aboutsummaryrefslogtreecommitdiffstats
path: root/schedcat/util/linprog.py
blob: 428028e790061ffb751b9a73814dd9dbbea379fd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from StringIO import StringIO
from collections import defaultdict


try:
    import cplex
    from itertools import izip
    from tempfile import NamedTemporaryFile as TmpFile

    cplex_available = True
except ImportError:
    cplex_available = False

# Constraint format: tuple of ( vector, value),
# where vector is a list of (coefficient, variable_name) pairs.

def write_cplex_terms(file, vector):
    for (c, v) in vector:
        if c < 0:
            file.write("- %s %s " %  (-c, v))
        else:
            file.write("+ %s %s " %  (c, v))

def write_cplex_sum(file, sum, per_line=None):
    if len(sum) == 0:
        file.write("0")
        return
    file.write("%s %s " %  sum[0])
    if per_line is None:
        write_cplex_terms(file, sum[1:])
    else:
        write_cplex_terms(file, sum[1:per_line])
        for i in xrange(per_line, len(sum), per_line):
            file.write('\n  ')
            write_cplex_terms(file, sum[i:i+per_line])

def filter_vars(removed, sum):
    return [(c, v) for (c, v) in sum if not v in removed]

def apply_prefix(vector, prefix):
    "Prepend prefix to each variable name in vector."
    return [(coeff, prefix + '_' + var) for (coeff, var) in vector]


class Solution(defaultdict):
    def __init__(self):
        super(Solution, self).__init__(int)

    def evaluate(self, vector):
        value = 0
        for (coeff, variable) in vector:
            if variable in self:
                value += coeff * self[variable]
        return value

    def __call__(self, vector):
        return self.evaluate(vector)


class LinearProgram(object):

    def __init__(self):
        self.equalities = []
        self.inequalities = []
        self.objective_function = None
        self.goal = 'Maximize'
        self.name = 'OPT'

    ## Data model

    def add_inequality(self, vector, upper_bound):
        self.inequalities.append((vector, upper_bound))

    def add_equality(self, vector, value):
        self.equalities.append((vector, value))

    def set_objective(self, objective_function):
        self.objective_function = objective_function

    def apply_variable_prefix(self, prefix):
        self.inequalities = [(apply_prefix(vector, prefix), upper_bound)
                             for (vector, upper_bound) in self.inequalities]
        self.equalities = [(apply_prefix(vector, prefix), bound)
                             for (vector, bound) in self.equalities]
        self.objective_function = apply_prefix(self.objective_function, prefix)

    def merge(self, other_LP):
        assert(other_LP.goal == self.goal)
        for ineq in other_LP.inequalities:
            self.inequalities.append(ineq)
        for eq in other_LP.equalities:
            self.equalities.append(eq)
        if self.objective_function == None:
            self.objective_function = []
        for term in other_LP.objective_function:
            self.objective_function.append(term)

    ## Convenience constraint DSL

    def equality(self, *args, **kargs):
        """Specify equality constraint as:

            equality(coeff1, var1, coeff2, var2, ..., equal_to=value)
        """
        assert len(args) % 2 == 0 # num coefficients == num variables?
        assert len(kargs) == 1 and 'equal_to' in kargs # constraint?

        vector = zip(args[0::2], args[1::2])
        self.add_equality(vector, kargs['equal_to'])

    def inequality(self, *args, **kargs):
        """Specify inequality constraint as:

            inequality(coeff1, var1, coeff2, var2, ..., at_most=value)
        """
        assert len(args) % 2 == 0 # num coefficients == num variables?
        assert len(kargs) == 1 and 'at_most' in kargs # constraint?

        vector = zip(args[0::2], args[1::2])
        self.add_inequality(vector, kargs['at_most'])

    def objective(self, *args):
        """Specify objective function as:

            objective(coeff1, var1, coeff2, var2, ...)
        """
        assert len(args) % 2 == 0 # num coefficients == num variables?

        vector = zip(args[0::2], args[1::2])
        self.set_objective(vector)

    ## Helper for model conversion

    def write_cplex_lp_format(self, file):
        file.write('%s\n' % self.goal)
        write_cplex_sum(file, self.objective_function, per_line=7)
        file.write('\nSubject To\n')
        for vector, value in self.equalities:
            write_cplex_sum(file, vector, per_line=7)
            file.write(' = %f\n' % value)
        for vector, value in self.inequalities:
            write_cplex_sum(file, vector, per_line=7)
            file.write(' <= %f\n' % value)
        file.write('End\n')
        file.flush()


    def kill_non_positive_vars(self):
        """Removes all variables that are forced to <= 0.
        Assumes that all coefficients are positive.
        """
        # find pointless variables
        killed = set()
        for vector, value in self.equalities:
            if value <= 0:
                for coeff, var in vector:
                    killed.add(var)
        for vector, value in self.inequalities:
            if value <= 0:
                for coeff, var in vector:
                    killed.add(var)
        # remove pointless variables
        self.objective_function  = filter_vars(killed, self.objective_function)
        if 'local_objective' in self.__dict__:
            self.local_objective  = filter_vars(killed, self.local_objective)
        self.equalities = [(filter_vars(killed, vect), bound) for
                           (vect, bound) in self.equalities if bound > 0]
        self.equalities = [(vect, bound) for (vect, bound) in self.equalities if vect]
        self.inequalities = [(filter_vars(killed, vect), bound) for
                             (vect, bound) in self.inequalities if bound > 0]
        self.inequalities = [(vect, bound) for (vect, bound) in self.inequalities if vect]

    def __str__(self):
        f = StringIO()
        self.write_cplex_lp_format(f)
        return f.getvalue()

    ## Conditional solver integration.

    if cplex_available:

        def get_cplex_model(self, model=None):
            if model is None:
                model = cplex.Cplex()

            # load problem via file to avoid API overheads
            tmp = TmpFile()
            self.write_cplex_lp_format(tmp)
            model.read(tmp.name)
            model.set_results_stream(None)
            del tmp
            return model

        def solve_with_cplex(self):
            solution = Solution()

            # If the objective is empty (e.g., after killing
            # all zero-constrained variables), then we automatically have
            # a trivial solution.
            if len(self.objective_function) == 0:
                return solution

            # Let CPLEX do the job.
            model = self.get_cplex_model()
            model.solve()

            # Extract the variables that we care about.
            variables = [var for (coeff, var) in self.objective_function]
            values = model.solution.get_values(variables)
            for (var, val) in izip(variables, values):
                solution[var] = val

            return solution

    def solve(self):
        if cplex_available:
            return self.solve_with_cplex()
        # Add additional solvers here...
        else:
            assert False # No solver available!

def example():
    #  simple example of the convenience API
    x  = LinearProgram()
    x.objective(-3, 'x2', 99, 'x1')
    x.inequality(10, 'x1', at_most=100)
    x.inequality(-9, 'x1', 10, 'x2', at_most=99)
    x.equality(10, 'x2', equal_to=0)
    print x

    x.inequality(0, 'x3', at_most=1)
    x.equality(0, 'x10', equal_to=0)

if __name__ == '__main__':
    example()