blob: c35632ae1c35aacb17b5e432930402e274d89b9b (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
###############################################################################
# Description
###############################################################################
# Compute and print G-EDF inversion statistics
###############################################################################
# Public Functions
###############################################################################
def gedf_inversion_stat_printer(stream,num):
# State
min_inversion = -1
max_inversion = -1
sum_inversions = 0
num_inversions = 0
longest_inversions = []
# Iterate over records, updating state
for record in stream:
if record.type_name == 'inversion_end':
length = record.job.inversion_end - record.job.inversion_start
if length > 0:
num_inversions += 1
if length > max_inversion:
max_inversion = length
if length < min_inversion or min_inversion == -1:
min_inversion = length
sum_inversions += length
if len(longest_inversions) == num:
if num==0:
continue
si = longest_inversions[0]
if length > (si.job.inversion_end -
si.job.inversion_start):
longest_inversions.append(record)
longest_inversions = _sort_longest_inversions(
longest_inversions)
del longest_inversions[0]
else:
longest_inversions.append(record)
longest_inversions = _sort_longest_inversions(
longest_inversions)
# We've seen all records.
# Further update state
if num_inversions > 0:
avg_inversion = int(sum_inversions / num_inversions)
else:
avg_inversion = 0
# Print out our information
# NOTE: Here, we assume nanoseconds as the time unit.
# May have to be changed in the future.
print "Num inversions: %d" % (num_inversions)
print "Min inversion: %f ms" % (float(min_inversion) / 1000000)
print "Max inversion: %f ms" % (float(max_inversion) / 1000000)
print "Avg inversion: %f ms" % (float(avg_inversion) / 1000000)
for inv in longest_inversions:
print ""
print "Inversion record IDs: (%d, %d)" % (inv.inversion_start_id,
inv.id)
print("Triggering Event IDs: (%d, %d)" %
(inv.inversion_start_triggering_event_id,
inv.triggering_event_id))
print "Time: %d" % (inv.job.inversion_end)
# NOTE: Here, we assume nanoseconds as the time unit.
# May have to be changed in the future.
print "Duration: %f ms" % (
float(inv.job.inversion_end - inv.job.inversion_start) / 1000000)
print "Job: %d.%d" % (inv.job.pid,inv.job.job)
print "Deadline: %d" % (inv.job.deadline)
print ""
def _sort_longest_inversions(longest_inversions):
""" Sort longest inversions"""
def sortkey(x):
return x.job.inversion_end - x.job.inversion_start
longest_inversions.sort(key=sortkey)
return longest_inversions
|