1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
|
/*
* GK20A Graphics Copy Engine (gr host)
*
* Copyright (c) 2011-2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/kmem.h>
#include <nvgpu/dma.h>
#include <nvgpu/os_sched.h>
#include <nvgpu/log.h>
#include <nvgpu/enabled.h>
#include <nvgpu/io.h>
#include <nvgpu/utils.h>
#include <nvgpu/channel.h>
#include <nvgpu/power_features/cg.h>
#include "gk20a.h"
#include "gk20a/fence_gk20a.h"
#include <nvgpu/hw/gk20a/hw_ce2_gk20a.h>
#include <nvgpu/hw/gk20a/hw_pbdma_gk20a.h>
#include <nvgpu/hw/gk20a/hw_ccsr_gk20a.h>
#include <nvgpu/hw/gk20a/hw_ram_gk20a.h>
#include <nvgpu/hw/gk20a/hw_top_gk20a.h>
#include <nvgpu/hw/gk20a/hw_gr_gk20a.h>
#include <nvgpu/barrier.h>
/*
* Copy engine defines line size in pixels
*/
#define MAX_CE_SHIFT 31 /* 4Gpixels -1 */
#define MAX_CE_MASK ((u32) (~(~0U << MAX_CE_SHIFT)))
#define MAX_CE_ALIGN(a) (a & MAX_CE_MASK)
static u32 ce2_nonblockpipe_isr(struct gk20a *g, u32 fifo_intr)
{
nvgpu_log(g, gpu_dbg_intr, "ce2 non-blocking pipe interrupt\n");
return ce2_intr_status_nonblockpipe_pending_f();
}
static u32 ce2_blockpipe_isr(struct gk20a *g, u32 fifo_intr)
{
nvgpu_log(g, gpu_dbg_intr, "ce2 blocking pipe interrupt\n");
return ce2_intr_status_blockpipe_pending_f();
}
static u32 ce2_launcherr_isr(struct gk20a *g, u32 fifo_intr)
{
nvgpu_log(g, gpu_dbg_intr, "ce2 launch error interrupt\n");
return ce2_intr_status_launcherr_pending_f();
}
void gk20a_ce2_isr(struct gk20a *g, u32 inst_id, u32 pri_base)
{
u32 ce2_intr = gk20a_readl(g, ce2_intr_status_r());
u32 clear_intr = 0;
nvgpu_log(g, gpu_dbg_intr, "ce2 isr %08x\n", ce2_intr);
/* clear blocking interrupts: they exibit broken behavior */
if (ce2_intr & ce2_intr_status_blockpipe_pending_f()) {
clear_intr |= ce2_blockpipe_isr(g, ce2_intr);
}
if (ce2_intr & ce2_intr_status_launcherr_pending_f()) {
clear_intr |= ce2_launcherr_isr(g, ce2_intr);
}
gk20a_writel(g, ce2_intr_status_r(), clear_intr);
return;
}
u32 gk20a_ce2_nonstall_isr(struct gk20a *g, u32 inst_id, u32 pri_base)
{
u32 ops = 0;
u32 ce2_intr = gk20a_readl(g, ce2_intr_status_r());
nvgpu_log(g, gpu_dbg_intr, "ce2 nonstall isr %08x\n", ce2_intr);
if (ce2_intr & ce2_intr_status_nonblockpipe_pending_f()) {
gk20a_writel(g, ce2_intr_status_r(),
ce2_nonblockpipe_isr(g, ce2_intr));
ops |= (GK20A_NONSTALL_OPS_WAKEUP_SEMAPHORE |
GK20A_NONSTALL_OPS_POST_EVENTS);
}
return ops;
}
/* static CE app api */
static void gk20a_ce_put_fences(struct gk20a_gpu_ctx *ce_ctx)
{
u32 i;
for (i = 0; i < NVGPU_CE_MAX_INFLIGHT_JOBS; i++) {
struct gk20a_fence **fence = &ce_ctx->postfences[i];
if (*fence) {
gk20a_fence_put(*fence);
}
*fence = NULL;
}
}
/* assume this api should need to call under nvgpu_mutex_acquire(&ce_app->app_mutex) */
static void gk20a_ce_delete_gpu_context(struct gk20a_gpu_ctx *ce_ctx)
{
struct nvgpu_list_node *list = &ce_ctx->list;
ce_ctx->gpu_ctx_state = NVGPU_CE_GPU_CTX_DELETED;
nvgpu_mutex_acquire(&ce_ctx->gpu_ctx_mutex);
if (nvgpu_mem_is_valid(&ce_ctx->cmd_buf_mem)) {
gk20a_ce_put_fences(ce_ctx);
nvgpu_dma_unmap_free(ce_ctx->vm, &ce_ctx->cmd_buf_mem);
}
/*
* free the channel
* gk20a_channel_close() will also unbind the channel from TSG
*/
gk20a_channel_close(ce_ctx->ch);
nvgpu_ref_put(&ce_ctx->tsg->refcount, gk20a_tsg_release);
/* housekeeping on app */
if (list->prev && list->next) {
nvgpu_list_del(list);
}
nvgpu_mutex_release(&ce_ctx->gpu_ctx_mutex);
nvgpu_mutex_destroy(&ce_ctx->gpu_ctx_mutex);
nvgpu_kfree(ce_ctx->g, ce_ctx);
}
static inline unsigned int gk20a_ce_get_method_size(int request_operation,
u64 size)
{
/* failure size */
unsigned int methodsize = UINT_MAX;
unsigned int iterations = 0;
u32 shift;
u64 chunk = size;
u32 height, width;
while (chunk) {
iterations++;
shift = MAX_CE_ALIGN(chunk) ? __ffs(MAX_CE_ALIGN(chunk)) :
MAX_CE_SHIFT;
width = chunk >> shift;
height = 1 << shift;
width = MAX_CE_ALIGN(width);
chunk -= (u64) height * width;
}
if (request_operation & NVGPU_CE_PHYS_MODE_TRANSFER) {
methodsize = (2 + (16 * iterations)) * sizeof(u32);
} else if (request_operation & NVGPU_CE_MEMSET) {
methodsize = (2 + (15 * iterations)) * sizeof(u32);
}
return methodsize;
}
int gk20a_ce_prepare_submit(u64 src_buf,
u64 dst_buf,
u64 size,
u32 *cmd_buf_cpu_va,
u32 max_cmd_buf_size,
unsigned int payload,
int launch_flags,
int request_operation,
u32 dma_copy_class)
{
u32 launch = 0;
u32 methodSize = 0;
u64 offset = 0;
u64 chunk_size = 0;
u64 chunk = size;
/* failure case handling */
if ((gk20a_ce_get_method_size(request_operation, size) >
max_cmd_buf_size) || (!size) ||
(request_operation > NVGPU_CE_MEMSET)) {
return 0;
}
/* set the channel object */
cmd_buf_cpu_va[methodSize++] = 0x20018000;
cmd_buf_cpu_va[methodSize++] = dma_copy_class;
/*
* The purpose clear the memory in 2D rectangles. We get the ffs to
* determine the number of lines to copy. The only constraint is that
* maximum number of pixels per line is 4Gpix - 1, which is awkward for
* calculation, so we settle to 2Gpix per line to make calculatione
* more agreable
*/
/* The copy engine in 2D mode can have (2^32 - 1) x (2^32 - 1) pixels in
* a single submit, we are going to try to clear a range of up to 2Gpix
* multiple lines. Because we want to copy byte aligned we will be
* setting 1 byte pixels */
/*
* per iteration
* <------------------------- 40 bits ------------------------------>
* 1 <------ ffs ------->
* <-----------up to 30 bits----------->
*/
while (chunk) {
u32 width, height, shift;
/*
* We will be aligning to bytes, making the maximum number of
* pix per line 2Gb
*/
shift = MAX_CE_ALIGN(chunk) ? __ffs(MAX_CE_ALIGN(chunk)) :
MAX_CE_SHIFT;
height = chunk >> shift;
width = 1 << shift;
height = MAX_CE_ALIGN(height);
chunk_size = (u64) height * width;
/* reset launch flag */
launch = 0;
if (request_operation & NVGPU_CE_PHYS_MODE_TRANSFER) {
/* setup the source */
cmd_buf_cpu_va[methodSize++] = 0x20028100;
cmd_buf_cpu_va[methodSize++] = (u64_hi32(src_buf +
offset) & NVGPU_CE_UPPER_ADDRESS_OFFSET_MASK);
cmd_buf_cpu_va[methodSize++] = (u64_lo32(src_buf +
offset) & NVGPU_CE_LOWER_ADDRESS_OFFSET_MASK);
cmd_buf_cpu_va[methodSize++] = 0x20018098;
if (launch_flags & NVGPU_CE_SRC_LOCATION_LOCAL_FB) {
cmd_buf_cpu_va[methodSize++] = 0x00000000;
} else if (launch_flags &
NVGPU_CE_SRC_LOCATION_NONCOHERENT_SYSMEM) {
cmd_buf_cpu_va[methodSize++] = 0x00000002;
} else {
cmd_buf_cpu_va[methodSize++] = 0x00000001;
}
launch |= 0x00001000;
} else if (request_operation & NVGPU_CE_MEMSET) {
/* Remap from component A on 1 byte wide pixels */
cmd_buf_cpu_va[methodSize++] = 0x200181c2;
cmd_buf_cpu_va[methodSize++] = 0x00000004;
cmd_buf_cpu_va[methodSize++] = 0x200181c0;
cmd_buf_cpu_va[methodSize++] = payload;
launch |= 0x00000400;
} else {
/* Illegal size */
return 0;
}
/* setup the destination/output */
cmd_buf_cpu_va[methodSize++] = 0x20068102;
cmd_buf_cpu_va[methodSize++] = (u64_hi32(dst_buf +
offset) & NVGPU_CE_UPPER_ADDRESS_OFFSET_MASK);
cmd_buf_cpu_va[methodSize++] = (u64_lo32(dst_buf +
offset) & NVGPU_CE_LOWER_ADDRESS_OFFSET_MASK);
/* Pitch in/out */
cmd_buf_cpu_va[methodSize++] = width;
cmd_buf_cpu_va[methodSize++] = width;
/* width and line count */
cmd_buf_cpu_va[methodSize++] = width;
cmd_buf_cpu_va[methodSize++] = height;
cmd_buf_cpu_va[methodSize++] = 0x20018099;
if (launch_flags & NVGPU_CE_DST_LOCATION_LOCAL_FB) {
cmd_buf_cpu_va[methodSize++] = 0x00000000;
} else if (launch_flags &
NVGPU_CE_DST_LOCATION_NONCOHERENT_SYSMEM) {
cmd_buf_cpu_va[methodSize++] = 0x00000002;
} else {
cmd_buf_cpu_va[methodSize++] = 0x00000001;
}
launch |= 0x00002005;
if (launch_flags & NVGPU_CE_SRC_MEMORY_LAYOUT_BLOCKLINEAR) {
launch |= 0x00000000;
} else {
launch |= 0x00000080;
}
if (launch_flags & NVGPU_CE_DST_MEMORY_LAYOUT_BLOCKLINEAR) {
launch |= 0x00000000;
} else {
launch |= 0x00000100;
}
cmd_buf_cpu_va[methodSize++] = 0x200180c0;
cmd_buf_cpu_va[methodSize++] = launch;
offset += chunk_size;
chunk -= chunk_size;
}
return methodSize;
}
/* global CE app related apis */
int gk20a_init_ce_support(struct gk20a *g)
{
struct gk20a_ce_app *ce_app = &g->ce_app;
int err;
u32 ce_reset_mask;
ce_reset_mask = gk20a_fifo_get_all_ce_engine_reset_mask(g);
g->ops.mc.reset(g, ce_reset_mask);
nvgpu_cg_slcg_ce2_load_enable(g);
nvgpu_cg_blcg_ce_load_enable(g);
if (ce_app->initialised) {
/* assume this happen during poweron/poweroff GPU sequence */
ce_app->app_state = NVGPU_CE_ACTIVE;
return 0;
}
nvgpu_log(g, gpu_dbg_fn, "ce: init");
err = nvgpu_mutex_init(&ce_app->app_mutex);
if (err) {
return err;
}
nvgpu_mutex_acquire(&ce_app->app_mutex);
nvgpu_init_list_node(&ce_app->allocated_contexts);
ce_app->ctx_count = 0;
ce_app->next_ctx_id = 0;
ce_app->initialised = true;
ce_app->app_state = NVGPU_CE_ACTIVE;
nvgpu_mutex_release(&ce_app->app_mutex);
if (g->ops.ce2.init_prod_values != NULL) {
g->ops.ce2.init_prod_values(g);
}
nvgpu_log(g, gpu_dbg_cde_ctx, "ce: init finished");
return 0;
}
void gk20a_ce_destroy(struct gk20a *g)
{
struct gk20a_ce_app *ce_app = &g->ce_app;
struct gk20a_gpu_ctx *ce_ctx, *ce_ctx_save;
if (!ce_app->initialised) {
return;
}
ce_app->app_state = NVGPU_CE_SUSPEND;
ce_app->initialised = false;
nvgpu_mutex_acquire(&ce_app->app_mutex);
nvgpu_list_for_each_entry_safe(ce_ctx, ce_ctx_save,
&ce_app->allocated_contexts, gk20a_gpu_ctx, list) {
gk20a_ce_delete_gpu_context(ce_ctx);
}
nvgpu_init_list_node(&ce_app->allocated_contexts);
ce_app->ctx_count = 0;
ce_app->next_ctx_id = 0;
nvgpu_mutex_release(&ce_app->app_mutex);
nvgpu_mutex_destroy(&ce_app->app_mutex);
}
void gk20a_ce_suspend(struct gk20a *g)
{
struct gk20a_ce_app *ce_app = &g->ce_app;
if (!ce_app->initialised) {
return;
}
ce_app->app_state = NVGPU_CE_SUSPEND;
return;
}
/* CE app utility functions */
u32 gk20a_ce_create_context(struct gk20a *g,
int runlist_id,
int timeslice,
int runlist_level)
{
struct gk20a_gpu_ctx *ce_ctx;
struct gk20a_ce_app *ce_app = &g->ce_app;
struct nvgpu_setup_bind_args setup_bind_args;
u32 ctx_id = ~0;
int err = 0;
if (!ce_app->initialised || ce_app->app_state != NVGPU_CE_ACTIVE) {
return ctx_id;
}
ce_ctx = nvgpu_kzalloc(g, sizeof(*ce_ctx));
if (!ce_ctx) {
return ctx_id;
}
err = nvgpu_mutex_init(&ce_ctx->gpu_ctx_mutex);
if (err) {
nvgpu_kfree(g, ce_ctx);
return ctx_id;
}
ce_ctx->g = g;
ce_ctx->cmd_buf_read_queue_offset = 0;
ce_ctx->vm = g->mm.ce.vm;
/* allocate a tsg if needed */
ce_ctx->tsg = gk20a_tsg_open(g, nvgpu_current_pid(g));
if (!ce_ctx->tsg) {
nvgpu_err(g, "ce: gk20a tsg not available");
err = -ENOMEM;
goto end;
}
/* always kernel client needs privileged channel */
ce_ctx->ch = gk20a_open_new_channel(g, runlist_id, true,
nvgpu_current_pid(g), nvgpu_current_tid(g));
if (!ce_ctx->ch) {
nvgpu_err(g, "ce: gk20a channel not available");
err = -ENOMEM;
goto end;
}
ce_ctx->ch->timeout.enabled = false;
/* bind the channel to the vm */
err = g->ops.mm.vm_bind_channel(g->mm.ce.vm, ce_ctx->ch);
if (err) {
nvgpu_err(g, "ce: could not bind vm");
goto end;
}
err = gk20a_tsg_bind_channel(ce_ctx->tsg, ce_ctx->ch);
if (err) {
nvgpu_err(g, "ce: unable to bind to tsg");
goto end;
}
setup_bind_args.num_gpfifo_entries = 1024;
setup_bind_args.num_inflight_jobs = 0;
setup_bind_args.flags = 0;
/* allocate gpfifo (1024 should be more than enough) */
err = nvgpu_channel_setup_bind(ce_ctx->ch, &setup_bind_args);
if (err) {
nvgpu_err(g, "ce: unable to setup and bind channel");
goto end;
}
/* allocate command buffer from sysmem */
err = nvgpu_dma_alloc_map_sys(ce_ctx->vm,
NVGPU_CE_MAX_INFLIGHT_JOBS *
NVGPU_CE_MAX_COMMAND_BUFF_BYTES_PER_KICKOFF,
&ce_ctx->cmd_buf_mem);
if (err) {
nvgpu_err(g,
"ce: could not allocate command buffer for CE context");
goto end;
}
memset(ce_ctx->cmd_buf_mem.cpu_va, 0x00, ce_ctx->cmd_buf_mem.size);
/* -1 means default channel timeslice value */
if (timeslice != -1) {
err = gk20a_fifo_tsg_set_timeslice(ce_ctx->tsg, timeslice);
if (err) {
nvgpu_err(g,
"ce: could not set the channel timeslice value for CE context");
goto end;
}
}
/* -1 means default channel runlist level */
if (runlist_level != -1) {
err = gk20a_tsg_set_runlist_interleave(ce_ctx->tsg,
runlist_level);
if (err) {
nvgpu_err(g,
"ce: could not set the runlist interleave for CE context");
goto end;
}
}
nvgpu_mutex_acquire(&ce_app->app_mutex);
ctx_id = ce_ctx->ctx_id = ce_app->next_ctx_id;
nvgpu_list_add(&ce_ctx->list, &ce_app->allocated_contexts);
++ce_app->next_ctx_id;
++ce_app->ctx_count;
nvgpu_mutex_release(&ce_app->app_mutex);
ce_ctx->gpu_ctx_state = NVGPU_CE_GPU_CTX_ALLOCATED;
end:
if (ctx_id == (u32)~0) {
nvgpu_mutex_acquire(&ce_app->app_mutex);
gk20a_ce_delete_gpu_context(ce_ctx);
nvgpu_mutex_release(&ce_app->app_mutex);
}
return ctx_id;
}
void gk20a_ce_delete_context(struct gk20a *g,
u32 ce_ctx_id)
{
gk20a_ce_delete_context_priv(g, ce_ctx_id);
}
void gk20a_ce_delete_context_priv(struct gk20a *g,
u32 ce_ctx_id)
{
struct gk20a_ce_app *ce_app = &g->ce_app;
struct gk20a_gpu_ctx *ce_ctx, *ce_ctx_save;
if (!ce_app->initialised || ce_app->app_state != NVGPU_CE_ACTIVE) {
return;
}
nvgpu_mutex_acquire(&ce_app->app_mutex);
nvgpu_list_for_each_entry_safe(ce_ctx, ce_ctx_save,
&ce_app->allocated_contexts, gk20a_gpu_ctx, list) {
if (ce_ctx->ctx_id == ce_ctx_id) {
gk20a_ce_delete_gpu_context(ce_ctx);
--ce_app->ctx_count;
break;
}
}
nvgpu_mutex_release(&ce_app->app_mutex);
return;
}
|