1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
function [out,dout]=rodrigues(in)
% RODRIGUES Transform rotation matrix into rotation vector and viceversa.
%
% Sintax: [OUT]=RODRIGUES(IN)
% If IN is a 3x3 rotation matrix then OUT is the
% corresponding 3x1 rotation vector
% if IN is a rotation 3-vector then OUT is the
% corresponding 3x3 rotation matrix
%
%%
%% Copyright (c) March 1993 -- Pietro Perona
%% California Institute of Technology
%%
%% ALL CHECKED BY JEAN-YVES BOUGUET, October 1995.
%% FOR ALL JACOBIAN MATRICES !!! LOOK AT THE TEST AT THE END !!
%% BUG when norm(om)=pi fixed -- April 6th, 1997;
%% Jean-Yves Bouguet
[m,n] = size(in);
%bigeps = 10e+4*eps;
bigeps = 10e+20*eps;
if ((m==1) & (n==3)) | ((m==3) & (n==1)) %% it is a rotation vector
theta = norm(in);
if theta < eps
R = eye(3);
%if nargout > 1,
dRdin = [0 0 0;
0 0 1;
0 -1 0;
0 0 -1;
0 0 0;
1 0 0;
0 1 0;
-1 0 0;
0 0 0];
%end;
else
if n==length(in) in=in'; end; %% make it a column vec. if necess.
%m3 = [in,theta]
dm3din = [eye(3);in'/theta];
omega = in/theta;
%m2 = [omega;theta]
dm2dm3 = [eye(3)/theta -in/theta^2; zeros(1,3) 1];
alpha = cos(theta);
beta = sin(theta);
gamma = 1-cos(theta);
omegav=[[0 -omega(3) omega(2)];[omega(3) 0 -omega(1)];[-omega(2) omega(1) 0 ]];
A = omega*omega';
%m1 = [alpha;beta;gamma;omegav;A];
dm1dm2 = zeros(21,4);
dm1dm2(1,4) = -sin(theta);
dm1dm2(2,4) = cos(theta);
dm1dm2(3,4) = sin(theta);
dm1dm2(4:12,1:3) = [0 0 0 0 0 1 0 -1 0;
0 0 -1 0 0 0 1 0 0;
0 1 0 -1 0 0 0 0 0]';
w1 = omega(1);
w2 = omega(2);
w3 = omega(3);
dm1dm2(13:21,1) = [2*w1;w2;w3;w2;0;0;w3;0;0];
dm1dm2(13: 21,2) = [0;w1;0;w1;2*w2;w3;0;w3;0];
dm1dm2(13:21,3) = [0;0;w1;0;0;w2;w1;w2;2*w3];
R = eye(3)*alpha + omegav*beta + A*gamma;
dRdm1 = zeros(9,21);
dRdm1([1 5 9],1) = ones(3,1);
dRdm1(:,2) = omegav(:);
dRdm1(:,4:12) = beta*eye(9);
dRdm1(:,3) = A(:);
dRdm1(:,13:21) = gamma*eye(9);
dRdin = dRdm1 * dm1dm2 * dm2dm3 * dm3din;
end;
out = R;
dout = dRdin;
%% it is prob. a rot matr.
elseif ((m==n) & (m==3) & (norm(in' * in - eye(3)) < bigeps)...
& (abs(det(in)-1) < bigeps))
R = in;
tr = (trace(R)-1)/2;
dtrdR = [1 0 0 0 1 0 0 0 1]/2;
theta = real(acos(tr));
if sin(theta) >= 1e-5,
dthetadtr = -1/sqrt(1-tr^2);
dthetadR = dthetadtr * dtrdR;
% var1 = [vth;theta];
vth = 1/(2*sin(theta));
dvthdtheta = -vth*cos(theta)/sin(theta);
dvar1dtheta = [dvthdtheta;1];
dvar1dR = dvar1dtheta * dthetadR;
om1 = [R(3,2)-R(2,3), R(1,3)-R(3,1), R(2,1)-R(1,2)]';
dom1dR = [0 0 0 0 0 1 0 -1 0;
0 0 -1 0 0 0 1 0 0;
0 1 0 -1 0 0 0 0 0];
% var = [om1;vth;theta];
dvardR = [dom1dR;dvar1dR];
% var2 = [om;theta];
om = vth*om1;
domdvar = [vth*eye(3) om1 zeros(3,1)];
dthetadvar = [0 0 0 0 1];
dvar2dvar = [domdvar;dthetadvar];
out = om*theta;
domegadvar2 = [theta*eye(3) om];
dout = domegadvar2 * dvar2dvar * dvardR;
else
if tr > 0; % case norm(om)=0;
out = [0 0 0]';
dout = [0 0 0 0 0 1/2 0 -1/2 0;
0 0 -1/2 0 0 0 1/2 0 0;
0 1/2 0 -1/2 0 0 0 0 0];
else % case norm(om)=pi; %% fixed April 6th
out = theta * (sqrt((diag(R)+1)/2).*[1;2*(R(1,2:3)>=0)'-1]);
%keyboard;
if nargout > 1,
fprintf(1,'WARNING!!!! Jacobian domdR undefined!!!\n');
dout = NaN*ones(3,9);
end;
end;
end;
else
error('Neither a rotation matrix nor a rotation vector were provided');
end;
return;
%% test of the Jacobians:
%%%% TEST OF dRdom:
om = randn(3,1);
dom = randn(3,1)/1000000;
[R1,dR1] = rodrigues(om);
R2 = rodrigues(om+dom);
R2a = R1 + reshape(dR1 * dom,3,3);
gain = norm(R2 - R1)/norm(R2 - R2a)
%%% TEST OF dOmdR:
om = randn(3,1);
R = rodrigues(om);
dom = randn(3,1)/10000;
dR = rodrigues(om+dom) - R;
[omc,domdR] = rodrigues(R);
[om2] = rodrigues(R+dR);
om_app = omc + domdR*dR(:);
gain = norm(om2 - omc)/norm(om2 - om_app)
%%% OTHER BUG: (FIXED NOW!!!)
omu = randn(3,1);
omu = omu/norm(omu)
om = pi*omu;
[R,dR]= rodrigues(om);
[om2] = rodrigues(R);
[om om2]
%%% NORMAL OPERATION
om = randn(3,1);
[R,dR]= rodrigues(om);
[om2] = rodrigues(R);
[om om2]
|