summaryrefslogtreecommitdiffstats
path: root/SD-VBS/common/toolbox/toolbox_basic/spmtimesd.c
blob: a98dc0acc082f3208f72c47f993b61c5e26fd132 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/*================================================================
* spmtimesd.c
* This routine computes a sparse matrix times a diagonal matrix
* whose diagonal entries are stored in a full vector.
*
* Examples: 
*     spmtimesd(m,d,[]) = diag(d) * m,
*     spmtimesd(m,[],d) = m * diag(d)
*     spmtimesd(m,d1,d2) = diag(d1) * m * diag(d2)
*     m could be complex, but d is assumed real
*
* Stella X. Yu's first MEX function, Nov 9, 2001.

% test sequence:

m = 1000;
n = 2000;
a=sparse(rand(m,n));
d1 = rand(m,1);
d2 = rand(n,1);
tic; b=spmtimesd(a,d1,d2); toc
tic; bb = spdiags(d1,0,m,m) * a * spdiags(d2,0,n,n); toc
e = (bb-b);
max(abs(e(:)))

*=================================================================*/

# include "mex.h"

void mexFunction(
    int nargout,
    mxArray *out[],
    int nargin,
    const mxArray *in[]
)
{
    /* declare variables */
    int i, j, k, m, n, nzmax, cmplx, xm, yn;
    int *pir, *pjc, *qir, *qjc;
    double *x, *y, *pr, *pi, *qr, *qi;
    
    /* check argument */
    if (nargin != 3) {
        mexErrMsgTxt("Three input arguments required");
    }
    if (nargout>1) {
        mexErrMsgTxt("Too many output arguments.");
    }
    if (!(mxIsSparse(in[0]))) {
        mexErrMsgTxt("Input argument #1 must be of type sparse");
    }
    if ( mxIsSparse(in[1]) || mxIsSparse(in[2]) ) {
        mexErrMsgTxt("Input argument #2 & #3 must be of type full");
    }
  
    /* computation starts */
    m = mxGetM(in[0]);
    n = mxGetN(in[0]);
    pr = mxGetPr(in[0]);
    pi = mxGetPi(in[0]);
    pir = mxGetIr(in[0]);
    pjc = mxGetJc(in[0]);
 
    i = mxGetM(in[1]); 
    j = mxGetN(in[1]);
    xm = ((i>j)? i: j);

    i = mxGetM(in[2]); 
    j = mxGetN(in[2]);
    yn = ((i>j)? i: j);
   
    if ( xm>0 && xm != m) {
        mexErrMsgTxt("Row multiplication dimension mismatch.");
    }
    if ( yn>0 && yn != n) {
        mexErrMsgTxt("Column multiplication dimension mismatch.");
    }
    
 
    nzmax = mxGetNzmax(in[0]);
    cmplx = (pi==NULL ? 0 : 1);    
    out[0] = mxCreateSparse(m,n,nzmax,cmplx);
    if (out[0]==NULL) {
        mexErrMsgTxt("Not enough space for the output matrix.");
    }    
   
    qr = mxGetPr(out[0]);
    qi = mxGetPi(out[0]);
    qir = mxGetIr(out[0]);
    qjc = mxGetJc(out[0]);
    
    /* left multiplication */
    x = mxGetPr(in[1]);
    if (yn==0) {
        for (j=0; j<n; j++) {
            qjc[j] = pjc[j];
            for (k=pjc[j]; k<pjc[j+1]; k++) {
                i = pir[k];   
                qir[k] = i;
                 qr[k] = x[i] * pr[k];
                 if (cmplx) {
                     qi[k] = x[i] * pi[k];
                 }
            }
        }
        qjc[n] = k;
        return;
    }
    
    /* right multiplication */
    y = mxGetPr(in[2]);
    if (xm==0) {
        for (j=0; j<n; j++) {
            qjc[j] = pjc[j];
            for (k=pjc[j]; k<pjc[j+1]; k++) {
                qir[k] = pir[k];
                qr[k]  = pr[k] * y[j];
                if (cmplx) {
                    qi[k] = qi[k] * y[j];
                }
            }
       }
       qjc[n] = k;
       return;
   }
    
   /* both sides */
   for (j=0; j<n; j++) {
       qjc[j] = pjc[j];
       for (k=pjc[j]; k<pjc[j+1]; k++) {
           i = pir[k];
           qir[k]= i;
           qr[k] = x[i] * pr[k] * y[j];
           if (cmplx) {
               qi[k] = x[i] * qi[k] * y[j];      
           }
       }
       qjc[n] = k;
   }
   
}