1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
/*
* Semaphore Sync Framework Integration
*
* Copyright (c) 2017-2018, NVIDIA Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/hrtimer.h>
#include <linux/module.h>
#include <nvgpu/lock.h>
#include <nvgpu/kmem.h>
#include <nvgpu/semaphore.h>
#include <nvgpu/bug.h>
#include <nvgpu/kref.h>
#include <nvgpu/channel.h>
#include "../linux/channel.h"
#include "../drivers/staging/android/sync.h"
#include "sync_sema_android.h"
static const struct sync_timeline_ops gk20a_sync_timeline_ops;
struct gk20a_sync_timeline {
struct sync_timeline obj;
u32 max;
u32 min;
};
/**
* The sync framework dups pts when merging fences. We share a single
* refcounted gk20a_sync_pt for each duped pt.
*/
struct gk20a_sync_pt {
struct gk20a *g;
struct nvgpu_ref refcount;
u32 thresh;
struct nvgpu_semaphore *sema;
struct gk20a_sync_timeline *obj;
/*
* Use a spin lock here since it will have better performance
* than a mutex - there should be very little contention on this
* lock.
*/
struct nvgpu_spinlock lock;
};
struct gk20a_sync_pt_inst {
struct sync_pt pt;
struct gk20a_sync_pt *shared;
};
/**
* Compares sync pt values a and b, both of which will trigger either before
* or after ref (i.e. a and b trigger before ref, or a and b trigger after
* ref). Supplying ref allows us to handle wrapping correctly.
*
* Returns -1 if a < b (a triggers before b)
* 0 if a = b (a and b trigger at the same time)
* 1 if a > b (b triggers before a)
*/
static int __gk20a_sync_pt_compare_ref(
u32 ref,
u32 a,
u32 b)
{
/*
* We normalize both a and b by subtracting ref from them.
* Denote the normalized values by a_n and b_n. Note that because
* of wrapping, a_n and/or b_n may be negative.
*
* The normalized values a_n and b_n satisfy:
* - a positive value triggers before a negative value
* - a smaller positive value triggers before a greater positive value
* - a smaller negative value (greater in absolute value) triggers
* before a greater negative value (smaller in absolute value).
*
* Thus we can just stick to unsigned arithmetic and compare
* (u32)a_n to (u32)b_n.
*
* Just to reiterate the possible cases:
*
* 1A) ...ref..a....b....
* 1B) ...ref..b....a....
* 2A) ...b....ref..a.... b_n < 0
* 2B) ...a....ref..b.... a_n > 0
* 3A) ...a....b....ref.. a_n < 0, b_n < 0
* 3A) ...b....a....ref.. a_n < 0, b_n < 0
*/
u32 a_n = a - ref;
u32 b_n = b - ref;
if (a_n < b_n)
return -1;
else if (a_n > b_n)
return 1;
else
return 0;
}
static struct gk20a_sync_pt *to_gk20a_sync_pt(struct sync_pt *pt)
{
struct gk20a_sync_pt_inst *pti =
container_of(pt, struct gk20a_sync_pt_inst, pt);
return pti->shared;
}
static struct gk20a_sync_timeline *to_gk20a_timeline(struct sync_timeline *obj)
{
if (WARN_ON(obj->ops != &gk20a_sync_timeline_ops))
return NULL;
return (struct gk20a_sync_timeline *)obj;
}
static void gk20a_sync_pt_free_shared(struct nvgpu_ref *ref)
{
struct gk20a_sync_pt *pt =
container_of(ref, struct gk20a_sync_pt, refcount);
struct gk20a *g = pt->g;
if (pt->sema)
nvgpu_semaphore_put(pt->sema);
nvgpu_kfree(g, pt);
}
static struct gk20a_sync_pt *gk20a_sync_pt_create_shared(
struct gk20a *g,
struct gk20a_sync_timeline *obj,
struct nvgpu_semaphore *sema)
{
struct gk20a_sync_pt *shared;
shared = nvgpu_kzalloc(g, sizeof(*shared));
if (!shared)
return NULL;
nvgpu_ref_init(&shared->refcount);
shared->g = g;
shared->obj = obj;
shared->sema = sema;
shared->thresh = ++obj->max; /* sync framework has a lock */
nvgpu_spinlock_init(&shared->lock);
nvgpu_semaphore_get(sema);
return shared;
}
static struct sync_pt *gk20a_sync_pt_create_inst(
struct gk20a *g,
struct gk20a_sync_timeline *obj,
struct nvgpu_semaphore *sema)
{
struct gk20a_sync_pt_inst *pti;
pti = (struct gk20a_sync_pt_inst *)
sync_pt_create(&obj->obj, sizeof(*pti));
if (!pti)
return NULL;
pti->shared = gk20a_sync_pt_create_shared(g, obj, sema);
if (!pti->shared) {
sync_pt_free(&pti->pt);
return NULL;
}
return &pti->pt;
}
static void gk20a_sync_pt_free_inst(struct sync_pt *sync_pt)
{
struct gk20a_sync_pt *pt = to_gk20a_sync_pt(sync_pt);
if (pt)
nvgpu_ref_put(&pt->refcount, gk20a_sync_pt_free_shared);
}
static struct sync_pt *gk20a_sync_pt_dup_inst(struct sync_pt *sync_pt)
{
struct gk20a_sync_pt_inst *pti;
struct gk20a_sync_pt *pt = to_gk20a_sync_pt(sync_pt);
pti = (struct gk20a_sync_pt_inst *)
sync_pt_create(&pt->obj->obj, sizeof(*pti));
if (!pti)
return NULL;
pti->shared = pt;
nvgpu_ref_get(&pt->refcount);
return &pti->pt;
}
/*
* This function must be able to run on the same sync_pt concurrently. This
* requires a lock to protect access to the sync_pt's internal data structures
* which are modified as a side effect of calling this function.
*/
static int gk20a_sync_pt_has_signaled(struct sync_pt *sync_pt)
{
struct gk20a_sync_pt *pt = to_gk20a_sync_pt(sync_pt);
struct gk20a_sync_timeline *obj = pt->obj;
bool signaled = true;
nvgpu_spinlock_acquire(&pt->lock);
if (!pt->sema)
goto done;
/* Acquired == not realeased yet == active == not signaled. */
signaled = !nvgpu_semaphore_is_acquired(pt->sema);
if (signaled) {
/* Update min if necessary. */
if (__gk20a_sync_pt_compare_ref(obj->max, pt->thresh,
obj->min) == 1)
obj->min = pt->thresh;
/* Release the semaphore to the pool. */
nvgpu_semaphore_put(pt->sema);
pt->sema = NULL;
}
done:
nvgpu_spinlock_release(&pt->lock);
return signaled;
}
static int gk20a_sync_pt_compare(struct sync_pt *a, struct sync_pt *b)
{
bool a_expired;
bool b_expired;
struct gk20a_sync_pt *pt_a = to_gk20a_sync_pt(a);
struct gk20a_sync_pt *pt_b = to_gk20a_sync_pt(b);
if (WARN_ON(pt_a->obj != pt_b->obj))
return 0;
/* Early out */
if (a == b)
return 0;
a_expired = gk20a_sync_pt_has_signaled(a);
b_expired = gk20a_sync_pt_has_signaled(b);
if (a_expired && !b_expired) {
/* Easy, a was earlier */
return -1;
} else if (!a_expired && b_expired) {
/* Easy, b was earlier */
return 1;
}
/* Both a and b are expired (trigger before min) or not
* expired (trigger after min), so we can use min
* as a reference value for __gk20a_sync_pt_compare_ref.
*/
return __gk20a_sync_pt_compare_ref(pt_a->obj->min,
pt_a->thresh, pt_b->thresh);
}
static u32 gk20a_sync_timeline_current(struct gk20a_sync_timeline *obj)
{
return obj->min;
}
static void gk20a_sync_timeline_value_str(struct sync_timeline *timeline,
char *str, int size)
{
struct gk20a_sync_timeline *obj =
(struct gk20a_sync_timeline *)timeline;
snprintf(str, size, "%d", gk20a_sync_timeline_current(obj));
}
static void gk20a_sync_pt_value_str_for_sema(struct gk20a_sync_pt *pt,
char *str, int size)
{
struct nvgpu_semaphore *s = pt->sema;
snprintf(str, size, "S: pool=%llu [v=%u,r_v=%u]",
s->location.pool->page_idx,
nvgpu_semaphore_get_value(s),
nvgpu_semaphore_read(s));
}
static void gk20a_sync_pt_value_str(struct sync_pt *sync_pt, char *str,
int size)
{
struct gk20a_sync_pt *pt = to_gk20a_sync_pt(sync_pt);
if (pt->sema) {
gk20a_sync_pt_value_str_for_sema(pt, str, size);
return;
}
snprintf(str, size, "%d", pt->thresh);
}
static const struct sync_timeline_ops gk20a_sync_timeline_ops = {
.driver_name = "nvgpu_semaphore",
.dup = gk20a_sync_pt_dup_inst,
.has_signaled = gk20a_sync_pt_has_signaled,
.compare = gk20a_sync_pt_compare,
.free_pt = gk20a_sync_pt_free_inst,
.timeline_value_str = gk20a_sync_timeline_value_str,
.pt_value_str = gk20a_sync_pt_value_str,
};
/* Public API */
struct sync_fence *gk20a_sync_fence_fdget(int fd)
{
struct sync_fence *fence = sync_fence_fdget(fd);
int i;
if (!fence)
return NULL;
for (i = 0; i < fence->num_fences; i++) {
struct sync_pt *spt = sync_pt_from_fence(fence->cbs[i].sync_pt);
struct sync_timeline *t;
if (spt == NULL) {
sync_fence_put(fence);
return NULL;
}
t = sync_pt_parent(spt);
if (t->ops != &gk20a_sync_timeline_ops) {
sync_fence_put(fence);
return NULL;
}
}
return fence;
}
struct nvgpu_semaphore *gk20a_sync_pt_sema(struct sync_pt *spt)
{
struct gk20a_sync_pt *pt = to_gk20a_sync_pt(spt);
struct nvgpu_semaphore *sema;
nvgpu_spinlock_acquire(&pt->lock);
sema = pt->sema;
if (sema)
nvgpu_semaphore_get(sema);
nvgpu_spinlock_release(&pt->lock);
return sema;
}
void gk20a_sync_timeline_signal(struct sync_timeline *timeline)
{
sync_timeline_signal(timeline, 0);
}
void gk20a_sync_timeline_destroy(struct sync_timeline *timeline)
{
sync_timeline_destroy(timeline);
}
struct sync_timeline *gk20a_sync_timeline_create(
const char *name)
{
struct gk20a_sync_timeline *obj;
obj = (struct gk20a_sync_timeline *)
sync_timeline_create(&gk20a_sync_timeline_ops,
sizeof(struct gk20a_sync_timeline),
name);
if (!obj)
return NULL;
obj->max = 0;
obj->min = 0;
return &obj->obj;
}
struct sync_fence *gk20a_sync_fence_create(
struct channel_gk20a *c,
struct nvgpu_semaphore *sema,
const char *fmt, ...)
{
char name[30];
va_list args;
struct sync_pt *pt;
struct sync_fence *fence;
struct gk20a *g = c->g;
struct nvgpu_channel_linux *os_channel_priv = c->os_priv;
struct nvgpu_os_fence_framework *fence_framework = NULL;
struct gk20a_sync_timeline *timeline = NULL;
fence_framework = &os_channel_priv->fence_framework;
timeline = to_gk20a_timeline(fence_framework->timeline);
pt = gk20a_sync_pt_create_inst(g, timeline, sema);
if (pt == NULL)
return NULL;
va_start(args, fmt);
vsnprintf(name, sizeof(name), fmt, args);
va_end(args);
fence = sync_fence_create(name, pt);
if (fence == NULL) {
sync_pt_free(pt);
return NULL;
}
return fence;
}
|