/*
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef NVGPU_VM_H
#define NVGPU_VM_H
#include <nvgpu/kref.h>
#include <nvgpu/list.h>
#include <nvgpu/rbtree.h>
#include <nvgpu/types.h>
#include <nvgpu/gmmu.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/allocator.h>
struct vm_gk20a;
struct nvgpu_vm_area;
struct gk20a_comptag_allocator;
/*
* Defined by each OS. Allows the common VM code do things to the OS specific
* buffer structures.
*/
struct nvgpu_os_buffer;
#ifdef __KERNEL__
#include <nvgpu/linux/vm.h>
#elif defined(__NVGPU_POSIX__)
#include <nvgpu/posix/vm.h>
#else
/* QNX include goes here. */
#include <nvgpu_rmos/include/vm.h>
#endif
/**
* This header contains the OS agnostic APIs for dealing with VMs. Most of the
* VM implementation is system specific - it must translate from a platform's
* representation of DMA'able memory to our nvgpu_mem notion.
*
* However, some stuff is platform agnostic. VM ref-counting and the VM struct
* itself are platform agnostic. Also, the initialization and destruction of
* VMs is the same across all platforms (for now).
*
* VM Architecture:
* ----------------
*
* The VM managment in nvgpu is split up as follows: a vm_gk20a struct which
* defines an address space. Each address space is a set of page tables and a
* GPU Virtual Address (GVA) allocator. Any number of channels may bind to a VM.
*
* +----+ +----+ +----+ +-----+ +-----+
* | C1 | | C2 | ... | Cn | | VM1 | ... | VMn |
* +-+--+ +-+--+ +-+--+ +--+--+ +--+--+
* | | | | |
* | | +----->-----+ |
* | +---------------->-----+ |
* +------------------------>-----------------+
*
* Each VM also manages a set of mapped buffers (struct nvgpu_mapped_buf)
* which corresponds to _user space_ buffers which have been mapped into this VM.
* Kernel space mappings (created by nvgpu_gmmu_map()) are not tracked by VMs.
* This may be an architectural bug, but for now it seems to be OK. VMs can be
* closed in various ways - refs counts hitting zero, direct calls to the remove
* routine, etc. Note: this is going to change. VM cleanup is going to be
* homogonized around ref-counts. When a VM is closed all mapped buffers in the
* VM are unmapped from the GMMU. This means that those mappings will no longer
* be valid and any subsequent access by the GPU will fault. That means one must
* ensure the VM is not in use before closing it.
*
* VMs may also contain VM areas (struct nvgpu_vm_area) which are created for
* the purpose of sparse and/or fixed mappings. If userspace wishes to create a
* fixed mapping it must first create a VM area - either with a fixed address or
* not. VM areas are reserved - other mapping operations will not use the space.
* Userspace may then create fixed mappings within that VM area.
*/
/* map/unmap batch state */
struct vm_gk20a_mapping_batch {
bool gpu_l2_flushed;
bool need_tlb_invalidate;
};
struct nvgpu_mapped_buf {
struct vm_gk20a *vm;
struct nvgpu_vm_area *vm_area;
struct nvgpu_ref ref;
struct nvgpu_rbtree_node node;
struct nvgpu_list_node buffer_list;
u64 addr;
u64 size;
u32 pgsz_idx;
u32 flags;
u32 kind;
bool va_allocated;
/*
* Separate from the nvgpu_os_buffer struct to clearly distinguish
* lifetime. A nvgpu_mapped_buf_priv will _always_ be wrapped by a
* struct nvgpu_mapped_buf; however, there are times when a struct
* nvgpu_os_buffer would be separate. This aims to prevent dangerous
* usage of container_of() or the like in OS code.
*/
struct nvgpu_mapped_buf_priv os_priv;
};
static inline struct nvgpu_mapped_buf *
nvgpu_mapped_buf_from_buffer_list(struct nvgpu_list_node *node)
{
return (struct nvgpu_mapped_buf *)
((uintptr_t)node - offsetof(struct nvgpu_mapped_buf,
buffer_list));
}
static inline struct nvgpu_mapped_buf *
mapped_buffer_from_rbtree_node(struct nvgpu_rbtree_node *node)
{
return (struct nvgpu_mapped_buf *)
((uintptr_t)node - offsetof(struct nvgpu_mapped_buf, node));
}
struct vm_gk20a {
struct mm_gk20a *mm;
struct gk20a_as_share *as_share; /* as_share this represents */
char name[20];
u64 va_start;
u64 va_limit;
int num_user_mapped_buffers;
bool big_pages; /* enable large page support */
bool enable_ctag;
bool guest_managed; /* whether the vm addr space is managed by guest */
u32 big_page_size;
bool userspace_managed;
const struct gk20a_mmu_level *mmu_levels;
struct nvgpu_ref ref;
struct nvgpu_mutex update_gmmu_lock;
struct nvgpu_gmmu_pd pdb;
/*
* These structs define the address spaces. In some cases it's possible
* to merge address spaces (user and user_lp) and in other cases it's
* not. vma[] allows the code to be agnostic to this by always using
* address spaces through this pointer array.
*/
struct nvgpu_allocator *vma[GMMU_NR_PAGE_SIZES];
struct nvgpu_allocator kernel;
struct nvgpu_allocator user;
struct nvgpu_allocator user_lp;
struct nvgpu_rbtree_node *mapped_buffers;
struct nvgpu_list_node vm_area_list;
#ifdef CONFIG_TEGRA_GR_VIRTUALIZATION
u64 handle;
#endif
u32 gmmu_page_sizes[GMMU_NR_PAGE_SIZES];
/* if non-NULL, kref_put will use this batch when
unmapping. Must hold vm->update_gmmu_lock. */
struct vm_gk20a_mapping_batch *kref_put_batch;
/*
* Each address space needs to have a semaphore pool.
*/
struct nvgpu_semaphore_pool *sema_pool;
/*
* Create sync point read only map for sync point range.
* Channels sharing same vm will also share same sync point ro map
*/
u64 syncpt_ro_map_gpu_va;
/* Protect allocation of sync point map */
struct nvgpu_mutex syncpt_ro_map_lock;
};
/*
* Mapping flags.
*/
#define NVGPU_VM_MAP_FIXED_OFFSET BIT32(0)
#define NVGPU_VM_MAP_CACHEABLE BIT32(1)
#define NVGPU_VM_MAP_IO_COHERENT BIT32(2)
#define NVGPU_VM_MAP_UNMAPPED_PTE BIT32(3)
#define NVGPU_VM_MAP_DIRECT_KIND_CTRL BIT32(4)
#define NVGPU_VM_MAP_L3_ALLOC BIT32(5)
#define NVGPU_VM_MAP_PLATFORM_ATOMIC BIT32(6)
#define NVGPU_KIND_INVALID -1
void nvgpu_vm_get(struct vm_gk20a *vm);
void nvgpu_vm_put(struct vm_gk20a *vm);
int vm_aspace_id(struct vm_gk20a *vm);
bool nvgpu_big_pages_possible(struct vm_gk20a *vm, u64 base, u64 size);
int nvgpu_vm_pde_coverage_bit_count(struct vm_gk20a *vm);
/* batching eliminates redundant cache flushes and invalidates */
void nvgpu_vm_mapping_batch_start(struct vm_gk20a_mapping_batch *batch);
void nvgpu_vm_mapping_batch_finish(
struct vm_gk20a *vm, struct vm_gk20a_mapping_batch *batch);
/* called when holding vm->update_gmmu_lock */
void nvgpu_vm_mapping_batch_finish_locked(
struct vm_gk20a *vm, struct vm_gk20a_mapping_batch *batch);
/* get reference to all currently mapped buffers */
int nvgpu_vm_get_buffers(struct vm_gk20a *vm,
struct nvgpu_mapped_buf ***mapped_buffers,
int *num_buffers);
/* put references on the given buffers */
void nvgpu_vm_put_buffers(struct vm_gk20a *vm,
struct nvgpu_mapped_buf **mapped_buffers,
int num_buffers);
struct nvgpu_mapped_buf *nvgpu_vm_find_mapping(struct vm_gk20a *vm,
struct nvgpu_os_buffer *os_buf,
u64 map_addr,
u32 flags,
int kind);
struct nvgpu_mapped_buf *nvgpu_vm_map(struct vm_gk20a *vm,
struct nvgpu_os_buffer *os_buf,
struct nvgpu_sgt *sgt,
u64 map_addr,
u64 map_size,
u64 phys_offset,
int rw,
u32 flags,
s16 compr_kind,
s16 incompr_kind,
struct vm_gk20a_mapping_batch *batch,
enum nvgpu_aperture aperture);
void nvgpu_vm_unmap(struct vm_gk20a *vm, u64 offset,
struct vm_gk20a_mapping_batch *batch);
/*
* Implemented by each OS. Called from within the core VM code to handle OS
* specific components of an nvgpu_mapped_buf.
*/
void nvgpu_vm_unmap_system(struct nvgpu_mapped_buf *mapped_buffer);
/*
* Don't use this outside of the core VM code!
*/
void __nvgpu_vm_unmap_ref(struct nvgpu_ref *ref);
u64 nvgpu_os_buf_get_size(struct nvgpu_os_buffer *os_buf);
/*
* These all require the VM update lock to be held.
*/
struct nvgpu_mapped_buf *__nvgpu_vm_find_mapped_buf(
struct vm_gk20a *vm, u64 addr);
struct nvgpu_mapped_buf *__nvgpu_vm_find_mapped_buf_range(
struct vm_gk20a *vm, u64 addr);
struct nvgpu_mapped_buf *__nvgpu_vm_find_mapped_buf_less_than(
struct vm_gk20a *vm, u64 addr);
int nvgpu_insert_mapped_buf(struct vm_gk20a *vm,
struct nvgpu_mapped_buf *mapped_buffer);
void nvgpu_remove_mapped_buf(struct vm_gk20a *vm,
struct nvgpu_mapped_buf *mapped_buffer);
/*
* Initialize a preallocated vm
*/
int __nvgpu_vm_init(struct mm_gk20a *mm,
struct vm_gk20a *vm,
u32 big_page_size,
u64 low_hole,
u64 kernel_reserved,
u64 aperture_size,
bool big_pages,
bool userspace_managed,
char *name);
struct vm_gk20a *nvgpu_vm_init(struct gk20a *g,
u32 big_page_size,
u64 low_hole,
u64 kernel_reserved,
u64 aperture_size,
bool big_pages,
bool userspace_managed,
char *name);
/*
* These are private to the VM code but are unfortunately used by the vgpu code.
* It appears to be used for an optimization in reducing the number of server
* requests to the vgpu server. Basically the vgpu implementation of
* map_global_ctx_buffers() sends a bunch of VA ranges over to the RM server.
* Ideally the RM server can just batch mappings but until such a time this
* will be used by the vgpu code.
*/
u64 __nvgpu_vm_alloc_va(struct vm_gk20a *vm, u64 size,
u32 pgsz_idx);
int __nvgpu_vm_free_va(struct vm_gk20a *vm, u64 addr,
u32 pgsz_idx);
#endif /* NVGPU_VM_H */