summaryrefslogtreecommitdiffstats
path: root/baseline/source/adpcm_enc/adpcm_enc.c
blob: 777aaf57bca40bd6259ce399caf7faa9a77fb63a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
/*

  This program is part of the TACLeBench benchmark suite.
  Version V 2.0

  Name: adpcm_enc

  Author: Sung-Soo Lim

  Function: CCITT G.722 ADPCM (Adaptive Differential Pulse Code Modulation)
    algorithm. 16khz sample rate data is stored in the array test_data[SIZE]. 
    Results are stored in the array compressed[SIZE]. 
    Execution time is determined by the constant SIZE (default value is 2000).
    

  Source: C Algorithms for Real-Time DSP by P. M. Embree
    and SNU-RT Benchmark Suite for Worst Case Timing Analysis
    collected and modified by S.-S. Lim <sslim@archi.snu.ac.kr>

  Original name: adpcm_encoder

  Changes: no major functional changes

  License: may be used, modified, and re-distributed freely, but the
           SNU-RT Benchmark Suite must be acknowledged

*/


/* common sampling rate for sound cards on IBM/PC */

#include "extra.h"
#define SAMPLE_RATE 11025

#define PI 3141
#define SIZE 3
#define IN_END 4


/*
  Forward declaration of functions
*/

int adpcm_enc_encode( int, int );
int adpcm_enc_filtez( int *bpl, int *dlt );
void adpcm_enc_upzero( int dlt, int *dlti, int *bli );
int adpcm_enc_filtep( int rlt1, int al1, int rlt2, int al2 );
int adpcm_enc_quantl( int el, int detl );
int adpcm_enc_logscl( int il, int nbl );
int adpcm_enc_scalel( int nbl, int shift_constant );
int adpcm_enc_uppol2( int al1, int al2, int plt, int plt1, int plt2 );
int adpcm_enc_uppol1( int al1, int apl2, int plt, int plt1 );
int adpcm_enc_logsch( int ih, int nbh );
void adpcm_enc_reset();
int adpcm_enc_fabs( int n );
int adpcm_enc_cos( int n );
int adpcm_enc_sin( int n );
int adpcm_enc_abs( int n );
void adpcm_enc_init(void);
void adpcm_enc_main(void);
int adpcm_enc_return(void);
//int main(void);

/*
  Forward declaration of global variables
*/

int adpcm_enc_test_data[SIZE * 2], adpcm_enc_compressed[SIZE];


/* G722 C code */

/* variables for transimit quadrature mirror filter here */
int adpcm_enc_tqmf[24];

/* QMF filter coefficients:
scaled by a factor of 4 compared to G722 CCITT recommendation */
int adpcm_enc_h[24] = {
    12,   -44,   -44,   212,    48,  -624,   128,  1448,
  -840, -3220,  3804, 15504, 15504,  3804, -3220,  -840,
  1448,   128,  -624,    48,   212,   -44,   -44,    12
};

int adpcm_enc_xl, adpcm_enc_xh;

/* variables for encoder (hi and lo) here */

int adpcm_enc_il, adpcm_enc_szl, adpcm_enc_spl, adpcm_enc_sl, adpcm_enc_el;

int adpcm_enc_qq4_code4_table[16] = {
     0,  -20456,  -12896,   -8968,   -6288,   -4240,   -2584,   -1200,
 20456,   12896,    8968,    6288,    4240,    2584,    1200,       0
};

int adpcm_enc_qq5_code5_table[32] = {
  -280,    -280,  -23352,  -17560,  -14120,  -11664,   -9752,   -8184,
 -6864,   -5712,   -4696,   -3784,   -2960,   -2208,   -1520,    -880,
 23352,   17560,   14120,   11664,    9752,    8184,    6864,    5712,
  4696,    3784,    2960,    2208,    1520,     880,     280,    -280
};

int adpcm_enc_qq6_code6_table[64] = {
  -136,    -136,    -136,    -136,  -24808,  -21904,  -19008,  -16704,
-14984,  -13512,  -12280,  -11192,  -10232,   -9360,   -8576,   -7856,
 -7192,   -6576,   -6000,   -5456,   -4944,   -4464,   -4008,   -3576,
 -3168,   -2776,   -2400,   -2032,   -1688,   -1360,   -1040,    -728,
 24808,   21904,   19008,   16704,   14984,   13512,   12280,   11192,
 10232,    9360,    8576,    7856,    7192,    6576,    6000,    5456,
  4944,    4464,    4008,    3576,    3168,    2776,    2400,    2032,
  1688,    1360,    1040,     728,     432,     136,    -432,    -136
};

int adpcm_enc_delay_bpl[6];

int adpcm_enc_delay_dltx[6];

int adpcm_enc_wl_code_table[16] = {
   -60,  3042,  1198,   538,   334,   172,    58,   -30,
  3042,  1198,   538,   334,   172,    58,   -30,   -60
};

int adpcm_enc_ilb_table[32] = {
  2048,  2093,  2139,  2186,  2233,  2282,  2332,  2383,
  2435,  2489,  2543,  2599,  2656,  2714,  2774,  2834,
  2896,  2960,  3025,  3091,  3158,  3228,  3298,  3371,
  3444,  3520,  3597,  3676,  3756,  3838,  3922,  4008
};

int adpcm_enc_nbl; 		 /* delay line */
int adpcm_enc_al1, adpcm_enc_al2;
int adpcm_enc_plt, adpcm_enc_plt1, adpcm_enc_plt2;
int adpcm_enc_dlt;
int adpcm_enc_rlt, adpcm_enc_rlt1, adpcm_enc_rlt2;

/* decision levels - pre-multiplied by 8, 0 to indicate end */
int adpcm_enc_decis_levl[30] = {
   280,   576,   880,  1200,  1520,  1864,  2208,  2584,
  2960,  3376,  3784,  4240,  4696,  5200,  5712,  6288,
  6864,  7520,  8184,  8968,  9752, 10712, 11664, 12896,
 14120, 15840, 17560, 20456, 23352, 32767
};

int adpcm_enc_detl;

/* quantization table 31 long to make quantl look-up easier,
last entry is for mil=30 case when wd is max */
int adpcm_enc_quant26bt_pos[31] = {
    61,    60,    59,    58,    57,    56,    55,    54,
    53,    52,    51,    50,    49,    48,    47,    46,
    45,    44,    43,    42,    41,    40,    39,    38,
    37,    36,    35,    34,    33,    32,    32
};

/* quantization table 31 long to make quantl look-up easier,
last entry is for mil=30 case when wd is max */
int adpcm_enc_quant26bt_neg[31] = {
    63,    62,    31,    30,    29,    28,    27,    26,
    25,    24,    23,    22,    21,    20,    19,    18,
    17,    16,    15,    14,    13,    12,    11,    10,
     9,     8,     7,     6,     5,     4,     4
};


int adpcm_enc_deth;
int adpcm_enc_sh;         /* this comes from adaptive predictor */
int adpcm_enc_eh;

int adpcm_enc_qq2_code2_table[4] = {
  -7408,   -1616,   7408,  1616
};

int adpcm_enc_wh_code_table[4] = {
   798,   -214,    798,   -214
};


int adpcm_enc_dh, adpcm_enc_ih;
int adpcm_enc_nbh, adpcm_enc_szh;
int adpcm_enc_sph, adpcm_enc_ph, adpcm_enc_yh;

int adpcm_enc_delay_dhx[6];
int adpcm_enc_delay_bph[6];

int adpcm_enc_ah1, adpcm_enc_ah2;
int adpcm_enc_ph1, adpcm_enc_ph2;
int adpcm_enc_rh1, adpcm_enc_rh2;


/* G722 encode function two ints in, one 8 bit output */

/* put input samples in xin1 = first value, xin2 = second value */
/* returns il and ih stored together */


/* MAX: 1 */
int adpcm_enc_abs( int n )
{
  int m;


  if ( n >= 0 )
    m = n;
  else
    m = -n;

  return m;
}


/* MAX: 1 */
int adpcm_enc_fabs( int n )
{
  int f;


  if ( n >= 0 )
    f = n;
  else
    f = -n;

  return f;
}


int adpcm_enc_sin( int rad )
{
  int diff;
  int app = 0;
  int inc = 1;


  /* MAX dependent on rad's value, say 50 */
  _Pragma("loopbound min 0 max 0")
  while ( rad > 2 * PI ) {
    rad -= 2 * PI;
  }

  /* MAX dependent on rad's value, say 50 */
  _Pragma("loopbound min 0 max 1999")
  while ( rad < -2 * PI ) {
    rad += 2 * PI;
  }
  
  diff = rad;
  app = diff;
  diff = (diff * (-(rad*rad))) / ((2 * inc) * (2 * inc + 1));
  app = app + diff;
  inc++;

  /* REALLY: while(my_fabs(diff) >= 0.00001) { */
  /* MAX: 1000 */
  _Pragma("loopbound min 849 max 2424")
  while ( adpcm_enc_fabs( diff ) >= 1 ) {
    diff = (diff * (-(rad*rad))) / ((2 * inc) * (2 * inc + 1));
    app = app + diff;
    inc++;
  }

  return app;
}


int adpcm_enc_cos( int rad )
{
  return( adpcm_enc_sin( PI / 2 - rad ) );
}


/* MAX: 1 */
int adpcm_enc_encode( int xin1, int xin2 )
{
  int i;
  int *h_ptr, *tqmf_ptr, *tqmf_ptr1;
  long int xa, xb;
  int decis;


  /* transmit quadrature mirror filters implemented here */
  h_ptr = adpcm_enc_h;
  tqmf_ptr = adpcm_enc_tqmf;
  xa = (long)(*tqmf_ptr++) * (*h_ptr++);
  xb = (long)(*tqmf_ptr++) * (*h_ptr++);

  /* main multiply accumulate loop for samples and coefficients */
  /* MAX: 10 */
  _Pragma("loopbound min 10 max 10")
  for ( i = 0; i < 10; i++ ) {
    xa += (long)(*tqmf_ptr++) * (*h_ptr++);
    xb += (long)(*tqmf_ptr++) * (*h_ptr++);
  }
  
  /* final mult/accumulate */
  xa += (long)(*tqmf_ptr++) * (*h_ptr++);
  xb += (long)(*tqmf_ptr) * (*h_ptr++);

  /* update delay line tqmf */
  tqmf_ptr1 = tqmf_ptr - 2;
  /* MAX: 22 */
  _Pragma("loopbound min 22 max 22")
  for ( i = 0; i < 22; i++ ) {
    *tqmf_ptr-- = *tqmf_ptr1--;
  }
  
  *tqmf_ptr-- = xin1;
  *tqmf_ptr = xin2;

  /* scale outputs */
  adpcm_enc_xl = (xa + xb) >> 15;
  adpcm_enc_xh = (xa - xb) >> 15;

  /* end of quadrature mirror filter code */

  /* starting with lower sub band encoder */

  /* filtez - compute predictor output section - zero section */
  adpcm_enc_szl = adpcm_enc_filtez( adpcm_enc_delay_bpl, adpcm_enc_delay_dltx );

  /* filtep - compute predictor output signal (pole section) */
  adpcm_enc_spl = adpcm_enc_filtep( adpcm_enc_rlt1, adpcm_enc_al1, adpcm_enc_rlt2, adpcm_enc_al2 );

  /* compute the predictor output value in the lower sub_band encoder */
  adpcm_enc_sl = adpcm_enc_szl + adpcm_enc_spl;
  adpcm_enc_el = adpcm_enc_xl - adpcm_enc_sl;

  /* quantl: quantize the difference signal */
  adpcm_enc_il = adpcm_enc_quantl( adpcm_enc_el, adpcm_enc_detl );

  /* invqxl: computes quantized difference signal */
  /* for invqbl, truncate by 2 lsbs, so mode = 3 */
  adpcm_enc_dlt = ( (long) adpcm_enc_detl * adpcm_enc_qq4_code4_table[adpcm_enc_il >> 2] ) >> 15;

  /* logscl: updates logarithmic quant. scale factor in low sub band */
  adpcm_enc_nbl = adpcm_enc_logscl( adpcm_enc_il, adpcm_enc_nbl );

  /* scalel: compute the quantizer scale factor in the lower sub band */
  /* calling parameters nbl and 8 (constant such that scalel can be scaleh) */
  adpcm_enc_detl = adpcm_enc_scalel( adpcm_enc_nbl, 8 );

  /* parrec - simple addition to compute recontructed signal for adaptive pred */
  adpcm_enc_plt = adpcm_enc_dlt + adpcm_enc_szl;

  /* upzero: update zero section predictor coefficients (sixth order)*/
  /* calling parameters: dlt, dlt1, dlt2, ..., dlt6 from dlt */
  /*  bpli (linear_buffer in which all six values are delayed */
  /* return params:      updated bpli, delayed dltx */
  adpcm_enc_upzero( adpcm_enc_dlt, adpcm_enc_delay_dltx, adpcm_enc_delay_bpl );

  /* uppol2- update second predictor coefficient apl2 and delay it as al2 */
  /* calling parameters: al1, al2, plt, plt1, plt2 */
  adpcm_enc_al2 = adpcm_enc_uppol2( adpcm_enc_al1, adpcm_enc_al2, adpcm_enc_plt, adpcm_enc_plt1, adpcm_enc_plt2 );

  /* uppol1 :update first predictor coefficient apl1 and delay it as al1 */
  /* calling parameters: al1, apl2, plt, plt1 */
  adpcm_enc_al1 = adpcm_enc_uppol1( adpcm_enc_al1, adpcm_enc_al2, adpcm_enc_plt, adpcm_enc_plt1);

  /* recons : compute recontructed signal for adaptive predictor */
  adpcm_enc_rlt = adpcm_enc_sl + adpcm_enc_dlt;

  /* done with lower sub_band encoder; now implement delays for next time*/
  adpcm_enc_rlt2 = adpcm_enc_rlt1;
  adpcm_enc_rlt1 = adpcm_enc_rlt;
  adpcm_enc_plt2 = adpcm_enc_plt1;
  adpcm_enc_plt1 = adpcm_enc_plt;

  /* high band encode */

  adpcm_enc_szh = adpcm_enc_filtez( adpcm_enc_delay_bph, adpcm_enc_delay_dhx );

  adpcm_enc_sph = adpcm_enc_filtep( adpcm_enc_rh1, adpcm_enc_ah1, adpcm_enc_rh2, adpcm_enc_ah2 );

  /* predic: sh = sph + szh */
  adpcm_enc_sh = adpcm_enc_sph + adpcm_enc_szh;
  /* subtra: eh = xh - sh */
  adpcm_enc_eh = adpcm_enc_xh - adpcm_enc_sh;

  /* quanth - quantization of difference signal for higher sub-band */
  /* quanth: in-place for speed params: eh, deth (has init. value) */
  if ( adpcm_enc_eh >= 0 )
    adpcm_enc_ih = 3;     /* 2,3 are pos codes */
  else
    adpcm_enc_ih = 1;     /* 0,1 are neg codes */

  decis = ( 564L * (long)adpcm_enc_deth ) >> 12L;
  if ( adpcm_enc_abs( adpcm_enc_eh ) > decis )
    adpcm_enc_ih--;     /* mih = 2 case */

  /* invqah: compute the quantized difference signal, higher sub-band*/
  adpcm_enc_dh = ( (long)adpcm_enc_deth * adpcm_enc_qq2_code2_table[adpcm_enc_ih] ) >> 15L ;

  /* logsch: update logarithmic quantizer scale factor in hi sub-band*/
  adpcm_enc_nbh = adpcm_enc_logsch( adpcm_enc_ih, adpcm_enc_nbh );

  /* note : scalel and scaleh use same code, different parameters */
  adpcm_enc_deth = adpcm_enc_scalel( adpcm_enc_nbh, 10 );

  /* parrec - add pole predictor output to quantized diff. signal */
  adpcm_enc_ph = adpcm_enc_dh + adpcm_enc_szh;

  /* upzero: update zero section predictor coefficients (sixth order) */
  /* calling parameters: dh, dhi, bphi */
  /* return params: updated bphi, delayed dhx */
  adpcm_enc_upzero( adpcm_enc_dh, adpcm_enc_delay_dhx, adpcm_enc_delay_bph );

  /* uppol2: update second predictor coef aph2 and delay as ah2 */
  /* calling params: ah1, ah2, ph, ph1, ph2 */
  adpcm_enc_ah2 = adpcm_enc_uppol2( adpcm_enc_ah1, adpcm_enc_ah2, adpcm_enc_ph, adpcm_enc_ph1, adpcm_enc_ph2 );

  /* uppol1:  update first predictor coef. aph2 and delay it as ah1 */
  adpcm_enc_ah1 = adpcm_enc_uppol1( adpcm_enc_ah1, adpcm_enc_ah2, adpcm_enc_ph, adpcm_enc_ph1 );

  /* recons for higher sub-band */
  adpcm_enc_yh = adpcm_enc_sh + adpcm_enc_dh;

  /* done with higher sub-band encoder, now Delay for next time */
  adpcm_enc_rh2 = adpcm_enc_rh1;
  adpcm_enc_rh1 = adpcm_enc_yh;
  adpcm_enc_ph2 = adpcm_enc_ph1;
  adpcm_enc_ph1 = adpcm_enc_ph;

  /* multiplex ih and il to get signals together */
  return( adpcm_enc_il | (adpcm_enc_ih << 6) );
}


/* filtez - compute predictor output signal (zero section) */
/* input: bpl1-6 and dlt1-6, output: szl */
int adpcm_enc_filtez( int *bpl, int *dlt )
{
  int i;
  long int zl;


  zl = (long)(*bpl++) * (*dlt++);

  /* MAX: 5 */
  _Pragma("loopbound min 5 max 5")
  for ( i = 1; i < 6; i++ ) {
    zl += (long)(*bpl++) * (*dlt++);
  }

  return( (int)(zl >> 14) );   /* x2 here */
}


/* filtep - compute predictor output signal (pole section) */
/* input rlt1-2 and al1-2, output spl */
int adpcm_enc_filtep( int rlt1, int al1, int rlt2, int al2 )
{
  long int pl, pl2;


  pl = 2 * rlt1;
  pl = (long) al1 * pl;
  pl2 = 2 * rlt2;
  pl += (long) al2 * pl2;

  return( (int)(pl >> 15) );
}


/* quantl - quantize the difference signal in the lower sub-band */
int adpcm_enc_quantl( int el, int detl )
{
  int ril, mil;
  long int wd, decis;


  /* abs of difference signal */
  wd = adpcm_enc_abs( el );

  /* determine mil based on decision levels and detl gain */
  /* MAX: 30 */
  _Pragma("loopbound min 1 max 30")
  for ( mil = 0; mil < 30; mil++ ) {
    decis = (adpcm_enc_decis_levl[mil] * (long)detl) >> 15L;
    if ( wd <= decis )
      break;
  }

  /* if mil=30 then wd is less than all decision levels */
  if ( el >= 0 )
    ril = adpcm_enc_quant26bt_pos[mil];
  else
    ril = adpcm_enc_quant26bt_neg[mil];

  return( ril );
}


/* invqxl is either invqbl or invqal depending on parameters passed */
/* returns dlt, code table is pre-multiplied by 8 */

/*    int invqxl(int il,int detl,int *code_table,int mode) */
/*    { */
/*        long int dlt; */
/*       dlt = (long)detl*code_table[il >> (mode-1)]; */
/*        return((int)(dlt >> 15)); */
/*    } */

/* logscl - update log quantizer scale factor in lower sub-band */
/* note that nbl is passed and returned */
int adpcm_enc_logscl( int il, int nbl )
{
  long int wd;


  wd = ((long)nbl * 127L) >> 7L;   /* leak factor 127/128 */
  nbl = (int)wd + adpcm_enc_wl_code_table[il >> 2];

  if ( nbl < 0 )
    nbl = 0;
  if ( nbl > 18432 )
    nbl = 18432;

  return( nbl );
}


/* scalel: compute quantizer scale factor in lower or upper sub-band*/
int adpcm_enc_scalel( int nbl, int shift_constant )
{
  int wd1, wd2, wd3;


  wd1 = (nbl >> 6) & 31;
  wd2 = nbl >> 11;
  wd3 = adpcm_enc_ilb_table[wd1] >> (shift_constant + 1 - wd2);

  return( wd3 << 3 );
}


/* upzero - inputs: dlt, dlti[0-5], bli[0-5], outputs: updated bli[0-5] */
/* also implements delay of bli and update of dlti from dlt */
void adpcm_enc_upzero( int dlt, int *dlti, int *bli )
{
  int i, wd2, wd3;


  /*if dlt is zero, then no sum into bli */
  if ( dlt == 0 ) {
    _Pragma("loopbound min 6 max 6")    
    for ( i = 0; i < 6; i++ ) {
      bli[i] = (int)((255L * bli[i]) >> 8L); /* leak factor of 255/256 */
    }

  } else {
    _Pragma("loopbound min 6 max 6")
    for ( i = 0; i < 6; i++ ) {
      if ( (long)dlt * dlti[i] >= 0 )
        wd2 = 128;
      else
        wd2 = -128;

      wd3 = (int)((255L * bli[i]) >> 8L);    /* leak factor of 255/256 */
      bli[i] = wd2 + wd3;
    }
    
  }

  /* implement delay line for dlt */
  dlti[5] = dlti[4];
  dlti[4] = dlti[3];
  dlti[3] = dlti[2];
  dlti[1] = dlti[0];
  dlti[0] = dlt;

  return;
}


/* uppol2 - update second predictor coefficient (pole section) */
/* inputs: al1, al2, plt, plt1, plt2. outputs: apl2 */
int adpcm_enc_uppol2( int al1, int al2, int plt, int plt1, int plt2 )
{
  long int wd2, wd4;
  int apl2;


  wd2 = 4L * (long)al1;
  if ( (long)plt * plt1 >= 0L )
    wd2 = -wd2;    /* check same sign */
  wd2 = wd2 >> 7;		   /* gain of 1/128 */

  if ( (long)plt * plt2 >= 0L ) {
  wd4 = wd2 + 128;  	   /* same sign case */
  } else {
    wd4 = wd2 - 128;
  }
  apl2 = wd4 + (127L*(long)al2 >> 7L);  /* leak factor of 127/128 */

  /* apl2 is limited to +-.75 */
  if ( apl2 > 12288 )
    apl2 = 12288;
  if ( apl2 < -12288 )
    apl2 = -12288;

  return( apl2 );
}


/* uppol1 - update first predictor coefficient (pole section) */
/* inputs: al1, apl2, plt, plt1. outputs: apl1 */
int adpcm_enc_uppol1( int al1, int apl2, int plt, int plt1 )
{
  long int wd2;
  int wd3, apl1;


  wd2 = ((long)al1 * 255L) >> 8L;   /* leak factor of 255/256 */
  if ( (long)plt * plt1 >= 0L ) {
    apl1 = (int)wd2 + 192;	  /* same sign case */
  } else {
    apl1 = (int)wd2 - 192;
  }

  /* note: wd3= .9375-.75 is always positive */
  wd3 = 15360 - apl2;		  /* limit value */
  if ( apl1 > wd3 )
    apl1 = wd3;
  if ( apl1 < -wd3 )
    apl1 = -wd3;

  return( apl1 );
}


/* INVQAH: inverse adaptive quantizer for the higher sub-band */
/* returns dh, code table is pre-multiplied by 8 */
/*  int invqah(int ih,int deth) */
/*  { */
/*        long int rdh; */
/*        rdh = ((long)deth*qq2_code2_table[ih]) >> 15L ; */
/*        return((int)(rdh )); */
/*  } */


/* logsch - update log quantizer scale factor in higher sub-band */
/* note that nbh is passed and returned */
int adpcm_enc_logsch( int ih, int nbh )
{
  int wd;


  wd = ((long)nbh * 127L) >> 7L;       /* leak factor 127/128 */
  nbh = wd + adpcm_enc_wh_code_table[ih];

  if ( nbh < 0 )
    nbh = 0;
  if ( nbh > 22528 )
    nbh = 22528;

  return( nbh );
}


/*
  Initialization- and return-value-related functions
*/

/* clear all storage locations */

void adpcm_enc_reset(void)
{
  int i;

  adpcm_enc_detl = 32;   /* reset to min scale factor */
  adpcm_enc_deth = 8;
  adpcm_enc_nbl = adpcm_enc_al1 = adpcm_enc_al2 = adpcm_enc_plt1 = adpcm_enc_plt2 = adpcm_enc_rlt1 = adpcm_enc_rlt2 = 0;
  adpcm_enc_nbh = adpcm_enc_ah1 = adpcm_enc_ah2 = adpcm_enc_ph1 = adpcm_enc_ph2 = adpcm_enc_rh1 = adpcm_enc_rh2 = 0;

  _Pragma("loopbound min 6 max 6")
  for ( i = 0; i < 6; i++) {
    adpcm_enc_delay_dltx[i] = 0;
    adpcm_enc_delay_dhx[i] = 0;
  }

  _Pragma("loopbound min 6 max 6")
  for ( i = 0; i < 6; i++ ) {
    adpcm_enc_delay_bpl[i] = 0;
    adpcm_enc_delay_bph[i] = 0;
  }

  _Pragma("loopbound min 23 max 23")
  for ( i = 0; i < 23; i++ ) {
    adpcm_enc_tqmf[i] = 0;
  }

  return;
}


void adpcm_enc_init(void)
{
  int i, j, f;
  volatile int x = 0;
  
  /* reset, initialize required memory */
  adpcm_enc_reset();

  /* read in amplitude and frequency for test data */
  j = 10;
  f = 2000;

  /* 16 KHz sample rate */
  /* XXmain_0, MAX: 2 */
  /* Since the number of times we loop in my_sin depends on the argument we
     add the fact: xxmain_0:[]: */
  _Pragma("loopbound min 3 max 3")
  for ( i = 0 ; i < SIZE ; i++) {
    adpcm_enc_test_data[i] = (int) j * adpcm_enc_cos( f * PI * i );
    
    /* avoid constant-propagation optimizations */
    adpcm_enc_test_data[i] += x;
  }
}


int adpcm_enc_return(void)
{
  int i;
  int check_sum = 0;
  
  for ( i = 0 ; i < IN_END ; i += 2 ) {
    check_sum += adpcm_enc_compressed[i/2];
  }
  
  return check_sum != 385;
}


/*
  Main functions
*/

void _Pragma( "entrypoint" ) adpcm_enc_main(void)
{
  int i;
  /* MAX: 2 */
  _Pragma("loopbound min 2 max 2")
      for ( i = 0 ; i < IN_END ; i += 2 ) {
    adpcm_enc_compressed[i/2] = adpcm_enc_encode( adpcm_enc_test_data[i], adpcm_enc_test_data[i+1] );
  }
  
}

int main(int argc, char **argv)
{
	SET_UP
	for(jobsComplete=0; jobsComplete<maxJobs; jobsComplete++){
		START_LOOP
		adpcm_enc_init();
  		adpcm_enc_main();
  		STOP_LOOP
	}
	WRITE_TO_FILE
  return adpcm_enc_return();
}