1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
#include "sharedres.h"
#include "blocking.h"
#include "rw-blocking.h"
#include "stl-helper.h"
#include "stl-hashmap.h"
static Interference bound_blocking_all(
const TaskInfo* tsk,
const ContentionSet& all_reqs, // presumed sorted, for all clusters/tasks
const unsigned int max_remote_requests, // per cluster
const unsigned int max_local_requests, // local cluster
const unsigned int max_requests, // per task
unsigned int max_total) // stop after counting max_total
{
unsigned long interval = tsk->get_response();
hashmap<unsigned long, unsigned int> task_counter(512);
hashmap<unsigned long, unsigned int>::iterator tctr;
hashmap<unsigned int, unsigned int> cluster_counter(64);
hashmap<unsigned int, unsigned int>::iterator cctr;
Interference inter;
cluster_counter[tsk->get_cluster()] = max_local_requests;
foreach(all_reqs, it)
{
const RequestBound* req = *it;
const TaskInfo* t = req->get_task();
unsigned long key = (unsigned long) t;
unsigned int cluster = t->get_cluster();
if (!max_total)
// we are done
break;
if (t == tsk)
// doesn't block itself
continue;
// make sure we have seen this task
tctr = task_counter.find(key);
if (tctr == task_counter.end())
{
task_counter[key] = max_requests;
tctr = task_counter.find(key);
}
if (!tctr->second)
continue;
cctr = cluster_counter.find(cluster);
if (cctr == cluster_counter.end())
{
cluster_counter[cluster] = max_remote_requests;
cctr = cluster_counter.find(cluster);
}
if (!cctr->second)
continue;
unsigned int remaining;
remaining = std::min(tctr->second, cctr->second);
remaining = std::min(remaining, max_total);
unsigned int num = std::min(req->get_max_num_requests(interval), remaining);
inter.total_length += num * req->get_request_length();
inter.count += num;
cctr->second -= num;
tctr->second -= num;
max_total -= num;
}
return inter;
}
static Interference tf_reader_all(
const TaskInfo& tsk,
const Resources& all_reads,
const unsigned int num_writes,
const unsigned int num_wblock,
const unsigned int num_reads,
const unsigned int res_id,
const unsigned int procs_per_cluster)
{
Interference blocking;
unsigned int num_reqs = num_reads + num_writes;
unsigned int max_reader_phases = num_wblock + num_writes;
unsigned int task_limit = std::min(max_reader_phases, num_reqs);
return bound_blocking_all(
&tsk, all_reads[res_id],
num_reqs * procs_per_cluster,
num_reqs * (procs_per_cluster - 1),
task_limit,
max_reader_phases);
}
BlockingBounds* task_fair_rw_bounds(const ResourceSharingInfo& info,
const ResourceSharingInfo& info_mtx,
unsigned int procs_per_cluster,
int dedicated_irq)
{
// split everything by partition
Clusters clusters, clusters_mtx;
split_by_cluster(info, clusters);
split_by_cluster(info_mtx, clusters_mtx);
// split each partition by resource
ClusterResources resources, resources_mtx;
split_by_resource(clusters, resources);
split_by_resource(clusters_mtx, resources_mtx);
// split all by resource
Resources all_task_reqs, all_reads, __all_writes;
split_by_resource(info, all_task_reqs);
split_by_type(all_task_reqs, all_reads, __all_writes);
// sort each contention set by request length
sort_by_request_length(resources);
sort_by_request_length(resources_mtx);
sort_by_request_length(all_reads);
// split by type --- sorted order is maintained
ClusterResources __reads, writes;
split_by_type(resources, __reads, writes);
// We need for each task the maximum request span. We also need the
// maximum direct blocking from remote partitions for each request. We
// can determine both in one pass.
unsigned int i;
// direct blocking results
BlockingBounds* _results = new BlockingBounds(info);
BlockingBounds& results = *_results;
for (i = 0; i < info.get_tasks().size(); i++)
{
const TaskInfo& tsk = info.get_tasks()[i];
RWCounts rwcounts;
Interference bterm;
merge_rw_requests(tsk, rwcounts);
foreach(rwcounts, jt)
{
const RWCount& rw = *jt;
// skip placeholders
if (!rw.num_reads && !rw.num_writes)
continue;
// 1) treat it as a mutex as a baseline
Interference mtx, mtx_1;
mtx = np_fifo_per_resource(
tsk, resources_mtx, procs_per_cluster, rw.res_id,
rw.num_reads + rw.num_writes,
dedicated_irq);
if (rw.num_reads + rw.num_writes == 1)
mtx_1 = mtx;
else
mtx_1 = np_fifo_per_resource(
tsk, resources_mtx, procs_per_cluster,
rw.res_id, 1, dedicated_irq);
// The span includes our own request.
mtx_1.total_length += std::max(rw.wlength, rw.rlength);
mtx_1.count += 1;
// 2) apply real RW analysis
Interference wblocking, wblocking_1;
Interference rblocking, rblocking_r1, rblocking_w1;
wblocking = np_fifo_per_resource(
tsk, writes, procs_per_cluster, rw.res_id,
rw.num_reads + rw.num_writes,
dedicated_irq);
wblocking_1 = np_fifo_per_resource(
tsk, writes, procs_per_cluster, rw.res_id, 1,
dedicated_irq);
rblocking = tf_reader_all(
tsk, all_reads, rw.num_writes, wblocking.count,
rw.num_reads, rw.res_id, procs_per_cluster);
if (rw.num_writes)
{
// single write
rblocking_w1 = tf_reader_all(
tsk, all_reads, 1, wblocking.count,
0, rw.res_id, procs_per_cluster);
// The span includes our own request.
rblocking_w1.total_length += rw.wlength;
rblocking_w1.count += 1;
}
if (rw.num_reads)
{
// single read
rblocking_r1 = tf_reader_all(
tsk, all_reads, 0, wblocking.count,
1, rw.res_id, procs_per_cluster);
// The span includes our own request.
rblocking_r1.total_length += rw.rlength;
rblocking_r1.count += 1;
}
// combine
wblocking += rblocking;
wblocking_1 += std::max(rblocking_w1, rblocking_r1);
bterm += std::min(wblocking, mtx);
results.raise_request_span(i, std::min(wblocking_1, mtx_1));
}
results[i] = bterm;
}
// This is the initial delay due to priority donation.
charge_arrival_blocking(info, results);
return _results;
}
|