diff options
Diffstat (limited to 'SD-VBS/common/toolbox/MultiNcut/spmtimesd.c')
-rwxr-xr-x | SD-VBS/common/toolbox/MultiNcut/spmtimesd.c | 141 |
1 files changed, 141 insertions, 0 deletions
diff --git a/SD-VBS/common/toolbox/MultiNcut/spmtimesd.c b/SD-VBS/common/toolbox/MultiNcut/spmtimesd.c new file mode 100755 index 0000000..a98dc0a --- /dev/null +++ b/SD-VBS/common/toolbox/MultiNcut/spmtimesd.c | |||
@@ -0,0 +1,141 @@ | |||
1 | /*================================================================ | ||
2 | * spmtimesd.c | ||
3 | * This routine computes a sparse matrix times a diagonal matrix | ||
4 | * whose diagonal entries are stored in a full vector. | ||
5 | * | ||
6 | * Examples: | ||
7 | * spmtimesd(m,d,[]) = diag(d) * m, | ||
8 | * spmtimesd(m,[],d) = m * diag(d) | ||
9 | * spmtimesd(m,d1,d2) = diag(d1) * m * diag(d2) | ||
10 | * m could be complex, but d is assumed real | ||
11 | * | ||
12 | * Stella X. Yu's first MEX function, Nov 9, 2001. | ||
13 | |||
14 | % test sequence: | ||
15 | |||
16 | m = 1000; | ||
17 | n = 2000; | ||
18 | a=sparse(rand(m,n)); | ||
19 | d1 = rand(m,1); | ||
20 | d2 = rand(n,1); | ||
21 | tic; b=spmtimesd(a,d1,d2); toc | ||
22 | tic; bb = spdiags(d1,0,m,m) * a * spdiags(d2,0,n,n); toc | ||
23 | e = (bb-b); | ||
24 | max(abs(e(:))) | ||
25 | |||
26 | *=================================================================*/ | ||
27 | |||
28 | # include "mex.h" | ||
29 | |||
30 | void mexFunction( | ||
31 | int nargout, | ||
32 | mxArray *out[], | ||
33 | int nargin, | ||
34 | const mxArray *in[] | ||
35 | ) | ||
36 | { | ||
37 | /* declare variables */ | ||
38 | int i, j, k, m, n, nzmax, cmplx, xm, yn; | ||
39 | int *pir, *pjc, *qir, *qjc; | ||
40 | double *x, *y, *pr, *pi, *qr, *qi; | ||
41 | |||
42 | /* check argument */ | ||
43 | if (nargin != 3) { | ||
44 | mexErrMsgTxt("Three input arguments required"); | ||
45 | } | ||
46 | if (nargout>1) { | ||
47 | mexErrMsgTxt("Too many output arguments."); | ||
48 | } | ||
49 | if (!(mxIsSparse(in[0]))) { | ||
50 | mexErrMsgTxt("Input argument #1 must be of type sparse"); | ||
51 | } | ||
52 | if ( mxIsSparse(in[1]) || mxIsSparse(in[2]) ) { | ||
53 | mexErrMsgTxt("Input argument #2 & #3 must be of type full"); | ||
54 | } | ||
55 | |||
56 | /* computation starts */ | ||
57 | m = mxGetM(in[0]); | ||
58 | n = mxGetN(in[0]); | ||
59 | pr = mxGetPr(in[0]); | ||
60 | pi = mxGetPi(in[0]); | ||
61 | pir = mxGetIr(in[0]); | ||
62 | pjc = mxGetJc(in[0]); | ||
63 | |||
64 | i = mxGetM(in[1]); | ||
65 | j = mxGetN(in[1]); | ||
66 | xm = ((i>j)? i: j); | ||
67 | |||
68 | i = mxGetM(in[2]); | ||
69 | j = mxGetN(in[2]); | ||
70 | yn = ((i>j)? i: j); | ||
71 | |||
72 | if ( xm>0 && xm != m) { | ||
73 | mexErrMsgTxt("Row multiplication dimension mismatch."); | ||
74 | } | ||
75 | if ( yn>0 && yn != n) { | ||
76 | mexErrMsgTxt("Column multiplication dimension mismatch."); | ||
77 | } | ||
78 | |||
79 | |||
80 | nzmax = mxGetNzmax(in[0]); | ||
81 | cmplx = (pi==NULL ? 0 : 1); | ||
82 | out[0] = mxCreateSparse(m,n,nzmax,cmplx); | ||
83 | if (out[0]==NULL) { | ||
84 | mexErrMsgTxt("Not enough space for the output matrix."); | ||
85 | } | ||
86 | |||
87 | qr = mxGetPr(out[0]); | ||
88 | qi = mxGetPi(out[0]); | ||
89 | qir = mxGetIr(out[0]); | ||
90 | qjc = mxGetJc(out[0]); | ||
91 | |||
92 | /* left multiplication */ | ||
93 | x = mxGetPr(in[1]); | ||
94 | if (yn==0) { | ||
95 | for (j=0; j<n; j++) { | ||
96 | qjc[j] = pjc[j]; | ||
97 | for (k=pjc[j]; k<pjc[j+1]; k++) { | ||
98 | i = pir[k]; | ||
99 | qir[k] = i; | ||
100 | qr[k] = x[i] * pr[k]; | ||
101 | if (cmplx) { | ||
102 | qi[k] = x[i] * pi[k]; | ||
103 | } | ||
104 | } | ||
105 | } | ||
106 | qjc[n] = k; | ||
107 | return; | ||
108 | } | ||
109 | |||
110 | /* right multiplication */ | ||
111 | y = mxGetPr(in[2]); | ||
112 | if (xm==0) { | ||
113 | for (j=0; j<n; j++) { | ||
114 | qjc[j] = pjc[j]; | ||
115 | for (k=pjc[j]; k<pjc[j+1]; k++) { | ||
116 | qir[k] = pir[k]; | ||
117 | qr[k] = pr[k] * y[j]; | ||
118 | if (cmplx) { | ||
119 | qi[k] = qi[k] * y[j]; | ||
120 | } | ||
121 | } | ||
122 | } | ||
123 | qjc[n] = k; | ||
124 | return; | ||
125 | } | ||
126 | |||
127 | /* both sides */ | ||
128 | for (j=0; j<n; j++) { | ||
129 | qjc[j] = pjc[j]; | ||
130 | for (k=pjc[j]; k<pjc[j+1]; k++) { | ||
131 | i = pir[k]; | ||
132 | qir[k]= i; | ||
133 | qr[k] = x[i] * pr[k] * y[j]; | ||
134 | if (cmplx) { | ||
135 | qi[k] = x[i] * qi[k] * y[j]; | ||
136 | } | ||
137 | } | ||
138 | qjc[n] = k; | ||
139 | } | ||
140 | |||
141 | } | ||