1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
/*
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <soc/tegra/chip-id.h>
#include <soc/tegra/fuse.h>
#include <soc/tegra/tegra_bpmp.h>
#ifdef CONFIG_TEGRA_HV_MANAGER
#include <soc/tegra/virt/syscalls.h>
#endif
#include <nvgpu/soc.h>
#include "os_linux.h"
#include "platform_gk20a.h"
bool nvgpu_platform_is_silicon(struct gk20a *g)
{
return tegra_platform_is_silicon();
}
bool nvgpu_platform_is_simulation(struct gk20a *g)
{
return tegra_platform_is_vdk();
}
bool nvgpu_platform_is_fpga(struct gk20a *g)
{
return tegra_platform_is_fpga();
}
bool nvgpu_is_hypervisor_mode(struct gk20a *g)
{
return is_tegra_hypervisor_mode();
}
bool nvgpu_is_bpmp_running(struct gk20a *g)
{
return tegra_bpmp_running();
}
bool nvgpu_is_soc_t194_a01(struct gk20a *g)
{
return ((tegra_get_chip_id() == TEGRA194 &&
tegra_chip_get_revision() == TEGRA194_REVISION_A01) ?
true : false);
}
#ifdef CONFIG_TEGRA_HV_MANAGER
/* When nvlink is enabled on dGPU, we need to use physical memory addresses.
* There is no SMMU translation. However, the device initially enumerates as a
* PCIe device. As such, when allocation memory for this PCIe device, the DMA
* framework ends up allocating memory using SMMU (if enabled in device tree).
* As a result, when we switch to nvlink, we need to use underlying physical
* addresses, even if memory mappings exist in SMMU.
* In addition, when stage-2 SMMU translation is enabled (for instance when HV
* is enabled), the addresses we get from dma_alloc are IPAs. We need to
* convert them to PA.
*/
static u64 nvgpu_tegra_hv_ipa_pa(struct gk20a *g, u64 ipa)
{
struct device *dev = dev_from_gk20a(g);
struct gk20a_platform *platform = gk20a_get_platform(dev);
struct hyp_ipa_pa_info info;
int err;
u64 pa = 0ULL;
err = hyp_read_ipa_pa_info(&info, platform->vmid, ipa);
if (err < 0) {
/* WAR for bug 2096877
* hyp_read_ipa_pa_info only looks up RAM mappings.
* assume one to one IPA:PA mapping for syncpt aperture
*/
u64 start = g->syncpt_unit_base;
u64 end = g->syncpt_unit_base + g->syncpt_unit_size;
if ((ipa >= start) && (ipa < end)) {
pa = ipa;
nvgpu_log(g, gpu_dbg_map_v,
"ipa=%llx vmid=%d -> pa=%llx (SYNCPT)\n",
ipa, platform->vmid, pa);
} else {
nvgpu_err(g, "ipa=%llx translation failed vmid=%u err=%d",
ipa, platform->vmid, err);
}
} else {
pa = info.base + info.offset;
nvgpu_log(g, gpu_dbg_map_v,
"ipa=%llx vmid=%d -> pa=%llx "
"base=%llx offset=%llx size=%llx\n",
ipa, platform->vmid, pa, info.base,
info.offset, info.size);
}
return pa;
}
#endif
int nvgpu_init_soc_vars(struct gk20a *g)
{
#ifdef CONFIG_TEGRA_HV_MANAGER
struct device *dev = dev_from_gk20a(g);
struct gk20a_platform *platform = gk20a_get_platform(dev);
int err;
if (nvgpu_is_hypervisor_mode(g)) {
err = hyp_read_gid(&platform->vmid);
if (err) {
nvgpu_err(g, "failed to read vmid");
return err;
}
platform->phys_addr = nvgpu_tegra_hv_ipa_pa;
}
#endif
return 0;
}
|