diff options
Diffstat (limited to 'all_pairs/source/susan/susan.c')
-rw-r--r-- | all_pairs/source/susan/susan.c | 2014 |
1 files changed, 2014 insertions, 0 deletions
diff --git a/all_pairs/source/susan/susan.c b/all_pairs/source/susan/susan.c new file mode 100644 index 0000000..fb990b1 --- /dev/null +++ b/all_pairs/source/susan/susan.c | |||
@@ -0,0 +1,2014 @@ | |||
1 | /**********************************************************************\ | ||
2 | |||
3 | SUSAN Version 2l by Stephen Smith | ||
4 | Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, | ||
5 | Department of Clinical Neurology, Oxford University, Oxford, UK | ||
6 | (Previously in Computer Vision and Image Processing Group - now | ||
7 | Computer Vision and Electro Optics Group - DERA Chertsey, UK) | ||
8 | Email: steve@fmrib.ox.ac.uk | ||
9 | WWW: http://www.fmrib.ox.ac.uk/~steve | ||
10 | |||
11 | (C) Crown Copyright (1995-1999), Defence Evaluation and Research Agency, | ||
12 | Farnborough, Hampshire, GU14 6TD, UK | ||
13 | DERA WWW site: | ||
14 | http://www.dera.gov.uk/ | ||
15 | DERA Computer Vision and Electro Optics Group WWW site: | ||
16 | http://www.dera.gov.uk/imageprocessing/dera/group_home.html | ||
17 | DERA Computer Vision and Electro Optics Group point of contact: | ||
18 | Dr. John Savage, jtsavage@dera.gov.uk, +44 1344 633203 | ||
19 | |||
20 | A UK patent has been granted: "Method for digitally processing | ||
21 | images to determine the position of edges and/or corners therein for | ||
22 | guidance of unmanned vehicle", UK Patent 2272285. Proprietor: | ||
23 | Secretary of State for Defence, UK. 15 January 1997 | ||
24 | |||
25 | This code is issued for research purposes only and remains the | ||
26 | property of the UK Secretary of State for Defence. This code must | ||
27 | not be passed on without this header information being kept | ||
28 | intact. This code must not be sold. | ||
29 | |||
30 | \**********************************************************************/ | ||
31 | |||
32 | /**********************************************************************\ | ||
33 | |||
34 | SUSAN Version 2l | ||
35 | SUSAN = Smallest Univalue Segment Assimilating Nucleus | ||
36 | |||
37 | Email: steve@fmrib.ox.ac.uk | ||
38 | WWW: http://www.fmrib.ox.ac.uk/~steve | ||
39 | |||
40 | Related paper: | ||
41 | @article{Smith97, | ||
42 | author = "Smith, S.M. and Brady, J.M.", | ||
43 | title = "{SUSAN} - A New Approach to Low Level Image Processing", | ||
44 | journal = "Int. Journal of Computer Vision", | ||
45 | pages = "45--78", | ||
46 | volume = "23", | ||
47 | number = "1", | ||
48 | month = "May", | ||
49 | year = 1997} | ||
50 | |||
51 | To be registered for automatic (bug) updates of SUSAN, send an email. | ||
52 | |||
53 | Compile with: | ||
54 | gcc -O4 -o susan susan2l.c -lm | ||
55 | |||
56 | See following section for different machine information. Please | ||
57 | report any bugs (and fixes). There are a few optional changes that | ||
58 | can be made in the "defines" section which follows shortly. | ||
59 | |||
60 | Usage: type "susan" to get usage. Only PGM format files can be input | ||
61 | and output. Utilities such as the netpbm package and XV can be used | ||
62 | to convert to and from other formats. Any size of image can be | ||
63 | processed. | ||
64 | |||
65 | This code is written using an emacs folding mode, making moving | ||
66 | around the different sections very easy. This is why there are | ||
67 | various marks within comments and why comments are indented. | ||
68 | |||
69 | |||
70 | SUSAN QUICK: | ||
71 | |||
72 | This version of the SUSAN corner finder does not do all the | ||
73 | false-corner suppression and thus is faster and produced some false | ||
74 | positives, particularly on strong edges. However, because there are | ||
75 | less stages involving thresholds etc., the corners that are | ||
76 | correctly reported are usually more stable than those reported with | ||
77 | the full algorithm. Thus I recommend at least TRYING this algorithm | ||
78 | for applications where stability is important, e.g., tracking. | ||
79 | |||
80 | THRESHOLDS: | ||
81 | |||
82 | There are two thresholds which can be set at run-time. These are the | ||
83 | brightness threshold (t) and the distance threshold (d). | ||
84 | |||
85 | SPATIAL CONTROL: d | ||
86 | |||
87 | In SUSAN smoothing d controls the size of the Gaussian mask; its | ||
88 | default is 4.0. Increasing d gives more smoothing. In edge finding, | ||
89 | a fixed flat mask is used, either 37 pixels arranged in a "circle" | ||
90 | (default), or a 3 by 3 mask which gives finer detail. In corner | ||
91 | finding, only the larger 37 pixel mask is used; d is not | ||
92 | variable. In smoothing, the flat 3 by 3 mask can be used instead of | ||
93 | a larger Gaussian mask; this gives low smoothing and fast operation. | ||
94 | |||
95 | BRIGHTNESS CONTROL: t | ||
96 | |||
97 | In all three algorithms, t can be varied (default=20); this is the | ||
98 | main threshold to be varied. It determines the maximum difference in | ||
99 | greylevels between two pixels which allows them to be considered | ||
100 | part of the same "region" in the image. Thus it can be reduced to | ||
101 | give more edges or corners, i.e. to be more sensitive, and vice | ||
102 | versa. In smoothing, reducing t gives less smoothing, and vice | ||
103 | versa. Set t=10 for the test image available from the SUSAN web | ||
104 | page. | ||
105 | |||
106 | ITERATIONS: | ||
107 | |||
108 | With SUSAN smoothing, more smoothing can also be obtained by | ||
109 | iterating the algorithm several times. This has a different effect | ||
110 | from varying d or t. | ||
111 | |||
112 | FIXED MASKS: | ||
113 | |||
114 | 37 pixel mask: ooo 3 by 3 mask: ooo | ||
115 | ooooo ooo | ||
116 | ooooooo ooo | ||
117 | ooooooo | ||
118 | ooooooo | ||
119 | ooooo | ||
120 | ooo | ||
121 | |||
122 | CORNER ATTRIBUTES dx, dy and I | ||
123 | (Only read this if you are interested in the C implementation or in | ||
124 | using corner attributes, e.g., for corner matching) | ||
125 | |||
126 | Corners reported in the corner list have attributes associated with | ||
127 | them as well as positions. This is useful, for example, when | ||
128 | attempting to match corners from one image to another, as these | ||
129 | attributes can often be fairly unchanged between images. The | ||
130 | attributes are dx, dy and I. I is the value of image brightness at | ||
131 | the position of the corner. In the case of susan_corners_quick, dx | ||
132 | and dy are the first order derivatives (differentials) of the image | ||
133 | brightness in the x and y directions respectively, at the position | ||
134 | of the corner. In the case of normal susan corner finding, dx and dy | ||
135 | are scaled versions of the position of the centre of gravity of the | ||
136 | USAN with respect to the centre pixel (nucleus). | ||
137 | |||
138 | BRIGHTNESS FUNCTION LUT IMPLEMENTATION: | ||
139 | (Only read this if you are interested in the C implementation) | ||
140 | |||
141 | The SUSAN brightness function is implemented as a LUT | ||
142 | (Look-Up-Table) for speed. The resulting pointer-based code is a | ||
143 | little hard to follow, so here is a brief explanation. In | ||
144 | setup_brightness_lut() the LUT is setup. This mallocs enough space | ||
145 | for *bp and then repositions the pointer to the centre of the | ||
146 | malloced space. The SUSAN function e^-(x^6) or e^-(x^2) is | ||
147 | calculated and converted to a uchar in the range 0-100, for all | ||
148 | possible image brightness differences (including negative | ||
149 | ones). Thus bp[23] is the output for a brightness difference of 23 | ||
150 | greylevels. In the SUSAN algorithms this LUT is used as follows: | ||
151 | |||
152 | p=in + (i-3)*x_size + j - 1; | ||
153 | p points to the first image pixel in the circular mask surrounding | ||
154 | point (x,y). | ||
155 | |||
156 | cp=bp + in[i*x_size+j]; | ||
157 | cp points to a position in the LUT corresponding to the brightness | ||
158 | of the centre pixel (x,y). | ||
159 | |||
160 | now for every pixel within the mask surrounding (x,y), | ||
161 | n+=*(cp-*p++); | ||
162 | the brightness difference function is found by moving the cp pointer | ||
163 | down by an amount equal to the value of the pixel pointed to by p, | ||
164 | thus subtracting the two brightness values and performing the | ||
165 | exponential function. This value is added to n, the running USAN | ||
166 | area. | ||
167 | |||
168 | in SUSAN smoothing, the variable height mask is implemented by | ||
169 | multiplying the above by the moving mask pointer, reset for each new | ||
170 | centre pixel. | ||
171 | tmp = *dpt++ * *(cp-brightness); | ||
172 | |||
173 | \**********************************************************************/ | ||
174 | |||
175 | /**********************************************************************\ | ||
176 | |||
177 | Success has been reported with the following: | ||
178 | |||
179 | MACHINE OS COMPILER | ||
180 | |||
181 | Sun 4.1.4 bundled C, gcc | ||
182 | |||
183 | Next | ||
184 | |||
185 | SGI IRIX SGI cc | ||
186 | |||
187 | DEC Unix V3.2+ | ||
188 | |||
189 | IBM RISC AIX gcc | ||
190 | |||
191 | PC Borland 5.0 | ||
192 | |||
193 | PC Linux gcc-2.6.3 | ||
194 | |||
195 | PC Win32 Visual C++ 4.0 (Console Application) | ||
196 | |||
197 | PC Win95 Visual C++ 5.0 (Console Application) | ||
198 | Thanks to Niu Yongsheng <niuysbit@163.net>: | ||
199 | Use the FOPENB option below | ||
200 | |||
201 | PC DOS djgpp gnu C | ||
202 | Thanks to Mark Pettovello <mpettove@umdsun2.umd.umich.edu>: | ||
203 | Use the FOPENB option below | ||
204 | |||
205 | HP HP-UX bundled cc | ||
206 | Thanks to Brian Dixon <briand@hpcvsgen.cv.hp.com>: | ||
207 | in ksh: | ||
208 | export CCOPTS="-Aa -D_HPUX_SOURCE | -lM" | ||
209 | cc -O3 -o susan susan2l.c | ||
210 | |||
211 | \**********************************************************************/ | ||
212 | |||
213 | /**********************************************************************\ | ||
214 | |||
215 | SUSAN Version 2l, 12/2/99 | ||
216 | Changed GNUDOS option to FOPENB. | ||
217 | (Thanks to Niu Yongsheng <niuysbit@163.net>.) | ||
218 | Took out redundant "sq=sq/2;". | ||
219 | |||
220 | SUSAN Version 2k, 19/8/98: | ||
221 | In corner finding: | ||
222 | Changed if(yy<sq) {...} else if(xx<sq) {...} to | ||
223 | if(yy<xx) {...} else {...} | ||
224 | (Thanks to adq@cim.mcgill.edu - Alain Domercq.) | ||
225 | |||
226 | SUSAN Version 2j, 22/10/97: | ||
227 | Fixed (mask_size>x_size) etc. tests in smoothing. | ||
228 | Added a couple of free() calls for cgx and cgy. | ||
229 | (Thanks to geoffb@ucs.ed.ac.uk - Geoff Browitt.) | ||
230 | |||
231 | SUSAN Version 2i, 21/7/97: | ||
232 | Added information about corner attributes. | ||
233 | |||
234 | SUSAN Version 2h, 16/12/96: | ||
235 | Added principle (initial enhancement) option. | ||
236 | |||
237 | SUSAN Version 2g, 2/7/96: | ||
238 | Minor superficial changes to code. | ||
239 | |||
240 | SUSAN Version 2f, 16/1/96: | ||
241 | Added GNUDOS option (now called FOPENB; see options below). | ||
242 | |||
243 | SUSAN Version 2e, 9/1/96: | ||
244 | Added -b option. | ||
245 | Fixed 1 pixel horizontal offset error for drawing edges. | ||
246 | |||
247 | SUSAN Version 2d, 27/11/95: | ||
248 | Fixed loading of certain PGM files in get_image (again!) | ||
249 | |||
250 | SUSAN Version 2c, 22/11/95: | ||
251 | Fixed loading of certain PGM files in get_image. | ||
252 | (Thanks to qu@San-Jose.ate.slb.com - Gongyuan Qu.) | ||
253 | |||
254 | SUSAN Version 2b, 9/11/95: | ||
255 | removed "z==" error in edges routines. | ||
256 | |||
257 | SUSAN Version 2a, 6/11/95: | ||
258 | Removed a few unnecessary variable declarations. | ||
259 | Added different machine information. | ||
260 | Changed "header" in get_image to char. | ||
261 | |||
262 | SUSAN Version 2, 1/11/95: first combined version able to take any | ||
263 | image sizes. | ||
264 | |||
265 | SUSAN "Versions 1", circa 1992: the various SUSAN algorithms were | ||
266 | developed during my doctorate within different programs and for | ||
267 | fixed image sizes. The algorithms themselves are virtually unaltered | ||
268 | between "versions 1" and the combined program, version 2. | ||
269 | |||
270 | \**********************************************************************/ | ||
271 | |||
272 | #include "../extra.h" | ||
273 | #include "wcclibm.h" | ||
274 | #include "wccfile.h" | ||
275 | #include "wccmalloc.h" | ||
276 | |||
277 | #define EXP_A 184 | ||
278 | #define EXP_C 16249 | ||
279 | |||
280 | float susan_expf(float y) | ||
281 | { | ||
282 | union | ||
283 | { | ||
284 | float d; | ||
285 | struct | ||
286 | { | ||
287 | #ifdef LITTLE_ENDIAN | ||
288 | short j, i; | ||
289 | #else | ||
290 | short i, j; | ||
291 | #endif | ||
292 | } n; | ||
293 | } eco; | ||
294 | eco.n.i = EXP_A*(y) + (EXP_C); | ||
295 | eco.n.j = 0; | ||
296 | return eco.d; | ||
297 | } | ||
298 | |||
299 | float susan_sqrtf(float val) | ||
300 | { | ||
301 | float x = val/10; | ||
302 | |||
303 | float dx; | ||
304 | |||
305 | float diff; | ||
306 | float min_tol = 0.00001f; | ||
307 | |||
308 | int i, flag; | ||
309 | |||
310 | |||
311 | flag = 0; | ||
312 | if (val == 0 ) x = 0; | ||
313 | else { | ||
314 | for (i=1;i<20;i++) | ||
315 | { | ||
316 | if (!flag) { | ||
317 | dx = (val - (x*x)) / (2.0f * x); | ||
318 | x = x + dx; | ||
319 | diff = val - (x*x); | ||
320 | if (fabs(diff) <= min_tol) flag = 1; | ||
321 | } | ||
322 | } | ||
323 | } | ||
324 | return (x); | ||
325 | } | ||
326 | |||
327 | /* ********** Optional settings */ | ||
328 | |||
329 | typedef int TOTAL_TYPE; | ||
330 | |||
331 | #define SEVEN_SUPP /* size for non-max corner suppression; SEVEN_SUPP or FIVE_SUPP */ | ||
332 | #define MAX_CORNERS 15000 /* max corners per frame */ | ||
333 | |||
334 | #define FTOI(a) ( (a) < 0 ? ((int)(a-0.5)) : ((int)(a+0.5)) ) | ||
335 | #define abs(a) ( (a) < 0 ? -a : a ) | ||
336 | typedef unsigned char uchar; | ||
337 | typedef struct {int x,y,info, dx, dy, I;} corner_rep; | ||
338 | typedef corner_rep CORNER_LIST[MAX_CORNERS]; | ||
339 | |||
340 | extern char susan_input[7292]; | ||
341 | struct wccFILE susan_file; | ||
342 | float susan_dt; | ||
343 | int susan_bt; | ||
344 | int susan_principle_conf; | ||
345 | int susan_thin_post_proc; | ||
346 | int susan_three_by_three; | ||
347 | int susan_drawing_mode; | ||
348 | int susan_susan_quick; | ||
349 | int susan_max_no_corners; | ||
350 | int susan_max_no_edges; | ||
351 | |||
352 | int susan_getint( struct wccFILE *fd ) | ||
353 | { | ||
354 | int c, i; | ||
355 | char dummy[10000]; | ||
356 | |||
357 | c = susan_wccfgetc(fd); | ||
358 | _Pragma( "loopbound min 1 max 4" ) | ||
359 | while (1) { /* find next integer */ | ||
360 | if (c=='#') /* if we're at a comment, read to end of line */ | ||
361 | susan_wccfgets(dummy,9000,fd); | ||
362 | if (c==EOFX) { | ||
363 | /* "Image is not binary PGM." */ | ||
364 | } | ||
365 | if (c>='0' && c<='9') | ||
366 | break; /* found what we were looking for */ | ||
367 | c = susan_wccfgetc(fd); | ||
368 | } | ||
369 | |||
370 | /* we're at the start of a number, continue until we hit a non-number */ | ||
371 | i = 0; | ||
372 | _Pragma( "loopbound min 2 max 3" ) | ||
373 | while (1) { | ||
374 | i = (i*10) + (c - '0'); | ||
375 | c = susan_wccfgetc(fd); | ||
376 | if (c==EOFX) return (i); | ||
377 | if (c<'0' || c>'9') break; | ||
378 | } | ||
379 | |||
380 | return (i); | ||
381 | } | ||
382 | |||
383 | |||
384 | void susan_get_image( struct wccFILE *fd, | ||
385 | unsigned char **in, int *x_size, int *y_size ) | ||
386 | { | ||
387 | char header [100]; | ||
388 | |||
389 | susan_wccfseek( fd, 0, WCCSEEK_SET ); | ||
390 | |||
391 | /* {{{ read header */ | ||
392 | |||
393 | header[0]=susan_wccfgetc( fd ); | ||
394 | header[1]=susan_wccfgetc( fd ); | ||
395 | if(!(header[0]=='P' && header[1]=='5')) { | ||
396 | /* "Image does not have binary PGM header." */ | ||
397 | } | ||
398 | |||
399 | *x_size = susan_getint(fd); | ||
400 | *y_size = susan_getint(fd); | ||
401 | // dummy read | ||
402 | susan_getint(fd); | ||
403 | |||
404 | /* }}} */ | ||
405 | |||
406 | *in = (uchar *) susan_wccmalloc(*x_size * *y_size); | ||
407 | |||
408 | if (susan_wccfread(*in,1,*x_size * *y_size,fd) == 0) { | ||
409 | /* "Image is wrong size.\n" */ | ||
410 | } | ||
411 | } | ||
412 | |||
413 | |||
414 | void susan_put_image( int x_size, int y_size ) | ||
415 | { | ||
416 | int i; | ||
417 | _Pragma( "loopbound min 7220 max 7220" ) | ||
418 | for ( i = 0; i < x_size*y_size; i++ ) { | ||
419 | ; | ||
420 | } | ||
421 | } | ||
422 | |||
423 | |||
424 | void susan_int_to_uchar( char *r, uchar *in, int size ) | ||
425 | { | ||
426 | int i, max_r=r[0], min_r=r[0]; | ||
427 | |||
428 | _Pragma( "loopbound min 0 max 0" ) | ||
429 | for (i=0; i<size; i++) { | ||
430 | if ( r[i] > max_r ) | ||
431 | max_r=r[i]; | ||
432 | if ( r[i] < min_r ) | ||
433 | min_r=r[i]; | ||
434 | } | ||
435 | |||
436 | if (max_r == min_r) { | ||
437 | /* Should not occur in TACLeBench. */ | ||
438 | _Pragma( "loopbound min 0 max 0" ) | ||
439 | for (i=0; i<size; i++) { | ||
440 | in[i] = (uchar)(0); | ||
441 | } | ||
442 | |||
443 | return; | ||
444 | } | ||
445 | max_r-=min_r; | ||
446 | |||
447 | _Pragma( "loopbound min 0 max 0" ) | ||
448 | for (i=0; i<size; i++) { | ||
449 | in[i] = (uchar)((int)((int)(r[i]-min_r)*255)/max_r); | ||
450 | } | ||
451 | } | ||
452 | |||
453 | |||
454 | void susan_setup_brightness_lut( uchar **bp, int thresh, int form ) | ||
455 | { | ||
456 | int k; | ||
457 | float temp; | ||
458 | |||
459 | *bp=(unsigned char *)susan_wccmalloc(516); | ||
460 | *bp=*bp+258; | ||
461 | |||
462 | _Pragma( "loopbound min 513 max 513" ) | ||
463 | for(k=-256;k<257;k++) { | ||
464 | temp=((float)k)/((float)thresh); | ||
465 | temp=temp*temp; | ||
466 | if (form==6) | ||
467 | temp=temp*temp*temp; | ||
468 | temp=100.0*susan_expf(-temp); | ||
469 | *(*bp+k)= (uchar)temp; | ||
470 | } | ||
471 | } | ||
472 | |||
473 | |||
474 | void susan_principle( uchar *in, char *r, uchar *bp, | ||
475 | int max_no, int x_size, int y_size ) | ||
476 | { | ||
477 | int i, j, n; | ||
478 | uchar *p,*cp; | ||
479 | |||
480 | susan_wccmemset(r,0,x_size * y_size * sizeof(int)); | ||
481 | |||
482 | _Pragma( "loopbound min 0 max 0" ) | ||
483 | for (i=3;i<y_size-3;i++) { | ||
484 | _Pragma( "loopbound min 0 max 0" ) | ||
485 | for (j=3;j<x_size-3;j++) { | ||
486 | n=100; | ||
487 | p=in + (i-3)*x_size + j - 1; | ||
488 | cp=bp + in[i*x_size+j]; | ||
489 | |||
490 | n+=*(cp-*p++); | ||
491 | n+=*(cp-*p++); | ||
492 | n+=*(cp-*p); | ||
493 | p+=x_size-3; | ||
494 | |||
495 | n+=*(cp-*p++); | ||
496 | n+=*(cp-*p++); | ||
497 | n+=*(cp-*p++); | ||
498 | n+=*(cp-*p++); | ||
499 | n+=*(cp-*p); | ||
500 | p+=x_size-5; | ||
501 | |||
502 | n+=*(cp-*p++); | ||
503 | n+=*(cp-*p++); | ||
504 | n+=*(cp-*p++); | ||
505 | n+=*(cp-*p++); | ||
506 | n+=*(cp-*p++); | ||
507 | n+=*(cp-*p++); | ||
508 | n+=*(cp-*p); | ||
509 | p+=x_size-6; | ||
510 | |||
511 | n+=*(cp-*p++); | ||
512 | n+=*(cp-*p++); | ||
513 | n+=*(cp-*p); | ||
514 | p+=2; | ||
515 | n+=*(cp-*p++); | ||
516 | n+=*(cp-*p++); | ||
517 | n+=*(cp-*p); | ||
518 | p+=x_size-6; | ||
519 | |||
520 | n+=*(cp-*p++); | ||
521 | n+=*(cp-*p++); | ||
522 | n+=*(cp-*p++); | ||
523 | n+=*(cp-*p++); | ||
524 | n+=*(cp-*p++); | ||
525 | n+=*(cp-*p++); | ||
526 | n+=*(cp-*p); | ||
527 | p+=x_size-5; | ||
528 | |||
529 | n+=*(cp-*p++); | ||
530 | n+=*(cp-*p++); | ||
531 | n+=*(cp-*p++); | ||
532 | n+=*(cp-*p++); | ||
533 | n+=*(cp-*p); | ||
534 | p+=x_size-3; | ||
535 | |||
536 | n+=*(cp-*p++); | ||
537 | n+=*(cp-*p++); | ||
538 | n+=*(cp-*p); | ||
539 | |||
540 | if (n<=max_no) | ||
541 | r[i*x_size+j] = max_no - n; | ||
542 | } | ||
543 | } | ||
544 | } | ||
545 | |||
546 | |||
547 | void susan_principle_small( uchar *in, char *r, uchar *bp, | ||
548 | int max_no, int x_size, int y_size ) | ||
549 | { | ||
550 | int i, j, n; | ||
551 | uchar *p,*cp; | ||
552 | |||
553 | susan_wccmemset(r,0,x_size * y_size * sizeof(int)); | ||
554 | |||
555 | _Pragma( "loopbound min 0 max 0" ) | ||
556 | for (i=1;i<y_size-1;i++) { | ||
557 | _Pragma( "loopbound min 0 max 0" ) | ||
558 | for (j=1;j<x_size-1;j++) { | ||
559 | n=100; | ||
560 | p=in + (i-1)*x_size + j - 1; | ||
561 | cp=bp + in[i*x_size+j]; | ||
562 | |||
563 | n+=*(cp-*p++); | ||
564 | n+=*(cp-*p++); | ||
565 | n+=*(cp-*p); | ||
566 | p+=x_size-2; | ||
567 | |||
568 | n+=*(cp-*p); | ||
569 | p+=2; | ||
570 | n+=*(cp-*p); | ||
571 | p+=x_size-2; | ||
572 | |||
573 | n+=*(cp-*p++); | ||
574 | n+=*(cp-*p++); | ||
575 | n+=*(cp-*p); | ||
576 | |||
577 | if (n<=max_no) | ||
578 | r[i*x_size+j] = max_no - n; | ||
579 | } | ||
580 | } | ||
581 | } | ||
582 | |||
583 | |||
584 | uchar susan_median( uchar *in, int i, int j, int x_size ) | ||
585 | { | ||
586 | int p[8],k,l,tmp; | ||
587 | |||
588 | p[0]=in[(i-1)*x_size+j-1]; | ||
589 | p[1]=in[(i-1)*x_size+j ]; | ||
590 | p[2]=in[(i-1)*x_size+j+1]; | ||
591 | p[3]=in[(i )*x_size+j-1]; | ||
592 | p[4]=in[(i )*x_size+j+1]; | ||
593 | p[5]=in[(i+1)*x_size+j-1]; | ||
594 | p[6]=in[(i+1)*x_size+j ]; | ||
595 | p[7]=in[(i+1)*x_size+j+1]; | ||
596 | |||
597 | _Pragma( "loopbound min 0 max 0" ) | ||
598 | for(k=0; k<7; k++) { | ||
599 | _Pragma( "loopbound min 0 max 0" ) | ||
600 | for(l=0; l<(7-k); l++) { | ||
601 | if (p[l]>p[l+1]) { | ||
602 | tmp=p[l]; | ||
603 | p[l]=p[l+1]; | ||
604 | p[l+1]=tmp; | ||
605 | } | ||
606 | } | ||
607 | } | ||
608 | |||
609 | return( (p[3]+p[4]) / 2 ); | ||
610 | } | ||
611 | |||
612 | |||
613 | /* this enlarges "in" so that borders can be dealt with easily */ | ||
614 | void susan_enlarge( uchar **in, uchar *tmp_image, | ||
615 | int *x_size, int *y_size, int border ) | ||
616 | { | ||
617 | int i, j; | ||
618 | |||
619 | _Pragma( "loopbound min 95 max 95" ) | ||
620 | for(i=0; i<*y_size; i++) { /* copy *in into tmp_image */ | ||
621 | susan_wccmemcpy( tmp_image+(i+border)*(*x_size+2*border)+border, | ||
622 | *in+i* *x_size, *x_size); | ||
623 | } | ||
624 | |||
625 | _Pragma( "loopbound min 7 max 7" ) | ||
626 | for(i=0; i<border; i++) { /* copy top and bottom rows; invert as many as necessary */ | ||
627 | susan_wccmemcpy( tmp_image+(border-1-i)*(*x_size+2*border)+border, | ||
628 | *in+i* *x_size,*x_size); | ||
629 | susan_wccmemcpy( tmp_image+(*y_size+border+i)*(*x_size+2*border)+border, | ||
630 | *in+(*y_size-i-1)* *x_size,*x_size); | ||
631 | } | ||
632 | |||
633 | _Pragma( "loopbound min 7 max 7" ) | ||
634 | for(i=0; i<border; i++) { /* copy left and right columns */ | ||
635 | _Pragma( "loopbound min 109 max 109" ) | ||
636 | for(j=0; j<*y_size+2*border; j++) { | ||
637 | tmp_image[j*(*x_size+2*border)+border-1-i]=tmp_image[j*(*x_size+2*border)+border+i]; | ||
638 | tmp_image[j*(*x_size+2*border)+ *x_size+border+i]=tmp_image[j*(*x_size+2*border)+ *x_size+border-1-i]; | ||
639 | } | ||
640 | } | ||
641 | |||
642 | *x_size+=2*border; /* alter image size */ | ||
643 | *y_size+=2*border; | ||
644 | *in=tmp_image; /* repoint in */ | ||
645 | } | ||
646 | |||
647 | |||
648 | void susan_smoothing( int three_by_three, uchar *in, float dt, | ||
649 | int x_size, int y_size, uchar *bp ) | ||
650 | { | ||
651 | float temp; | ||
652 | int n_max, increment, mask_size, | ||
653 | i,j,x,y,area,brightness,tmp,centre; | ||
654 | uchar *ip, *dp, *dpt, *cp, *out=in, | ||
655 | *tmp_image; | ||
656 | TOTAL_TYPE total; | ||
657 | |||
658 | /* {{{ setup larger image and border sizes */ | ||
659 | |||
660 | if (three_by_three==0) | ||
661 | mask_size = ((int)(1.5 * dt)) + 1; | ||
662 | else | ||
663 | mask_size = 1; | ||
664 | |||
665 | if ( dt>15 ) { | ||
666 | /* "Distance_thresh too big for integer arithmetic." */ | ||
667 | // Either reduce it to <=15 or recompile with variable "total" | ||
668 | // as a float: see top "defines" section. | ||
669 | } | ||
670 | |||
671 | if ( (2*mask_size+1>x_size) || (2*mask_size+1>y_size) ) { | ||
672 | /* "Mask size too big for image." */ | ||
673 | } | ||
674 | |||
675 | tmp_image = (uchar *)susan_wccmalloc( (x_size+mask_size*2) * (y_size+mask_size*2) ); | ||
676 | susan_enlarge(&in,tmp_image,&x_size,&y_size,mask_size); | ||
677 | |||
678 | if (three_by_three==0) { | ||
679 | /* large Gaussian masks */ | ||
680 | /* {{{ setup distance lut */ | ||
681 | |||
682 | n_max = (mask_size*2) + 1; | ||
683 | |||
684 | increment = x_size - n_max; | ||
685 | |||
686 | dp = (unsigned char *)susan_wccmalloc(n_max*n_max); | ||
687 | dpt = dp; | ||
688 | temp = -(dt*dt); | ||
689 | |||
690 | _Pragma( "loopbound min 15 max 15" ) | ||
691 | for(i=-mask_size; i<=mask_size; i++) { | ||
692 | _Pragma( "loopbound min 15 max 15" ) | ||
693 | for(j=-mask_size; j<=mask_size; j++) { | ||
694 | x = (int) (100.0 * susan_expf( ((float)((i*i)+(j*j))) / temp )); | ||
695 | *dpt++ = (unsigned char)x; | ||
696 | } | ||
697 | } | ||
698 | |||
699 | /* {{{ main section */ | ||
700 | |||
701 | _Pragma( "loopbound min 95 max 95" ) | ||
702 | for (i=mask_size;i<y_size-mask_size;i++) { | ||
703 | _Pragma( "loopbound min 76 max 76" ) | ||
704 | for (j=mask_size;j<x_size-mask_size;j++) { | ||
705 | area = 0; | ||
706 | total = 0; | ||
707 | dpt = dp; | ||
708 | ip = in + ((i-mask_size)*x_size) + j - mask_size; | ||
709 | centre = in[i*x_size+j]; | ||
710 | cp = bp + centre; | ||
711 | _Pragma( "loopbound min 15 max 15" ) | ||
712 | for(y=-mask_size; y<=mask_size; y++) { | ||
713 | _Pragma( "loopbound min 15 max 15" ) | ||
714 | for(x=-mask_size; x<=mask_size; x++) { | ||
715 | brightness = *ip++; | ||
716 | tmp = *dpt++ * *(cp-brightness); | ||
717 | area += tmp; | ||
718 | total += tmp * brightness; | ||
719 | } | ||
720 | ip += increment; | ||
721 | } | ||
722 | tmp = area-10000; | ||
723 | if (tmp==0) | ||
724 | *out++=susan_median(in,i,j,x_size); | ||
725 | else | ||
726 | *out++=((total-(centre*10000))/tmp); | ||
727 | } | ||
728 | } | ||
729 | } else { | ||
730 | /* 3x3 constant mask */ | ||
731 | |||
732 | /* {{{ main section */ | ||
733 | |||
734 | _Pragma( "loopbound min 15 max 15" ) | ||
735 | for (i=1;i<y_size-1;i++) { | ||
736 | _Pragma( "loopbound min 15 max 15" ) | ||
737 | for (j=1;j<x_size-1;j++) { | ||
738 | area = 0; | ||
739 | total = 0; | ||
740 | ip = in + ((i-1)*x_size) + j - 1; | ||
741 | centre = in[i*x_size+j]; | ||
742 | cp = bp + centre; | ||
743 | |||
744 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; | ||
745 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; | ||
746 | brightness=*ip; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; | ||
747 | ip += x_size-2; | ||
748 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; | ||
749 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; | ||
750 | brightness=*ip; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; | ||
751 | ip += x_size-2; | ||
752 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; | ||
753 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; | ||
754 | brightness=*ip; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; | ||
755 | |||
756 | tmp = area-100; | ||
757 | if (tmp==0) | ||
758 | *out++=susan_median(in,i,j,x_size); | ||
759 | else | ||
760 | *out++=(total-(centre*100))/tmp; | ||
761 | } | ||
762 | } | ||
763 | } | ||
764 | } | ||
765 | |||
766 | |||
767 | void susan_edge_draw( uchar *in, uchar *mid, | ||
768 | int x_size, int y_size, int drawing_mode ) | ||
769 | { | ||
770 | int i; | ||
771 | uchar *inp, *midp; | ||
772 | |||
773 | if (drawing_mode==0) { | ||
774 | /* mark 3x3 white block around each edge point */ | ||
775 | midp=mid; | ||
776 | _Pragma( "loopbound min 7220 max 7220" ) | ||
777 | for (i=0; i<x_size*y_size; i++) { | ||
778 | if (*midp<8) { | ||
779 | inp = in + (midp - mid) - x_size - 1; | ||
780 | *inp++=255; *inp++=255; *inp=255; inp+=x_size-2; | ||
781 | *inp++=255; inp++; *inp=255; inp+=x_size-2; | ||
782 | *inp++=255; *inp++=255; *inp=255; | ||
783 | } | ||
784 | midp++; | ||
785 | } | ||
786 | } | ||
787 | |||
788 | /* now mark 1 black pixel at each edge point */ | ||
789 | midp=mid; | ||
790 | _Pragma( "loopbound min 7220 max 7220" ) | ||
791 | for (i=0; i<x_size*y_size; i++) { | ||
792 | if (*midp<8) | ||
793 | *(in + (midp - mid)) = 0; | ||
794 | midp++; | ||
795 | } | ||
796 | } | ||
797 | |||
798 | |||
799 | void susan_thin( char *r, uchar *mid, int x_size, int y_size ) | ||
800 | { | ||
801 | int l[9], centre, | ||
802 | b01, b12, b21, b10, | ||
803 | p1, p2, p3, p4, | ||
804 | b00, b02, b20, b22, | ||
805 | m, n, a, b, x, y, i, j; | ||
806 | uchar *mp; | ||
807 | |||
808 | _Pragma( "loopbound min 87 max 87" ) | ||
809 | for (i=4;i<y_size-4;i++) { | ||
810 | _Pragma( "loopbound min 68 max 68" ) | ||
811 | for (j=4;j<x_size-4;j++) { | ||
812 | if (mid[i*x_size+j]<8) { | ||
813 | centre = r[i*x_size+j]; | ||
814 | /* {{{ count number of neighbours */ | ||
815 | |||
816 | mp=mid + (i-1)*x_size + j-1; | ||
817 | |||
818 | n = (*mp<8) + | ||
819 | (*(mp+1)<8) + | ||
820 | (*(mp+2)<8) + | ||
821 | (*(mp+x_size)<8) + | ||
822 | (*(mp+x_size+2)<8) + | ||
823 | (*(mp+x_size+x_size)<8) + | ||
824 | (*(mp+x_size+x_size+1)<8) + | ||
825 | (*(mp+x_size+x_size+2)<8); | ||
826 | |||
827 | /* {{{ n==0 no neighbours - remove point */ | ||
828 | |||
829 | if (n==0) | ||
830 | mid[i*x_size+j]=100; | ||
831 | |||
832 | /* {{{ n==1 - extend line if I can */ | ||
833 | |||
834 | /* extension is only allowed a few times - the value of mid is used to control this */ | ||
835 | |||
836 | if ( (n==1) && (mid[i*x_size+j]<6) ) { | ||
837 | /* find maximum neighbour weighted in direction opposite the | ||
838 | neighbour already present. e.g. | ||
839 | have: O O O weight r by 0 2 3 | ||
840 | X X O 0 0 4 | ||
841 | O O O 0 2 3 */ | ||
842 | |||
843 | l[0]=r[(i-1)*x_size+j-1]; l[1]=r[(i-1)*x_size+j]; l[2]=r[(i-1)*x_size+j+1]; | ||
844 | l[3]=r[(i )*x_size+j-1]; l[4]=0; l[5]=r[(i )*x_size+j+1]; | ||
845 | l[6]=r[(i+1)*x_size+j-1]; l[7]=r[(i+1)*x_size+j]; l[8]=r[(i+1)*x_size+j+1]; | ||
846 | |||
847 | if (mid[(i-1)*x_size+j-1]<8) { l[0]=0; l[1]=0; l[3]=0; l[2]*=2; | ||
848 | l[6]*=2; l[5]*=3; l[7]*=3; l[8]*=4; } | ||
849 | else { if (mid[(i-1)*x_size+j]<8) { l[1]=0; l[0]=0; l[2]=0; l[3]*=2; | ||
850 | l[5]*=2; l[6]*=3; l[8]*=3; l[7]*=4; } | ||
851 | else { if (mid[(i-1)*x_size+j+1]<8) { l[2]=0; l[1]=0; l[5]=0; l[0]*=2; | ||
852 | l[8]*=2; l[3]*=3; l[7]*=3; l[6]*=4; } | ||
853 | else { if (mid[(i)*x_size+j-1]<8) { l[3]=0; l[0]=0; l[6]=0; l[1]*=2; | ||
854 | l[7]*=2; l[2]*=3; l[8]*=3; l[5]*=4; } | ||
855 | else { if (mid[(i)*x_size+j+1]<8) { l[5]=0; l[2]=0; l[8]=0; l[1]*=2; | ||
856 | l[7]*=2; l[0]*=3; l[6]*=3; l[3]*=4; } | ||
857 | else { if (mid[(i+1)*x_size+j-1]<8) { l[6]=0; l[3]=0; l[7]=0; l[0]*=2; | ||
858 | l[8]*=2; l[1]*=3; l[5]*=3; l[2]*=4; } | ||
859 | else { if (mid[(i+1)*x_size+j]<8) { l[7]=0; l[6]=0; l[8]=0; l[3]*=2; | ||
860 | l[5]*=2; l[0]*=3; l[2]*=3; l[1]*=4; } | ||
861 | else { if (mid[(i+1)*x_size+j+1]<8) { l[8]=0; l[5]=0; l[7]=0; l[6]*=2; | ||
862 | l[2]*=2; l[1]*=3; l[3]*=3; l[0]*=4; } }}}}}}} | ||
863 | |||
864 | m=0; /* find the highest point */ | ||
865 | _Pragma( "loopbound min 3 max 3" ) | ||
866 | for(y=0; y<3; y++) | ||
867 | _Pragma( "loopbound min 3 max 3" ) | ||
868 | for(x=0; x<3; x++) | ||
869 | if (l[y+y+y+x]>m) { m=l[y+y+y+x]; a=y; b=x; } | ||
870 | |||
871 | if (m>0) { | ||
872 | if (mid[i*x_size+j]<4) | ||
873 | mid[(i+a-1)*x_size+j+b-1] = 4; | ||
874 | else | ||
875 | mid[(i+a-1)*x_size+j+b-1] = mid[i*x_size+j]+1; | ||
876 | if ( (a+a+b) < 3 ) { /* need to jump back in image */ | ||
877 | i+=a-1; | ||
878 | j+=b-2; | ||
879 | if (i<4) i=4; | ||
880 | if (j<4) j=4; | ||
881 | } | ||
882 | } | ||
883 | } | ||
884 | |||
885 | /* {{{ n==2 */ | ||
886 | |||
887 | if (n==2) { | ||
888 | /* put in a bit here to straighten edges */ | ||
889 | b00 = mid[(i-1)*x_size+j-1]<8; /* corners of 3x3 */ | ||
890 | b02 = mid[(i-1)*x_size+j+1]<8; | ||
891 | b20 = mid[(i+1)*x_size+j-1]<8; | ||
892 | b22 = mid[(i+1)*x_size+j+1]<8; | ||
893 | if ( ((b00+b02+b20+b22)==2) && ((b00|b22)&(b02|b20))) { | ||
894 | /* case: move a point back into line. | ||
895 | e.g. X O X CAN become X X X | ||
896 | O X O O O O | ||
897 | O O O O O O */ | ||
898 | if (b00) { | ||
899 | if (b02) { x=0; y=-1; } | ||
900 | else { x=-1; y=0; } | ||
901 | } else { | ||
902 | if (b02) { x=1; y=0; } | ||
903 | else { x=0; y=1; } | ||
904 | } | ||
905 | if (((float)r[(i+y)*x_size+j+x]/(float)centre) > 0.7) { | ||
906 | if ( ( (x==0) && (mid[(i+(2*y))*x_size+j]>7) && (mid[(i+(2*y))*x_size+j-1]>7) && (mid[(i+(2*y))*x_size+j+1]>7) ) || | ||
907 | ( (y==0) && (mid[(i)*x_size+j+(2*x)]>7) && (mid[(i+1)*x_size+j+(2*x)]>7) && (mid[(i-1)*x_size+j+(2*x)]>7) ) ) { | ||
908 | mid[(i)*x_size+j]=100; | ||
909 | mid[(i+y)*x_size+j+x]=3; /* no jumping needed */ | ||
910 | } | ||
911 | } | ||
912 | } else { | ||
913 | b01 = mid[(i-1)*x_size+j ]<8; | ||
914 | b12 = mid[(i )*x_size+j+1]<8; | ||
915 | b21 = mid[(i+1)*x_size+j ]<8; | ||
916 | b10 = mid[(i )*x_size+j-1]<8; | ||
917 | /* {{{ right angle ends - not currently used */ | ||
918 | |||
919 | #ifdef IGNORETHIS | ||
920 | if ( (b00&b01)|(b00&b10)|(b02&b01)|(b02&b12)|(b20&b10)|(b20&b21)|(b22&b21)|(b22&b12) ) { | ||
921 | /* case; right angle ends. clean up. | ||
922 | e.g.; X X O CAN become X X O | ||
923 | O X O O O O | ||
924 | O O O O O O */ | ||
925 | if ( ((b01)&(mid[(i-2)*x_size+j-1]>7)&(mid[(i-2)*x_size+j]>7)&(mid[(i-2)*x_size+j+1]>7)& | ||
926 | ((b00&((2*r[(i-1)*x_size+j+1])>centre))|(b02&((2*r[(i-1)*x_size+j-1])>centre)))) | | ||
927 | ((b10)&(mid[(i-1)*x_size+j-2]>7)&(mid[(i)*x_size+j-2]>7)&(mid[(i+1)*x_size+j-2]>7)& | ||
928 | ((b00&((2*r[(i+1)*x_size+j-1])>centre))|(b20&((2*r[(i-1)*x_size+j-1])>centre)))) | | ||
929 | ((b12)&(mid[(i-1)*x_size+j+2]>7)&(mid[(i)*x_size+j+2]>7)&(mid[(i+1)*x_size+j+2]>7)& | ||
930 | ((b02&((2*r[(i+1)*x_size+j+1])>centre))|(b22&((2*r[(i-1)*x_size+j+1])>centre)))) | | ||
931 | ((b21)&(mid[(i+2)*x_size+j-1]>7)&(mid[(i+2)*x_size+j]>7)&(mid[(i+2)*x_size+j+1]>7)& | ||
932 | ((b20&((2*r[(i+1)*x_size+j+1])>centre))|(b22&((2*r[(i+1)*x_size+j-1])>centre)))) ) { | ||
933 | mid[(i)*x_size+j]=100; | ||
934 | if (b10&b20) j-=2; | ||
935 | if (b00|b01|b02) { i--; j-=2; } | ||
936 | } | ||
937 | } | ||
938 | #endif | ||
939 | |||
940 | if ( ((b01+b12+b21+b10)==2) && ((b10|b12)&(b01|b21)) && | ||
941 | ((b01&((mid[(i-2)*x_size+j-1]<8)|(mid[(i-2)*x_size+j+1]<8)))|(b10&((mid[(i-1)*x_size+j-2]<8)|(mid[(i+1)*x_size+j-2]<8)))| | ||
942 | (b12&((mid[(i-1)*x_size+j+2]<8)|(mid[(i+1)*x_size+j+2]<8)))|(b21&((mid[(i+2)*x_size+j-1]<8)|(mid[(i+2)*x_size+j+1]<8)))) ) { | ||
943 | /* case; clears odd right angles. | ||
944 | e.g.; O O O becomes O O O | ||
945 | X X O X O O | ||
946 | O X O O X O */ | ||
947 | mid[(i)*x_size+j]=100; | ||
948 | i--; /* jump back */ | ||
949 | j-=2; | ||
950 | if (i<4) i=4; | ||
951 | if (j<4) j=4; | ||
952 | } | ||
953 | } | ||
954 | } | ||
955 | |||
956 | /* {{{ n>2 the thinning is done here without breaking connectivity */ | ||
957 | |||
958 | if (n>2) { | ||
959 | b01 = mid[(i-1)*x_size+j ]<8; | ||
960 | b12 = mid[(i )*x_size+j+1]<8; | ||
961 | b21 = mid[(i+1)*x_size+j ]<8; | ||
962 | b10 = mid[(i )*x_size+j-1]<8; | ||
963 | if((b01+b12+b21+b10)>1) { | ||
964 | b00 = mid[(i-1)*x_size+j-1]<8; | ||
965 | b02 = mid[(i-1)*x_size+j+1]<8; | ||
966 | b20 = mid[(i+1)*x_size+j-1]<8; | ||
967 | b22 = mid[(i+1)*x_size+j+1]<8; | ||
968 | p1 = b00 | b01; | ||
969 | p2 = b02 | b12; | ||
970 | p3 = b22 | b21; | ||
971 | p4 = b20 | b10; | ||
972 | |||
973 | if( ((p1 + p2 + p3 + p4) - ((b01 & p2)+(b12 & p3)+(b21 & p4)+(b10 & p1))) < 2) { | ||
974 | mid[(i)*x_size+j]=100; | ||
975 | i--; | ||
976 | j-=2; | ||
977 | if (i<4) i=4; | ||
978 | if (j<4) j=4; | ||
979 | } | ||
980 | } | ||
981 | } | ||
982 | } | ||
983 | } | ||
984 | } | ||
985 | } | ||
986 | |||
987 | |||
988 | void susan_edges( uchar *in, char *r, uchar *mid, uchar *bp, | ||
989 | int max_no, int x_size, int y_size ) | ||
990 | { | ||
991 | float z; | ||
992 | int do_symmetry, i, j, m, n, a, b, x, y, w; | ||
993 | uchar c,*p,*cp; | ||
994 | |||
995 | susan_wccmemset(r,0,x_size * y_size); | ||
996 | |||
997 | _Pragma( "loopbound min 89 max 89" ) | ||
998 | for (i=3;i<y_size-3;i++) { | ||
999 | _Pragma( "loopbound min 70 max 70" ) | ||
1000 | for (j=3;j<x_size-3;j++) { | ||
1001 | n=100; | ||
1002 | p=in + (i-3)*x_size + j - 1; | ||
1003 | cp=bp + in[i*x_size+j]; | ||
1004 | |||
1005 | n+=*(cp-*p++); | ||
1006 | n+=*(cp-*p++); | ||
1007 | n+=*(cp-*p); | ||
1008 | p+=x_size-3; | ||
1009 | |||
1010 | n+=*(cp-*p++); | ||
1011 | n+=*(cp-*p++); | ||
1012 | n+=*(cp-*p++); | ||
1013 | n+=*(cp-*p++); | ||
1014 | n+=*(cp-*p); | ||
1015 | p+=x_size-5; | ||
1016 | |||
1017 | n+=*(cp-*p++); | ||
1018 | n+=*(cp-*p++); | ||
1019 | n+=*(cp-*p++); | ||
1020 | n+=*(cp-*p++); | ||
1021 | n+=*(cp-*p++); | ||
1022 | n+=*(cp-*p++); | ||
1023 | n+=*(cp-*p); | ||
1024 | p+=x_size-6; | ||
1025 | |||
1026 | n+=*(cp-*p++); | ||
1027 | n+=*(cp-*p++); | ||
1028 | n+=*(cp-*p); | ||
1029 | p+=2; | ||
1030 | n+=*(cp-*p++); | ||
1031 | n+=*(cp-*p++); | ||
1032 | n+=*(cp-*p); | ||
1033 | p+=x_size-6; | ||
1034 | |||
1035 | n+=*(cp-*p++); | ||
1036 | n+=*(cp-*p++); | ||
1037 | n+=*(cp-*p++); | ||
1038 | n+=*(cp-*p++); | ||
1039 | n+=*(cp-*p++); | ||
1040 | n+=*(cp-*p++); | ||
1041 | n+=*(cp-*p); | ||
1042 | p+=x_size-5; | ||
1043 | |||
1044 | n+=*(cp-*p++); | ||
1045 | n+=*(cp-*p++); | ||
1046 | n+=*(cp-*p++); | ||
1047 | n+=*(cp-*p++); | ||
1048 | n+=*(cp-*p); | ||
1049 | p+=x_size-3; | ||
1050 | |||
1051 | n+=*(cp-*p++); | ||
1052 | n+=*(cp-*p++); | ||
1053 | n+=*(cp-*p); | ||
1054 | |||
1055 | if (n<=max_no) | ||
1056 | r[i*x_size+j] = max_no - n; | ||
1057 | } | ||
1058 | } | ||
1059 | |||
1060 | _Pragma( "loopbound min 87 max 87" ) | ||
1061 | for (i=4;i<y_size-4;i++) { | ||
1062 | _Pragma( "loopbound min 68 max 68" ) | ||
1063 | for (j=4;j<x_size-4;j++) { | ||
1064 | if (r[i*x_size+j]>0) { | ||
1065 | m=r[i*x_size+j]; | ||
1066 | n=max_no - m; | ||
1067 | cp=bp + in[i*x_size+j]; | ||
1068 | |||
1069 | if (n>600) { | ||
1070 | p=in + (i-3)*x_size + j - 1; | ||
1071 | x=0;y=0; | ||
1072 | |||
1073 | c=*(cp-*p++);x-=c;y-=3*c; | ||
1074 | c=*(cp-*p++);y-=3*c; | ||
1075 | c=*(cp-*p);x+=c;y-=3*c; | ||
1076 | p+=x_size-3; | ||
1077 | |||
1078 | c=*(cp-*p++);x-=2*c;y-=2*c; | ||
1079 | c=*(cp-*p++);x-=c;y-=2*c; | ||
1080 | c=*(cp-*p++);y-=2*c; | ||
1081 | c=*(cp-*p++);x+=c;y-=2*c; | ||
1082 | c=*(cp-*p);x+=2*c;y-=2*c; | ||
1083 | p+=x_size-5; | ||
1084 | |||
1085 | c=*(cp-*p++);x-=3*c;y-=c; | ||
1086 | c=*(cp-*p++);x-=2*c;y-=c; | ||
1087 | c=*(cp-*p++);x-=c;y-=c; | ||
1088 | c=*(cp-*p++);y-=c; | ||
1089 | c=*(cp-*p++);x+=c;y-=c; | ||
1090 | c=*(cp-*p++);x+=2*c;y-=c; | ||
1091 | c=*(cp-*p);x+=3*c;y-=c; | ||
1092 | p+=x_size-6; | ||
1093 | |||
1094 | c=*(cp-*p++);x-=3*c; | ||
1095 | c=*(cp-*p++);x-=2*c; | ||
1096 | c=*(cp-*p);x-=c; | ||
1097 | p+=2; | ||
1098 | c=*(cp-*p++);x+=c; | ||
1099 | c=*(cp-*p++);x+=2*c; | ||
1100 | c=*(cp-*p);x+=3*c; | ||
1101 | p+=x_size-6; | ||
1102 | |||
1103 | c=*(cp-*p++);x-=3*c;y+=c; | ||
1104 | c=*(cp-*p++);x-=2*c;y+=c; | ||
1105 | c=*(cp-*p++);x-=c;y+=c; | ||
1106 | c=*(cp-*p++);y+=c; | ||
1107 | c=*(cp-*p++);x+=c;y+=c; | ||
1108 | c=*(cp-*p++);x+=2*c;y+=c; | ||
1109 | c=*(cp-*p);x+=3*c;y+=c; | ||
1110 | p+=x_size-5; | ||
1111 | |||
1112 | c=*(cp-*p++);x-=2*c;y+=2*c; | ||
1113 | c=*(cp-*p++);x-=c;y+=2*c; | ||
1114 | c=*(cp-*p++);y+=2*c; | ||
1115 | c=*(cp-*p++);x+=c;y+=2*c; | ||
1116 | c=*(cp-*p);x+=2*c;y+=2*c; | ||
1117 | p+=x_size-3; | ||
1118 | |||
1119 | c=*(cp-*p++);x-=c;y+=3*c; | ||
1120 | c=*(cp-*p++);y+=3*c; | ||
1121 | c=*(cp-*p);x+=c;y+=3*c; | ||
1122 | |||
1123 | z = susan_sqrtf((float)((x*x) + (y*y))); | ||
1124 | if (z > (0.9*(float)n)) { /* 0.5 */ | ||
1125 | do_symmetry=0; | ||
1126 | if (x==0) | ||
1127 | z=1000000.0; | ||
1128 | else | ||
1129 | z=((float)y) / ((float)x); | ||
1130 | if (z < 0) { z=-z; w=-1; } | ||
1131 | else w=1; | ||
1132 | if (z < 0.5) { /* vert_edge */ a=0; b=1; } | ||
1133 | else { if (z > 2.0) { /* hor_edge */ a=1; b=0; } | ||
1134 | else { /* diag_edge */ if (w>0) { a=1; b=1; } | ||
1135 | else { a=-1; b=1; }}} | ||
1136 | if ( (m > r[(i+a)*x_size+j+b]) && (m >= r[(i-a)*x_size+j-b]) && | ||
1137 | (m > r[(i+(2*a))*x_size+j+(2*b)]) && (m >= r[(i-(2*a))*x_size+j-(2*b)]) ) | ||
1138 | mid[i*x_size+j] = 1; | ||
1139 | } else { | ||
1140 | do_symmetry=1; | ||
1141 | } | ||
1142 | } else { | ||
1143 | do_symmetry=1; | ||
1144 | } | ||
1145 | |||
1146 | if (do_symmetry==1) { | ||
1147 | p=in + (i-3)*x_size + j - 1; | ||
1148 | x=0; y=0; w=0; | ||
1149 | |||
1150 | /* | \ | ||
1151 | y -x- w | ||
1152 | | \ */ | ||
1153 | |||
1154 | c=*(cp-*p++);x+=c;y+=9*c;w+=3*c; | ||
1155 | c=*(cp-*p++);y+=9*c; | ||
1156 | c=*(cp-*p);x+=c;y+=9*c;w-=3*c; | ||
1157 | p+=x_size-3; | ||
1158 | |||
1159 | c=*(cp-*p++);x+=4*c;y+=4*c;w+=4*c; | ||
1160 | c=*(cp-*p++);x+=c;y+=4*c;w+=2*c; | ||
1161 | c=*(cp-*p++);y+=4*c; | ||
1162 | c=*(cp-*p++);x+=c;y+=4*c;w-=2*c; | ||
1163 | c=*(cp-*p);x+=4*c;y+=4*c;w-=4*c; | ||
1164 | p+=x_size-5; | ||
1165 | |||
1166 | c=*(cp-*p++);x+=9*c;y+=c;w+=3*c; | ||
1167 | c=*(cp-*p++);x+=4*c;y+=c;w+=2*c; | ||
1168 | c=*(cp-*p++);x+=c;y+=c;w+=c; | ||
1169 | c=*(cp-*p++);y+=c; | ||
1170 | c=*(cp-*p++);x+=c;y+=c;w-=c; | ||
1171 | c=*(cp-*p++);x+=4*c;y+=c;w-=2*c; | ||
1172 | c=*(cp-*p);x+=9*c;y+=c;w-=3*c; | ||
1173 | p+=x_size-6; | ||
1174 | |||
1175 | c=*(cp-*p++);x+=9*c; | ||
1176 | c=*(cp-*p++);x+=4*c; | ||
1177 | c=*(cp-*p);x+=c; | ||
1178 | p+=2; | ||
1179 | c=*(cp-*p++);x+=c; | ||
1180 | c=*(cp-*p++);x+=4*c; | ||
1181 | c=*(cp-*p);x+=9*c; | ||
1182 | p+=x_size-6; | ||
1183 | |||
1184 | c=*(cp-*p++);x+=9*c;y+=c;w-=3*c; | ||
1185 | c=*(cp-*p++);x+=4*c;y+=c;w-=2*c; | ||
1186 | c=*(cp-*p++);x+=c;y+=c;w-=c; | ||
1187 | c=*(cp-*p++);y+=c; | ||
1188 | c=*(cp-*p++);x+=c;y+=c;w+=c; | ||
1189 | c=*(cp-*p++);x+=4*c;y+=c;w+=2*c; | ||
1190 | c=*(cp-*p);x+=9*c;y+=c;w+=3*c; | ||
1191 | p+=x_size-5; | ||
1192 | |||
1193 | c=*(cp-*p++);x+=4*c;y+=4*c;w-=4*c; | ||
1194 | c=*(cp-*p++);x+=c;y+=4*c;w-=2*c; | ||
1195 | c=*(cp-*p++);y+=4*c; | ||
1196 | c=*(cp-*p++);x+=c;y+=4*c;w+=2*c; | ||
1197 | c=*(cp-*p);x+=4*c;y+=4*c;w+=4*c; | ||
1198 | p+=x_size-3; | ||
1199 | |||
1200 | c=*(cp-*p++);x+=c;y+=9*c;w-=3*c; | ||
1201 | c=*(cp-*p++);y+=9*c; | ||
1202 | c=*(cp-*p);x+=c;y+=9*c;w+=3*c; | ||
1203 | |||
1204 | if (y==0) | ||
1205 | z = 1000000.0; | ||
1206 | else | ||
1207 | z = ((float)x) / ((float)y); | ||
1208 | if (z < 0.5) { /* vertical */ a=0; b=1; } | ||
1209 | else { if (z > 2.0) { /* horizontal */ a=1; b=0; } | ||
1210 | else { /* diagonal */ if (w>0) { a=-1; b=1; } | ||
1211 | else { a=1; b=1; }}} | ||
1212 | if ( (m > r[(i+a)*x_size+j+b]) && (m >= r[(i-a)*x_size+j-b]) && | ||
1213 | (m > r[(i+(2*a))*x_size+j+(2*b)]) && (m >= r[(i-(2*a))*x_size+j-(2*b)]) ) | ||
1214 | mid[i*x_size+j] = 2; | ||
1215 | } | ||
1216 | } | ||
1217 | } | ||
1218 | } | ||
1219 | } | ||
1220 | |||
1221 | |||
1222 | void susan_edges_small( uchar *in, char *r, uchar *mid, uchar *bp, | ||
1223 | int max_no, int x_size, int y_size ) | ||
1224 | { | ||
1225 | float z; | ||
1226 | int do_symmetry, i, j, m, n, a, b, x, y, w; | ||
1227 | uchar c,*p,*cp; | ||
1228 | |||
1229 | susan_wccmemset(r,0,x_size * y_size); | ||
1230 | |||
1231 | _Pragma( "loopbound min 0 max 0" ) | ||
1232 | for (i=1;i<y_size-1;i++) { | ||
1233 | _Pragma( "loopbound min 0 max 0" ) | ||
1234 | for (j=1;j<x_size-1;j++) { | ||
1235 | n=100; | ||
1236 | p=in + (i-1)*x_size + j - 1; | ||
1237 | cp=bp + in[i*x_size+j]; | ||
1238 | |||
1239 | n+=*(cp-*p++); | ||
1240 | n+=*(cp-*p++); | ||
1241 | n+=*(cp-*p); | ||
1242 | p+=x_size-2; | ||
1243 | |||
1244 | n+=*(cp-*p); | ||
1245 | p+=2; | ||
1246 | n+=*(cp-*p); | ||
1247 | p+=x_size-2; | ||
1248 | |||
1249 | n+=*(cp-*p++); | ||
1250 | n+=*(cp-*p++); | ||
1251 | n+=*(cp-*p); | ||
1252 | |||
1253 | if (n<=max_no) { | ||
1254 | r[i*x_size+j] = max_no - n; | ||
1255 | } | ||
1256 | } | ||
1257 | } | ||
1258 | |||
1259 | _Pragma( "loopbound min 0 max 0" ) | ||
1260 | for (i=2;i<y_size-2;i++) { | ||
1261 | _Pragma( "loopbound min 0 max 0" ) | ||
1262 | for (j=2;j<x_size-2;j++) { | ||
1263 | if (r[i*x_size+j]>0) { | ||
1264 | m=r[i*x_size+j]; | ||
1265 | n=max_no - m; | ||
1266 | cp=bp + in[i*x_size+j]; | ||
1267 | |||
1268 | if (n>250) { | ||
1269 | p=in + (i-1)*x_size + j - 1; | ||
1270 | x=0;y=0; | ||
1271 | |||
1272 | c=*(cp-*p++);x-=c;y-=c; | ||
1273 | c=*(cp-*p++);y-=c; | ||
1274 | c=*(cp-*p);x+=c;y-=c; | ||
1275 | p+=x_size-2; | ||
1276 | |||
1277 | c=*(cp-*p);x-=c; | ||
1278 | p+=2; | ||
1279 | c=*(cp-*p);x+=c; | ||
1280 | p+=x_size-2; | ||
1281 | |||
1282 | c=*(cp-*p++);x-=c;y+=c; | ||
1283 | c=*(cp-*p++);y+=c; | ||
1284 | c=*(cp-*p);x+=c;y+=c; | ||
1285 | |||
1286 | z = susan_sqrtf((float)((x*x) + (y*y))); | ||
1287 | if (z > (0.4*(float)n)) { /* 0.6 */ | ||
1288 | do_symmetry=0; | ||
1289 | if (x==0) | ||
1290 | z=1000000.0; | ||
1291 | else | ||
1292 | z=((float)y) / ((float)x); | ||
1293 | if (z < 0) { z=-z; w=-1; } | ||
1294 | else w=1; | ||
1295 | if (z < 0.5) { /* vert_edge */ a=0; b=1; } | ||
1296 | else { if (z > 2.0) { /* hor_edge */ a=1; b=0; } | ||
1297 | else { /* diag_edge */ if (w>0) { a=1; b=1; } | ||
1298 | else { a=-1; b=1; } | ||
1299 | } | ||
1300 | } | ||
1301 | if ( (m > r[(i+a)*x_size+j+b]) && (m >= r[(i-a)*x_size+j-b]) ) { | ||
1302 | mid[i*x_size+j] = 1; | ||
1303 | } | ||
1304 | } else { | ||
1305 | do_symmetry=1; | ||
1306 | } | ||
1307 | } else { | ||
1308 | do_symmetry=1; | ||
1309 | } | ||
1310 | |||
1311 | if (do_symmetry==1) { | ||
1312 | p=in + (i-1)*x_size + j - 1; | ||
1313 | x=0; y=0; w=0; | ||
1314 | |||
1315 | /* | \ | ||
1316 | y -x- w | ||
1317 | | \ */ | ||
1318 | |||
1319 | c=*(cp-*p++);x+=c;y+=c;w+=c; | ||
1320 | c=*(cp-*p++);y+=c; | ||
1321 | c=*(cp-*p);x+=c;y+=c;w-=c; | ||
1322 | p+=x_size-2; | ||
1323 | |||
1324 | c=*(cp-*p);x+=c; | ||
1325 | p+=2; | ||
1326 | c=*(cp-*p);x+=c; | ||
1327 | p+=x_size-2; | ||
1328 | |||
1329 | c=*(cp-*p++);x+=c;y+=c;w-=c; | ||
1330 | c=*(cp-*p++);y+=c; | ||
1331 | c=*(cp-*p);x+=c;y+=c;w+=c; | ||
1332 | |||
1333 | if (y==0) | ||
1334 | z = 1000000.0; | ||
1335 | else | ||
1336 | z = ((float)x) / ((float)y); | ||
1337 | if (z < 0.5) { /* vertical */ a=0; b=1; } | ||
1338 | else { if (z > 2.0) { /* horizontal */ a=1; b=0; } | ||
1339 | else { /* diagonal */ if (w>0) { a=-1; b=1; } | ||
1340 | else { a=1; b=1; } | ||
1341 | } | ||
1342 | } | ||
1343 | if ( (m > r[(i+a)*x_size+j+b]) && (m >= r[(i-a)*x_size+j-b]) ) { | ||
1344 | mid[i*x_size+j] = 2; | ||
1345 | } | ||
1346 | } | ||
1347 | } | ||
1348 | } | ||
1349 | } | ||
1350 | } | ||
1351 | |||
1352 | |||
1353 | void susan_corner_draw( uchar *in, CORNER_LIST corner_list, | ||
1354 | int x_size, int drawing_mode) | ||
1355 | { | ||
1356 | uchar *p; | ||
1357 | int n=0; | ||
1358 | |||
1359 | _Pragma( "loopbound min 0 max 0" ) | ||
1360 | while(corner_list[n].info != 7) { | ||
1361 | if (drawing_mode==0) { | ||
1362 | p = in + (corner_list[n].y-1)*x_size + corner_list[n].x - 1; | ||
1363 | *p++=255; *p++=255; *p=255; p+=x_size-2; | ||
1364 | *p++=255; *p++=0; *p=255; p+=x_size-2; | ||
1365 | *p++=255; *p++=255; *p=255; | ||
1366 | n++; | ||
1367 | } else { | ||
1368 | p = in + corner_list[n].y*x_size + corner_list[n].x; | ||
1369 | *p=0; | ||
1370 | n++; | ||
1371 | } | ||
1372 | } | ||
1373 | } | ||
1374 | |||
1375 | |||
1376 | void susan_corners( uchar *in, char *r, uchar *bp, | ||
1377 | int max_no, CORNER_LIST corner_list, int x_size, int y_size) | ||
1378 | { | ||
1379 | int n,x,y,sq,xx,yy, | ||
1380 | i,j; | ||
1381 | float divide; | ||
1382 | uchar c,*p,*cp; | ||
1383 | char *cgx,*cgy; | ||
1384 | |||
1385 | susan_wccmemset(r,0,x_size * y_size); | ||
1386 | |||
1387 | cgx=(char *)susan_wccmalloc(x_size*y_size); | ||
1388 | cgy=(char *)susan_wccmalloc(x_size*y_size); | ||
1389 | |||
1390 | _Pragma( "loopbound min 85 max 85" ) | ||
1391 | for (i=5;i<y_size-5;i++) { | ||
1392 | _Pragma( "loopbound min 66 max 66" ) | ||
1393 | for (j=5;j<x_size-5;j++) { | ||
1394 | n=100; | ||
1395 | p=in + (i-3)*x_size + j - 1; | ||
1396 | cp=bp + in[i*x_size+j]; | ||
1397 | |||
1398 | n+=*(cp-*p++); | ||
1399 | n+=*(cp-*p++); | ||
1400 | n+=*(cp-*p); | ||
1401 | p+=x_size-3; | ||
1402 | |||
1403 | n+=*(cp-*p++); | ||
1404 | n+=*(cp-*p++); | ||
1405 | n+=*(cp-*p++); | ||
1406 | n+=*(cp-*p++); | ||
1407 | n+=*(cp-*p); | ||
1408 | p+=x_size-5; | ||
1409 | |||
1410 | n+=*(cp-*p++); | ||
1411 | n+=*(cp-*p++); | ||
1412 | n+=*(cp-*p++); | ||
1413 | n+=*(cp-*p++); | ||
1414 | n+=*(cp-*p++); | ||
1415 | n+=*(cp-*p++); | ||
1416 | n+=*(cp-*p); | ||
1417 | p+=x_size-6; | ||
1418 | |||
1419 | n+=*(cp-*p++); | ||
1420 | n+=*(cp-*p++); | ||
1421 | n+=*(cp-*p); | ||
1422 | if (n<max_no){ /* do this test early and often ONLY to save wasted computation */ | ||
1423 | p+=2; | ||
1424 | n+=*(cp-*p++); | ||
1425 | if (n<max_no){ | ||
1426 | n+=*(cp-*p++); | ||
1427 | if (n<max_no){ | ||
1428 | n+=*(cp-*p); | ||
1429 | if (n<max_no){ | ||
1430 | p+=x_size-6; | ||
1431 | |||
1432 | n+=*(cp-*p++); | ||
1433 | if (n<max_no){ | ||
1434 | n+=*(cp-*p++); | ||
1435 | if (n<max_no){ | ||
1436 | n+=*(cp-*p++); | ||
1437 | if (n<max_no){ | ||
1438 | n+=*(cp-*p++); | ||
1439 | if (n<max_no){ | ||
1440 | n+=*(cp-*p++); | ||
1441 | if (n<max_no){ | ||
1442 | n+=*(cp-*p++); | ||
1443 | if (n<max_no){ | ||
1444 | n+=*(cp-*p); | ||
1445 | if (n<max_no){ | ||
1446 | p+=x_size-5; | ||
1447 | |||
1448 | n+=*(cp-*p++); | ||
1449 | if (n<max_no){ | ||
1450 | n+=*(cp-*p++); | ||
1451 | if (n<max_no){ | ||
1452 | n+=*(cp-*p++); | ||
1453 | if (n<max_no){ | ||
1454 | n+=*(cp-*p++); | ||
1455 | if (n<max_no){ | ||
1456 | n+=*(cp-*p); | ||
1457 | if (n<max_no){ | ||
1458 | p+=x_size-3; | ||
1459 | |||
1460 | n+=*(cp-*p++); | ||
1461 | if (n<max_no){ | ||
1462 | n+=*(cp-*p++); | ||
1463 | if (n<max_no){ | ||
1464 | n+=*(cp-*p); | ||
1465 | |||
1466 | if (n<max_no) { | ||
1467 | x=0;y=0; | ||
1468 | p=in + (i-3)*x_size + j - 1; | ||
1469 | |||
1470 | c=*(cp-*p++);x-=c;y-=3*c; | ||
1471 | c=*(cp-*p++);y-=3*c; | ||
1472 | c=*(cp-*p);x+=c;y-=3*c; | ||
1473 | p+=x_size-3; | ||
1474 | |||
1475 | c=*(cp-*p++);x-=2*c;y-=2*c; | ||
1476 | c=*(cp-*p++);x-=c;y-=2*c; | ||
1477 | c=*(cp-*p++);y-=2*c; | ||
1478 | c=*(cp-*p++);x+=c;y-=2*c; | ||
1479 | c=*(cp-*p);x+=2*c;y-=2*c; | ||
1480 | p+=x_size-5; | ||
1481 | |||
1482 | c=*(cp-*p++);x-=3*c;y-=c; | ||
1483 | c=*(cp-*p++);x-=2*c;y-=c; | ||
1484 | c=*(cp-*p++);x-=c;y-=c; | ||
1485 | c=*(cp-*p++);y-=c; | ||
1486 | c=*(cp-*p++);x+=c;y-=c; | ||
1487 | c=*(cp-*p++);x+=2*c;y-=c; | ||
1488 | c=*(cp-*p);x+=3*c;y-=c; | ||
1489 | p+=x_size-6; | ||
1490 | |||
1491 | c=*(cp-*p++);x-=3*c; | ||
1492 | c=*(cp-*p++);x-=2*c; | ||
1493 | c=*(cp-*p);x-=c; | ||
1494 | p+=2; | ||
1495 | c=*(cp-*p++);x+=c; | ||
1496 | c=*(cp-*p++);x+=2*c; | ||
1497 | c=*(cp-*p);x+=3*c; | ||
1498 | p+=x_size-6; | ||
1499 | |||
1500 | c=*(cp-*p++);x-=3*c;y+=c; | ||
1501 | c=*(cp-*p++);x-=2*c;y+=c; | ||
1502 | c=*(cp-*p++);x-=c;y+=c; | ||
1503 | c=*(cp-*p++);y+=c; | ||
1504 | c=*(cp-*p++);x+=c;y+=c; | ||
1505 | c=*(cp-*p++);x+=2*c;y+=c; | ||
1506 | c=*(cp-*p);x+=3*c;y+=c; | ||
1507 | p+=x_size-5; | ||
1508 | |||
1509 | c=*(cp-*p++);x-=2*c;y+=2*c; | ||
1510 | c=*(cp-*p++);x-=c;y+=2*c; | ||
1511 | c=*(cp-*p++);y+=2*c; | ||
1512 | c=*(cp-*p++);x+=c;y+=2*c; | ||
1513 | c=*(cp-*p);x+=2*c;y+=2*c; | ||
1514 | p+=x_size-3; | ||
1515 | |||
1516 | c=*(cp-*p++);x-=c;y+=3*c; | ||
1517 | c=*(cp-*p++);y+=3*c; | ||
1518 | c=*(cp-*p);x+=c;y+=3*c; | ||
1519 | |||
1520 | xx=x*x; | ||
1521 | yy=y*y; | ||
1522 | sq=xx+yy; | ||
1523 | if ( sq > ((n*n)/2) ) { | ||
1524 | if(yy<xx) { | ||
1525 | divide=(float)y/(float)abs(x); | ||
1526 | sq=abs(x)/x; | ||
1527 | sq=*(cp-in[(i+FTOI(divide))*x_size+j+sq]) + | ||
1528 | *(cp-in[(i+FTOI(2*divide))*x_size+j+2*sq]) + | ||
1529 | *(cp-in[(i+FTOI(3*divide))*x_size+j+3*sq]); | ||
1530 | } else { | ||
1531 | divide=(float)x/(float)abs(y); | ||
1532 | sq=abs(y)/y; | ||
1533 | sq=*(cp-in[(i+sq)*x_size+j+FTOI(divide)]) + | ||
1534 | *(cp-in[(i+2*sq)*x_size+j+FTOI(2*divide)]) + | ||
1535 | *(cp-in[(i+3*sq)*x_size+j+FTOI(3*divide)]); | ||
1536 | } | ||
1537 | |||
1538 | if(sq>290){ | ||
1539 | r[i*x_size+j] = max_no-n; | ||
1540 | cgx[i*x_size+j] = (51*x)/n; | ||
1541 | cgy[i*x_size+j] = (51*y)/n; | ||
1542 | } | ||
1543 | } | ||
1544 | } | ||
1545 | }}}}}}}}}}}}}}}}}} | ||
1546 | } | ||
1547 | } | ||
1548 | |||
1549 | /* to locate the local maxima */ | ||
1550 | n=0; | ||
1551 | _Pragma( "loopbound min 85 max 85" ) | ||
1552 | for (i=5;i<y_size-5;i++) { | ||
1553 | _Pragma( "loopbound min 66 max 66" ) | ||
1554 | for (j=5;j<x_size-5;j++) { | ||
1555 | x = r[i*x_size+j]; | ||
1556 | if (x>0) { | ||
1557 | /* 5x5 mask */ | ||
1558 | #ifdef FIVE_SUPP | ||
1559 | if ((x>r[(i-1)*x_size+j+2]) && | ||
1560 | (x>r[(i )*x_size+j+1]) && | ||
1561 | (x>r[(i )*x_size+j+2]) && | ||
1562 | (x>r[(i+1)*x_size+j-1]) && | ||
1563 | (x>r[(i+1)*x_size+j ]) && | ||
1564 | (x>r[(i+1)*x_size+j+1]) && | ||
1565 | (x>r[(i+1)*x_size+j+2]) && | ||
1566 | (x>r[(i+2)*x_size+j-2]) && | ||
1567 | (x>r[(i+2)*x_size+j-1]) && | ||
1568 | (x>r[(i+2)*x_size+j ]) && | ||
1569 | (x>r[(i+2)*x_size+j+1]) && | ||
1570 | (x>r[(i+2)*x_size+j+2]) && | ||
1571 | (x>=r[(i-2)*x_size+j-2]) && | ||
1572 | (x>=r[(i-2)*x_size+j-1]) && | ||
1573 | (x>=r[(i-2)*x_size+j ]) && | ||
1574 | (x>=r[(i-2)*x_size+j+1]) && | ||
1575 | (x>=r[(i-2)*x_size+j+2]) && | ||
1576 | (x>=r[(i-1)*x_size+j-2]) && | ||
1577 | (x>=r[(i-1)*x_size+j-1]) && | ||
1578 | (x>=r[(i-1)*x_size+j ]) && | ||
1579 | (x>=r[(i-1)*x_size+j+1]) && | ||
1580 | (x>=r[(i )*x_size+j-2]) && | ||
1581 | (x>=r[(i )*x_size+j-1]) && | ||
1582 | (x>=r[(i+1)*x_size+j-2]) ) | ||
1583 | #endif | ||
1584 | #ifdef SEVEN_SUPP | ||
1585 | if ((x>r[(i-3)*x_size+j-3]) && | ||
1586 | (x>r[(i-3)*x_size+j-2]) && | ||
1587 | (x>r[(i-3)*x_size+j-1]) && | ||
1588 | (x>r[(i-3)*x_size+j ]) && | ||
1589 | (x>r[(i-3)*x_size+j+1]) && | ||
1590 | (x>r[(i-3)*x_size+j+2]) && | ||
1591 | (x>r[(i-3)*x_size+j+3]) && | ||
1592 | |||
1593 | (x>r[(i-2)*x_size+j-3]) && | ||
1594 | (x>r[(i-2)*x_size+j-2]) && | ||
1595 | (x>r[(i-2)*x_size+j-1]) && | ||
1596 | (x>r[(i-2)*x_size+j ]) && | ||
1597 | (x>r[(i-2)*x_size+j+1]) && | ||
1598 | (x>r[(i-2)*x_size+j+2]) && | ||
1599 | (x>r[(i-2)*x_size+j+3]) && | ||
1600 | |||
1601 | (x>r[(i-1)*x_size+j-3]) && | ||
1602 | (x>r[(i-1)*x_size+j-2]) && | ||
1603 | (x>r[(i-1)*x_size+j-1]) && | ||
1604 | (x>r[(i-1)*x_size+j ]) && | ||
1605 | (x>r[(i-1)*x_size+j+1]) && | ||
1606 | (x>r[(i-1)*x_size+j+2]) && | ||
1607 | (x>r[(i-1)*x_size+j+3]) && | ||
1608 | |||
1609 | (x>r[(i)*x_size+j-3]) && | ||
1610 | (x>r[(i)*x_size+j-2]) && | ||
1611 | (x>r[(i)*x_size+j-1]) && | ||
1612 | (x>=r[(i)*x_size+j+1]) && | ||
1613 | (x>=r[(i)*x_size+j+2]) && | ||
1614 | (x>=r[(i)*x_size+j+3]) && | ||
1615 | |||
1616 | (x>=r[(i+1)*x_size+j-3]) && | ||
1617 | (x>=r[(i+1)*x_size+j-2]) && | ||
1618 | (x>=r[(i+1)*x_size+j-1]) && | ||
1619 | (x>=r[(i+1)*x_size+j ]) && | ||
1620 | (x>=r[(i+1)*x_size+j+1]) && | ||
1621 | (x>=r[(i+1)*x_size+j+2]) && | ||
1622 | (x>=r[(i+1)*x_size+j+3]) && | ||
1623 | |||
1624 | (x>=r[(i+2)*x_size+j-3]) && | ||
1625 | (x>=r[(i+2)*x_size+j-2]) && | ||
1626 | (x>=r[(i+2)*x_size+j-1]) && | ||
1627 | (x>=r[(i+2)*x_size+j ]) && | ||
1628 | (x>=r[(i+2)*x_size+j+1]) && | ||
1629 | (x>=r[(i+2)*x_size+j+2]) && | ||
1630 | (x>=r[(i+2)*x_size+j+3]) && | ||
1631 | |||
1632 | (x>=r[(i+3)*x_size+j-3]) && | ||
1633 | (x>=r[(i+3)*x_size+j-2]) && | ||
1634 | (x>=r[(i+3)*x_size+j-1]) && | ||
1635 | (x>=r[(i+3)*x_size+j ]) && | ||
1636 | (x>=r[(i+3)*x_size+j+1]) && | ||
1637 | (x>=r[(i+3)*x_size+j+2]) && | ||
1638 | (x>=r[(i+3)*x_size+j+3]) ) | ||
1639 | #endif | ||
1640 | { | ||
1641 | corner_list[n].info=0; | ||
1642 | corner_list[n].x=j; | ||
1643 | corner_list[n].y=i; | ||
1644 | corner_list[n].dx=cgx[i*x_size+j]; | ||
1645 | corner_list[n].dy=cgy[i*x_size+j]; | ||
1646 | corner_list[n].I=in[i*x_size+j]; | ||
1647 | n++; | ||
1648 | if(n==MAX_CORNERS){ | ||
1649 | /* "Too many corners." */ | ||
1650 | } | ||
1651 | } | ||
1652 | } | ||
1653 | } | ||
1654 | } | ||
1655 | corner_list[n].info=7; | ||
1656 | } | ||
1657 | |||
1658 | |||
1659 | void susan_corners_quick( uchar *in, char *r, uchar *bp, | ||
1660 | int max_no, CORNER_LIST corner_list, int x_size, int y_size ) | ||
1661 | { | ||
1662 | int n,x,y,i,j; | ||
1663 | uchar *p,*cp; | ||
1664 | |||
1665 | susan_wccmemset(r,0,x_size * y_size); | ||
1666 | |||
1667 | _Pragma( "loopbound min 0 max 0" ) | ||
1668 | for (i=7;i<y_size-7;i++) { | ||
1669 | _Pragma( "loopbound min 0 max 0" ) | ||
1670 | for (j=7;j<x_size-7;j++) { | ||
1671 | n=100; | ||
1672 | p=in + (i-3)*x_size + j - 1; | ||
1673 | cp=bp + in[i*x_size+j]; | ||
1674 | |||
1675 | n+=*(cp-*p++); | ||
1676 | n+=*(cp-*p++); | ||
1677 | n+=*(cp-*p); | ||
1678 | p+=x_size-3; | ||
1679 | |||
1680 | n+=*(cp-*p++); | ||
1681 | n+=*(cp-*p++); | ||
1682 | n+=*(cp-*p++); | ||
1683 | n+=*(cp-*p++); | ||
1684 | n+=*(cp-*p); | ||
1685 | p+=x_size-5; | ||
1686 | |||
1687 | n+=*(cp-*p++); | ||
1688 | n+=*(cp-*p++); | ||
1689 | n+=*(cp-*p++); | ||
1690 | n+=*(cp-*p++); | ||
1691 | n+=*(cp-*p++); | ||
1692 | n+=*(cp-*p++); | ||
1693 | n+=*(cp-*p); | ||
1694 | p+=x_size-6; | ||
1695 | |||
1696 | n+=*(cp-*p++); | ||
1697 | n+=*(cp-*p++); | ||
1698 | n+=*(cp-*p); | ||
1699 | if (n<max_no){ | ||
1700 | p+=2; | ||
1701 | n+=*(cp-*p++); | ||
1702 | if (n<max_no){ | ||
1703 | n+=*(cp-*p++); | ||
1704 | if (n<max_no){ | ||
1705 | n+=*(cp-*p); | ||
1706 | if (n<max_no){ | ||
1707 | p+=x_size-6; | ||
1708 | |||
1709 | n+=*(cp-*p++); | ||
1710 | if (n<max_no){ | ||
1711 | n+=*(cp-*p++); | ||
1712 | if (n<max_no){ | ||
1713 | n+=*(cp-*p++); | ||
1714 | if (n<max_no){ | ||
1715 | n+=*(cp-*p++); | ||
1716 | if (n<max_no){ | ||
1717 | n+=*(cp-*p++); | ||
1718 | if (n<max_no){ | ||
1719 | n+=*(cp-*p++); | ||
1720 | if (n<max_no){ | ||
1721 | n+=*(cp-*p); | ||
1722 | if (n<max_no){ | ||
1723 | p+=x_size-5; | ||
1724 | |||
1725 | n+=*(cp-*p++); | ||
1726 | if (n<max_no){ | ||
1727 | n+=*(cp-*p++); | ||
1728 | if (n<max_no){ | ||
1729 | n+=*(cp-*p++); | ||
1730 | if (n<max_no){ | ||
1731 | n+=*(cp-*p++); | ||
1732 | if (n<max_no){ | ||
1733 | n+=*(cp-*p); | ||
1734 | if (n<max_no){ | ||
1735 | p+=x_size-3; | ||
1736 | |||
1737 | n+=*(cp-*p++); | ||
1738 | if (n<max_no){ | ||
1739 | n+=*(cp-*p++); | ||
1740 | if (n<max_no){ | ||
1741 | n+=*(cp-*p); | ||
1742 | |||
1743 | if (n<max_no) { | ||
1744 | r[i*x_size+j] = max_no-n; | ||
1745 | } | ||
1746 | }}}}}}}}}}}}}}}}}} | ||
1747 | } | ||
1748 | } | ||
1749 | |||
1750 | /* to locate the local maxima */ | ||
1751 | n=0; | ||
1752 | _Pragma( "loopbound min 0 max 0" ) | ||
1753 | for (i=7;i<y_size-7;i++) { | ||
1754 | _Pragma( "loopbound min 0 max 0" ) | ||
1755 | for (j=7;j<x_size-7;j++) { | ||
1756 | x = r[i*x_size+j]; | ||
1757 | if (x>0) { | ||
1758 | /* 5x5 mask */ | ||
1759 | #ifdef FIVE_SUPP | ||
1760 | if ((x>r[(i-1)*x_size+j+2]) && | ||
1761 | (x>r[(i )*x_size+j+1]) && | ||
1762 | (x>r[(i )*x_size+j+2]) && | ||
1763 | (x>r[(i+1)*x_size+j-1]) && | ||
1764 | (x>r[(i+1)*x_size+j ]) && | ||
1765 | (x>r[(i+1)*x_size+j+1]) && | ||
1766 | (x>r[(i+1)*x_size+j+2]) && | ||
1767 | (x>r[(i+2)*x_size+j-2]) && | ||
1768 | (x>r[(i+2)*x_size+j-1]) && | ||
1769 | (x>r[(i+2)*x_size+j ]) && | ||
1770 | (x>r[(i+2)*x_size+j+1]) && | ||
1771 | (x>r[(i+2)*x_size+j+2]) && | ||
1772 | (x>=r[(i-2)*x_size+j-2]) && | ||
1773 | (x>=r[(i-2)*x_size+j-1]) && | ||
1774 | (x>=r[(i-2)*x_size+j ]) && | ||
1775 | (x>=r[(i-2)*x_size+j+1]) && | ||
1776 | (x>=r[(i-2)*x_size+j+2]) && | ||
1777 | (x>=r[(i-1)*x_size+j-2]) && | ||
1778 | (x>=r[(i-1)*x_size+j-1]) && | ||
1779 | (x>=r[(i-1)*x_size+j ]) && | ||
1780 | (x>=r[(i-1)*x_size+j+1]) && | ||
1781 | (x>=r[(i )*x_size+j-2]) && | ||
1782 | (x>=r[(i )*x_size+j-1]) && | ||
1783 | (x>=r[(i+1)*x_size+j-2]) ) | ||
1784 | #endif | ||
1785 | #ifdef SEVEN_SUPP | ||
1786 | if ((x>r[(i-3)*x_size+j-3]) && | ||
1787 | (x>r[(i-3)*x_size+j-2]) && | ||
1788 | (x>r[(i-3)*x_size+j-1]) && | ||
1789 | (x>r[(i-3)*x_size+j ]) && | ||
1790 | (x>r[(i-3)*x_size+j+1]) && | ||
1791 | (x>r[(i-3)*x_size+j+2]) && | ||
1792 | (x>r[(i-3)*x_size+j+3]) && | ||
1793 | |||
1794 | (x>r[(i-2)*x_size+j-3]) && | ||
1795 | (x>r[(i-2)*x_size+j-2]) && | ||
1796 | (x>r[(i-2)*x_size+j-1]) && | ||
1797 | (x>r[(i-2)*x_size+j ]) && | ||
1798 | (x>r[(i-2)*x_size+j+1]) && | ||
1799 | (x>r[(i-2)*x_size+j+2]) && | ||
1800 | (x>r[(i-2)*x_size+j+3]) && | ||
1801 | |||
1802 | (x>r[(i-1)*x_size+j-3]) && | ||
1803 | (x>r[(i-1)*x_size+j-2]) && | ||
1804 | (x>r[(i-1)*x_size+j-1]) && | ||
1805 | (x>r[(i-1)*x_size+j ]) && | ||
1806 | (x>r[(i-1)*x_size+j+1]) && | ||
1807 | (x>r[(i-1)*x_size+j+2]) && | ||
1808 | (x>r[(i-1)*x_size+j+3]) && | ||
1809 | |||
1810 | (x>r[(i)*x_size+j-3]) && | ||
1811 | (x>r[(i)*x_size+j-2]) && | ||
1812 | (x>r[(i)*x_size+j-1]) && | ||
1813 | (x>=r[(i)*x_size+j+1]) && | ||
1814 | (x>=r[(i)*x_size+j+2]) && | ||
1815 | (x>=r[(i)*x_size+j+3]) && | ||
1816 | |||
1817 | (x>=r[(i+1)*x_size+j-3]) && | ||
1818 | (x>=r[(i+1)*x_size+j-2]) && | ||
1819 | (x>=r[(i+1)*x_size+j-1]) && | ||
1820 | (x>=r[(i+1)*x_size+j ]) && | ||
1821 | (x>=r[(i+1)*x_size+j+1]) && | ||
1822 | (x>=r[(i+1)*x_size+j+2]) && | ||
1823 | (x>=r[(i+1)*x_size+j+3]) && | ||
1824 | |||
1825 | (x>=r[(i+2)*x_size+j-3]) && | ||
1826 | (x>=r[(i+2)*x_size+j-2]) && | ||
1827 | (x>=r[(i+2)*x_size+j-1]) && | ||
1828 | (x>=r[(i+2)*x_size+j ]) && | ||
1829 | (x>=r[(i+2)*x_size+j+1]) && | ||
1830 | (x>=r[(i+2)*x_size+j+2]) && | ||
1831 | (x>=r[(i+2)*x_size+j+3]) && | ||
1832 | |||
1833 | (x>=r[(i+3)*x_size+j-3]) && | ||
1834 | (x>=r[(i+3)*x_size+j-2]) && | ||
1835 | (x>=r[(i+3)*x_size+j-1]) && | ||
1836 | (x>=r[(i+3)*x_size+j ]) && | ||
1837 | (x>=r[(i+3)*x_size+j+1]) && | ||
1838 | (x>=r[(i+3)*x_size+j+2]) && | ||
1839 | (x>=r[(i+3)*x_size+j+3]) ) | ||
1840 | #endif | ||
1841 | { | ||
1842 | corner_list[n].info=0; | ||
1843 | corner_list[n].x=j; | ||
1844 | corner_list[n].y=i; | ||
1845 | x = in[(i-2)*x_size+j-2] + in[(i-2)*x_size+j-1] + in[(i-2)*x_size+j] + in[(i-2)*x_size+j+1] + in[(i-2)*x_size+j+2] + | ||
1846 | in[(i-1)*x_size+j-2] + in[(i-1)*x_size+j-1] + in[(i-1)*x_size+j] + in[(i-1)*x_size+j+1] + in[(i-1)*x_size+j+2] + | ||
1847 | in[(i )*x_size+j-2] + in[(i )*x_size+j-1] + in[(i )*x_size+j] + in[(i )*x_size+j+1] + in[(i )*x_size+j+2] + | ||
1848 | in[(i+1)*x_size+j-2] + in[(i+1)*x_size+j-1] + in[(i+1)*x_size+j] + in[(i+1)*x_size+j+1] + in[(i+1)*x_size+j+2] + | ||
1849 | in[(i+2)*x_size+j-2] + in[(i+2)*x_size+j-1] + in[(i+2)*x_size+j] + in[(i+2)*x_size+j+1] + in[(i+2)*x_size+j+2]; | ||
1850 | |||
1851 | corner_list[n].I=x/25; | ||
1852 | /*corner_list[n].I=in[i*x_size+j];*/ | ||
1853 | x = in[(i-2)*x_size+j+2] + in[(i-1)*x_size+j+2] + in[(i)*x_size+j+2] + in[(i+1)*x_size+j+2] + in[(i+2)*x_size+j+2] - | ||
1854 | (in[(i-2)*x_size+j-2] + in[(i-1)*x_size+j-2] + in[(i)*x_size+j-2] + in[(i+1)*x_size+j-2] + in[(i+2)*x_size+j-2]); | ||
1855 | x += x + in[(i-2)*x_size+j+1] + in[(i-1)*x_size+j+1] + in[(i)*x_size+j+1] + in[(i+1)*x_size+j+1] + in[(i+2)*x_size+j+1] - | ||
1856 | (in[(i-2)*x_size+j-1] + in[(i-1)*x_size+j-1] + in[(i)*x_size+j-1] + in[(i+1)*x_size+j-1] + in[(i+2)*x_size+j-1]); | ||
1857 | |||
1858 | y = in[(i+2)*x_size+j-2] + in[(i+2)*x_size+j-1] + in[(i+2)*x_size+j] + in[(i+2)*x_size+j+1] + in[(i+2)*x_size+j+2] - | ||
1859 | (in[(i-2)*x_size+j-2] + in[(i-2)*x_size+j-1] + in[(i-2)*x_size+j] + in[(i-2)*x_size+j+1] + in[(i-2)*x_size+j+2]); | ||
1860 | y += y + in[(i+1)*x_size+j-2] + in[(i+1)*x_size+j-1] + in[(i+1)*x_size+j] + in[(i+1)*x_size+j+1] + in[(i+1)*x_size+j+2] - | ||
1861 | (in[(i-1)*x_size+j-2] + in[(i-1)*x_size+j-1] + in[(i-1)*x_size+j] + in[(i-1)*x_size+j+1] + in[(i-1)*x_size+j+2]); | ||
1862 | corner_list[n].dx=x/15; | ||
1863 | corner_list[n].dy=y/15; | ||
1864 | n++; | ||
1865 | if(n==MAX_CORNERS){ | ||
1866 | /* "Too many corners." */ | ||
1867 | } | ||
1868 | } | ||
1869 | } | ||
1870 | } | ||
1871 | } | ||
1872 | corner_list[n].info=7; | ||
1873 | } | ||
1874 | |||
1875 | |||
1876 | void susan_call_susan( struct wccFILE *inputFile, int mode ) | ||
1877 | { | ||
1878 | uchar *in, *bp, *mid; | ||
1879 | int x_size, y_size; | ||
1880 | char *r; | ||
1881 | CORNER_LIST corner_list; | ||
1882 | |||
1883 | susan_get_image( inputFile, &in, &x_size, &y_size ); | ||
1884 | |||
1885 | if (susan_dt<0) susan_three_by_three=1; | ||
1886 | if ( (susan_principle_conf==1) && (mode==0) ) | ||
1887 | mode=1; | ||
1888 | |||
1889 | switch (mode) { | ||
1890 | case 0: | ||
1891 | /* {{{ smoothing */ | ||
1892 | |||
1893 | susan_setup_brightness_lut(&bp,susan_bt,2); | ||
1894 | susan_smoothing(susan_three_by_three,in,susan_dt,x_size,y_size,bp); | ||
1895 | |||
1896 | break; | ||
1897 | case 1: | ||
1898 | /* {{{ edges */ | ||
1899 | |||
1900 | r = (char *) susan_wccmalloc(x_size * y_size); | ||
1901 | susan_setup_brightness_lut(&bp,susan_bt,6); | ||
1902 | |||
1903 | if (susan_principle_conf) { | ||
1904 | if (susan_three_by_three) | ||
1905 | susan_principle_small(in,r,bp,susan_max_no_edges,x_size,y_size); | ||
1906 | else | ||
1907 | susan_principle(in,r,bp,susan_max_no_edges,x_size,y_size); | ||
1908 | susan_int_to_uchar(r,in,x_size*y_size); | ||
1909 | } else { | ||
1910 | mid = (uchar *)susan_wccmalloc(x_size*y_size); | ||
1911 | susan_wccmemset(mid,100,x_size * y_size); /* note not set to zero */ | ||
1912 | |||
1913 | if (susan_three_by_three) | ||
1914 | susan_edges_small(in,r,mid,bp,susan_max_no_edges,x_size,y_size); | ||
1915 | else | ||
1916 | susan_edges(in,r,mid,bp,susan_max_no_edges,x_size,y_size); | ||
1917 | if(susan_thin_post_proc) | ||
1918 | susan_thin(r,mid,x_size,y_size); | ||
1919 | susan_edge_draw(in,mid,x_size,y_size,susan_drawing_mode); | ||
1920 | } | ||
1921 | |||
1922 | break; | ||
1923 | case 2: | ||
1924 | /* {{{ corners */ | ||
1925 | |||
1926 | r = (char *) susan_wccmalloc(x_size * y_size); | ||
1927 | susan_setup_brightness_lut(&bp,susan_bt,6); | ||
1928 | |||
1929 | if (susan_principle_conf) { | ||
1930 | susan_principle(in,r,bp,susan_max_no_corners,x_size,y_size); | ||
1931 | susan_int_to_uchar(r,in,x_size*y_size); | ||
1932 | } else { | ||
1933 | if(susan_susan_quick) | ||
1934 | susan_corners_quick(in,r,bp,susan_max_no_corners,corner_list,x_size,y_size); | ||
1935 | else | ||
1936 | susan_corners(in,r,bp,susan_max_no_corners,corner_list,x_size,y_size); | ||
1937 | susan_corner_draw(in,corner_list,x_size,susan_drawing_mode); | ||
1938 | } | ||
1939 | |||
1940 | break; | ||
1941 | } | ||
1942 | |||
1943 | susan_put_image(x_size,y_size); | ||
1944 | } | ||
1945 | |||
1946 | void susan_init( void ) | ||
1947 | { | ||
1948 | volatile int a = 0; | ||
1949 | susan_file.data = susan_input; | ||
1950 | susan_file.size = 7292; | ||
1951 | susan_file.size += a; | ||
1952 | susan_file.cur_pos = 0; | ||
1953 | susan_file.cur_pos += a; | ||
1954 | |||
1955 | susan_dt = 4.0; | ||
1956 | susan_dt += a; | ||
1957 | susan_bt = 20; | ||
1958 | susan_bt += a; | ||
1959 | susan_principle_conf = 0; | ||
1960 | susan_principle_conf += a; | ||
1961 | susan_thin_post_proc = 1; | ||
1962 | susan_thin_post_proc += a; | ||
1963 | susan_three_by_three = 0; | ||
1964 | susan_three_by_three += a; | ||
1965 | susan_drawing_mode = 0; | ||
1966 | susan_drawing_mode += a; | ||
1967 | susan_susan_quick = 0; | ||
1968 | susan_susan_quick += a; | ||
1969 | susan_max_no_corners = 50; | ||
1970 | susan_max_no_corners += a; | ||
1971 | susan_max_no_edges = 50; | ||
1972 | susan_max_no_edges += a; | ||
1973 | |||
1974 | // mode=0; /* Smoothing mode */ | ||
1975 | // mode=1; /* Edges mode */ | ||
1976 | // mode=2; /* Corners mode */ | ||
1977 | |||
1978 | // principle=1; /* Output initial enhancement image only; corners or edges mode (default is edges mode) */ | ||
1979 | // thin_post_proc=0; /* No post-processing on the binary edge map (runs much faster); edges mode */ | ||
1980 | // drawing_mode=1; /* Mark corners/edges with single black points instead of black with white border; corners or edges mode */ | ||
1981 | // three_by_three=1; /* Use flat 3x3 mask, edges or smoothing mode */ | ||
1982 | // susan_quick=1; /* Use faster (and usually stabler) corner mode; edge-like corner suppression not carried out; corners mode */ | ||
1983 | // dt=10.0; /* Distance threshold, smoothing mode, (default=4) */ | ||
1984 | // bt=50; /* Brightness threshold, all modes, (default=20) */ | ||
1985 | } | ||
1986 | |||
1987 | void susan_main( void ) | ||
1988 | { | ||
1989 | susan_call_susan( &susan_file, 0 ); | ||
1990 | susan_wccfreeall(); | ||
1991 | susan_call_susan( &susan_file, 1 ); | ||
1992 | susan_wccfreeall(); | ||
1993 | susan_call_susan( &susan_file, 2 ); | ||
1994 | susan_wccfreeall(); | ||
1995 | } | ||
1996 | |||
1997 | int susan_return( void ) | ||
1998 | { | ||
1999 | return 0; | ||
2000 | } | ||
2001 | |||
2002 | int main( int argc, char **argv ) | ||
2003 | { | ||
2004 | SET_UP | ||
2005 | for (jobsComplete=-1; jobsComplete<maxJobs; jobsComplete++){ | ||
2006 | START_LOOP | ||
2007 | susan_init(); | ||
2008 | susan_main(); | ||
2009 | STOP_LOOP | ||
2010 | } | ||
2011 | WRITE_TO_FILE | ||
2012 | |||
2013 | return susan_return(); | ||
2014 | } | ||