aboutsummaryrefslogtreecommitdiffstats
path: root/arch/m32r/include/asm/user.h
diff options
context:
space:
mode:
authorArnd Bergmann <arnd@arndb.de>2018-03-07 15:36:19 -0500
committerArnd Bergmann <arnd@arndb.de>2018-03-09 17:20:00 -0500
commit553b085c2075f6a4a2591108554f830fa61e881f (patch)
tree68d63911f2c12e0fb9fa23498df9300442a88f92 /arch/m32r/include/asm/user.h
parentfd8773f9f544955f6f47dc2ac3ab85ad64376b7f (diff)
arch: remove m32r port
The Mitsubishi/Renesas m32r architecture has been around for many years, but the Linux port has been obsolete for a very long time as well, with the last significant updates done for linux-2.6.14. While some m32r microcontrollers are still being marketed by Renesas, those are apparently no longer possible to support, mainly due to the lack of an external memory interface. Hirokazu Takata was the maintainer until the architecture got marked Orphaned in 2014. Link: http://www.linux-m32r.org/ Link: https://www.renesas.com/en-eu/products/microcontrollers-microprocessors/m32r.html Cc: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Diffstat (limited to 'arch/m32r/include/asm/user.h')
-rw-r--r--arch/m32r/include/asm/user.h53
1 files changed, 0 insertions, 53 deletions
diff --git a/arch/m32r/include/asm/user.h b/arch/m32r/include/asm/user.h
deleted file mode 100644
index 489b60d4aec2..000000000000
--- a/arch/m32r/include/asm/user.h
+++ /dev/null
@@ -1,53 +0,0 @@
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_M32R_USER_H
3#define _ASM_M32R_USER_H
4
5#include <linux/types.h>
6#include <asm/ptrace.h>
7#include <asm/page.h>
8
9/*
10 * Core file format: The core file is written in such a way that gdb
11 * can understand it and provide useful information to the user (under
12 * linux we use the `trad-core' bfd).
13 *
14 * The actual file contents are as follows:
15 * UPAGE: 1 page consisting of a user struct that tells gdb
16 * what is present in the file. Directly after this is a
17 * copy of the task_struct, which is currently not used by gdb,
18 * but it may come in handy at some point. All of the registers
19 * are stored as part of the upage. The upage should always be
20 * only one page.
21 * DATA: The data area is stored. We use current->end_text to
22 * current->brk to pick up all of the user variables, plus any memory
23 * that may have been sbrk'ed. No attempt is made to determine if a
24 * page is demand-zero or if a page is totally unused, we just cover
25 * the entire range. All of the addresses are rounded in such a way
26 * that an integral number of pages is written.
27 * STACK: We need the stack information in order to get a meaningful
28 * backtrace. We need to write the data from usp to
29 * current->start_stack, so we round each of these off in order to be
30 * able to write an integer number of pages.
31 */
32
33struct user {
34 struct pt_regs regs; /* entire machine state */
35 size_t u_tsize; /* text size (pages) */
36 size_t u_dsize; /* data size (pages) */
37 size_t u_ssize; /* stack size (pages) */
38 unsigned long start_code; /* text starting address */
39 unsigned long start_data; /* data starting address */
40 unsigned long start_stack; /* stack starting address */
41 long int signal; /* signal causing core dump */
42 unsigned long u_ar0; /* help gdb find registers */
43 unsigned long magic; /* identifies a core file */
44 char u_comm[32]; /* user command name */
45};
46
47#define NBPG PAGE_SIZE
48#define UPAGES 1
49#define HOST_TEXT_START_ADDR (u.start_code)
50#define HOST_DATA_START_ADDR (u.start_data)
51#define HOST_STACK_END_ADDR (u.start_stack + u.u_ssize * NBPG)
52
53#endif /* _ASM_M32R_USER_H */