1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
#include <algorithm> // for min
#include "tasks.h"
#include "schedulability.h"
#include "edf/baker.h"
using namespace std;
void BakerGedf::beta(const Task &t_i, const Task &t_k,
const fractional_t &lambda_k,
fractional_t &beta_i)
{
fractional_t u_i;
// XXX: possible improvement would be to pre-compute u_i
// instead of incurring quadratic u_i computations.
t_i.get_utilization(u_i);
beta_i = t_i.get_period() - t_i.get_deadline();
beta_i /= t_k.get_deadline();
beta_i += 1;
beta_i *= u_i;
if (lambda_k < u_i)
{
fractional_t tmp = t_i.get_wcet();
tmp -= lambda_k * t_i.get_period();
tmp /= t_k.get_deadline();
beta_i += tmp;
}
}
bool BakerGedf::is_task_schedulable(unsigned int k, const TaskSet &ts)
{
fractional_t lambda, bound, beta_i, beta_sum = 0;
fractional_t one = 1;
ts[k].get_density(lambda);
bound = m * (1 - lambda) + lambda;
for (unsigned int i = 0; i < ts.get_task_count() && beta_sum <= bound; i++)
{
beta(ts[i], ts[k], lambda, beta_i);
beta_sum += min(beta_i, one);
}
return beta_sum <= bound;
}
bool BakerGedf::is_schedulable(const TaskSet &ts,
bool check_preconditions)
{
if (check_preconditions)
{
if (!(ts.has_only_feasible_tasks() &&
ts.is_not_overutilized(m)))
return false;
}
for (unsigned int k = 0; k < ts.get_task_count(); k++)
if (!is_task_schedulable(k, ts))
return false;
return true;
}
|