
913 struct signal_struct *const sig = tsk->signal; 906 struct signal_struct *const sig = tsk->signal;
914 u64 utime, ptime, virt_expires, prof_expires; 907 struct posix_cputimers *pct = &sig->posix_cputimers;
915 u64 sum_sched_runtime, sched_expires; 908 u64 samples[CPUCLOCK_MAX];
916 struct list_head *timers = sig->cpu_timers;
917 struct task_cputime cputime;
918 unsigned long soft; 909 unsigned long soft;
919 910
920 /* 911 /*
921 * If cputimer is not running, then there are no active 912 * If there are no active process wide timers (POSIX 1.b, itimers,
922 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). 913 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
914 * processing when there is already another task handling them.
923 */ 915 */
924 if (!READ_ONCE(tsk->signal->cputimer.running)) 916 if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
925 return; 917 return;
926 918
927 /* 919 /*
928 * Signify that a thread is checking for process timers. 920 * Signify that a thread is checking for process timers.
929 * Write access to this field is protected by the sighand lock. 921 * Write access to this field is protected by the sighand lock.
930 */ 922 */
931 sig->cputimer.checking_timer = true; 923 pct->expiry_active = true;
932 924
933 /* 925 /*
934 * Collect the current process totals. 926 * Collect the current process totals. Group accounting is active
927 * so the sample can be taken directly.
935 */ 928 */
936 thread_group_cputimer(tsk, &cputime); 929 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
937 utime = cputime.utime; 930 collect_posix_cputimers(pct, samples, firing);
938 ptime = utime + cputime.stime;
939 sum_sched_runtime = cputime.sum_exec_runtime;
940
941 prof_expires = check_timers_list(timers, firing, ptime);
942 virt_expires = check_timers_list(++timers, firing, utime);
943 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
944 931
945 /* 932 /*
946 * Check for the special case process timers. 933 * Check for the special case process timers.
947 */ 934 */
948 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, 935 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
949 SIGPROF); 936 &pct->bases[CPUCLOCK_PROF].nextevt,
950 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, 937 samples[CPUCLOCK_PROF], SIGPROF);
951 SIGVTALRM); 938 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
939 &pct->bases[CPUCLOCK_VIRT].nextevt,
940 samples[CPUCLOCK_VIRT], SIGVTALRM);
941
952 soft = task_rlimit(tsk, RLIMIT_CPU); 942 soft = task_rlimit(tsk, RLIMIT_CPU);
953 if (soft != RLIM_INFINITY) { 943 if (soft != RLIM_INFINITY) {
954 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC); 944 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
955 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU); 945 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
956 u64 x; 946 u64 ptime = samples[CPUCLOCK_PROF];
957 if (psecs >= hard) { 947 u64 softns = (u64)soft * NSEC_PER_SEC;
958 /* 948 u64 hardns = (u64)hard * NSEC_PER_SEC;
959 * At the hard limit, we just die. 949
960 * No need to calculate anything else now. 950 /* At the hard limit, send SIGKILL. No further action. */
961 */ 951 if (hard != RLIM_INFINITY &&
962 if (print_fatal_signals) { 952 check_rlimit(ptime, hardns, SIGKILL, false, true))
963 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
964 tsk->comm, task_pid_nr(tsk));
965 }
966 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
967 return; 953 return;
954
955 /* At the soft limit, send a SIGXCPU every second */
956 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
957 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
958 softns += NSEC_PER_SEC;
968 } 959 }
969 if (psecs >= soft) { 960
970 /* 961 /* Update the expiry cache */
971 * At the soft limit, send a SIGXCPU every second. 962 if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
972 */ 963 pct->bases[CPUCLOCK_PROF].nextevt = softns;
973 if (print_fatal_signals) {
974 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
975 tsk->comm, task_pid_nr(tsk));
976 }
977 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
978 if (soft < hard) {
979 soft++;
980 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
981 }
982 }
983 x = soft * NSEC_PER_SEC;
984 if (!prof_expires || x < prof_expires)
985 prof_expires = x;
986 } 964 }
987 965
988 sig->cputime_expires.prof_exp = prof_expires; 966 if (expiry_cache_is_inactive(pct))
989 sig->cputime_expires.virt_exp = virt_expires;
990 sig->cputime_expires.sched_exp = sched_expires;
991 if (task_cputime_zero(&sig->cputime_expires))
992 stop_process_timers(sig); 967 stop_process_timers(sig);
993 968
994 sig->cputimer.checking_timer = false; 969 pct->expiry_active = false;
995} 970}
996 971
997/* 972/*
@@ -1000,18 +975,21 @@ static void check_process_timers(struct task_struct *tsk,
1000 */ 975 */
1001static void posix_cpu_timer_rearm(struct k_itimer *timer) 976static void posix_cpu_timer_rearm(struct k_itimer *timer)
1002{ 977{
978 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
979 struct cpu_timer *ctmr = &timer->it.cpu;
980 struct task_struct *p = ctmr->task;
1003 struct sighand_struct *sighand; 981 struct sighand_struct *sighand;
1004 unsigned long flags; 982 unsigned long flags;
1005 struct task_struct *p = timer->it.cpu.task;
1006 u64 now; 983 u64 now;
1007 984
1008 WARN_ON_ONCE(p == NULL); 985 if (WARN_ON_ONCE(!p))
986 return;
1009 987
1010 /* 988 /*
1011 * Fetch the current sample and update the timer's expiry time. 989 * Fetch the current sample and update the timer's expiry time.
1012 */ 990 */
1013 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 991 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1014 cpu_clock_sample(timer->it_clock, p, &now); 992 now = cpu_clock_sample(clkid, p);
1015 bump_cpu_timer(timer, now); 993 bump_cpu_timer(timer, now);
1016 if (unlikely(p->exit_state)) 994 if (unlikely(p->exit_state))
1017 return; 995 return;
@@ -1031,13 +1009,13 @@ static void posix_cpu_timer_rearm(struct k_itimer *timer)
1031 * The process has been reaped. 1009 * The process has been reaped.
1032 * We can't even collect a sample any more. 1010 * We can't even collect a sample any more.
1033 */ 1011 */
1034 timer->it.cpu.expires = 0; 1012 cpu_timer_setexpires(ctmr, 0);
1035 return; 1013 return;
1036 } else if (unlikely(p->exit_state) && thread_group_empty(p)) { 1014 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1037 /* If the process is dying, no need to rearm */ 1015 /* If the process is dying, no need to rearm */
1038 goto unlock; 1016 goto unlock;
1039 } 1017 }
1040 cpu_timer_sample_group(timer->it_clock, p, &now); 1018 now = cpu_clock_sample_group(clkid, p, true);
1041 bump_cpu_timer(timer, now); 1019 bump_cpu_timer(timer, now);
1042 /* Leave the sighand locked for the call below. */ 1020 /* Leave the sighand locked for the call below. */
1043 } 1021 }
@@ -1051,26 +1029,24 @@ unlock:
1051} 1029}
1052 1030
1053/** 1031/**
1054 * task_cputime_expired - Compare two task_cputime entities. 1032 * task_cputimers_expired - Check whether posix CPU timers are expired
1055 * 1033 *
1056 * @sample: The task_cputime structure to be checked for expiration. 1034 * @samples: Array of current samples for the CPUCLOCK clocks
1057 * @expires: Expiration times, against which @sample will be checked. 1035 * @pct: Pointer to a posix_cputimers container
1058 * 1036 *
1059 * Checks @sample against @expires to see if any field of @sample has expired. 1037 * Returns true if any member of @samples is greater than the corresponding
1060 * Returns true if any field of the former is greater than the corresponding 1038 * member of @pct->bases[CLK].nextevt. False otherwise
1061 * field of the latter if the latter field is set. Otherwise returns false.
1062 */ 1039 */
1063static inline int task_cputime_expired(const struct task_cputime *sample, 1040static inline bool
1064 const struct task_cputime *expires) 1041task_cputimers_expired(const u64 *sample, struct posix_cputimers *pct)
1065{ 1042{
1066 if (expires->utime && sample->utime >= expires->utime) 1043 int i;
1067 return 1; 1044
1068 if (expires->stime && sample->utime + sample->stime >= expires->stime) 1045 for (i = 0; i < CPUCLOCK_MAX; i++) {
1069 return 1; 1046 if (sample[i] >= pct->bases[i].nextevt)
1070 if (expires->sum_exec_runtime != 0 && 1047 return true;
1071 sample->sum_exec_runtime >= expires->sum_exec_runtime) 1048 }
1072 return 1; 1049 return false;
1073 return 0;
1074} 1050}
1075 1051
1076/** 1052/**
@@ -1083,48 +1059,50 @@ static inline int task_cputime_expired(const struct task_cputime *sample,
1083 * timers and compare them with the corresponding expiration times. Return 1059 * timers and compare them with the corresponding expiration times. Return
1084 * true if a timer has expired, else return false. 1060 * true if a timer has expired, else return false.
1085 */ 1061 */
1086static inline int fastpath_timer_check(struct task_struct *tsk) 1062static inline bool fastpath_timer_check(struct task_struct *tsk)
1087{ 1063{
1064 struct posix_cputimers *pct = &tsk->posix_cputimers;
1088 struct signal_struct *sig; 1065 struct signal_struct *sig;
1089 1066
1090 if (!task_cputime_zero(&tsk->cputime_expires)) { 1067 if (!expiry_cache_is_inactive(pct)) {
1091 struct task_cputime task_sample; 1068 u64 samples[CPUCLOCK_MAX];
1092 1069
1093 task_cputime(tsk, &task_sample.utime, &task_sample.stime); 1070 task_sample_cputime(tsk, samples);
1094 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime; 1071 if (task_cputimers_expired(samples, pct))
1095 if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) 1072 return true;
1096 return 1;
1097 } 1073 }
1098 1074
1099 sig = tsk->signal; 1075 sig = tsk->signal;
1076 pct = &sig->posix_cputimers;
1100 /* 1077 /*
1101 * Check if thread group timers expired when the cputimer is 1078 * Check if thread group timers expired when timers are active and
1102 * running and no other thread in the group is already checking 1079 * no other thread in the group is already handling expiry for
1103 * for thread group cputimers. These fields are read without the 1080 * thread group cputimers. These fields are read without the
1104 * sighand lock. However, this is fine because this is meant to 1081 * sighand lock. However, this is fine because this is meant to be
1105 * be a fastpath heuristic to determine whether we should try to 1082 * a fastpath heuristic to determine whether we should try to
1106 * acquire the sighand lock to check/handle timers. 1083 * acquire the sighand lock to handle timer expiry.
1107 * 1084 *
1108 * In the worst case scenario, if 'running' or 'checking_timer' gets 1085 * In the worst case scenario, if concurrently timers_active is set
1109 * set but the current thread doesn't see the change yet, we'll wait 1086 * or expiry_active is cleared, but the current thread doesn't see
1110 * until the next thread in the group gets a scheduler interrupt to 1087 * the change yet, the timer checks are delayed until the next
1111 * handle the timer. This isn't an issue in practice because these 1088 * thread in the group gets a scheduler interrupt to handle the
1112 * types of delays with signals actually getting sent are expected. 1089 * timer. This isn't an issue in practice because these types of
1090 * delays with signals actually getting sent are expected.
1113 */ 1091 */
1114 if (READ_ONCE(sig->cputimer.running) && 1092 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1115 !READ_ONCE(sig->cputimer.checking_timer)) { 1093 u64 samples[CPUCLOCK_MAX];
1116 struct task_cputime group_sample;
1117 1094
1118 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); 1095 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1096 samples);
1119 1097
1120 if (task_cputime_expired(&group_sample, &sig->cputime_expires)) 1098 if (task_cputimers_expired(samples, pct))
1121 return 1; 1099 return true;
1122 } 1100 }
1123 1101
1124 if (dl_task(tsk) && tsk->dl.dl_overrun) 1102 if (dl_task(tsk) && tsk->dl.dl_overrun)
1125 return 1; 1103 return true;
1126 1104
1127 return 0; 1105 return false;
1128} 1106}
1129 1107
1130/* 1108/*
@@ -1132,11 +1110,12 @@ static inline int fastpath_timer_check(struct task_struct *tsk)
1132 * already updated our counts. We need to check if any timers fire now. 1110 * already updated our counts. We need to check if any timers fire now.
1133 * Interrupts are disabled. 1111 * Interrupts are disabled.
1134 */ 1112 */
1135void run_posix_cpu_timers(struct task_struct *tsk) 1113void run_posix_cpu_timers(void)
1136{ 1114{
1137 LIST_HEAD(firing); 1115 struct task_struct *tsk = current;
1138 struct k_itimer *timer, *next; 1116 struct k_itimer *timer, *next;
1139 unsigned long flags; 1117 unsigned long flags;
1118 LIST_HEAD(firing);
1140 1119
1141 lockdep_assert_irqs_disabled(); 1120 lockdep_assert_irqs_disabled();
1142 1121
@@ -1174,11 +1153,11 @@ void run_posix_cpu_timers(struct task_struct *tsk)
1174 * each timer's lock before clearing its firing flag, so no 1153 * each timer's lock before clearing its firing flag, so no
1175 * timer call will interfere. 1154 * timer call will interfere.
1176 */ 1155 */
1177 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { 1156 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1178 int cpu_firing; 1157 int cpu_firing;
1179 1158
1180 spin_lock(&timer->it_lock); 1159 spin_lock(&timer->it_lock);
1181 list_del_init(&timer->it.cpu.entry); 1160 list_del_init(&timer->it.cpu.elist);
1182 cpu_firing = timer->it.cpu.firing; 1161 cpu_firing = timer->it.cpu.firing;
1183 timer->it.cpu.firing = 0; 1162 timer->it.cpu.firing = 0;
1184 /* 1163 /*
@@ -1196,16 +1175,18 @@ void run_posix_cpu_timers(struct task_struct *tsk)
1196 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1175 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1197 * The tsk->sighand->siglock must be held by the caller. 1176 * The tsk->sighand->siglock must be held by the caller.
1198 */ 1177 */
1199void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1178void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1200 u64 *newval, u64 *oldval) 1179 u64 *newval, u64 *oldval)
1201{ 1180{
1202 u64 now; 1181 u64 now, *nextevt;
1203 int ret; 1182
1183 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1184 return;
1204 1185
1205 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); 1186 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1206 ret = cpu_timer_sample_group(clock_idx, tsk, &now); 1187 now = cpu_clock_sample_group(clkid, tsk, true);
1207 1188
1208 if (oldval && ret != -EINVAL) { 1189 if (oldval) {
1209 /* 1190 /*
1210 * We are setting itimer. The *oldval is absolute and we update 1191 * We are setting itimer. The *oldval is absolute and we update
1211 * it to be relative, *newval argument is relative and we update 1192 * it to be relative, *newval argument is relative and we update
@@ -1226,19 +1207,11 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1226 } 1207 }
1227 1208
1228 /* 1209 /*
1229 * Update expiration cache if we are the earliest timer, or eventually 1210 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1230 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. 1211 * expiry cache is also used by RLIMIT_CPU!.
1231 */ 1212 */
1232 switch (clock_idx) { 1213 if (*newval < *nextevt)
1233 case CPUCLOCK_PROF: 1214 *nextevt = *newval;
1234 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1235 tsk->signal->cputime_expires.prof_exp = *newval;
1236 break;
1237 case CPUCLOCK_VIRT:
1238 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1239 tsk->signal->cputime_expires.virt_exp = *newval;
1240 break;
1241 }
1242 1215
1243 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER); 1216 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1244} 1217}
@@ -1260,6 +1233,7 @@ static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1260 timer.it_overrun = -1; 1233 timer.it_overrun = -1;
1261 error = posix_cpu_timer_create(&timer); 1234 error = posix_cpu_timer_create(&timer);
1262 timer.it_process = current; 1235 timer.it_process = current;
1236
1263 if (!error) { 1237 if (!error) {
1264 static struct itimerspec64 zero_it; 1238 static struct itimerspec64 zero_it;
1265 struct restart_block *restart; 1239 struct restart_block *restart;
@@ -1275,7 +1249,7 @@ static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1275 } 1249 }
1276 1250
1277 while (!signal_pending(current)) { 1251 while (!signal_pending(current)) {
1278 if (timer.it.cpu.expires == 0) { 1252 if (!cpu_timer_getexpires(&timer.it.cpu)) {
1279 /* 1253 /*
1280 * Our timer fired and was reset, below 1254 * Our timer fired and was reset, below
1281 * deletion can not fail. 1255 * deletion can not fail.
@@ -1297,7 +1271,7 @@ static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1297 /* 1271 /*
1298 * We were interrupted by a signal. 1272 * We were interrupted by a signal.
1299 */ 1273 */
1300 expires = timer.it.cpu.expires; 1274 expires = cpu_timer_getexpires(&timer.it.cpu);
1301 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it); 1275 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1302 if (!error) { 1276 if (!error) {
1303 /* 1277 /*