summaryrefslogtreecommitdiffstats
path: root/SD-VBS/benchmarks/pca/src/pca.c
blob: 4637e7ca6d84aedcc41573ee799269a33b952064 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
/***********************  Contents  ****************************************
 * Principal Components Analysis: C, 638 lines. ****************************
 * Sample input data set (final 36 lines). *********************************
 ***************************************************************************
 */

/*********************************/
/* Principal Components Analysis */
/*********************************/

/*********************************************************************/
/* Principal Components Analysis or the Karhunen-Loeve expansion is a
   classical method for dimensionality reduction or exploratory data
   analysis.  One reference among many is: F. Murtagh and A. Heck,
   Multivariate Data Analysis, Kluwer Academic, Dordrecht, 1987.

Author:
F. Murtagh
Phone:        + 49 89 32006298 (work)
+ 49 89 965307 (home)
Earn/Bitnet:  fionn@dgaeso51,  fim@dgaipp1s,  murtagh@stsci
Span:         esomc1::fionn
Internet:     murtagh@scivax.stsci.edu

F. Murtagh, Munich, 6 June 1989                                   */   
/*********************************************************************/

#include <stdio.h>
#include <string.h>
#include <math.h>

#define SIGN(a, b) ( (b) < 0 ? -fabs(a) : fabs(a) )

main(argc, argv)
  int argc;
  char *argv[];

{
  FILE *stream;
  int  n, m,  i, j, k, k2;
  float **data, **matrix(), **symmat, **symmat2, *vector(), *evals, *interm;
  void free_matrix(), free_vector(), corcol(), covcol(), scpcol();
  void tred2(), tqli();
  float in_value;
  char option, *strncpy();

  /*********************************************************************
    Get from command line:
    input data file name, #rows, #cols, option.

    Open input file: fopen opens the file whose name is stored in the
    pointer argv[argc-1]; if unsuccessful, error message is printed to
    stderr.
   *********************************************************************/

  if (argc !=  5)
  {
    printf("Syntax help: PCA filename #rows #cols option\n\n");
    printf("(filename -- give full path name,\n");
    printf(" #rows                          \n");
    printf(" #cols    -- integer values,\n");                  
    printf(" option   -- R (recommended) for correlation analysis,\n");
    printf("             V for variance/covariance analysis\n");
    printf("             S for SSCP analysis.)\n");
    exit(1);
  }

  n = atoi(argv[2]);              /* # rows */
  m = atoi(argv[3]);              /* # columns */
  strncpy(&option,argv[4],1);     /* Analysis option */

  printf("No. of rows: %d, no. of columns: %d.\n",n,m);
  printf("Input file: %s.\n",argv[1]);

  if ((stream = fopen(argv[1],"r")) == NULL)
  {
    fprintf(stderr, "Program %s : cannot open file %s\n",
        argv[0], argv[1]);
    fprintf(stderr, "Exiting to system.");
    exit(1);
    /* Note: in versions of DOS prior to 3.0, argv[0] contains the
       string "C". */
  }

  /* Now read in data. */

  data = matrix(n, m);  /* Storage allocation for input data */

  for (i = 1; i <= n; i++)
  {
    for (j = 1; j <= m; j++)
    {
      fscanf(stream, "%f", &in_value);
      data[i][j] = in_value;
      printf("at row %d column %d is %lf\n",i,j,data[i][j]);
    }
  }



  /* Check on (part of) input data.
     for (i = 1; i <= 18; i++) {for (j = 1; j <= 8; j++)  {
     printf("%7.1f", data[i][j]);  }  printf("\n");  }
     */



  symmat = matrix(m, m);  /* Allocation of correlation (etc.) matrix */

  /* Look at analysis option; branch in accordance with this. */

  switch(option)
  {
    case 'R':
    case 'r':
      printf("Analysis of correlations chosen.\n");
      corcol(data, n, m, symmat);

      /* Output correlation matrix.
         for (i = 1; i <= m; i++) {
         for (j = 1; j <= 8; j++)  {
         printf("%7.4f", symmat[i][j]);  }
         printf("\n");  }
         */
      break;
    case 'V':
    case 'v':
      printf("Analysis of variances-covariances chosen.\n");
      covcol(data, n, m, symmat);

      /* Output variance-covariance matrix.
         for (i = 1; i <= m; i++) {
         for (j = 1; j <= 8; j++)  {
         printf("%7.1f", symmat[i][j]);  }
         printf("\n");  }
         */
      break;
    case 'S':
    case 's':
      printf("Analysis of sums-of-squares-cross-products");
      printf(" matrix chosen.\n");
      scpcol(data, n, m, symmat);

      /* Output SSCP matrix.
         for (i = 1; i <= m; i++) {
         for (j = 1; j <= 8; j++)  {
         printf("%7.1f", symmat[i][j]);  }
         printf("\n");  }
         */
      break;
    default:
      printf("Option: %s\n",option);
      printf("For option, please type R, V, or S\n");
      printf("(upper or lower case).\n");
      printf("Exiting to system.\n");
      exit(1);
      break;
  }

  /*********************************************************************
    Eigen-reduction
   **********************************************************************/

  /* Allocate storage for dummy and new vectors. */
  evals = vector(m);     /* Storage alloc. for vector of eigenvalues */
  printf("the vector storage size is %d\n",m);
  interm = vector(m);    /* Storage alloc. for 'intermediate' vector */
  symmat2 = matrix(m, m);  /* Duplicate of correlation (etc.) matrix */
  for (i = 1; i <= m; i++) {
    for (j = 1; j <= m; j++) {
      symmat2[i][j] = symmat[i][j]; /* Needed below for col. projections */
    }
  }
  tred2(symmat, m, evals, interm);  /* Triangular decomposition */
  printf("eval value at 0 is %lf\n",evals[0]);
  printf("eval value at 1 is %lf\n",evals[1]);
  printf("eval value at 2 is %lf\n",evals[2]);

  printf("m/height is %lf \n",m);

  printf("m/height is %d \n",m);
  printf("m/height is %d \n",n);
  printf("m/height is %d \n",n);


  tqli(evals, interm, m, symmat);   /* Reduction of sym. trid. matrix */
  /* evals now contains the eigenvalues,
     columns of symmat now contain the associated eigenvectors. */

  printf("\nEigenvalues:\n");
  for (j = m; j >= 1; j--) {
    printf("%18.5f\n", evals[j]); }
  printf("\n(Eigenvalues should be strictly positive; limited\n");
  printf("precision machine arithmetic may affect this.\n");
  printf("Eigenvalues are often expressed as cumulative\n");
  printf("percentages, representing the 'percentage variance\n");
  printf("explained' by the associated axis or principal component.)\n");

  printf("\nEigenvectors:\n");
  printf("(First three; their definition in terms of original vbes.)\n");
  for (j = 1; j <= m; j++) {
    for (i = 1; i <= 3; i++)  {
      printf("%12.4f", symmat[j][m-i+1]);  }
    printf("\n");  }




  /* Form projections of row-points on first three prin. components. */
  /* Store in 'data', overwriting original data. */
  for (i = 1; i <= n; i++) {
    for (j = 1; j <= m; j++) {
      interm[j] = data[i][j];
     printf("Iteration i=%d j=%d data = %lf\n\n", i,j,data[i][j]);

    }   
    for (k = 1; k <= 3; k++) {
      data[i][k] = 0.0;
      for (k2 = 1; k2 <= m; k2++) {
        data[i][k] += interm[k2] * symmat[k2][m-k+1]; 
     printf("Iteration i= %d, j = %d k=%d, k2=%d : data = %lf\n",i,j,k, k2,data[i][k]);

      }
     printf("\n");

    }
  }











  printf("\nProjections of row-points on first 3 prin. comps.:\n");
  for (i = 1; i <= n; i++) {
    for (j = 1; j <= 3; j++)  {
      printf("%12.4f", data[i][j]);  }
    printf("\n");  }
return;

  /* Form projections of col.-points on first three prin. components. */
  /* Store in 'symmat2', overwriting what was stored in this. */
  for (j = 1; j <= m; j++) {
    for (k = 1; k <= m; k++) {
      interm[k] = symmat2[j][k]; }  /*symmat2[j][k] will be overwritten*/
    for (i = 1; i <= 3; i++) {
      symmat2[j][i] = 0.0;
      for (k2 = 1; k2 <= m; k2++) {
        symmat2[j][i] += interm[k2] * symmat[k2][m-i+1]; }
      if (evals[m-i+1] > 0.0005)   /* Guard against zero eigenvalue */
        symmat2[j][i] /= sqrt(evals[m-i+1]);   /* Rescale */
      else
        symmat2[j][i] = 0.0;    /* Standard kludge */
    }
  }

  printf("\nProjections of column-points on first 3 prin. comps.:\n");
  for (j = 1; j <= m; j++) {
    for (k = 1; k <= 3; k++)  {
      printf("%12.4f", symmat2[j][k]);  }
    printf("\n");  }

  free_matrix(data, n, m);
  free_matrix(symmat, m, m);
  free_matrix(symmat2, m, m);
  free_vector(evals, m);
  free_vector(interm, m);

}

/**  Correlation matrix: creation  ***********************************/

void corcol(data, n, m, symmat)
  float **data, **symmat;
  int n, m;
  /* Create m * m correlation matrix from given n * m data matrix. */
{
  float eps = 0.005;
  float x, *mean, *stddev, *vector();
  int i, j, j1, j2;

  /* Allocate storage for mean and std. dev. vectors */

  mean = vector(m);
  stddev = vector(m);

  /* Determine mean of column vectors of input data matrix */

  for (j = 1; j <= m; j++)
  {
    mean[j] = 0.0;
    for (i = 1; i <= n; i++)
    {
      mean[j] += data[i][j];
    }
    mean[j] /= (float)n;
  }

  printf("\nMeans of column vectors:\n");
  for (j = 1; j <= m; j++)  {
    printf("%7.1f",mean[j]);  }   printf("\n");

  /* Determine standard deviations of column vectors of data matrix. */

  for (j = 1; j <= m; j++)
  {
    stddev[j] = 0.0;
    for (i = 1; i <= n; i++)
    {
      stddev[j] += (   ( data[i][j] - mean[j] ) *
          ( data[i][j] - mean[j] )  );
    }
    stddev[j] /= (float)n;
    stddev[j] = sqrt(stddev[j]);
    /* The following in an inelegant but usual way to handle
       near-zero std. dev. values, which below would cause a zero-
       divide. */
    if (stddev[j] <= eps) stddev[j] = 1.0;
  }

  printf("\nStandard deviations of columns:\n");
  for (j = 1; j <= m; j++) { printf("%7.1f", stddev[j]); }
  printf("\n");

  /* Center and reduce the column vectors. */

  for (i = 1; i <= n; i++)
  {
    for (j = 1; j <= m; j++)
    {
      data[i][j] -= mean[j];
      x = sqrt((float)n);
      x *= stddev[j];
      data[i][j] /= x;
      printf("value is %lf\n",data[i][j]);
    }
  }

  /* Calculate the m * m correlation matrix. */
  for (j1 = 1; j1 <= m-1; j1++)
  {
    symmat[j1][j1] = 1.0;
    for (j2 = j1+1; j2 <= m; j2++)
    {
      symmat[j1][j2] = 0.0;
      for (i = 1; i <= n; i++)
      {
        symmat[j1][j2] += ( data[i][j1] * data[i][j2]);
          printf("multiplying values [%d][%d] * [%d][%d]\n",i,j1,i,j2);
          printf("Multiplying %lf and %lf\n",data[i][j1],data[i][j2]);

          printf("Value at %d %d = %lf\n",j1,j2,symmat[j1][j2]);
      }
      printf("**SPLIT**\n");
      printf("swapping [%d] [%d] = [%d] [%d]\n",j2,j1, j1,j2);

      symmat[j2][j1] = symmat[j1][j2];
    }
  }
  symmat[m][m] = 1.0;


  return;

}

/**  Variance-covariance matrix: creation  *****************************/

void covcol(data, n, m, symmat)
  float **data, **symmat;
  int n, m;
  /* Create m * m covariance matrix from given n * m data matrix. */
{
  float *mean, *vector();
  int i, j, j1, j2;

  /* Allocate storage for mean vector */

  mean = vector(m);

  /* Determine mean of column vectors of input data matrix */

  for (j = 1; j <= m; j++)
  {
    mean[j] = 0.0;
    for (i = 1; i <= n; i++)
    {
      mean[j] += data[i][j];
    }
    mean[j] /= (float)n;
  }

  printf("\nMeans of column vectors:\n");
  for (j = 1; j <= m; j++)  {
    printf("%7.1f",mean[j]);  }   printf("\n");

  /* Center the column vectors. */

  for (i = 1; i <= n; i++)
  {
    for (j = 1; j <= m; j++)
    {
      data[i][j] -= mean[j];
    }
  }

  /* Calculate the m * m covariance matrix. */
  for (j1 = 1; j1 <= m; j1++)
  {
    for (j2 = j1; j2 <= m; j2++)
    {
      symmat[j1][j2] = 0.0;
      for (i = 1; i <= n; i++)
      {
        symmat[j1][j2] += data[i][j1] * data[i][j2];
      }
      symmat[j2][j1] = symmat[j1][j2];
    }
  }

  return;

}

/**  Sums-of-squares-and-cross-products matrix: creation  **************/

void scpcol(data, n, m, symmat)
  float **data, **symmat;
  int n, m;
  /* Create m * m sums-of-cross-products matrix from n * m data matrix. */
{
  int i, j1, j2;

  /* Calculate the m * m sums-of-squares-and-cross-products matrix. */

  for (j1 = 1; j1 <= m; j1++)
  {
    for (j2 = j1; j2 <= m; j2++)
    {
      symmat[j1][j2] = 0.0;
      for (i = 1; i <= n; i++)
      {
        symmat[j1][j2] += data[i][j1] * data[i][j2];
      }
      symmat[j2][j1] = symmat[j1][j2];
    }
  }

  return;

}

/**  Error handler  **************************************************/

void erhand(err_msg)
  char err_msg[];
  /* Error handler */
{
  fprintf(stderr,"Run-time error:\n");
  fprintf(stderr,"%s\n", err_msg);
  fprintf(stderr,"Exiting to system.\n");
  exit(1);
}

/**  Allocation of vector storage  ***********************************/

float *vector(n)
  int n;
  /* Allocates a float vector with range [1..n]. */
{

  float *v;

  v = (float *) malloc ((unsigned) n*sizeof(float));
  if (!v) erhand("Allocation failure in vector().");
  return v-1;

}

/**  Allocation of float matrix storage  *****************************/

float **matrix(n,m)
  int n, m;
  /* Allocate a float matrix with range [1..n][1..m]. */
{
  int i;
  float **mat;

  /* Allocate pointers to rows. */
  mat = (float **) malloc((unsigned) (n)*sizeof(float*));
  if (!mat) erhand("Allocation failure 1 in matrix().");
  mat -= 1;

  /* Allocate rows and set pointers to them. */
  for (i = 1; i <= n; i++)
  {
    mat[i] = (float *) malloc((unsigned) (m)*sizeof(float));
    if (!mat[i]) erhand("Allocation failure 2 in matrix().");
    mat[i] -= 1;
  }

  /* Return pointer to array of pointers to rows. */
  return mat;

}

/**  Deallocate vector storage  *********************************/

void free_vector(v,n)
  float *v;
  int n;
  /* Free a float vector allocated by vector(). */
{
  free((char*) (v+1));
}

/**  Deallocate float matrix storage  ***************************/

void free_matrix(mat,n,m)
  float **mat;
  int n, m;
  /* Free a float matrix allocated by matrix(). */
{
  int i;

  for (i = n; i >= 1; i--)
  {
    free ((char*) (mat[i]+1));
  }
  free ((char*) (mat+1));
}

/**  Reduce a real, symmetric matrix to a symmetric, tridiag. matrix. */

void tred2(a, n, d, e)
  float **a, *d, *e;
  /* float **a, d[], e[]; */
  int n;
  /* Householder reduction of matrix a to tridiagonal form.
Algorithm: Martin et al., Num. Math. 11, 181-195, 1968.
Ref: Smith et al., Matrix Eigensystem Routines -- EISPACK Guide
Springer-Verlag, 1976, pp. 489-494.
W H Press et al., Numerical Recipes in C, Cambridge U P,
1988, pp. 373-374.  */
{
  int l, k, j, i;
  float scale, hh, h, g, f;

  for (i = n; i >= 2; i--)
  {
    l = i - 1;
    h = scale = 0.0;
    if (l > 1)
    {
      for (k = 1; k <= l; k++)
        scale += fabs(a[i][k]);
      if (scale == 0.0)
        e[i] = a[i][l];
      else
      {
        for (k = 1; k <= l; k++)
        {
          a[i][k] /= scale;
          h += a[i][k] * a[i][k];
        }
        f = a[i][l];
        g = f>0 ? -sqrt(h) : sqrt(h);
        e[i] = scale * g;
        h -= f * g;
        a[i][l] = f - g;
        f = 0.0;
        for (j = 1; j <= l; j++)
        {
          a[j][i] = a[i][j]/h;
          g = 0.0;
          for (k = 1; k <= j; k++)
            g += a[j][k] * a[i][k];
          for (k = j+1; k <= l; k++)
            g += a[k][j] * a[i][k];
          e[j] = g / h;
          f += e[j] * a[i][j];
        }
        hh = f / (h + h);
        for (j = 1; j <= l; j++)
        {
          f = a[i][j];
          e[j] = g = e[j] - hh * f;
          for (k = 1; k <= j; k++)
            a[j][k] -= (f * e[k] + g * a[i][k]);
        }
      }
    }
    else
      e[i] = a[i][l];
    d[i] = h;
  }
  d[1] = 0.0;
  e[1] = 0.0;
  for (i = 1; i <= n; i++)
  {
    l = i - 1;
    if (d[i])
    {
      for (j = 1; j <= l; j++)
      {
        g = 0.0;
        for (k = 1; k <= l; k++)
          g += a[i][k] * a[k][j];
        for (k = 1; k <= l; k++)
          a[k][j] -= g * a[k][i];
      }
    }
    d[i] = a[i][i];
    a[i][i] = 1.0;
    for (j = 1; j <= l; j++)
      a[j][i] = a[i][j] = 0.0;
  }
}

/**  Tridiagonal QL algorithm -- Implicit  **********************/

void tqli(d, e, n, z)
  float d[], e[], **z;
  int n;
{
  int m, l, iter, i, k;
  float s, r, p, g, f, dd, c, b;
  void erhand();

  for (i = 2; i <= n; i++)
    e[i-1] = e[i];
  e[n] = 0.0;
  for (l = 1; l <= n; l++)
  {
    iter = 0;
    do
    {
      for (m = l; m <= n-1; m++)
      {
        dd = fabs(d[m]) + fabs(d[m+1]);
        if (fabs(e[m]) + dd == dd) break;
      }
      if (m != l)
      {
        if (iter++ == 30) erhand("No convergence in TLQI.");
        g = (d[l+1] - d[l]) / (2.0 * e[l]);
        r = sqrt((g * g) + 1.0);
        g = d[m] - d[l] + e[l] / (g + SIGN(r, g));
        s = c = 1.0;
        p = 0.0;
        for (i = m-1; i >= l; i--)
        {
          f = s * e[i];
          b = c * e[i];
          if (fabs(f) >= fabs(g))
          {
            c = g / f;
            r = sqrt((c * c) + 1.0);
            e[i+1] = f * r;
            c *= (s = 1.0/r);
          }
          else
          {
            s = f / g;
            r = sqrt((s * s) + 1.0);
            e[i+1] = g * r;
            s *= (c = 1.0/r);
          }
          g = d[i+1] - p;
          r = (d[i] - g) * s + 2.0 * c * b;
          p = s * r;
          d[i+1] = g + p;
          g = c * r - b;
          for (k = 1; k <= n; k++)
          {
            f = z[k][i+1];
            z[k][i+1] = s * z[k][i] + c * f;
            z[k][i] = c * z[k][i] - s * f;
          }
        }
        d[l] = d[l] - p;
        e[l] = g;
        e[m] = 0.0;
      }
    }  while (m != l);
  }
}