aboutsummaryrefslogblamecommitdiffstats
path: root/include/gk20a/mm_gk20a.c
blob: 10ca84d9dfe23b4adfb607dc50041abbc2216217 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654













































































































































































































































































































































































































































































































































































































































































                                                                                  
/*
 * Copyright (c) 2011-2020, NVIDIA CORPORATION.  All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include <trace/events/gk20a.h>

#include <nvgpu/mm.h>
#include <nvgpu/vm.h>
#include <nvgpu/vm_area.h>
#include <nvgpu/dma.h>
#include <nvgpu/kmem.h>
#include <nvgpu/timers.h>
#include <nvgpu/pramin.h>
#include <nvgpu/list.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/allocator.h>
#include <nvgpu/semaphore.h>
#include <nvgpu/page_allocator.h>
#include <nvgpu/log.h>
#include <nvgpu/bug.h>
#include <nvgpu/log2.h>
#include <nvgpu/enabled.h>
#include <nvgpu/vidmem.h>
#include <nvgpu/sizes.h>
#include <nvgpu/io.h>
#include <nvgpu/utils.h>
#include <nvgpu/channel.h>

#include "gk20a.h"
#include "mm_gk20a.h"
#include "fence_gk20a.h"

#include <nvgpu/hw/gk20a/hw_gmmu_gk20a.h>
#include <nvgpu/hw/gk20a/hw_ram_gk20a.h>
#include <nvgpu/hw/gk20a/hw_pram_gk20a.h>
#include <nvgpu/hw/gk20a/hw_flush_gk20a.h>

/*
 * GPU mapping life cycle
 * ======================
 *
 * Kernel mappings
 * ---------------
 *
 * Kernel mappings are created through vm.map(..., false):
 *
 *  - Mappings to the same allocations are reused and refcounted.
 *  - This path does not support deferred unmapping (i.e. kernel must wait for
 *    all hw operations on the buffer to complete before unmapping).
 *  - References to dmabuf are owned and managed by the (kernel) clients of
 *    the gk20a_vm layer.
 *
 *
 * User space mappings
 * -------------------
 *
 * User space mappings are created through as.map_buffer -> vm.map(..., true):
 *
 *  - Mappings to the same allocations are reused and refcounted.
 *  - This path supports deferred unmapping (i.e. we delay the actual unmapping
 *    until all hw operations have completed).
 *  - References to dmabuf are owned and managed by the vm_gk20a
 *    layer itself. vm.map acquires these refs, and sets
 *    mapped_buffer->own_mem_ref to record that we must release the refs when we
 *    actually unmap.
 *
 */

/* make sure gk20a_init_mm_support is called before */
int gk20a_init_mm_setup_hw(struct gk20a *g)
{
	struct mm_gk20a *mm = &g->mm;
	int err;

	nvgpu_log_fn(g, " ");

	if (g->ops.fb.set_mmu_page_size) {
		g->ops.fb.set_mmu_page_size(g);
	}

	if (g->ops.fb.set_use_full_comp_tag_line) {
		mm->use_full_comp_tag_line =
			g->ops.fb.set_use_full_comp_tag_line(g);
	}

	g->ops.fb.init_hw(g);

	if (g->ops.bus.bar1_bind) {
		g->ops.bus.bar1_bind(g, &mm->bar1.inst_block);
	}

	if (g->ops.bus.bar2_bind) {
		err = g->ops.bus.bar2_bind(g, &mm->bar2.inst_block);
		if (err) {
			return err;
		}
	}

	if (gk20a_mm_fb_flush(g) || gk20a_mm_fb_flush(g)) {
		return -EBUSY;
	}

	nvgpu_log_fn(g, "done");
	return 0;
}

/* for gk20a the "video memory" apertures here are misnomers. */
static inline u32 big_valid_pde0_bits(struct gk20a *g,
				      struct nvgpu_gmmu_pd *pd, u64 addr)
{
	u32 pde0_bits =
		nvgpu_aperture_mask(g, pd->mem,
				    gmmu_pde_aperture_big_sys_mem_ncoh_f(),
				    gmmu_pde_aperture_big_sys_mem_coh_f(),
				    gmmu_pde_aperture_big_video_memory_f()) |
		gmmu_pde_address_big_sys_f(
			   (u32)(addr >> gmmu_pde_address_shift_v()));

	return pde0_bits;
}

static inline u32 small_valid_pde1_bits(struct gk20a *g,
					struct nvgpu_gmmu_pd *pd, u64 addr)
{
	u32 pde1_bits =
		nvgpu_aperture_mask(g, pd->mem,
				    gmmu_pde_aperture_small_sys_mem_ncoh_f(),
				    gmmu_pde_aperture_small_sys_mem_coh_f(),
				    gmmu_pde_aperture_small_video_memory_f()) |
		gmmu_pde_vol_small_true_f() | /* tbd: why? */
		gmmu_pde_address_small_sys_f(
			   (u32)(addr >> gmmu_pde_address_shift_v()));

	return pde1_bits;
}

static void update_gmmu_pde_locked(struct vm_gk20a *vm,
				   const struct gk20a_mmu_level *l,
				   struct nvgpu_gmmu_pd *pd,
				   u32 pd_idx,
				   u64 virt_addr,
				   u64 phys_addr,
				   struct nvgpu_gmmu_attrs *attrs)
{
	struct gk20a *g = gk20a_from_vm(vm);
	bool small_valid, big_valid;
	u32 pd_offset = pd_offset_from_index(l, pd_idx);
	u32 pde_v[2] = {0, 0};

	small_valid = attrs->pgsz == GMMU_PAGE_SIZE_SMALL;
	big_valid   = attrs->pgsz == GMMU_PAGE_SIZE_BIG;

	pde_v[0] = gmmu_pde_size_full_f();
	pde_v[0] |= big_valid ?
		big_valid_pde0_bits(g, pd, phys_addr) :
		gmmu_pde_aperture_big_invalid_f();

	pde_v[1] |= (small_valid ? small_valid_pde1_bits(g, pd, phys_addr) :
		     (gmmu_pde_aperture_small_invalid_f() |
		      gmmu_pde_vol_small_false_f()))
		|
		(big_valid ? (gmmu_pde_vol_big_true_f()) :
		 gmmu_pde_vol_big_false_f());

	pte_dbg(g, attrs,
		"PDE: i=%-4u size=%-2u offs=%-4u pgsz: %c%c | "
		"GPU %#-12llx  phys %#-12llx "
		"[0x%08x, 0x%08x]",
		pd_idx, l->entry_size, pd_offset,
		small_valid ? 'S' : '-',
		big_valid ?   'B' : '-',
		virt_addr, phys_addr,
		pde_v[1], pde_v[0]);

	pd_write(g, &vm->pdb, pd_offset + 0, pde_v[0]);
	pd_write(g, &vm->pdb, pd_offset + 1, pde_v[1]);
}

static void __update_pte_sparse(u32 *pte_w)
{
	pte_w[0]  = gmmu_pte_valid_false_f();
	pte_w[1] |= gmmu_pte_vol_true_f();
}

static void __update_pte(struct vm_gk20a *vm,
			 u32 *pte_w,
			 u64 phys_addr,
			 struct nvgpu_gmmu_attrs *attrs)
{
	struct gk20a *g = gk20a_from_vm(vm);
	u32 page_size = vm->gmmu_page_sizes[attrs->pgsz];
	u32 pte_valid = attrs->valid ?
		gmmu_pte_valid_true_f() :
		gmmu_pte_valid_false_f();
	u32 phys_shifted = phys_addr >> gmmu_pte_address_shift_v();
	u32 addr = attrs->aperture == APERTURE_SYSMEM ?
		gmmu_pte_address_sys_f(phys_shifted) :
		gmmu_pte_address_vid_f(phys_shifted);
	int ctag_shift = ilog2(g->ops.fb.compression_page_size(g));

	pte_w[0] = pte_valid | addr;

	if (attrs->priv) {
		pte_w[0] |= gmmu_pte_privilege_true_f();
	}

	pte_w[1] = nvgpu_aperture_mask_raw(g, attrs->aperture,
					 gmmu_pte_aperture_sys_mem_ncoh_f(),
					 gmmu_pte_aperture_sys_mem_coh_f(),
					 gmmu_pte_aperture_video_memory_f()) |
		gmmu_pte_kind_f(attrs->kind_v) |
		gmmu_pte_comptagline_f((u32)(attrs->ctag >> ctag_shift));

	if (attrs->ctag && vm->mm->use_full_comp_tag_line &&
	    phys_addr & 0x10000) {
		pte_w[1] |= gmmu_pte_comptagline_f(
			1 << (gmmu_pte_comptagline_s() - 1));
	}

	if (attrs->rw_flag == gk20a_mem_flag_read_only) {
		pte_w[0] |= gmmu_pte_read_only_true_f();
		pte_w[1] |= gmmu_pte_write_disable_true_f();
	} else if (attrs->rw_flag == gk20a_mem_flag_write_only) {
		pte_w[1] |= gmmu_pte_read_disable_true_f();
	}

	if (!attrs->cacheable) {
		pte_w[1] |= gmmu_pte_vol_true_f();
	}

	if (attrs->ctag) {
		attrs->ctag += page_size;
	}
}

static void update_gmmu_pte_locked(struct vm_gk20a *vm,
				   const struct gk20a_mmu_level *l,
				   struct nvgpu_gmmu_pd *pd,
				   u32 pd_idx,
				   u64 virt_addr,
				   u64 phys_addr,
				   struct nvgpu_gmmu_attrs *attrs)
{
	struct gk20a *g = gk20a_from_vm(vm);
	u32 page_size  = vm->gmmu_page_sizes[attrs->pgsz];
	u32 pd_offset = pd_offset_from_index(l, pd_idx);
	u32 pte_w[2] = {0, 0};
	int ctag_shift = ilog2(g->ops.fb.compression_page_size(g));

	if (phys_addr) {
		__update_pte(vm, pte_w, phys_addr, attrs);
	} else if (attrs->sparse) {
		__update_pte_sparse(pte_w);
	}

	pte_dbg(g, attrs,
		"PTE: i=%-4u size=%-2u offs=%-4u | "
		"GPU %#-12llx  phys %#-12llx "
		"pgsz: %3dkb perm=%-2s kind=%#02x APT=%-6s %c%c%c%c "
		"ctag=0x%08x "
		"[0x%08x, 0x%08x]",
		pd_idx, l->entry_size, pd_offset,
		virt_addr, phys_addr,
		page_size >> 10,
		nvgpu_gmmu_perm_str(attrs->rw_flag),
		attrs->kind_v,
		nvgpu_aperture_str(g, attrs->aperture),
		attrs->cacheable ? 'C' : '-',
		attrs->sparse    ? 'S' : '-',
		attrs->priv      ? 'P' : '-',
		attrs->valid     ? 'V' : '-',
		(u32)attrs->ctag >> ctag_shift,
		pte_w[1], pte_w[0]);

	pd_write(g, pd, pd_offset + 0, pte_w[0]);
	pd_write(g, pd, pd_offset + 1, pte_w[1]);
}

u32 gk20a_get_pde_pgsz(struct gk20a *g, const struct gk20a_mmu_level *l,
				struct nvgpu_gmmu_pd *pd, u32 pd_idx)
{
	/*
	 * big and small page sizes are the same
	 */
	return GMMU_PAGE_SIZE_SMALL;
}

u32 gk20a_get_pte_pgsz(struct gk20a *g, const struct gk20a_mmu_level *l,
				struct nvgpu_gmmu_pd *pd, u32 pd_idx)
{
	/*
	 * return invalid
	 */
	return GMMU_NR_PAGE_SIZES;
}

const struct gk20a_mmu_level gk20a_mm_levels_64k[] = {
	{.hi_bit = {NV_GMMU_VA_RANGE-1, NV_GMMU_VA_RANGE-1},
	 .lo_bit = {26, 26},
	 .update_entry = update_gmmu_pde_locked,
	 .entry_size = 8,
	 .get_pgsz = gk20a_get_pde_pgsz},
	{.hi_bit = {25, 25},
	 .lo_bit = {12, 16},
	 .update_entry = update_gmmu_pte_locked,
	 .entry_size = 8,
	 .get_pgsz = gk20a_get_pte_pgsz},
	{.update_entry = NULL}
};

const struct gk20a_mmu_level gk20a_mm_levels_128k[] = {
	{.hi_bit = {NV_GMMU_VA_RANGE-1, NV_GMMU_VA_RANGE-1},
	 .lo_bit = {27, 27},
	 .update_entry = update_gmmu_pde_locked,
	 .entry_size = 8,
	 .get_pgsz = gk20a_get_pde_pgsz},
	{.hi_bit = {26, 26},
	 .lo_bit = {12, 17},
	 .update_entry = update_gmmu_pte_locked,
	 .entry_size = 8,
	 .get_pgsz = gk20a_get_pte_pgsz},
	{.update_entry = NULL}
};

int gk20a_vm_bind_channel(struct vm_gk20a *vm, struct channel_gk20a *ch)
{
	int err = 0;

	nvgpu_log_fn(ch->g, " ");

	nvgpu_vm_get(vm);
	ch->vm = vm;
	err = channel_gk20a_commit_va(ch);
	if (err) {
		ch->vm = NULL;
	}

	nvgpu_log(gk20a_from_vm(vm), gpu_dbg_map, "Binding ch=%d -> VM:%s",
		  ch->chid, vm->name);

	return err;
}

void gk20a_mm_init_pdb(struct gk20a *g, struct nvgpu_mem *inst_block,
		struct vm_gk20a *vm)
{
	u64 pdb_addr = nvgpu_mem_get_addr(g, vm->pdb.mem);
	u32 pdb_addr_lo = u64_lo32(pdb_addr >> ram_in_base_shift_v());
	u32 pdb_addr_hi = u64_hi32(pdb_addr);

	nvgpu_log_info(g, "pde pa=0x%llx", pdb_addr);

	nvgpu_mem_wr32(g, inst_block, ram_in_page_dir_base_lo_w(),
		       nvgpu_aperture_mask(g, vm->pdb.mem,
				ram_in_page_dir_base_target_sys_mem_ncoh_f(),
				ram_in_page_dir_base_target_sys_mem_coh_f(),
				ram_in_page_dir_base_target_vid_mem_f()) |
		       ram_in_page_dir_base_vol_true_f() |
		       ram_in_page_dir_base_lo_f(pdb_addr_lo));

	nvgpu_mem_wr32(g, inst_block, ram_in_page_dir_base_hi_w(),
		ram_in_page_dir_base_hi_f(pdb_addr_hi));
}

void gk20a_init_inst_block(struct nvgpu_mem *inst_block, struct vm_gk20a *vm,
		u32 big_page_size)
{
	struct gk20a *g = gk20a_from_vm(vm);

	nvgpu_log_info(g, "inst block phys = 0x%llx, kv = 0x%p",
		nvgpu_inst_block_addr(g, inst_block), inst_block->cpu_va);

	g->ops.mm.init_pdb(g, inst_block, vm);

	nvgpu_mem_wr32(g, inst_block, ram_in_adr_limit_lo_w(),
		u64_lo32(vm->va_limit - 1) & ~0xfff);

	nvgpu_mem_wr32(g, inst_block, ram_in_adr_limit_hi_w(),
		ram_in_adr_limit_hi_f(u64_hi32(vm->va_limit - 1)));

	if (big_page_size && g->ops.mm.set_big_page_size) {
		g->ops.mm.set_big_page_size(g, inst_block, big_page_size);
	}
}

int gk20a_alloc_inst_block(struct gk20a *g, struct nvgpu_mem *inst_block)
{
	int err;

	nvgpu_log_fn(g, " ");

	err = nvgpu_dma_alloc(g, ram_in_alloc_size_v(), inst_block);
	if (err) {
		nvgpu_err(g, "%s: memory allocation failed", __func__);
		return err;
	}

	nvgpu_log_fn(g, "done");
	return 0;
}

int gk20a_mm_fb_flush(struct gk20a *g)
{
	struct mm_gk20a *mm = &g->mm;
	u32 data;
	int ret = 0;
	struct nvgpu_timeout timeout;
	u32 retries;

	nvgpu_log_fn(g, " ");

	gk20a_busy_noresume(g);
	if (!g->power_on) {
		gk20a_idle_nosuspend(g);
		return 0;
	}

	retries = 100;

	if (g->ops.mm.get_flush_retries) {
		retries = g->ops.mm.get_flush_retries(g, NVGPU_FLUSH_FB);
	}

	nvgpu_timeout_init(g, &timeout, retries, NVGPU_TIMER_RETRY_TIMER);

	nvgpu_mutex_acquire(&mm->l2_op_lock);

	/* Make sure all previous writes are committed to the L2. There's no
	   guarantee that writes are to DRAM. This will be a sysmembar internal
	   to the L2. */

	trace_gk20a_mm_fb_flush(g->name);

	gk20a_writel(g, flush_fb_flush_r(),
		flush_fb_flush_pending_busy_f());

	do {
		data = gk20a_readl(g, flush_fb_flush_r());

		if (flush_fb_flush_outstanding_v(data) ==
			flush_fb_flush_outstanding_true_v() ||
		    flush_fb_flush_pending_v(data) ==
			flush_fb_flush_pending_busy_v()) {
				nvgpu_log_info(g, "fb_flush 0x%x", data);
				nvgpu_udelay(5);
		} else {
			break;
		}
	} while (!nvgpu_timeout_expired(&timeout));

	if (nvgpu_timeout_peek_expired(&timeout)) {
		if (g->ops.fb.dump_vpr_info) {
			g->ops.fb.dump_vpr_info(g);
		}
		if (g->ops.fb.dump_wpr_info) {
			g->ops.fb.dump_wpr_info(g);
		}
		ret = -EBUSY;
	}

	trace_gk20a_mm_fb_flush_done(g->name);

	nvgpu_mutex_release(&mm->l2_op_lock);

	gk20a_idle_nosuspend(g);

	return ret;
}

static void gk20a_mm_l2_invalidate_locked(struct gk20a *g)
{
	u32 data;
	struct nvgpu_timeout timeout;
	u32 retries = 200;

	trace_gk20a_mm_l2_invalidate(g->name);

	if (g->ops.mm.get_flush_retries) {
		retries = g->ops.mm.get_flush_retries(g, NVGPU_FLUSH_L2_INV);
	}

	nvgpu_timeout_init(g, &timeout, retries, NVGPU_TIMER_RETRY_TIMER);

	/* Invalidate any clean lines from the L2 so subsequent reads go to
	   DRAM. Dirty lines are not affected by this operation. */
	gk20a_writel(g, flush_l2_system_invalidate_r(),
		flush_l2_system_invalidate_pending_busy_f());

	do {
		data = gk20a_readl(g, flush_l2_system_invalidate_r());

		if (flush_l2_system_invalidate_outstanding_v(data) ==
			flush_l2_system_invalidate_outstanding_true_v() ||
		    flush_l2_system_invalidate_pending_v(data) ==
			flush_l2_system_invalidate_pending_busy_v()) {
				nvgpu_log_info(g, "l2_system_invalidate 0x%x",
						data);
				nvgpu_udelay(5);
		} else {
			break;
		}
	} while (!nvgpu_timeout_expired(&timeout));

	if (nvgpu_timeout_peek_expired(&timeout)) {
		nvgpu_warn(g, "l2_system_invalidate too many retries");
	}

	trace_gk20a_mm_l2_invalidate_done(g->name);
}

void gk20a_mm_l2_invalidate(struct gk20a *g)
{
	struct mm_gk20a *mm = &g->mm;
	gk20a_busy_noresume(g);
	if (g->power_on) {
		nvgpu_mutex_acquire(&mm->l2_op_lock);
		gk20a_mm_l2_invalidate_locked(g);
		nvgpu_mutex_release(&mm->l2_op_lock);
	}
	gk20a_idle_nosuspend(g);
}

void gk20a_mm_l2_flush(struct gk20a *g, bool invalidate)
{
	struct mm_gk20a *mm = &g->mm;
	u32 data;
	struct nvgpu_timeout timeout;
	u32 retries = 2000;

	nvgpu_log_fn(g, " ");

	gk20a_busy_noresume(g);
	if (!g->power_on) {
		goto hw_was_off;
	}

	if (g->ops.mm.get_flush_retries) {
		retries = g->ops.mm.get_flush_retries(g, NVGPU_FLUSH_L2_FLUSH);
	}

	nvgpu_timeout_init(g, &timeout, retries, NVGPU_TIMER_RETRY_TIMER);

	nvgpu_mutex_acquire(&mm->l2_op_lock);

	trace_gk20a_mm_l2_flush(g->name);

	/* Flush all dirty lines from the L2 to DRAM. Lines are left in the L2
	   as clean, so subsequent reads might hit in the L2. */
	gk20a_writel(g, flush_l2_flush_dirty_r(),
		flush_l2_flush_dirty_pending_busy_f());

	do {
		data = gk20a_readl(g, flush_l2_flush_dirty_r());

		if (flush_l2_flush_dirty_outstanding_v(data) ==
			flush_l2_flush_dirty_outstanding_true_v() ||
		    flush_l2_flush_dirty_pending_v(data) ==
			flush_l2_flush_dirty_pending_busy_v()) {
				nvgpu_log_info(g, "l2_flush_dirty 0x%x", data);
				nvgpu_udelay(5);
		} else {
			break;
		}
	} while (!nvgpu_timeout_expired_msg(&timeout,
					 "l2_flush_dirty too many retries"));

	trace_gk20a_mm_l2_flush_done(g->name);

	if (invalidate) {
		gk20a_mm_l2_invalidate_locked(g);
	}

	nvgpu_mutex_release(&mm->l2_op_lock);

hw_was_off:
	gk20a_idle_nosuspend(g);
}

void gk20a_mm_cbc_clean(struct gk20a *g)
{
	struct mm_gk20a *mm = &g->mm;
	u32 data;
	struct nvgpu_timeout timeout;
	u32 retries = 200;

	nvgpu_log_fn(g, " ");

	gk20a_busy_noresume(g);
	if (!g->power_on) {
		goto hw_was_off;
	}

	if (g->ops.mm.get_flush_retries) {
		retries = g->ops.mm.get_flush_retries(g, NVGPU_FLUSH_CBC_CLEAN);
	}

	nvgpu_timeout_init(g, &timeout, retries, NVGPU_TIMER_RETRY_TIMER);

	nvgpu_mutex_acquire(&mm->l2_op_lock);

	/* Flush all dirty lines from the CBC to L2 */
	gk20a_writel(g, flush_l2_clean_comptags_r(),
		flush_l2_clean_comptags_pending_busy_f());

	do {
		data = gk20a_readl(g, flush_l2_clean_comptags_r());

		if (flush_l2_clean_comptags_outstanding_v(data) ==
			flush_l2_clean_comptags_outstanding_true_v() ||
		    flush_l2_clean_comptags_pending_v(data) ==
			flush_l2_clean_comptags_pending_busy_v()) {
				nvgpu_log_info(g, "l2_clean_comptags 0x%x", data);
				nvgpu_udelay(5);
		} else {
			break;
		}
	} while (!nvgpu_timeout_expired_msg(&timeout,
					 "l2_clean_comptags too many retries"));

	nvgpu_mutex_release(&mm->l2_op_lock);

hw_was_off:
	gk20a_idle_nosuspend(g);
}

u32 gk20a_mm_get_iommu_bit(struct gk20a *g)
{
	return 34;
}

const struct gk20a_mmu_level *gk20a_mm_get_mmu_levels(struct gk20a *g,
						      u32 big_page_size)
{
	return (big_page_size == SZ_64K) ?
		 gk20a_mm_levels_64k : gk20a_mm_levels_128k;
}