1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
#include <algorithm> // for min
#include "tasks.h"
#include "schedulability.h"
#include "edf/bcl.h"
using namespace std;
unsigned long BCLGedf::max_jobs_contained(const Task &t_i, const Task &t_k)
{
if (t_i.get_deadline() > t_k.get_deadline())
return 0;
else
return 1 + (t_k.get_deadline() - t_i.get_deadline()) / t_i.get_period();
}
void BCLGedf::beta(const Task &t_i, const Task &t_k, fractional_t &beta_i)
{
unsigned long n = max_jobs_contained(t_i, t_k);
integral_t c_i, tmp;
c_i = t_i.get_wcet();
tmp = t_i.get_period();
tmp *= n;
if (tmp < t_k.get_deadline())
// no risk of overflow
tmp = t_k.get_deadline() - n * t_i.get_period();
else
// test says zero is lower limit
tmp = 0;
beta_i = n * c_i;
beta_i += min(c_i, tmp);
beta_i /= t_k.get_deadline();
}
bool BCLGedf::is_task_schedulable(unsigned int k, const TaskSet &ts)
{
fractional_t beta_i, beta_sum = 0;
fractional_t lambda_term;
bool small_beta_exists = false;
ts[k].get_density(lambda_term);
lambda_term *= -1;
lambda_term += 1;
for (unsigned int i = 0; i < ts.get_task_count(); i++)
{
if (i != k) {
beta(ts[i], ts[k], beta_i);
beta_sum += min(beta_i, lambda_term);
small_beta_exists = small_beta_exists ||
(0 < beta_i && beta_i <= lambda_term);
}
}
lambda_term *= m;
return beta_sum < lambda_term ||
(small_beta_exists && beta_sum == lambda_term);
}
bool BCLGedf::is_schedulable(const TaskSet &ts,
bool check_preconditions)
{
if (check_preconditions)
{
if (!(ts.has_only_feasible_tasks() &&
ts.is_not_overutilized(m) &&
ts.has_only_constrained_deadlines()))
return false;
}
for (unsigned int k = 0; k < ts.get_task_count(); k++)
if (!is_task_schedulable(k, ts))
return false;
return true;
}
|