aboutsummaryrefslogtreecommitdiffstats
path: root/transform.py
blob: 65d34d4c958e4355a111d8e552ad6bd1e118be48 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin/env python

import sys

from plot import decode
from os.path  import splitext, basename

from glob import glob
from collections import defaultdict
import optparse

from util import load_csv_file, write_csv_file

o = optparse.make_option

opts = [
#    o('-r', '--result-type', action='store', dest='',
#      type='choice', choices=['hard', 'soft', 'tardiness', 'rel-tardiness'],
#      help='what data should be emitted?'),
    ]

defaults = {
    }

options = None

#G-EDF/testpoint_ucap=13.75_wss=1792_dist=exp-10-10-100_deadlines=implicit_host=ludwig_scheduler=G-EDF.csv

IDX_WSS  = 4
IDX_UCAP = 5

IDX_HARD_IDLE =  6
IDX_HARD_LOAD =  7

IDX_SOFT_IDLE =  8
IDX_SOFT_LOAD = 17

IDX_TARD_MAX_IDLE =  9
IDX_TARD_AVG_IDLE = 10
IDX_TARD_STD_IDLE = 12

IDX_TARD_MAX_LOAD = 18
IDX_TARD_AVG_LOAD = 19
IDX_TARD_STD_LOAD = 21

IDX_RTARD_MAX_IDLE = 13
IDX_RTARD_AVG_IDLE = 14
IDX_RTARD_STD_IDLE = 16

IDX_RTARD_MAX_LOAD = 22
IDX_RTARD_AVG_LOAD = 23
IDX_RTARD_STD_LOAD = 25


def key(fname):
    name, ext = splitext(basename(fname))
    conf = decode(name)

    sched = conf['scheduler']

    if 'quanta' in conf and conf['quanta'] == 'staggered':
        sched = 'S-' + sched

    d  = 'dist=%s'  % conf['dist']
    dl = 'deadlines=%s' % conf['deadlines']
    h  = 'host=%s'  % conf['host']

    return ('_'.join([d, dl, h]), sched, fname)

def get_row(i, key_col,  arrays, cols):
    row  = []
    data = arrays[0]
    keys = [data[i,x] for x in key_col]
    for idx, data in enumerate(arrays):
        # make sure we are not combining apples and oranges...
        d_keys = [data[i,x] for x in key_col]
        if not d_keys == keys:
            print 'Bad: missing data sched=%d row=%d %s!=%s' % (idx + 1, i+1, d_keys, keys)
            assert False
        row += [data[i,x] for x in cols]
    return keys + row

def get_table(arrays, key_col, data_col):
    data = arrays[0]
    return [get_row(i, key_col, arrays, data_col) for i in xrange(len(data))]

def write_sched(name, components, hard=True):
    header = ['WSS', 'ucap']
    arrays = []
    for (sched, data) in components:
#        print sched
        header += ["%s (load)" % sched , "%s (idle)" % sched]
        arrays.append(data)
    if hard:
        data_col = [IDX_HARD_LOAD, IDX_HARD_IDLE]
    else:
        data_col = [IDX_SOFT_LOAD, IDX_SOFT_IDLE]
    result = get_table(arrays, [IDX_WSS, IDX_UCAP], data_col)
    # sort by WSS, then by ucap
    result.sort(key=lambda row: (row[0], row[1]))
    fname = '%s_%s.csv' % ('hard' if hard else 'soft',
                           name)
    write_csv_file(fname, result, header=header, width=20)

def write_tardiness(name, components, relative=True):
    header = ['WSS', 'ucap']
    arrays = []
    for (sched, data) in components:
        header += ["%s (max, load)" % sched,
                   "%s (avg, load)" % sched,
                   "%s (std, load)" % sched,
                   "%s (max, idle)" % sched,
                   "%s (avg, idle)" % sched,
                   "%s (std, idle)" % sched]
        arrays.append(data)

    if relative:
        data_col = [IDX_RTARD_MAX_LOAD, IDX_RTARD_AVG_LOAD, IDX_RTARD_STD_LOAD,
                    IDX_RTARD_MAX_IDLE, IDX_RTARD_MAX_IDLE, IDX_RTARD_STD_IDLE]
    else:
        data_col = [IDX_TARD_MAX_LOAD, IDX_TARD_AVG_LOAD, IDX_TARD_STD_LOAD,
                    IDX_TARD_MAX_IDLE, IDX_TARD_MAX_IDLE, IDX_TARD_STD_IDLE]

    result = get_table(arrays, [IDX_WSS, IDX_UCAP], data_col)
    # sort by WSS, then by ucap
    result.sort(key=lambda row: (row[0], row[1]))
    fname = '%s_%s.csv' % ('rel-tard' if relative else 'abs-tard',
                           name)
    write_csv_file(fname, result, header=header, width=35)


def assemble_results(dir):
    files = glob(dir + '/*.csv')

    parts = defaultdict(list)

    print 'Organizing %d files...' % len(files)
    for f in files:
        k, sched, fname = key(f)
        parts[k].append((sched, fname))

    for k in parts:
        # sort by scheduler name
        parts[k].sort()

    for i, k in enumerate(parts):
        comment = 1
        print '[%d/%d] Processing %s' % (i+ 1, len(parts), k)
        print 'Loading files.'
        components = [(sched, load_csv_file(fname)) for (sched, fname) in parts[k]]

        print 'Generating output.'
        write_sched(k, components, hard=True)
        write_sched(k, components, hard=False)
        write_tardiness(k, components, relative=True)
        write_tardiness(k, components, relative=False)

if __name__ == '__main__':
    parser = optparse.OptionParser(option_list=opts)
    parser.set_defaults(**defaults)
    (options, dirs) = parser.parse_args()

    for d in dirs:
        assemble_results(d)