1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
/********************************
Author: Sravanthi Kota Venkata
********************************/
#include "tracking.h"
/** Find the position and values of the top N_FEA features
from the lambda matrix **/
F2D* fillFeatures(F2D* lambda, int N_FEA, int win)
{
int i, j, k, l;
int rows = lambda->height;
int cols = lambda->width;
F2D* features;
features = fSetArray(3, N_FEA, 0);
/** init array **/
for(i=0; i<N_FEA; i++)
{
subsref(features, 0, i) = -1.0;
subsref(features, 1, i) = -1.0;
subsref(features, 2, i) = 0.0;
}
/**
Find top N_FEA values and store them in
features array along with row and col information
It should be possible to make this algorithm better
if we use a pointer-based data structure,
but have not implemented due to MATLAB compatibility
**/
for (i=win; i<rows-win; i++)
{
for (j=win; j<cols-win; j++)
{
float currLambdaVal = subsref(lambda,i,j);
if (subsref(features, 2, N_FEA-1) > currLambdaVal)
continue;
for (k=0; k<N_FEA; k++)
{
if (subsref(features, 2, k) < currLambdaVal)
{
/** shift one slot **/
for (l=N_FEA-1; l>k; l--)
{
subsref(features, 0, l) = subsref(features, 0, l-1);
subsref(features, 1, l) = subsref(features, 1, l-1);
subsref(features, 2, l) = subsref(features, 2, l-1);
}
subsref(features, 0, k) = j * 1.0;
subsref(features, 1, k) = i * 1.0;
subsref(features, 2, k) = currLambdaVal;
break;
}
}
}
}
return features;
}
|