/*
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <nvgpu/posix/bitops.h>
#include <nvgpu/posix/atomic.h>
#define BIT_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
#define BIT_WORD(nr) ((nr) / BITS_PER_LONG)
unsigned long __nvgpu_posix_ffs(unsigned long word)
{
return (__builtin_ffsl(word) - 1) &
((sizeof(unsigned long) * 8UL) - 1UL);
}
unsigned long __nvgpu_posix_fls(unsigned long word)
{
unsigned long ret;
if (word == 0UL) {
/* __builtin_clzl() below is undefined for 0, so we have
* to handle that as a special case.
*/
ret = 0UL;
} else {
ret = (sizeof(unsigned long) * 8UL) - __builtin_clzl(word);
}
return ret;
}
static unsigned long __find_next_bit(const unsigned long *addr,
unsigned long n,
unsigned long start,
bool invert)
{
unsigned long idx;
unsigned long w;
unsigned long start_mask;
/*
* We make a mask we can XOR into the word so that we can invert the
* word without requiring a branch. I.e instead of doing:
*
* w = invert ? ~addr[idx] : addr[idx]
*
* We can do:
*
* w = addr[idx] ^= invert_mask
*
* This saves us a branch every iteration through the loop. Now we can
* always just look for 1s.
*/
unsigned long invert_mask = invert ? ~0UL : 0UL;
if (start >= n)
return n;
start_mask = ~0UL << (start & (BITS_PER_LONG - 1));
idx = start / BITS_PER_LONG;
w = (addr[idx] ^ invert_mask) & start_mask;
start = round_up(start, BITS_PER_LONG);
/*
* Find the first non-zero word taking into account start and
* invert.
*/
while (!w) {
idx++;
start += BITS_PER_LONG;
w = addr[idx] ^ invert_mask;
}
return min(n, ffs(w) + idx * BITS_PER_LONG);
}
unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
{
return __find_next_bit(addr, size, 0, false);
}
unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size)
{
return __find_next_bit(addr, size, 0, true);
}
unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
unsigned long offset)
{
return __find_next_bit(addr, size, offset, false);
}
static unsigned long find_next_zero_bit(const unsigned long *addr,
unsigned long size,
unsigned long offset)
{
return __find_next_bit(addr, size, offset, true);
}
void bitmap_set(unsigned long *map, unsigned int start, int len)
{
unsigned int end = start + len;
/*
* Super slow naive implementation. But speed isn't what matters here.
*/
while (start < end)
set_bit(start++, map);
}
void bitmap_clear(unsigned long *map, unsigned int start, int len)
{
unsigned int end = start + len;
while (start < end)
clear_bit(start++, map);
}
/*
* This is essentially a find-first-fit allocator: this searches a bitmap for
* the first space that is large enough to satisfy the requested size of bits.
* That means that this is not a vary smart allocator. But it is fast relative
* to an allocator that goes looking for an optimal location.
*/
unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
unsigned long size,
unsigned long start,
unsigned int nr,
unsigned long align_mask,
unsigned long align_offset)
{
unsigned long offs;
while (start + nr <= size) {
start = find_next_zero_bit(map, size, start);
start = ALIGN_MASK(start + align_offset, align_mask) -
align_offset;
/*
* Not enough space left to satisfy the requested area.
*/
if ((start + nr) > size)
return size;
offs = find_next_bit(map, size, start);
if ((offs - start) >= nr)
return start;
start = offs + 1;
}
return size;
}
unsigned long bitmap_find_next_zero_area(unsigned long *map,
unsigned long size,
unsigned long start,
unsigned int nr,
unsigned long align_mask)
{
return bitmap_find_next_zero_area_off(map, size, start, nr,
align_mask, 0);
}
bool test_bit(int nr, const volatile unsigned long *addr)
{
return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
}
bool test_and_set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
volatile unsigned long *p = addr + BIT_WORD(nr);
return !!(__sync_fetch_and_or(p, mask) & mask);
}
bool test_and_clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
return !!(__sync_fetch_and_and(p, ~mask) & mask);
}
void set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
__atomic_or(p, mask);
}
void clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
__atomic_and(p, ~mask);
}