1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
|
/*
This program is part of the TACLeBench benchmark suite.
Version V 1.x
Name: g723_enc
Author: Unknown
Function: g723 encoder.
Source: SUN Microsystems
Changes: The benchmark was changed to use the g723 encoder
License: "Unrestricted use" (see license.txt)
*/
/*
Declaration of data types
*/
/*
The following is the definition of the state structure
used by the G.721/G.723 encoder and decoder to preserve their internal
state between successive calls. The meanings of the majority
of the state structure fields are explained in detail in the
CCITT Recommendation G.721. The field names are essentially indentical
to variable names in the bit level description of the coding algorithm
included in this Recommendation.
*/
#include "extra.h"
struct g723_enc_state_t {
long yl; /* Locked or steady state step size multiplier. */
short yu; /* Unlocked or non-steady state step size multiplier. */
short dms; /* Short term energy estimate. */
short dml; /* Long term energy estimate. */
short ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
short a[2]; /* Coefficients of pole portion of prediction filter. */
short b[6]; /* Coefficients of zero portion of prediction filter. */
short pk[2]; /*
Signs of previous two samples of a partially
reconstructed signal.
*/
short dq[6]; /*
Previous 6 samples of the quantized difference
signal represented in an internal floating point
format.
*/
short sr[2]; /*
Previous 2 samples of the quantized difference
signal represented in an internal floating point
format.
*/
char td; /* delayed tone detect, new in 1988 version */
};
/*
Forward declaration of functions
*/
int g723_enc_abs( int num );
void g723_enc_init_state( struct g723_enc_state_t *state_ptr );
int g723_enc_predictor_zero( struct g723_enc_state_t *state_ptr );
int g723_enc_fmult( int an, int srn );
int g723_enc_predictor_pole( struct g723_enc_state_t *state_ptr );
int g723_enc_step_size( struct g723_enc_state_t *state_ptr );
int g723_enc_quantize(
int d, /* Raw difference signal sample */
int y, /* Step size multiplier */
short *table, /* quantization table */
int size ); /* table size of short integers */
int g723_enc_reconstruct(
int sign, /* 0 for non-negative value */
int dqln, /* G.72x codeword */
int y ); /* Step size multiplier */
void g723_enc_update(
int code_size, /* distinguish 723_40 with others */
int y, /* quantizer step size */
int wi, /* scale factor multiplier */
int fi, /* for long/short term energies */
int dq, /* quantized prediction difference */
int sr, /* reconstructed signal */
int dqsez, /* difference from 2-pole predictor */
struct g723_enc_state_t *state_ptr ); /* coder state pointer */
int g723_enc_quan(
int val,
short *table,
int size );
int g723_enc_search(
int val,
short *table,
int size );
int g723_enc_alaw2linear( unsigned char a_val );
int g723_enc_ulaw2linear( unsigned char u_val );
int g723_enc_g723_24_encoder(
int sample,
int in_coding,
struct g723_enc_state_t *state_ptr );
int g723_enc_pack_output(
unsigned char code,
int bits );
void g723_enc_init();
int g723_enc_return();
void g723_enc_main();
//int main( void );
/*
Declaration of global variables
*/
struct g723_enc_state_t g723_enc_state;
unsigned int g723_enc_INPUT[256] = {
51, 17, 31, 53, 95, 17, 70, 22, 49, 12, 8, 39, 28, 37, 99, 54,
77, 65, 77, 78, 83, 15, 63, 31, 35, 92, 52, 40, 61, 79, 94, 87,
87, 68, 76, 58, 39, 35, 20, 83, 42, 46, 98, 12, 21, 96, 74, 41,
78, 76, 96, 2, 32, 76, 24, 59, 4, 96, 32, 5, 44, 92, 57, 12,
57, 25, 50, 23, 48, 41, 88, 43, 36, 38, 4, 16, 52, 70, 9, 40,
78, 24, 34, 23, 30, 30, 89, 3, 65, 40, 68, 73, 94, 23, 84, 97,
78, 43, 68, 81, 16, 28, 13, 87, 75, 21, 14, 29, 81, 22, 56, 72,
19, 99, 25, 43, 76, 86, 90, 98, 39, 43, 12, 46, 24, 99, 65, 61,
24, 45, 79, 7, 48, 15, 24, 95, 62, 99, 48, 80, 75, 38, 48, 53,
9, 60, 35, 14, 78, 71, 45, 71, 9, 97, 55, 74, 58, 64, 78, 18,
30, 28, 69, 29, 57, 42, 30, 44, 57, 49, 61, 42, 13, 25, 3, 98,
11, 38, 65, 35, 55, 36, 57, 48, 16, 62, 17, 56, 29, 88, 84, 85,
90, 60, 54, 16, 66, 69, 26, 10, 82, 19, 42, 35, 84, 13, 26, 17,
48, 38, 50, 50, 35, 53, 12, 52, 61, 74, 56, 34, 80, 59, 26, 67,
55, 79, 89, 89, 6, 80, 91, 65, 16, 30, 16, 28, 85, 54, 3, 20,
2, 36, 62, 52, 55, 15, 83, 3, 2, 38, 62, 2, 63, 92, 37, 73
};
unsigned int g723_enc_OUTPUT[256];
short g723_enc_power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000
};
/*
Maps G.723_24 code word to reconstructed scale factor normalized log
magnitude values.
*/
short g723_enc_qtab_723_24[3] = {8, 218, 331};
/*
Maps G.721 code word to reconstructed scale factor normalized log
magnitude values.
*/
short g723_enc_dqlntab[16] = { -2048, 4, 135, 213, 273, 323, 373, 425,
425, 373, 323, 273, 213, 135, 4, -2048
};
/* Maps G.721 code word to log of scale factor multiplier. */
short g723_enc_witab[16] = { -12, 18, 41, 64, 112, 198, 355, 1122,
1122, 355, 198, 112, 64, 41, 18, -12
};
/*
Maps G.721 code words to a set of values whose long and short
term averages are computed and then compared to give an indication
how stationary (steady state) the signal is.
*/
short g723_enc_fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0
};
/*
Declaration of macros
*/
#define AUDIO_ENCODING_ULAW (1) /* ISDN u-law */
#define AUDIO_ENCODING_ALAW (2) /* ISDN A-law */
#define AUDIO_ENCODING_LINEAR (3) /* PCM 2's-complement (0-center) */
#define BIAS (0x84) /* Bias for linear code. */
#define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */
#define QUANT_MASK (0xf) /* Quantization field mask. */
#define SEG_SHIFT (4) /* Left shift for segment number. */
#define SEG_MASK (0x70) /* Segment field mask. */
/*
Arithmetic math functions
*/
/*
g723_enc_fmult()
returns the integer product of the 14-bit integer "an" and
"floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
*/
int g723_enc_fmult(
int an,
int srn )
{
short anmag, anexp, anmant;
short wanexp, wanmant;
short retval;
anmag = ( an > 0 ) ? an : ( ( -an ) & 0x1FFF );
anexp = g723_enc_quan( anmag, g723_enc_power2, 3 ) - 6;
anmant = ( anmag == 0 ) ? 32 :
( anexp >= 0 ) ? anmag >> anexp : anmag << -anexp;
wanexp = anexp + ( ( srn >> 6 ) & 0xF ) - 13;
wanmant = ( anmant * ( srn & 077 ) + 0x30 ) >> 4;
retval = ( wanexp >= 0 ) ? ( ( wanmant << wanexp ) & 0x7FFF ) :
( wanmant >> -wanexp );
return ( ( ( an ^ srn ) < 0 ) ? -retval : retval );
}
/* Manish Verma */
int g723_enc_abs( int num )
{
return ( num < 0 ) ? -num : num;
}
/*
Algorithm core functions
*/
/*
g723_enc_quan()
quantizes the input val against the table of size short integers.
It returns i if table[i - 1] <= val < table[i].
Using linear search for simple coding.
*/
int g723_enc_quan(
int val,
short *table,
int size )
{
int i,
j = 0,
k = 1;
_Pragma( "loopbound min 3 max 15" )
for ( i = 0; i < size; ++i ) {
if ( k ) {
if ( val < *table++ ) {
j = i;
k = 0;
}
}
}
return ( j );
}
/*
g723_enc_predictor_zero()
computes the estimated signal from 6-zero predictor.
*/
int
g723_enc_predictor_zero(
struct g723_enc_state_t *state_ptr )
{
int i;
int sezi;
sezi = g723_enc_fmult( state_ptr->b[0] >> 2, state_ptr->dq[0] );
_Pragma( "loopbound min 5 max 5" )
for ( i = 1; i < 6; i++ ) /* ACCUM */
sezi += g723_enc_fmult( state_ptr->b[i] >> 2, state_ptr->dq[i] );
return ( sezi );
}
/*
g723_enc_predictor_pole()
computes the estimated signal from 2-pole predictor.
*/
int
g723_enc_predictor_pole(
struct g723_enc_state_t *state_ptr )
{
return ( g723_enc_fmult( state_ptr->a[1] >> 2, state_ptr->sr[1] ) +
g723_enc_fmult( state_ptr->a[0] >> 2, state_ptr->sr[0] ) );
}
/*
g723_enc_step_size()
computes the quantization step size of the adaptive quantizer.
*/
int
g723_enc_step_size(
struct g723_enc_state_t *state_ptr )
{
int y;
int dif;
int al;
if ( state_ptr->ap >= 256 )
return ( state_ptr->yu );
else {
y = state_ptr->yl >> 6;
dif = state_ptr->yu - y;
al = state_ptr->ap >> 2;
if ( dif > 0 )
y += ( dif * al ) >> 6;
else
if ( dif < 0 )
y += ( dif * al + 0x3F ) >> 6;
return ( y );
}
}
/*
g723_enc_quantize()
Given a raw sample, 'd', of the difference signal and a
quantization step size scale factor, 'y', this routine returns the
ADPCM codeword to which that sample gets quantized. The step
size scale factor division operation is done in the log base 2 domain
as a subtraction.
*/
int
g723_enc_quantize(
int d, /* Raw difference signal sample */
int y, /* Step size multiplier */
short *table, /* quantization table */
int size ) /* table size of short integers */
{
short dqm; /* Magnitude of 'd' */
short exp; /* Integer part of base 2 log of 'd' */
short mant; /* Fractional part of base 2 log */
short dl; /* Log of magnitude of 'd' */
short dln; /* Step size scale factor normalized log */
int i;
/*
LOG
Compute base 2 log of 'd', and store in 'dl'.
*/
dqm = g723_enc_abs( d );
exp = g723_enc_quan( dqm >> 1, g723_enc_power2, 15 );
mant = ( ( dqm << 7 ) >> exp ) & 0x7F; /* Fractional portion. */
dl = ( exp << 7 ) + mant;
/*
SUBTB
"Divide" by step size multiplier.
*/
dln = dl - ( y >> 2 );
/*
QUAN
Obtain codword i for 'd'.
*/
i = g723_enc_quan( dln, table, size );
if ( d < 0 ) /* take 1's complement of i */
return ( ( size << 1 ) + 1 - i );
else
if ( i == 0 ) /* take 1's complement of 0 */
return ( ( size << 1 ) + 1 ); /* new in 1988 */
else
return ( i );
}
/*
g723_enc_reconstruct()
Returns reconstructed difference signal 'dq' obtained from
codeword 'i' and quantization step size scale factor 'y'.
Multiplication is performed in log base 2 domain as addition.
*/
int
g723_enc_reconstruct(
int sign, /* 0 for non-negative value */
int dqln, /* G.72x codeword */
int y ) /* Step size multiplier */
{
short dql; /* Log of 'dq' magnitude */
short dex; /* Integer part of log */
short dqt;
short dq; /* Reconstructed difference signal sample */
dql = dqln + ( y >> 2 ); /* ADDA */
if ( dql < 0 )
return ( ( sign ) ? -0x8000 : 0 );
else { /* ANTILOG */
dex = ( dql >> 7 ) & 15;
dqt = 128 + ( dql & 127 );
dq = ( dqt << 7 ) >> ( 14 - dex );
return ( ( sign ) ? ( dq - 0x8000 ) : dq );
}
}
/*
g723_enc_update()
updates the state variables for each output code
*/
void
g723_enc_update(
int code_size, /* distinguish 723_40 with others */
int y, /* quantizer step size */
int wi, /* scale factor multiplier */
int fi, /* for long/short term energies */
int dq, /* quantized prediction difference */
int sr, /* reconstructed signal */
int dqsez, /* difference from 2-pole predictor */
struct g723_enc_state_t *state_ptr ) /* coder state pointer */
{
int cnt;
short mag, exp; /* Adaptive predictor, FLOAT A */
short a2p; /* LIMC */
short a1ul; /* UPA1 */
short pks1; /* UPA2 */
short fa1;
char tr; /* tone/transition detector */
short ylint, thr2, dqthr;
short ylfrac, thr1;
short pk0;
pk0 = ( dqsez < 0 ) ? 1 : 0; /* needed in updating predictor poles */
mag = dq & 0x7FFF; /* prediction difference magnitude */
/* TRANS */
ylint = state_ptr->yl >> 15; /* exponent part of yl */
ylfrac = ( state_ptr->yl >> 10 ) & 0x1F; /* fractional part of yl */
thr1 = ( 32 + ylfrac ) << ylint; /* threshold */
thr2 = ( ylint > 9 ) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
dqthr = ( thr2 + ( thr2 >> 1 ) ) >> 1; /* dqthr = 0.75 * thr2 */
if ( state_ptr->td == 0 ) /* signal supposed voice */
tr = 0;
else
if ( mag <= dqthr ) /* supposed data, but small mag */
tr = 0; /* treated as voice */
else /* signal is data (modem) */
tr = 1;
/*
Quantizer scale factor adaptation.
*/
/* FUNCTW & FILTD & DELAY */
/* update non-steady state step size multiplier */
state_ptr->yu = y + ( ( wi - y ) >> 5 );
/* LIMB */
if ( state_ptr->yu < 544 ) /* 544 <= yu <= 5120 */
state_ptr->yu = 544;
else
if ( state_ptr->yu > 5120 )
state_ptr->yu = 5120;
/* FILTE & DELAY */
/* update steady state step size multiplier */
state_ptr->yl += state_ptr->yu + ( ( -state_ptr->yl ) >> 6 );
/*
Adaptive predictor coefficients.
*/
if ( tr == 1 ) { /* reset a's and b's for modem signal */
state_ptr->a[0] = 0;
state_ptr->a[1] = 0;
state_ptr->b[0] = 0;
state_ptr->b[1] = 0;
state_ptr->b[2] = 0;
state_ptr->b[3] = 0;
state_ptr->b[4] = 0;
state_ptr->b[5] = 0;
} else { /* update a's and b's */
pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
/* update predictor pole a[1] */
a2p = state_ptr->a[1] - ( state_ptr->a[1] >> 7 );
if ( dqsez != 0 ) {
fa1 = ( pks1 ) ? state_ptr->a[0] : -state_ptr->a[0];
if ( fa1 < -8191 ) /* a2p = function of fa1 */
a2p -= 0x100;
else
if ( fa1 > 8191 )
a2p += 0xFF;
else
a2p += fa1 >> 5;
if ( pk0 ^ state_ptr->pk[1] )
/* LIMC */
if ( a2p <= -12160 )
a2p = -12288;
else
if ( a2p >= 12416 )
a2p = 12288;
else
a2p -= 0x80;
else
if ( a2p <= -12416 )
a2p = -12288;
else
if ( a2p >= 12160 )
a2p = 12288;
else
a2p += 0x80;
}
/* TRIGB & DELAY */
state_ptr->a[1] = a2p;
/* UPA1 */
/* update predictor pole a[0] */
state_ptr->a[0] -= state_ptr->a[0] >> 8;
if ( dqsez != 0 ) {
if ( pks1 == 0 )
state_ptr->a[0] += 192;
else
state_ptr->a[0] -= 192;
}
/* LIMD */
a1ul = 15360 - a2p;
if ( state_ptr->a[0] < -a1ul )
state_ptr->a[0] = -a1ul;
else
if ( state_ptr->a[0] > a1ul )
state_ptr->a[0] = a1ul;
/* UPB : update predictor zeros b[6] */
_Pragma( "loopbound min 6 max 6" )
for ( cnt = 0; cnt < 6; cnt++ ) {
if ( code_size == 5 ) /* for 40Kbps G.723 */
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
else /* for G.721 and 24Kbps G.723 */
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
if ( dq & 0x7FFF ) { /* XOR */
if ( ( dq ^ state_ptr->dq[cnt] ) >= 0 )
state_ptr->b[cnt] += 128;
else
state_ptr->b[cnt] -= 128;
}
}
}
_Pragma( "loopbound min 5 max 5" )
for ( cnt = 5; cnt > 0; cnt-- )
state_ptr->dq[cnt] = state_ptr->dq[cnt - 1];
/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
if ( mag == 0 )
state_ptr->dq[0] = ( dq >= 0 ) ? 0x20 : 0xFC20;
else {
exp = g723_enc_quan( mag, g723_enc_power2, 15 );
state_ptr->dq[0] = ( dq >= 0 ) ?
( exp << 6 ) + ( ( mag << 6 ) >> exp ) :
( exp << 6 ) + ( ( mag << 6 ) >> exp ) - 0x400;
}
state_ptr->sr[1] = state_ptr->sr[0];
/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
if ( sr == 0 )
state_ptr->sr[0] = 0x20;
else
if ( sr > 0 ) {
exp = g723_enc_quan( sr, g723_enc_power2, 15 );
state_ptr->sr[0] = ( exp << 6 ) + ( ( sr << 6 ) >> exp );
} else
if ( sr > -32768 ) {
mag = -sr;
exp = g723_enc_quan( mag, g723_enc_power2, 15 );
state_ptr->sr[0] = ( exp << 6 ) + ( ( mag << 6 ) >> exp ) - 0x400;
} else
state_ptr->sr[0] = 0xFC20;
/* DELAY A */
state_ptr->pk[1] = state_ptr->pk[0];
state_ptr->pk[0] = pk0;
/* TONE */
if ( tr == 1 ) /* this sample has been treated as data */
state_ptr->td = 0; /* next one will be treated as voice */
else
if ( a2p < -11776 ) /* small sample-to-sample correlation */
state_ptr->td = 1; /* signal may be data */
else /* signal is voice */
state_ptr->td = 0;
/*
Adaptation speed control.
*/
state_ptr->dms += ( fi - state_ptr->dms ) >> 5; /* FILTA */
state_ptr->dml += ( ( ( fi << 2 ) - state_ptr->dml ) >> 7 ); /* FILTB */
if ( tr == 1 )
state_ptr->ap = 256;
else
if ( y < 1536 ) /* SUBTC */
state_ptr->ap += ( 0x200 - state_ptr->ap ) >> 4;
else
if ( state_ptr->td == 1 )
state_ptr->ap += ( 0x200 - state_ptr->ap ) >> 4;
else
if ( g723_enc_abs( ( state_ptr->dms << 2 ) - state_ptr->dml ) >=
( state_ptr->dml >> 3 ) )
state_ptr->ap += ( 0x200 - state_ptr->ap ) >> 4;
else
state_ptr->ap += ( -state_ptr->ap ) >> 4;
}
/*
g723_enc_alaw2linear() - Convert an A-law value to 16-bit linear PCM
*/
int
g723_enc_alaw2linear(
unsigned char a_val )
{
int t;
int seg;
a_val ^= 0x55;
t = ( a_val & QUANT_MASK ) << 4;
seg = ( ( unsigned )a_val & SEG_MASK ) >> SEG_SHIFT;
switch ( seg ) {
case 0:
t += 8;
break;
case 1:
t += 0x108;
break;
default:
t += 0x108;
t <<= seg - 1;
}
return ( ( a_val & SIGN_BIT ) ? t : -t );
}
/*
g723_enc_ulaw2linear() - Convert a u-law value to 16-bit linear PCM
First, a biased linear code is derived from the code word. An unbiased
output can then be obtained by subtracting 33 from the biased code.
Note that this function expects to be passed the complement of the
original code word. This is in keeping with ISDN conventions.
*/
int
g723_enc_ulaw2linear(
unsigned char u_val )
{
int t;
/* Complement to obtain normal u-law value. */
u_val = ~u_val;
/*
Extract and bias the quantization bits. Then
shift up by the segment number and subtract out the bias.
*/
t = ( ( u_val & QUANT_MASK ) << 3 ) + BIAS;
t <<= ( ( unsigned int )u_val & SEG_MASK ) >> SEG_SHIFT;
return ( ( u_val & SIGN_BIT ) ? ( BIAS - t ) : ( t - BIAS ) );
}
/*
g723_enc_g723_24_encoder()
Encodes a linear PCM, A-law or u-law input sample and returns its 3-bit code.
Returns -1 if invalid input coding value.
*/
int
g723_enc_g723_24_encoder(
int sl,
int in_coding,
struct g723_enc_state_t *state_ptr )
{
short sei, sezi, se, sez; /* ACCUM */
short d; /* SUBTA */
short y; /* MIX */
short sr; /* ADDB */
short dqsez; /* ADDC */
short dq, i;
switch ( in_coding ) { /* linearize input sample to 14-bit PCM */
case AUDIO_ENCODING_ALAW:
sl = g723_enc_alaw2linear( sl ) >> 2;
break;
case AUDIO_ENCODING_ULAW:
sl = g723_enc_ulaw2linear( sl ) >> 2;
break;
case AUDIO_ENCODING_LINEAR:
sl >>= 2; /* sl of 14-bit dynamic range */
break;
default:
return ( -1 );
}
sezi = g723_enc_predictor_zero( state_ptr );
sez = sezi >> 1;
sei = sezi + g723_enc_predictor_pole( state_ptr );
se = sei >> 1; /* se = estimated signal */
d = sl - se; /* d = estimation diff. */
/* quantize prediction difference d */
y = g723_enc_step_size( state_ptr ); /* quantizer step size */
i = g723_enc_quantize( d, y, g723_enc_qtab_723_24, 3 ); /* i = ADPCM code */
dq = g723_enc_reconstruct( i & 4, g723_enc_dqlntab[i], y ); /* quantized diff. */
sr = ( dq < 0 ) ? se - ( dq & 0x3FFF ) : se + dq; /* reconstructed signal */
dqsez = sr + sez - se; /* pole prediction diff. */
g723_enc_update( 3, y, g723_enc_witab[i], g723_enc_fitab[i], dq, sr, dqsez, state_ptr );
return ( i );
}
/*
Pack output codes into bytes and write them to stdout.
Returns 1 if there is residual output, else returns 0.
*/
int
g723_enc_pack_output(
unsigned char code,
int bits )
{
static unsigned int out_buffer = 0;
static int out_bits = 0;
unsigned char out_byte;
static int i = 0;
out_buffer |= ( code << out_bits );
out_bits += bits;
if ( out_bits >= 8 ) {
out_byte = out_buffer & 0xff;
out_bits -= 8;
out_buffer >>= 8;
//fwrite(&out_byte, sizeof (char), 1, fp_out);
//fwrite(&out_byte, 1, 1, fp_out);
g723_enc_OUTPUT[i] = out_byte;
i = i + 1;
}
return ( out_bits > 0 );
}
/*
Initialization- and return-value-related functions
*/
/*
g723_enc_init_state()
This routine initializes and/or resets the g72x_state structure
pointed to by 'state_ptr'.
All the initial state values are specified in the CCITT G.721 document.
*/
void
g723_enc_init_state(
struct g723_enc_state_t *state_ptr )
{
int cnta;
state_ptr->yl = 34816;
state_ptr->yu = 544;
state_ptr->dms = 0;
state_ptr->dml = 0;
state_ptr->ap = 0;
_Pragma( "loopbound min 2 max 2" )
for ( cnta = 0; cnta < 2; cnta++ ) {
state_ptr->a[cnta] = 0;
state_ptr->pk[cnta] = 0;
state_ptr->sr[cnta] = 32;
}
_Pragma( "loopbound min 6 max 6" )
for ( cnta = 0; cnta < 6; cnta++ ) {
state_ptr->b[cnta] = 0;
state_ptr->dq[cnta] = 32;
}
state_ptr->td = 0;
}
void g723_enc_init()
{
int i;
volatile int x = 0;
g723_enc_init_state( &g723_enc_state );
_Pragma( "loopbound min 256 max 256" )
for ( i = 0; i < 256; i++ ) {
g723_enc_INPUT[i] += x;
}
}
int g723_enc_return()
{
int i;
int check_sum = 0;
_Pragma( "loopbound min 256 max 256" )
for ( i = 0; i < 256; i++ ) {
check_sum += g723_enc_OUTPUT[i];
}
return ( check_sum != 24284 );
}
/*
Main functions
*/
void _Pragma( "entrypoint" ) g723_enc_main()
{
// struct g72x_state state;
short sample_short; //mv
unsigned char code;
int resid;
int in_coding;
short *in_buf;
int enc_bits;
int i = 0;
enc_bits = 3;
in_coding = AUDIO_ENCODING_ALAW;
in_buf = &sample_short;
_Pragma( "loopbound min 256 max 256" )
for ( i = 0; i < 256; i++ ) {
*in_buf = g723_enc_INPUT[i];
code = g723_enc_g723_24_encoder( sample_short, in_coding, &g723_enc_state );
resid = g723_enc_pack_output( code, enc_bits );
}
/* Write zero codes until all residual codes are written out */
_Pragma( "loopbound min 0 max 0" )
while ( resid )
resid = g723_enc_pack_output( 0, enc_bits );
}
int main( int argc, char **argv )
{
//SET_UP
int jobsComplete;
int maxJobs=9;
for (jobsComplete=0; jobsComplete<maxJobs; jobsComplete++){
// START_LOOP
g723_enc_init();
g723_enc_main();
// STOP_LOOP
}
//WRITE_TO_FILE
return ( g723_enc_return() );
}
|