1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
|
/*
This program is part of the TACLeBench benchmark suite.
Version V 2.0
Name: gsm_dec
Author: Jutta Degener and Carsten Bormann,
Technische Universitaet Berlin
Function: Decoding of GSM data
Source: included in MediaBench/gsm
Original name: gsm_decode
Changes: no major functional changes
License: see the accompanying COPYRIGHT file
*/
#include "../extra.h"
#include "gsm.h"
#include "add.h"
#include "data.h"
#include "private.h"
#define SAMPLES 20
/*
Forward declaration of global variables
*/
struct gsm_state gsm_dec_state;
gsm gsm_dec_state_ptr;
volatile int gsm_dec_result;
/*
Forward declaration of functions
*/
extern word gsm_dec_sub( word a, word b );
extern word gsm_dec_asl( word a, int n );
void gsm_dec_Decoding_of_the_coded_Log_Area_Ratios(
word *LARc, /* coded log area ratio [0..7] IN */
word *LARpp ); /* out: decoded .. */
void gsm_dec_Coefficients_0_12( word *LARpp_j_1, word *LARpp_j, word *LARp );
void gsm_dec_LARp_to_rp( word *LARp ); /* [0..7] IN/OUT */
extern int gsm_dec_decode( gsm, gsm_byte *, gsm_signal * );
extern void gsm_dec_Decoder( struct gsm_state *S,
word *LARcr, /* [0..7] IN */
word *Ncr, /* [0..3] IN */
word *bcr, /* [0..3] IN */
word *Mcr, /* [0..3] IN */
word *xmaxcr, /* [0..3] IN */
word *xMcr, /* [0..13*4] IN */
word *s ); /* [0..159] OUT */
extern void gsm_dec_Long_Term_Synthesis_Filtering(
struct gsm_state *S, word Ncr, word bcr,
word *erp, /* [0..39] IN */
word *drp ); /* [-120..-1] IN, [0..40] OUT */
void gsm_dec_RPE_Decoding( word xmaxcr, word Mcr,
word *xMcr, /* [0..12], 3 bits IN */
word *erp ); /* [0..39] OUT */
void gsm_dec_RPE_grid_positioning( word Mc, /* grid position IN */
word *xMp, /* [0..12] IN */
word *ep /* [0..39] OUT */
);
void gsm_dec_APCM_inverse_quantization( word *xMc, /* [0..12] IN */
word mant, word exp,
word *xMp ); /* [0..12] OUT */
extern word gsm_dec_asr( word a, int n );
void gsm_dec_APCM_quantization_xmaxc_to_exp_mant(
word xmaxc, /* IN */
word *exp_out, /* OUT */
word *mant_out ); /* OUT */
void gsm_dec_Postprocessing( struct gsm_state *S, word *s );
void gsm_dec_Coefficients_13_26( word *LARpp_j_1, word *LARpp_j,
word *LARp );
void gsm_dec_Coefficients_40_159( word *LARpp_j, word *LARp );
void gsm_dec_Short_term_synthesis_filtering( struct gsm_state *S,
word *rrp, /* [0..7] IN */
int k, /* k_end - k_start */
word *wt, /* [0..k-1] IN */
word *sr /* [0..k-1] OUT */
);
void gsm_dec_Short_Term_Synthesis_Filter(
struct gsm_state *S, word *LARcr, /* received log area ratios [0..7] IN */
word *wt, /* received d [0..159] IN */
word *s /* signal s [0..159] OUT */
);
void gsm_dec_Coefficients_27_39( word *LARpp_j_1, word *LARpp_j, word *LARp );
gsm gsm_dec_create( void );
void gsm_dec_init( void );
void gsm_dec_main( void );
//int main( void );
/* add.c */
word gsm_dec_sub( word a, word b )
{
longword diff = ( longword )a - ( longword )b;
return saturate( diff );
}
word gsm_dec_asl( word a, int n )
{
if ( n >= 16 )
return 0;
if ( n <= -16 )
return -( a < 0 );
if ( n < 0 )
return gsm_dec_asr( a, -n );
return a << n;
}
/* short_term.c */
/*
SHORT TERM ANALYSIS FILTERING SECTION
*/
/* 4.2.8 */
void gsm_dec_Decoding_of_the_coded_Log_Area_Ratios(
word *LARc, /* coded log area ratio [0..7] IN */
word *LARpp ) /* out: decoded .. */
{
word temp1 /* for STEP */;
long ltmp; /* for GSM_ADD */
/* This procedure requires for efficient implementation
two tables.
INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
MIC[1..8] = minimum value of the LARc[1..8]
*/
/* Compute the LARpp[1..8]
*/
/* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
temp1 = GSM_ADD( *LARc, *MIC ) << 10;
temp2 = *B << 1;
temp1 = GSM_SUB( temp1, temp2 );
temp1 = GSM_MULT_R( *INVA, temp1 );
LARpp = GSM_ADD( temp1, temp1 );
}
*/
#undef STEP
#define STEP(B, MIC, INVA) \
temp1 = GSM_ADD(*LARc++, MIC) << 10; \
temp1 = GSM_SUB(temp1, B << 1); \
temp1 = GSM_MULT_R(INVA, temp1); \
*LARpp++ = GSM_ADD(temp1, temp1);
STEP( 0, -32, 13107 );
STEP( 0, -32, 13107 );
STEP( 2048, -16, 13107 );
STEP( 2560, -16, 13107 );
STEP( 94, -8, 19223 );
STEP( 1792, -8, 17476 );
STEP( 341, -4, 31454 );
STEP( 1144, -4, 29708 );
/* NOTE: the addition of *MIC is used to restore the sign of *LARc.
*/
}
/* 4.2.9 */
/* Computation of the quantized reflection coefficients
*/
/* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8]
*/
/*
Within each frame of 160 analyzed speech samples the short term
analysis and synthesis filters operate with four different sets of
coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
and the actual set of decoded LARs (LARpp(j))
(Initial value: LARpp(j-1)[1..8] = 0.)
*/
void gsm_dec_Coefficients_0_12( word *LARpp_j_1, word *LARpp_j, word *LARp )
{
int i;
longword ltmp;
_Pragma( "loopbound min 8 max 8" )
for ( i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++ ) {
*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ) );
*LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1 ) );
}
}
/* 4.2.9.2 */
void gsm_dec_LARp_to_rp( word *LARp ) /* [0..7] IN/OUT */
/*
The input of this procedure is the interpolated LARp[0..7] array.
The reflection coefficients, rp[i], are used in the analysis
filter and in the synthesis filter.
*/
{
int i;
word temp;
longword ltmp;
_Pragma( "loopbound min 8 max 8" )
for ( i = 1; i <= 8; i++, LARp++ ) {
/* temp = GSM_ABS( *LARp );
if (temp < 11059) temp <<= 1;
else if (temp < 20070) temp += 11059;
else temp = GSM_ADD( temp >> 2, 26112 );
* *LARp = *LARp < 0 ? -temp : temp;
*/
if ( *LARp < 0 ) {
temp = *LARp == MIN_WORD ? MAX_WORD : -( *LARp );
*LARp = -( ( temp < 11059 ) ? temp << 1
: ( ( temp < 20070 ) ? temp + 11059
: GSM_ADD( temp >> 2, 26112 ) ) );
} else {
temp = *LARp;
*LARp = ( temp < 11059 )
? temp << 1
: ( ( temp < 20070 ) ? temp + 11059 : GSM_ADD( temp >> 2, 26112 ) );
}
}
}
void gsm_dec_Decoder( struct gsm_state *S,
word *LARcr, /* [0..7] IN */
word *Ncr, /* [0..3] IN */
word *bcr, /* [0..3] IN */
word *Mcr, /* [0..3] IN */
word *xmaxcr, /* [0..3] IN */
word *xMcr, /* [0..13*4] IN */
word *s ) /* [0..159] OUT */
{
int j, k;
word erp[40], wt[160];
word *drp = S->dp0 + 120;
_Pragma( "loopbound min 4 max 4" )
for ( j = 0; j <= 3; j++, xmaxcr++, bcr++, Ncr++, Mcr++, xMcr += 13 ) {
gsm_dec_RPE_Decoding( *xmaxcr, *Mcr, xMcr, erp );
gsm_dec_Long_Term_Synthesis_Filtering( S, *Ncr, *bcr, erp, drp );
_Pragma( "loopbound min 40 max 40" )
for ( k = 0; k <= 39; k++ )
wt[j * 40 + k] = drp[k];
}
gsm_dec_Short_Term_Synthesis_Filter( S, LARcr, wt, s );
gsm_dec_Postprocessing( S, s );
}
/* 4.3.2 */
void gsm_dec_Long_Term_Synthesis_Filtering(
struct gsm_state *S,
word Ncr, word bcr, word *erp, /* [0..39] IN */
word *drp /* [-120..-1] IN, [0..40] OUT */
)
/*
This procedure uses the bcr and Ncr parameter to realize the
long term synthesis filtering. The decoding of bcr needs
table 4.3b.
*/
{
longword ltmp; /* for ADD */
int k;
word brp, drpp, Nr;
/* Check the limits of Nr.
*/
Nr = Ncr < 40 || Ncr > 120 ? S->nrp : Ncr;
S->nrp = Nr;
/* Decoding of the LTP gain bcr
*/
brp = gsm_dec_QLB[bcr];
/* Computation of the reconstructed short term residual
signal drp[0..39]
*/
_Pragma( "loopbound min 40 max 40" )
for ( k = 0; k <= 39; k++ ) {
drpp = GSM_MULT_R( brp, drp[k - Nr] );
drp[k] = GSM_ADD( erp[k], drpp );
}
/*
Update of the reconstructed short term residual signal
drp[ -1..-120 ]
*/
_Pragma( "loopbound min 120 max 120" )
for ( k = 0; k <= 119; k++ )
drp[-120 + k] = drp[-80 + k];
}
void gsm_dec_RPE_Decoding( word xmaxcr, word Mcr,
word *xMcr, /* [0..12], 3 bits IN */
word *erp ) /* [0..39] OUT */
{
word exp, mant;
word xMp[13];
gsm_dec_APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant );
gsm_dec_APCM_inverse_quantization( xMcr, mant, exp, xMp );
gsm_dec_RPE_grid_positioning( Mcr, xMp, erp );
}
/* 4.2.17 */
void gsm_dec_RPE_grid_positioning(
word Mc, /* grid position IN */
word *xMp, /* [0..12] IN */
word *ep /* [0..39] OUT */ )
/*
This procedure computes the reconstructed long term residual signal
ep[0..39] for the LTP analysis filter. The inputs are the Mc
which is the grid position selection and the xMp[0..12] decoded
RPE samples which are upsampled by a factor of 3 by inserting zero
values.
*/
{
int i = 13;
/* Rewritten Duff's device for WCET analysis! */
switch ( Mc ) {
case 3:
*ep++ = 0;
case 2:
*ep++ = 0;
case 1:
*ep++ = 0;
case 0:
*ep++ = *xMp++;
i--;
}
_Pragma( "loopbound min 12 max 12" )
do {
*ep++ = 0;
*ep++ = 0;
*ep++ = *xMp++;
} while ( --i );
_Pragma( "loopbound min 0 max 2" )
while ( ++Mc < 4 )
*ep++ = 0;
}
/* 4.2.16 */
void gsm_dec_APCM_inverse_quantization( word *xMc, /* [0..12] IN */
word mant,
word exp,
word *xMp ) /* [0..12] OUT */
/*
This part is for decoding the RPE sequence of coded xMc[0..12]
samples to obtain the xMp[0..12] array. Table 4.6 is used to get
the mantissa of xmaxc (FAC[0..7]).
*/
{
int i;
word temp, temp1, temp2, temp3;
longword ltmp;
temp1 = gsm_dec_FAC[mant]; /* see 4.2-15 for mant */
temp2 = gsm_dec_sub( 6, exp ); /* see 4.2-15 for exp */
temp3 = gsm_dec_asl( 1, gsm_dec_sub( temp2, 1 ) );
_Pragma( "loopbound min 13 max 13" )
for ( i = 13; i--; ) {
/* temp = gsm_sub( *xMc++ << 1, 7 ); */
temp = ( *xMc++ << 1 ) - 7; /* restore sign */
temp <<= 12; /* 16 bit signed */
temp = GSM_MULT_R( temp1, temp );
temp = GSM_ADD( temp, temp3 );
*xMp++ = gsm_dec_asr( temp, temp2 );
}
}
/*
4.2.4 .. 4.2.7 LPC ANALYSIS SECTION
*/
word gsm_dec_asr( word a, int n )
{
if ( n >= 16 )
return -( a < 0 );
if ( n <= -16 )
return 0;
if ( n < 0 )
return a << -n;
return a >> n;
}
/* rpe.c */
/* 4.12.15 */
void gsm_dec_APCM_quantization_xmaxc_to_exp_mant( word xmaxc, /* IN */
word *exp_out, /* OUT */
word *mant_out ) /* OUT */
{
word exp, mant;
/* Compute exponent and mantissa of the decoded version of xmaxc
*/
exp = 0;
if ( xmaxc > 15 )
exp = SASR( xmaxc, 3 ) - 1;
mant = xmaxc - ( exp << 3 );
if ( mant == 0 ) {
exp = -4;
mant = 7;
} else {
_Pragma( "loopbound min 0 max 3" )
while ( mant <= 7 ) {
mant = mant << 1 | 1;
exp--;
}
mant -= 8;
}
*exp_out = exp;
*mant_out = mant;
}
/* decode.c */
/*
4.3 FIXED POINT IMPLEMENTATION OF THE RPE-LTP DECODER
*/
void gsm_dec_Postprocessing( struct gsm_state *S, word *s )
{
int k;
word msr = S->msr;
longword ltmp; /* for GSM_ADD */
word tmp;
_Pragma( "loopbound min 159 max 159" )
for ( k = 160; --k; ++s ) {
tmp = GSM_MULT_R( msr, 28180 );
msr = GSM_ADD( *s, tmp ); /* Deemphasis */
*s = GSM_ADD( msr, msr ) & 0xFFF8; /* Truncation & Upscaling */
}
S->msr = msr;
}
void gsm_dec_Coefficients_13_26( word *LARpp_j_1, word *LARpp_j, word *LARp )
{
int i;
longword ltmp;
_Pragma( "loopbound min 8 max 8" )
for ( i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++ )
*LARp = GSM_ADD( SASR( *LARpp_j_1, 1 ), SASR( *LARpp_j, 1 ) );
}
void gsm_dec_Coefficients_40_159( word *LARpp_j, word *LARp )
{
int i;
_Pragma( "loopbound min 8 max 8" )
for ( i = 1; i <= 8; i++, LARp++, LARpp_j++ )
*LARp = *LARpp_j;
}
void gsm_dec_Short_term_synthesis_filtering( struct gsm_state *S,
word *rrp, /* [0..7] IN */
int k, /* k_end - k_start */
word *wt, /* [0..k-1] IN */
word *sr ) /* [0..k-1] OUT */
{
word *v = S->v;
int i;
word sri, tmp1, tmp2;
longword ltmp; /* for GSM_ADD & GSM_SUB */
_Pragma( "loopbound min 12 max 118" )
while ( --k ) {
sri = *wt++;
_Pragma( "loopbound min 8 max 8" )
for ( i = 8; i--; ) {
/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
*/
tmp1 = rrp[i];
tmp2 = v[i];
tmp2 =
( tmp1 == MIN_WORD && tmp2 == MIN_WORD
? MAX_WORD
: 0x0FFFF & ( ( ( longword )tmp1 * ( longword )tmp2 + 16384 ) >> 15 ) );
sri = GSM_SUB( sri, tmp2 );
/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
*/
tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD
? MAX_WORD
: 0x0FFFF & ( ( ( longword )tmp1 * ( longword )sri + 16384 ) >> 15 ) );
v[i + 1] = GSM_ADD( v[i], tmp1 );
}
*sr++ = v[0] = sri;
}
}
void gsm_dec_Short_Term_Synthesis_Filter(
struct gsm_state *S,
word *LARcr, /* received log area ratios [0..7] IN */
word *wt, /* received d [0..159] IN */
word *s /* signal s [0..159] OUT */
)
{
word *LARpp_j = S->LARpp[S->j];
word *LARpp_j_1 = S->LARpp[S->j ^= 1];
word LARp[8];
gsm_dec_Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
gsm_dec_Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
gsm_dec_LARp_to_rp( LARp );
gsm_dec_Short_term_synthesis_filtering( S, LARp, 13, wt, s );
gsm_dec_Coefficients_13_26( LARpp_j_1, LARpp_j, LARp );
gsm_dec_LARp_to_rp( LARp );
gsm_dec_Short_term_synthesis_filtering( S, LARp, 14, wt + 13, s + 13 );
gsm_dec_Coefficients_27_39( LARpp_j_1, LARpp_j, LARp );
gsm_dec_LARp_to_rp( LARp );
gsm_dec_Short_term_synthesis_filtering( S, LARp, 13, wt + 27, s + 27 );
gsm_dec_Coefficients_40_159( LARpp_j, LARp );
gsm_dec_LARp_to_rp( LARp );
gsm_dec_Short_term_synthesis_filtering( S, LARp, 120, wt + 40, s + 40 );
}
void gsm_dec_Coefficients_27_39( word *LARpp_j_1, word *LARpp_j, word *LARp )
{
int i;
longword ltmp;
_Pragma( "loopbound min 8 max 8" )
for ( i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++ ) {
*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ) );
*LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ) );
}
}
/*
Initialization- and return-value-related functions
*/
gsm gsm_dec_create( void )
{
unsigned int i;
gsm r;
volatile char x = 0;
r = &gsm_dec_state;
_Pragma( "loopbound min 648 max 648" )
for ( i = 0; i < sizeof( *r ); i++ )
( ( char * )r )[i] = 0 + x;
r->nrp = 40;
return r;
}
void gsm_dec_init( void )
{
gsm_dec_state_ptr = gsm_dec_create();
}
int gsm_dec_return( void )
{
return gsm_dec_result;
}
/*
Main functions
*/
/* gsm_decode.c */
int gsm_dec_decode( gsm s, gsm_byte *c, gsm_signal *target )
{
word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13 * 4];
/* GSM_MAGIC = (*c >> 4) & 0xF; */
if ( ( ( *c >> 4 ) & 0x0F ) != GSM_MAGIC )
return -1;
LARc[0] = ( *c++ & 0xF ) << 2; /* 1 */
LARc[0] |= ( *c >> 6 ) & 0x3;
LARc[1] = *c++ & 0x3F;
LARc[2] = ( *c >> 3 ) & 0x1F;
LARc[3] = ( *c++ & 0x7 ) << 2;
LARc[3] |= ( *c >> 6 ) & 0x3;
LARc[4] = ( *c >> 2 ) & 0xF;
LARc[5] = ( *c++ & 0x3 ) << 2;
LARc[5] |= ( *c >> 6 ) & 0x3;
LARc[6] = ( *c >> 3 ) & 0x7;
LARc[7] = *c++ & 0x7;
Nc[0] = ( *c >> 1 ) & 0x7F;
bc[0] = ( *c++ & 0x1 ) << 1;
bc[0] |= ( *c >> 7 ) & 0x1;
Mc[0] = ( *c >> 5 ) & 0x3;
xmaxc[0] = ( *c++ & 0x1F ) << 1;
xmaxc[0] |= ( *c >> 7 ) & 0x1;
xmc[0] = ( *c >> 4 ) & 0x7;
xmc[1] = ( *c >> 1 ) & 0x7;
xmc[2] = ( *c++ & 0x1 ) << 2;
xmc[2] |= ( *c >> 6 ) & 0x3;
xmc[3] = ( *c >> 3 ) & 0x7;
xmc[4] = *c++ & 0x7;
xmc[5] = ( *c >> 5 ) & 0x7;
xmc[6] = ( *c >> 2 ) & 0x7;
xmc[7] = ( *c++ & 0x3 ) << 1; /* 10 */
xmc[7] |= ( *c >> 7 ) & 0x1;
xmc[8] = ( *c >> 4 ) & 0x7;
xmc[9] = ( *c >> 1 ) & 0x7;
xmc[10] = ( *c++ & 0x1 ) << 2;
xmc[10] |= ( *c >> 6 ) & 0x3;
xmc[11] = ( *c >> 3 ) & 0x7;
xmc[12] = *c++ & 0x7;
Nc[1] = ( *c >> 1 ) & 0x7F;
bc[1] = ( *c++ & 0x1 ) << 1;
bc[1] |= ( *c >> 7 ) & 0x1;
Mc[1] = ( *c >> 5 ) & 0x3;
xmaxc[1] = ( *c++ & 0x1F ) << 1;
xmaxc[1] |= ( *c >> 7 ) & 0x1;
xmc[13] = ( *c >> 4 ) & 0x7;
xmc[14] = ( *c >> 1 ) & 0x7;
xmc[15] = ( *c++ & 0x1 ) << 2;
xmc[15] |= ( *c >> 6 ) & 0x3;
xmc[16] = ( *c >> 3 ) & 0x7;
xmc[17] = *c++ & 0x7;
xmc[18] = ( *c >> 5 ) & 0x7;
xmc[19] = ( *c >> 2 ) & 0x7;
xmc[20] = ( *c++ & 0x3 ) << 1;
xmc[20] |= ( *c >> 7 ) & 0x1;
xmc[21] = ( *c >> 4 ) & 0x7;
xmc[22] = ( *c >> 1 ) & 0x7;
xmc[23] = ( *c++ & 0x1 ) << 2;
xmc[23] |= ( *c >> 6 ) & 0x3;
xmc[24] = ( *c >> 3 ) & 0x7;
xmc[25] = *c++ & 0x7;
Nc[2] = ( *c >> 1 ) & 0x7F;
bc[2] = ( *c++ & 0x1 ) << 1; /* 20 */
bc[2] |= ( *c >> 7 ) & 0x1;
Mc[2] = ( *c >> 5 ) & 0x3;
xmaxc[2] = ( *c++ & 0x1F ) << 1;
xmaxc[2] |= ( *c >> 7 ) & 0x1;
xmc[26] = ( *c >> 4 ) & 0x7;
xmc[27] = ( *c >> 1 ) & 0x7;
xmc[28] = ( *c++ & 0x1 ) << 2;
xmc[28] |= ( *c >> 6 ) & 0x3;
xmc[29] = ( *c >> 3 ) & 0x7;
xmc[30] = *c++ & 0x7;
xmc[31] = ( *c >> 5 ) & 0x7;
xmc[32] = ( *c >> 2 ) & 0x7;
xmc[33] = ( *c++ & 0x3 ) << 1;
xmc[33] |= ( *c >> 7 ) & 0x1;
xmc[34] = ( *c >> 4 ) & 0x7;
xmc[35] = ( *c >> 1 ) & 0x7;
xmc[36] = ( *c++ & 0x1 ) << 2;
xmc[36] |= ( *c >> 6 ) & 0x3;
xmc[37] = ( *c >> 3 ) & 0x7;
xmc[38] = *c++ & 0x7;
Nc[3] = ( *c >> 1 ) & 0x7F;
bc[3] = ( *c++ & 0x1 ) << 1;
bc[3] |= ( *c >> 7 ) & 0x1;
Mc[3] = ( *c >> 5 ) & 0x3;
xmaxc[3] = ( *c++ & 0x1F ) << 1;
xmaxc[3] |= ( *c >> 7 ) & 0x1;
xmc[39] = ( *c >> 4 ) & 0x7;
xmc[40] = ( *c >> 1 ) & 0x7;
xmc[41] = ( *c++ & 0x1 ) << 2;
xmc[41] |= ( *c >> 6 ) & 0x3;
xmc[42] = ( *c >> 3 ) & 0x7;
xmc[43] = *c++ & 0x7; /* 30 */
xmc[44] = ( *c >> 5 ) & 0x7;
xmc[45] = ( *c >> 2 ) & 0x7;
xmc[46] = ( *c++ & 0x3 ) << 1;
xmc[46] |= ( *c >> 7 ) & 0x1;
xmc[47] = ( *c >> 4 ) & 0x7;
xmc[48] = ( *c >> 1 ) & 0x7;
xmc[49] = ( *c++ & 0x1 ) << 2;
xmc[49] |= ( *c >> 6 ) & 0x3;
xmc[50] = ( *c >> 3 ) & 0x7;
xmc[51] = *c & 0x7; /* 33 */
gsm_dec_Decoder( s, LARc, Nc, bc, Mc, xmaxc, xmc, target );
return 0;
}
void _Pragma( "entrypoint" ) gsm_dec_main( void )
{
gsm r;
unsigned i;
gsm_dec_result = 0;
r = gsm_dec_state_ptr;
_Pragma( "loopbound min 1 max 1" )
for ( i = 0; i < SAMPLES; i++ ) {
if ( gsm_dec_decode( r, gsm_dec_gsmdata + i * sizeof( gsm_frame ),
gsm_dec_pcmdata + i * 160 ) ) {
gsm_dec_result = 1;
return;
}
}
}
int main( int argc, char **argv)
{
SET_UP
for (jobsComplete=-1; jobsComplete<maxJobs; jobsComplete++){
START_LOOP
gsm_dec_init();
gsm_dec_main();
STOP_LOOP
}
WRITE_TO_FILE
return ( gsm_dec_return() );
}
|