1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
function [a,b,e,ret]=takeStep(i, j, a1, C, e1, Y, X, eps, b1, N, dim)
a = a1;
e = e1;
b = b1;
ret = 1;
if i == j
ret =0;
end
if( ret ~= 0)
%variable initialization%
a_old = a;
if a_old(i,1) > 0 && a_old(i,1) < C
Ei = e(i,1);
else
Ei = cal_learned_func(i, a, b, N, Y, X, dim) - Y(i,1);
end
if a_old(j,1) > 0 && a_old(j,1) < C
Ej = e(j,1);
else
Ej = cal_learned_func(j, a, b, N, Y, X, dim) - Y(j,1);
end
s = Y(i,1) * Y(j,1);
%Compute L, H%
if Y(i,1) == Y(j,1)
gamma = a_old(i,1) + a_old(j,1);
if gamma > C
L = gamma-C;
H = C;
else
L = 0;
H = gamma;
end
else
gamma = a_old(i,1) - a_old(j,1);
if gamma > 0
L = 0;
H = C - gamma;
else
L = -gamma;
H = C;
end
end
if L == H
ret=0;
end
end
if(ret ~=0)
% %Compute eta
k11 = polynomial(3,X(i,:), X(i,:), dim);
k12 = polynomial(3,X(i,:), X(j,:), dim);
k22 = polynomial(3,X(j,:), X(j,:), dim);
eta = 2 * k12 - k11 - k22;
if eta < 0
a(j,1) = a_old(j,1) + Y(j,1) * (Ej - Ei) / eta;
if a(j,1) < L
a(j,1) = L;
elseif a(j,1) > H
a(j,1) = H;
end
else
%Compute Lobj, Hobj: objective function at a2=L, a2=H 22di
c1 = eta/2;
c2 = Y(j,1) * (Ei-Ej)- eta * a_old(j,1);
Lobj = c1 * L * L + c2 * L;
Hobj = c1 * H * H + c2 * H;
if (Lobj > Hobj+eps)
a(j,1) = L;
elseif (Lobj < Hobj-eps)
a(j,1) = H;
else
a(j,1) = a_old(j,1);
end
end
end
if( ret~= 0)
if abs(a(j,1)-a_old(j,1)) < eps*(a(j,1)+a_old(j,1)+eps)
ret=0;
else
a(i,1) = a_old(i,1) - s * (a(j,1) - a_old(j,1));
if a(i,1) < 0
a(j,1) = a(j,1) + s * a(i,1);
a(i,1) = 0;
elseif a(i,1) > C
t = a(i,1)-C;
a(j,1) = a(j,1) + s * t;
a(i,1) = C;
end
%Update threshold to reect change in Lagrange multipliers
if a(i,1) > 0 && a(i,1) < C
bnew = b + Ei + Y(i,1) * (a(i,1) - a_old(i,1)) * k11 + Y(j,1) * (a(j,1) - a_old(j,1)) * k12;
else
if a(j,1) > 0 && a(j,1) < C
bnew = b + Ej + Y(i,1) * (a(i,1) - a_old(i,1)) * k12 + Y(j,1) * (a(j,1) - a_old(j,1)) * k22;
else
b1 = b + Ei + Y(i,1) * (a(i,1) - a_old(i,1)) * k11 + Y(j,1) * (a(j,1) - a_old(j,1)) * k12;
b2 = b + Ej + Y(i,1) * (a(i,1) - a_old(i,1)) * k12 + Y(j,1) * (a(j,1) - a_old(j,1)) * k22;
bnew = (b1 + b2) / 2;
end
end
delta_b = bnew - b;
b = bnew;
%Update error cache using new Lagrange multipliers 24ai
t1 = Y(i,1) * (a(i,1)-a_old(i,1));
t2 = Y(j,1) * (a(j,1)-a_old(j,1));
for k=1:N
if 0 < a_old(i,1) && a_old(i,1) < C
e(k,1) = e(k,1)+t1 * polynomial(3,X(i,:),X(k,:),dim) + t2 * polynomial(3,X(j,:),X(k,:),dim) - delta_b;
e(i,1) = 0;
e(j,1) = 0;
end
end
ret = 1;
end
end
end
|