aboutsummaryrefslogtreecommitdiffstats
path: root/oplot.py
blob: 89e0ef00580dacf3cb715ecc1fd74900bc1a727c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/usr/bin/env python
import defapp

from plot import decode
from util import load_csv_file, load_binary_file, write_csv_file
from stats import iqr_cutoff

from binary_data import get_data

from math import ceil

import numpy

from os.path  import splitext, basename
from optparse import make_option as o

from gnuplot  import gnuplot, FORMATS, Plot, label, curve

options = [
    # output options
    o('-f', '--format', action='store', dest='format', type='choice',
      choices=FORMATS, help='output format'),
    o(None, '--save-script', action='store_true', dest='save_script'),
    o('-p', '--prefix', action='store', dest='prefix'),

    o('-i', '--iqr-extent', action='store', dest='extent', type='float',
      help='what extent to use for outlier removal'),

    o('-n', '--normalize', action='store_true', dest='normalize',
      help='use normalize counts'),

    o('-c', '--cut-off', action='store', dest='cutoff', type='int',
      help='max number of samples to use'),

    o('-x', '--xmax', action='store', dest='xmax', type='int',
      help='determines x-axis range'),

    o('-y', '--ymax', action='store', dest='ymax', type='float',
      help='determines y-axis range'),

    o('-b', '--binsize', action='store', dest='binsize', type='float',
      help='set binsize of histogram'),

    ]

defaults = {
    # output options
    'format' : 'pdf',
    'save_script' : False,
    'prefix' : '',

    # data processing
    'cycles' : 2128, # per usec
    'extent' : 3,
    'cutoff' : None,
    'normalize' : False,

    # formatting options
    'binsize' : 0.25,

    'xmax'    : None,
    'ymax'    : None,

    }


TXT = {
    'RELEASE-LATENCY' : 'timer latency',
    'RELEASE' : 'job release overhead',
    'SCHED' : 'scheduling overhead',
    'SCHED2' : 'post-scheduling overhead',
    'CXS' : 'context-switch overhead',
    'SEND-RESCHED' : 'IPI latency',
    'TICK' : 'timer tick overhead',
}


def get_stats_label(samples):
    avg = numpy.mean(samples)
    med = numpy.median(samples)
    dev = numpy.std(samples)
    max = samples[-1]
    min = samples[0]
    return "min=%.2fus  max=%.2fus  avg=%.2fus  median=%.2fus  stdev=%.2fus" \
        % (min, max, avg, med, dev)

class OverheadPlotter(defapp.App):
    def __init__(self):
        defapp.App.__init__(self, options, defaults, no_std_opts=True)
        self.tmpfiles = []

    def make_plot(self, fname=None):
        p = Plot()
        p.output = "%s%s.%s" % (self.options.prefix, fname, self.options.format)
        p.format = self.options.format
        return p

    def setup_png(self, plot):
        # standard png options; usually correct; never tweaked for paper
        if self.options.format == 'png':
            plot.font_size = 'large'
            plot.size   = (1024, 768)
            plot.xticks = (0, 1)
            plot.yticks = (0, 0.1)
            plot.default_style = "linespoints"
            return True
        else:
            return False

    def write(self, data, name, ext='data'):
        if self.options.save_script:
            fname = "%s.%s" % (name, ext)
            write_csv_file(fname, data)
            return fname
        else:
            tmp = write_csv_file(None, data)
            # keep a reference so that it isn't deleted
            self.tmpfiles.append(tmp)
            return tmp.name

    def write_histogram(self, samples, name, labels=10):
        max = ceil(numpy.amax(samples))
        if self.options.xmax:
            max = self.options.xmax
        bin_size = self.options.binsize
        num_bins  = int(max / bin_size)
        (bins, edges) = numpy.histogram(samples, bins=num_bins,
                                        range=(self.options.binsize / 2,
                                               max + self.options.binsize / 2))
        data = numpy.zeros((num_bins, 3))
        cumulative = 0
        for i in xrange(len(bins)):
            data[i, 0]  = (edges[i] + edges[i + 1]) / 2.0
            data[i, 1]  = bins[i]
            cumulative += bins[i]
            data[i, 2]  = cumulative

        if self.options.normalize:
            data[:, 1] /= len(samples)
            data[:, 2] /= len(samples)

        label_rate = len(bins) / labels
        if not label_rate:
            label_rate = 1
        for_file = []
        for i, row in enumerate(data):
            label = '%.2f' % row[0] if i % label_rate == 0 else ''
            for_file.append([row[0], row[1], row[2], label])

        return (data, self.write(for_file, name, ext='hist'), edges)

    def render(self, p):
        if self.options.save_script:
            p.gnuplot_save(p.output + '.plot')
        else:
            p.gnuplot_exec()

    def plot_samples(self, datafile, name, conf):
        if conf['overhead'] == 'RELEASE-LATENCY':
            scale = 1.0 / 1000.0
        else:
            scale = 1.0 / self.options.cycles

        data, max_idx, min_idx, iqr_max, iqr_min = get_data(datafile,
                                                            scale,
                                                            self.options.extent,
                                                            self.options.cutoff)

        samples = data[min_idx:max_idx]
        discarded = (len(data) - len(samples)) / float(len(data)) * 100
        max_cost = data[-1]

        p = self.make_plot(name)


        iqr_label = "\\n".join(["samples: total=%d filtered=%d (%.2f%%)",
                                "IQR: extent=%d threshold=%.2fus",
                                ]) % \
            (len(data), len(data) -  len(samples), discarded,
             self.options.extent, iqr_max)

        p.labels = [label(0.5, 0.9,
                          get_stats_label(samples),
                          coord=['graph', 'screen'], align='center'),
                    label(0.98, 0.95, iqr_label,
                          coord=['graph', 'graph'], align='right')]

        (hist, fname, edges) = self.write_histogram(samples, name)

        p.setup_histogram(gap=1, boxwidth=1.0)

        p.title = "%s: measured %s for %s tasks per processor (host=%s)" \
            % (conf['scheduler'], TXT[conf['overhead']], conf['n'], conf['host'])

        if self.options.normalize:
            p.ylabel = "fraction of samples"
        else:
            p.ylabel = "number of samples"
        p.xlabel = "overhead in microseconds (bin size = %.2fus)" \
            % self.options.binsize

        if self.options.ymax:
            p.yrange = (0, self.options.ymax)
#        p.yrange = (0, (ceil(numpy.amax(hist[:,1]) / 100.0) * 100))
        p.xticks = (0, 10)
        p.curves = [curve(histogram=fname, col=2, labels_col=4)]

        #### Styling.

        if not self.setup_png(p):
            p.rounded_caps = True
            p.font = 'Helvetica'

            p.font_size = '10'
            p.size = ('20cm', '10cm')
            p.monochrome   = False
            p.dashed_lines = False
            p.key = 'off'
            p.default_style = 'points lw 1'

        self.render(p)


    def plot_file(self, datafile):
        bname     = basename(datafile)
        name, ext = splitext(bname)
        conf      = decode(name)
        plotters = {
            'taskset'   : self.plot_samples,
            }

        for plot_type in plotters:
            if plot_type in conf:
                try:
                    plotters[plot_type](datafile, name, conf)
                except IOError as err:
                    self.err("Skipped '%s' (%s)." % err)
                break
        else:
            self.err("Skipped '%s'; unkown experiment type."
                     % bname)
        # release all tmp files
        self.tmpfiles = []

    def default(self, _):
        for i, datafile in enumerate(self.args):
            self.out("[%d/%d] Processing %s ..." % (i + 1, len(self.args), datafile))
            self.plot_file(datafile)

if __name__ == "__main__":
    OverheadPlotter().launch()