1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
|
#!/usr/bin/env python
from os.path import splitext, basename
from optparse import make_option as o
from tempfile import NamedTemporaryFile as Tmp
from collections import defaultdict
from itertools import izip
import numpy as np
from util import *
import stats
import defapp
from plot import decode
from gnuplot import gnuplot, FORMATS
MACHINE_TOPOLOGY = {
'jupiter-cs' : (4, [('preempt', lambda x, y: x == y),
('mem', lambda x, y: x != y)]),
# Socket0 Socket1 Socket2 Socket3
# ------ ------- ------- -------
# | 0, 4| | 1, 5| | 2, 6| | 3, 7|
# | 8,12| | 9,13| |10,14| |11,15|
# |16,20| |17,21| |18,22| |19,23|
# ------- ------- ------- -------
'ludwig.cs.unc.edu' : (24, [('preempt', lambda x, y: x == y),
('l2',
lambda x, y: abs(y - x) == 4),
('l3',
lambda x, y:
abs(y - x) > 4 and \
abs(y - x) % 4 == 0),
('mem', lambda x, y: abs(y - x) % 4 != 0)])
}
PMO_PARAM = {
'wss' : 'WSS',
'host' : 'host',
'wcycle' : 'write-cycle'
}
PMO_MEM = {
'mem' : 'a migration through main memory',
'l3' : 'a migration through a shared L3 cache',
'l2' : 'a migration through a shared L2 cache',
'preempt' : 'a preemption',
'all' : 'either a migration or preemption',
}
PMO_SUBPLOTS = [
# x, y, y-delta, split according to mem-hierarchy?
(0, 6, None, False),
(0, 7, None, False),
(0, 8, None, False),
(0, 9, None, False),
(0, 10, None, True),
(3, 10, None, True),
(0, 10, 9, True),
(3, 10, 9, True),
]
PMO_AGGR_SUBPLOTS = [
# x, y, y-delta, split according to mem-hierarchy?
(0, 6, None, False),
(0, 7, None, False),
(0, 8, None, False),
(0, 9, None, False),
(0, 10, None, True),
# (0, 10, 6, True),
# (0, 10, 7, True),
# (0, 10, 8, True),
(0, 10, 9, True),
]
PMO_AGGR_COMBINE = [
[(6, 'all'), (7, 'all'), (8, 'all'), (9, 'all')]
]
PMO_COL_LABEL = [('measurement', 'sample', 'index'),
('write cycles', 'wcycle', 'every nth access'),
('WSS', 'wcc', 'kilobytes'),
('suspension length', 'delay', 'microseconds'),
('CPU (preempted on)', 'from', 'processor'),
('CPU (resumed on)', 'to', 'processor'),
('cold access', 'cold', 'cycles'),
('first hot access', 'hot1', 'cycles'),
('second hot access', 'hot2', 'cycles'),
('third hot access', 'hot3', 'cycles'),
('access after resuming', 'after', 'cycles')
]
PMO_FROM_CPU = 4
PMO_TO_CPU = 5
options = [
o('-f', '--format', action='store', dest='format', type='choice',
choices=FORMATS, help='output format'),
o(None, '--paper', action='store_true', dest='paper'),
o(None, '--wide', action='store_true', dest='wide'),
o(None, '--split', action='store_true', dest='split'),
o(None, '--log-y', action='store_true', dest='logy'),
o(None, '--extend', action='store', type='float', dest='extend'),
o(None, '--aggregate', action='store_true', dest='aggregate'),
o('-c', '--cycles-per-usec', action='store', type='float', dest='cycles_per_usec'),
]
defaults = {
'format' : 'show',
'paper' : False,
'split' : False,
'wide' : False,
'aggregate' : False,
'extend' : 1.5,
'cycles_per_usec' : None,
'logy' : False,
}
def extract_cols(data, xcol, ycol1, ycol2, cast=int, cpu_filter=lambda x, y: True):
def matching_cpus(row):
return cpu_filter(row[PMO_FROM_CPU], row[PMO_TO_CPU])
rows = select(matching_cpus, data)
if not (ycol2 is None):
rows[:,ycol1] -= rows[:,ycol2]
return rows[:,(xcol, ycol1)]
class CyclePlotter(defapp.App):
def __init__(self):
defapp.App.__init__(self, options, defaults, no_std_opts=True)
self.aggregate_data = []
def setup_pmo_graphs(self, datafile, conf, subplots=PMO_SUBPLOTS):
host = conf['host']
if host in MACHINE_TOPOLOGY:
(cpus, hier) = MACHINE_TOPOLOGY[host]
plots = []
data = load_csv_file(datafile, dtype=int)
for (xcol, ycol, yminus, by_mem_hierarchy) in subplots:
sub = [('all', lambda x, y: True)]
if by_mem_hierarchy:
sub += hier
for tag, test in sub:
rows = extract_cols(data,
xcol, ycol, yminus,
cpu_filter=test)
plots.append((rows, xcol, ycol, yminus, tag))
return plots
else:
self.err('Unkown host: %s' % host)
return None
def write_aggregate(self, datafiles):
# (wss, avg, wc, #avg, #wc)
# by tag -> by wcycle -> list of data points)
by_tag = defaultdict(lambda: defaultdict(list))
host = None
for i, datafile in enumerate(datafiles):
print '[%d/%d] Processing %s...' % (i + 1, len(datafiles), datafile)
bname = basename(datafile)
name, ext = splitext(bname)
if ext != '.csv':
self.err("Warning: '%s' doesn't look like a CSV file."
% bname)
conf = decode(name)
if 'pmo' in conf:
plots = self.setup_pmo_graphs(datafile, conf, PMO_AGGR_SUBPLOTS)
if plots is None:
print "Skipping %s..." % datafile
return
if not host:
host = conf['host']
if host != conf['host']:
self.err('Mixing data from two hosts! (%s, %s)' % (host, conf['host']))
self.err('Aborting.')
return
wss = int(conf['wss'])
wcycle = int(conf['wcycle'])
for (rows, xcol, ycol, yminus, tag) in plots:
clean = stats.iqr_remove_outliers(rows, extend=self.options.extend)
vals = clean[:,1]
avg = np.mean(vals)
std = np.std(vals, ddof=1)
wc = np.max(vals)
n = len(vals)
key = (xcol, ycol, yminus, tag)
by_tag[key][wcycle].append((wss, avg, std, wc, n, len(rows) - n))
del plots
else:
self.err("Warning: '%s' is not a PMO experiment; skipping." % bname)
all_wss = set()
all_wcycle = set()
for key in by_tag:
for wcycle in by_tag[key]:
all_wcycle.add(wcycle)
data = by_tag[key][wcycle]
# sort by increasing WSS
data.sort(key=lambda row: row[0])
for row in data:
all_wss.add(row[0])
(xcol, ycol, yminus, tag) = key
xtag = PMO_COL_LABEL[xcol][1]
ytag = PMO_COL_LABEL[ycol][1]
dtag = "-delta-%s" % PMO_COL_LABEL[yminus][1] if not yminus is None else ""
code = "code=%s-%s-%s-%s" % key
figname = "host=%s_%s%s-vs-%s_%s_%s" % \
(host, ytag, dtag, xtag, tag, code)
write_csv_file('pmo-aggr_wcycle=%d_%s.csv' % (wcycle, figname), data)
mems = [tag for (tag, _) in MACHINE_TOPOLOGY[host][1]]
for wcycle in all_wcycle:
try:
rows = [[wss] for wss in sorted(all_wss)]
header = ['wss']
for (x, y, yminus, split) in PMO_AGGR_SUBPLOTS:
tags = ['all']
if split:
tags += mems
for tag in tags:
col_name = "%s %s" % (PMO_COL_LABEL[ycol][1], tag)
if not yminus is None:
col_name += ' - ' + PMO_COL_LABEL[yminus][1]
header += [col_name + " avg", col_name + " std", col_name + " wc"]
key = (x, y, yminus, tag)
data = by_tag[key][wcycle]
for r, d in izip(rows, data):
if r[0] != d[0]:
print "mismatch", r[0], d[0], key, wcycle
assert r[0] == d[0] # working set size must match
r += d[1:4] # (average, std, wc)
write_csv_file('pmo-all_wcycle=%d_host=%s.csv' % (wcycle, host),
rows, header, width=max([len(h) for h in header]))
except AssertionError:
self.err("Data missing for wcycle=%d!" % wcycle)
def plot_preempt_migrate(self, datafile, name, conf):
plots = self.setup_pmo_graphs(datafile, conf)
if plots is None:
print "Skipping %s..." % datafile
return
else:
print 'Plotting %s...' % datafile
for (rows, xcol, ycol, yminus, tag) in plots:
# Write it to a temp file.
tmp = Tmp()
for row in rows:
tmp.write("%s, %s\n" % (row[0], row[1]))
tmp.flush()
xtag = PMO_COL_LABEL[xcol][1]
ytag = PMO_COL_LABEL[ycol][1]
dtag = "-delta-%s" % PMO_COL_LABEL[yminus][1] if not yminus is None else ""
figname = "%s_%s%s-vs-%s_%s" % (name, ytag, dtag, xtag, tag)
xunit = PMO_COL_LABEL[xcol][2]
yunit = PMO_COL_LABEL[ycol][2]
ylabel = PMO_COL_LABEL[ycol][0]
xlabel = PMO_COL_LABEL[xcol][0]
title = "%s" % ylabel
if ycol == 10:
title += " from %s" % PMO_MEM[tag]
for key in conf:
if key in PMO_PARAM:
title += " %s=%s" % (PMO_PARAM[key], conf[key])
graphs = [(tmp.name, 1, 2, ylabel)]
# plot cutoff
(s, lo, hi) = stats.iqr(rows[:,1])
lo -= s * self.options.extend
hi += s * self.options.extend
m99 = stats.cutoff_max(rows[:, 1])
graphs += [(lo, 'IQR cutoff (%d)' % lo, 'line'),
(hi, 'IQR cutoff (%d)' % hi, 'line'),
(m99,'99%% cutoff (%d)' % m99, 'line lw 2')]
gnuplot(graphs,
xlabel="%s (%s)" % (xlabel, xunit),
ylabel="%s (%s)" % ("access cost" if yminus is None
else "delta to %s" % PMO_COL_LABEL[yminus][0],
yunit),
title=title,
style='points',
format=self.options.format,
fname=figname)
del tmp # delete temporary file
def plot_pmo_aggr(self, datafile, name, conf):
fname = datafile
code = conf['code']
(xcol, ycol, yminus, tag) = code.split('-')
xcol = int(xcol)
ycol = int(ycol)
if yminus != "None":
yminus = int(ycol)
else:
yminus = None
xtag = PMO_COL_LABEL[xcol][1]
ytag = PMO_COL_LABEL[ycol][1]
dtag = "-delta-%s" % PMO_COL_LABEL[yminus][1] if not yminus is None else ""
figname = name #"%s_%s%s-vs-%s_%s" % (name, ytag, dtag, xtag, tag)
xunit = PMO_COL_LABEL[xcol][2]
yunit = PMO_COL_LABEL[ycol][2]
ylabel = PMO_COL_LABEL[ycol][0]
xlabel = PMO_COL_LABEL[xcol][0]
title = "%s" % ylabel
ylabel="%s (%s)" % ("access cost" if yminus is None
else "delta to %s" % PMO_COL_LABEL[yminus][0],
yunit),
if ycol == 10:
title += " from %s" % PMO_MEM[tag]
for key in conf:
if key in PMO_PARAM:
title += " %s=%s" % (PMO_PARAM[key], conf[key])
graphs = [
#(fname, 1, 2, "average"),
"'%s' using 1:2:3 title 'average' with errorbars" % (fname),
(fname, 1, 4, "maximum"),
]
xlabel = "working set size (kilobytes)"
yrange = (4096, 2**26) if yminus is None else None
gnuplot(graphs, xlabel=xlabel, ylabel=ylabel, title=title, fname=figname,
yrange=yrange,
logscale="xy 2" if yminus is None else "x 2",
format=self.options.format)
def plot_pmo_all(self, datafile, name, conf):
host = conf['host']
mems = [tag for (tag, _) in MACHINE_TOPOLOGY[host][1]]
columns = []
idx = 2
for (x, y, yminus, split) in PMO_AGGR_SUBPLOTS:
tags = ['all']
if split:
tags += mems
for tag in tags:
columns.append((x, y, yminus, tag, idx))
idx += 3
data = load_csv_file(datafile)
if self.options.cycles_per_usec:
yunit = "(us)"
data[:, 1:] /= self.options.cycles_per_usec
else:
yunit = "(cycles)"
tmp = write_csv_file(None, data)
rw = int(conf['wcycle'])
rw = 1.0 / rw * 100 if rw != 0 else 0
if self.options.logy:
axis = ("x 2", "y 10")
else:
axis = "x 2"
# raw measures
for offset, kind, long in [(0, 'avg', 'average'), (2, 'wc', 'maximum')]:
graphs = []
for (x, y, yminus, tag, idx) in columns:
if yminus is None:
label = PMO_COL_LABEL[y][0]
if y == 10:
label += " from %s" % PMO_MEM[tag]
graphs += [
(tmp.name, 1, idx + offset, label),
]
xlabel = "working set size (kilobytes)"
ylabel = "time to complete access " + yunit
title = "measured %s WSS access time (%.2f%% writes)" % (long, rw)
yrange = None #(4096, 2**26)
fname = "%s_full_%s" % (name, kind)
gnuplot(graphs, xlabel=xlabel, ylabel=ylabel, title=title, fname=fname,
yrange=yrange, logscale=axis, format=self.options.format)
# per-sample delta measures
for offset, kind, long in [(0, 'avg', 'average'), (2, 'wc', 'maximum')]:
graphs = []
for (x, y, yminus, tag, idx) in columns:
if not (yminus is None) and tag != 'all':
label = "%s" % PMO_MEM[tag]
graphs += [
(tmp.name, 1, idx + offset, label),
]
xlabel = "working set size (kilobytes)"
ylabel = "per-sample delta to hot access " + yunit
title = "measured %s overhead (%.2f%% writes)" % (long, rw)
yrange = None
fname = "%s_delta_%s" % (name, kind)
gnuplot(graphs, xlabel=xlabel, ylabel=ylabel, title=title, fname=fname,
yrange=yrange, logscale=axis, format=self.options.format)
del tmp
# stats delta
# find hot column
col = None
for (x, y, yminus, tag, idx) in columns:
if x == 0 and y == 9 and yminus is None and tag == 'all':
col = idx
break
# normalize based on third hot access
# +1/-1 to get zero-based indices; Gnuplot wants 1-based indices
hot_avg = data[:,col - 1].copy()
hot_wc = data[:,col + 1].copy()
for (x, y, yminus, tag, idx) in columns:
data[:,idx - 1] -= hot_avg
data[:,idx + 1] -= hot_wc
tmp = write_csv_file(None, data)
for offset, kind, long in [(0, 'avg', 'average'), (2, 'wc', 'maximum')]:
graphs = []
for (x, y, yminus, tag, idx) in columns:
if yminus is None and tag != 'all':
label = PMO_COL_LABEL[y][0]
label = PMO_MEM[tag]
graphs += [
(tmp.name, 1, idx + offset, label),
]
xlabel = "working set size (kilobytes)"
ylabel = "delta to third hot access " + yunit
title = "difference of %s access costs (%.2f%% writes)" % (long, rw)
yrange = None
fname = "%s_diff_%s" % (name, kind)
gnuplot(graphs, xlabel=xlabel, ylabel=ylabel, title=title, fname=fname,
yrange=yrange, logscale=axis, format=self.options.format)
del tmp
def plot_file(self, datafile):
bname = basename(datafile)
name, ext = splitext(bname)
if ext != '.csv':
self.err("Warning: '%s' doesn't look like a CSV file."
% bname)
conf = decode(name)
if 'pmo' in conf:
self.plot_preempt_migrate(datafile, name, conf)
elif 'pmo-aggr' in conf:
self.plot_pmo_aggr(datafile, name, conf)
elif 'pmo-all' in conf:
self.plot_pmo_all(datafile, name, conf)
else:
self.err("Skipped '%s'; unkown experiment type."
% bname)
def default(self, _):
for datafile in self.args:
self.plot_file(datafile)
def do_aggregate(self, _):
self.write_aggregate(self.args[1:])
if __name__ == "__main__":
CyclePlotter().launch()
|